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HIGHER G-INDICES AND APPLICATIONS

BY JONATHAN ROSENBERG (1) AND SAMUEL WEINBERGER (2)

0. Introduction

Suppose a compact Lie group G acts on a closed, connected, smooth manifold M, in
such a way that the classifying map/: M -^ B n, where n = 71 ̂  (M), can be made equi variant
(for the trivial G-action on BTI). This is equivalent to assuming n^(M)->K^(M/G)
splits, and turns out to be automatic if the action is semifree with non-empty fixed set,
and if G acts trivially on n. A G-invariant elliptic operator D on M defines a class
[D] e K^ (M), and we call /„, ([D]) e K^ (B n) = K^ (B n) ®z R (G), or sometimes its Chern
character in H^(TC,C) ®^R(G), the higher G-index of D. It generalizes the ordinary
G-index (which corresponds to the case n={ 1}), and in section 1 below, we shall show
that it can often be computed by methods arising out of Kasparov's work on the Novikov
Conjecture [16]. Then in the rest of this paper, we shall study a number of applications
of such higher G-indices, as well as a few closely related topics.

In our applications, D will always be either the Dirac operator on a spin manifold or
the signature operator on an oriented manifold, though potentially our theory might also
be useful when applied to the Dolbeault operator (3+3*) on a complex manifold. We
begin in section 2 with the case of the Dirac operator. Browder and Hsiang [7] have
already pointed out the vanishing of the higher G-A-genus, which is the rational higher
G-index of the Dirac operator, for actions of G=S1 on spin manifolds. However, there
is a more subtle analogue of this invariant, living in KO^ (BTI), which appears in the
problem of trying to determine when a spin G-manifold has a G-invariant Riemannian
metric of positive scalar curvature, a problem first studied by Berard Bergery [5]. In
Theorem 2.5, we show that this higher "G-j^-genus" is sometimes an obstruction to
existence of such a metric. On the other hand, in Theorem 2.3 and the examples of
(2.7), we show how equivariant surgery can often be used to construct such metrics in
the case where the obstruction vanishes. Most interesting is probably Example 2.7 (2),
where we construct invariant metrics of positive scalar curvature on n-spheres, for Zp-
actions with a knotted (n—2)-sphere as fixed set.
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480 J. ROSENBERG AND S. WEINBERGER

In section 3, we consider the application of our methods to the higher G-signature
(f. ^., the higher G-index of the signature operator). One general consequence (Theorem
3.8) is a proof of a version of what one can call the Equivariant Novikov Conjecture,
which is the equivariant homotopy-invariance of the higher G-signature. When G is
cyclic and acts trivially on cohomology (with local coefficients), we obtain a "higher"
version of the Atiyah-Singer G-signature formula of [4], which relates the higher signature
of M (in the sense of Novikov) to the "twisted" higher signature of the fixed set— see
Theorem 3.1 below. Similar results, weaker in some respects but stronger in others,
were previously found by the second-named author, using different methods ([31], [32]).

The original version of this paper also contained a number of applications of the
Teleman signature operator on a Lipschitz manifold (see [28], [29], and [12]) and of its
higher G-index theory. However, since this section eventually grew to be much longer
and more complicated than the whole rest of the paper, we have decided to publish it
separately.

Much of the work described here was done while the first-named author was visiting
the University of Chicago. We would like to thank the Chicago mathematics department
for its hospitality, and the Centre for Mathematical Analysis of the Australian National
University for its support and hospitality during revision of the manuscript. We also
wish to thank (in alphabetical order) Michel Hilsum, Jerry Kaminker, Jim McClure,
John Miller, Mel Rothenberg and Georges Skandalis for helpful suggestions about the
subject of this paper. In particular, we thank John Miller, Michel Hilsum, and Georges
Skandalis for detecting errors in preliminary drafts.

1. The higher G-index theorem

Let M2 k be a closed, connected, smooth even-dimensional manifold with fundamental
group K on which a compact Lie group G acts by diffeomorphisms. We suppose that
D:r(E°) -^r(E1) is a G-invariant elliptic pseudodifferential operator between sections
of two G-vector bundles E°, E1 over M, and wish to discuss the higher G-index of D,
taking both the G-action and the fundamental group into account. For this to make
sense, G must act trivially on 71, in the sense that there should be a splitting to the map

7ii(M)-^(M/G).

This, of course, is equivalent to the existence of a commutative diagram of G-maps

(1.1) M -̂  BTC,
\ ^

M/G

where BTI is a K(n, l)-space with trivial G-action and/is an isomorphism on n^. This
condition already made its appearance in [I], [31], and [32]; a few conditions that
guarantee this are given by the following proposition. Note that if G acts freely, it no
longer makes sense to say G acts trivially on K^(M) (since M has no G-invariant
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HIGHER G-INDICES AND APPLICATIONS 481

basepoint), but existence of a splitting (1.1) reduces to a simple algebraic condition on
the exact sequence

TCi (G) -> TCi (M) -> 71:1 (M/G) -> KQ (G) -> 1.

1.2. PROPOSITION. — Suppose G, a compact Lie group, acts semi-freely on a connected,
not necessarily compact manifold M, \vith nonempty fixed set F and G acting trivially on
n ̂  (M). If either F is connected or n^ (M) has no subgroups that are non-trivial homo-
morphic images of KQ(G) (this is no condition at all if G is connected), then
Tti (M) -> Tii (M/G) is an isomorphism.

Proof. — Assume F^M without loss of generality. It is obvious that
n^ (M) -> n^ (M/G) is surjective (choose a basepoint in F and note that one can lift
paths from M/G to M), so it's enough to construct a splitting
Tii (M/G) -> Tii (M). Differentiation of the action at a point of F yields in the direction
normal to F a semifree linear representation V of G, which is positive-dimensional. Now
it is enough to prove the proposition assuming the codimension of F in M is at least 3,
since otherwise we can replace M by M x V2 (in which the fixed set is F x {(0,0)}, which
is of codimension at least 3) and use the diagram

M -> M x V 2

M/G-^MxV^/G

to obtain a splitting n^ (M/G) -> n^ ((M x V^/G) -> n^ (M x V2) ̂ n^ (M).
Assuming that codim (F c= M) ̂  3, we observe that

7ii((M-F)/G)^(M)x7to(G).

This can be seen as follows. By a general position argument (or direct calculation with
Van Kampen's Theorem), Tii(M-F) ->K^(M) is an isomorphism. The action of G on
M—F, which is assumed to be free, makes M — F into a principal G-bundle over
(M—F)/G, yielding an exact sequence

K, (G) -^ n, (M - F) ̂  K, ((M - F)/G) ̂  n^ (G) -> L

The map n^(G)->n^(M—¥) is trivial, since its composition with the isomorphism
7ti(M—F) ^TCi(M) is given by the inclusion into M of an orbit, and can be computed
from the orbit of any point, in particular, from the trivial orbit of a fixed point. Let S
be a G-invariant sphere in M linking a component of F, as provided by the equivariant
tubular neighborhood theorem ([6], Theorem VI. 2.2). There is a similar exact sequence
computing 7Ci(S/G)^7io(G) (recall dim S^2), so that the inclusion S/Gc;(M-F)/G
splits the above exact sequence. To deduce the splitting of T^(M-F) ->n^ ((M—F)/G),
it suffices to know that the action of KQ(G) on n^(M—¥) is trivial, which follows from
the assumption that G acts trivially on n^(M)^n^(M—F). [The two actions of TC()(G)
are easily identified using covering-space theory.]

ANNALES SCIENTIFIQUES DE L'feCOLE NORMALE SUP^RIEURE



482 J. ROSENBERG AND S. WEINBERGER

Now we have to compute K^(M/G). Choose disjoint equi variant tubular neighbor-
hoods N, of the components F^ of F. By repeated application of Van Kampen's theorem,

7ii(M/G)=7Ci(((M-F)/G)UFiUF2U . . .)
=7i,((M-F)/G)^^/G)^i(Fi)^(^/G)^i(F2)*. . .

^(7Ii(M)x'n;o(G))^(F,),^(G)7li(Fi)^(F,),^(G)7Ci(F2)*. . .

If F is connected, we have only F^ to deal with and we get

7li(M/G)^(7li(M)X7lo(G))^^,^(G)7li(Fi)^7li(M).

If F is not connected, one must keep track of the way each n i (3Nf/G) is identified with
Tti(Ff) XTI()(G), and unfortunately the various copies of 7io(G) may not all coincide with
the selected factor of 71:0 (G) in 71:1 ((M - F)/G). However, if n^ (M) is as in the hypothesis,
this cannot cause trouble, and the proof is complete.

1.3. Remarks. — 1. All actions of the cyclic groups Zp of prime order are semifree.
2. This proposition can be extended to many non-semifree group actions, if one has

suitable hypotheses on fixed sets of subgroups. However, even in the semifree case,
some hypotheses are needed to eliminate the (projectivized linear) involution on RP2

with fixed set IRP1-^ IRP°, which satisfies all the hypotheses of the proposition except
for connectedness of the fixed set and lack of a homomorphism Z^ ->n^(W2), yet has
quotient the 2-disk.

3. See [7] and [32], Lemma 2, for an analogous statement when G=S1.

1.4. DEFINITION. — Assume D is as above and one has a diagram (1.1). The stan-
dard procedure, involving replacing D by an operator D" of order 0 whose symbol is in
the same K-theory class (e.g., D/=D(1+D*D)-1/2) and considering D' as a bounded
G-equivariant Fredholm operator L^E0) -> L2(E1), associates to D a class

[D]eK^(M)=KKG(C(M),C)

independent of the choices of D" and of smooth measures ([14] or [10]). The higher
G-index of D is defined to be/^([D])eK^(B7i;). [Note that since BTI is not necessarily
locally compact and is only defined up to homotopy, K^(BTI) should be interpreted to
mean

lim Kg(X)=( 1m Kp(X)) ®^R(G).

where the inductive limit is to be taken over finite subcomplexes X of BTI.]
The name higher G-index is motivated by the case G^ { 1}, M oriented but not simply

connected, and D the signature operator, in which case the Chern character of the higher
index is

ch/^ ([D]) = 2^ (^ (M) U [M]) e H^ (B 71, Q),

46 SERIE - TOME 21 - 1988 - N° 4



HIGHER G-INDICES AND APPLICATIONS 483

which when paired with an element of H* (B TI, Q) is one of the higher signatures of
Novikov. Here J^f is the Atiyah-Singer modification of the Hirzebruch L-class, differing
from Hirzebruch's polynomial only by certain powers of 2 [4], § 6.

Next we need to recall a number of constructions from [15] (see also [15], [10], [II],
[13], and [23]). Let A=C*(7i) be the group C*-algebra of n [in fact the reduced C*-
algebra C* (71) would work just as well and from some points of view is more satisfactory],
and form an A-vector bundle ̂  over M by

Mx^C*(7Q,

where M is the universal cover of M and n acts on C*(7i) by left translations. Since
[by (1.1)] the classifying map /:M-^BTT for the principal Tc-bundle M-^M is
G-equivariant, the action of G on M lifts to an action on ^. Thus we may form the
operator D^, D "with coefficients in ̂ ", which is a G-invariant elliptic pseudodifferential
A-operator in the sense of [21]; as such, it has an equivariant A-index in
K^(A)=Ko(A)(x^R(G).

1.5. THEOREM (higher G-index theorem). — Under the above hypotheses,

ind^ D^ = [T} ®c (M) [D] = P (/* (PD).

"where ®C(M) ls tne Kasparov pairing between [D]eK^(M) and

[V]eK^(M;A)^K^(C(M,A)),

with values in K^(A)=Ko(A) ®2R(G), and p is the Kasparov map K^(BTT) ^K^(A),
extended to the equivariant case by tensoring with the identity map on R(G). (This makes
sense since G acts trivially onBn and on A.)

Proof. — The first identity is almost exactly the same as Theorem 3.1 of [23], the
only difference being that everything is G-equivariant. The second identity follows as
in the proof of Theorem 3.3 of [23], using functoriality of the Kasparov product and
the fact that by construction, the bundle i^ is pulled back from the universal bundle
E n x ^ C* (n) over B 71, via the G-map /

For purposes of applications to spin manifolds, we shall also need the analogue of
Theorem 1.5 in real equivariant K-theory. In the only case of interest, M" will be a
manifold with a G-invariant Riemannian metric and spinor bundle, and D will be the
Dirac operator. There is no longer any point in assuming n is even, since KO-index
theory is interesting even in certain odd dimensions.

1.6. THEOREM (higher G-S index theorem). — Let M" be a closed Riemannian spin
G-manifold (with G preserving both the Riemannian metric and the spinor bundle) with
G-equivariant classifying map f: M -> B K as in (1.1). Let

[D] e K^ K0° (C°5 (M), R) = KO^ (M)

be the KO-fundamental class defined by the real Dirac operator D, and V as above (now

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



484 J. ROSENBERG AND S. WEINBERGER

mth A =C^(n) as in [39]). Then

HKUD^)=[-r] ®c^(M)[D]=|3(/,([D]))eKO?(A),

where P: KO^ (B 71) -> KO^ (A) fs the Kasparov map in KO-theory as defined in [25], extended
in the obvious way to the equivariant case (for trivial G'action).

Caution. — For A a real C*-algebra with trivial G-action, it is not necessarily true
that KO^ (A) ̂ KO^ (A) (x^ RO(G). See [27] or [3], § 8, for the correct substitutes and
for calculations of KO^ (pt).

Proof. — Again, except for insertions of the G's, one can carry over verbatim the
discussion in [25], Theorems 3.3 and 3.4.

For the applications to higher G-indices, we really want an index theoretic interpret-
ation for /^([D]) and not for P(/^([D])). Thus it is important to know when P is
injective (either integrally or after tensoring with Q). As explained in [15], [16], [13],
[10], [II], [23], and [25], the injectivity of P is intimately linked to the Novikov Conjecture
and certain L-theoretic refinements. At least at present, it seems that for most groups
for which the Novikov Conjecture can be proved by any method, one can also prove
something about injectivity of P, which is what we want to exploit. We recall in
particular the following two results. The proofs obviously carry over to K^ and KO^
(with G acting trivially on both sides).

1.7. THEOREM (Kasparov-[15] and [16]; see also [10], [II], and [25]). — I f n is the
fundamental group of some complete Riemannian manifold of nonpositive sectional curvature
(not necessarily compact or of finite volume), then P is a split injection

K^ (BTI)-^K^ (C*(TI)), KO^ (BJT)-^KO^ (Cg(Ji)).

1.8. THEOREM ([23], Theorem 2.6 and [25], Theorem 2.8). — Ifn is a solvable group
having a composition series for \vhich the composition factors are torsion-free abelian, then
P is an isomorphism K^ (B 71) -> K^ (C* (n)) and KO^ (B 71) -^ KO^ (Cg (71)).

Using Theorems 1.7 and 1. 8, one may view Theorems 1. 5 and 1.6 as giving explicit
interpretations of the higher G-index/^([D]) in terms of the A-index of a certain elliptic
A-operator [A=C*(7i) or Cg(7i)], assuming n is reasonable and torsion-free. For a
somewhat larger class of groups n (see [23], Proposition 2. 7), we get such an interpretation
for/^ ([D]) viewed rationally in H^ (B 71, R (G) ®z Q) = H^ (n, Q) (x^ R (G). In the remain-
der of this paper, we shall give some sample geometric applications of the index
theorems. Undoubtedly there are others involving, say, the Dolbeault operator applied
to holomorphic actions on complex manifolds.

Before we get to the applications, it is useful to give a homological formula for the
(rational) higher G-index, which reduces to the formula of [4] in case n is trivial.

1.9. THEOREM. — Let G be a compact Lie group acting smoothly on a closed, connected,
smooth G-manifold M2 k, let D be a G-invariant elliptic pseudodifferential operator over
M, and f: M -> X any continuous G-map mth X a trivial G-space [i. e., any continuous
map factoring through M/G; in particular, one may take X=BTI in the situation of

4s SERIE - TOME 21 - 1988 - N° 4



HIGHER G-INDICES AND APPLICATIONS 485

(1.1)]. View the Chern character of /^([D]) as a map G-^H^(X,C), by identifying
elements of R (G) mth their characters on G. Then for g e G,

ch/,([D])(g)=E(-D^f{ ., chlf!^ ^(M?)ln[TM?]^H,(X,C),\(.ch?i_i(N?(2)RC)(^) J /

w/^r^ r^ SMm 15 ^afe^n oiw the various components Mf o/ the fixed set M9. Here
^.=dim(Mf), N, denotes the normal bundle of Mf m M, i*(u) is ̂  restriction of the
symbol class of D to TMf, and ST denotes the Todd class of the complexified tangent
bundle.

Proof. — Without loss of generality, we may take X compact. Let E be any complex
vector bundle over % (with trivial G-action) and consider D/.,^)? the operator D "with
coefficients in/*(E)," defined using a suitable connection on/*(E). Since/"(E) has
trivial G-action ([4], Theorem 3.9) gives

(mdD^)(g)=E(-l)^< chl*(^)l*ch^(E) ^(M?),[TM?]>,/ ( ) f ch?i_i(Nf®g,C)(^)

which says exactly that the two sides of our desired equality agree when paired with
(ch E) e H* (X, C). Since ch: K° (X) ®^ C -^ H^6" (X, C) is an isomorphism, this proves
the result.

2. The higher G-j^-genus and invariant metrics
of positive scalar curvature

In this section, we shall apply the results of paragraph 1 in the case of a compact Lie
group G acting on a closed spin manifold M. We assume the action of G lifts to an
action on the spinor bundle, so that the theory of paragraph 1 applies to the Dirac
operator. As explained in [2], Proposition 2.1, this is not much of a restriction if G is
connected; it is also no restriction if G is finite of odd order.

We begin by showing how Theorem 1.9 gives a result of Browder and Hsiang [7]. We
emphasize that this is not intended to be a particularly convincing application of our
theory, since none of the deeper aspects of paragraph 1 (these include the Miscenko-
Fomenko index theorem and Kasparov's results on the Novikov Conjecture) are involved
here, and furthermore, we don't see any way to simplify the hardest aspect of [7], which
is to get rid of the assumption of a splitting of the map on fundamental
groups. Therefore, we only state the elementary case to point out the relation between
our methods and their result.

2.1. THEOREM (Browder-Hsiang [7]). —Let M be a closed, connected spin manifold
admitting a non-trivial action of the circle group G=S1, and suppose a splitting (1.1)
exists for the classifying map f: M —> B n of the universal cover of M. Then the higher
A-genus f^ (A (M) C} [M]) e H^ (B 71, Q) vanishes. (Here A denotes the total A-class of M.)

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



486 J. ROSENBERG AND S. WEINBERGER

Proof. - Because of [2], Proposition 2.1, it is no loss of generality to suppose the
action is of even type (i. e., preserves the spin structure). Then specializing Theorem
1.9 in the case of a generator ZQ of S1 with positive, very small imaginary part gives a
formula for ch/^([D]) (zo) (D the Dirac operator for an S^invariant metric on M) which
is essentially identical to the one appearing in [2], §1.5, except that it takes values in
H^ (B 71, C). Hence the Atiyah-Hirzebruch proof goes through unchanged.

We turn now to a more serious application of our theory, to the following problem
first studied in [5] by L. Berard Bergery: Suppose M" is a closed, connected, smooth
manifold admitting both a metric of positive scalar curvature and an action of a compact
Lie group G. When does M admit a G-invariant metric of positive scalar curvature?

In the case where G is finite and acts freely, this is equivalent to asking when M/G
admits a metric of positive scalar curvature, a problem studied in detail in [24], § 3, and
in [25], Theorem 1.3. On the other hand, when G contains a non-trivial connected
semi-simple compact Lie group, this is always possible (a result of [18], quoted in [5])
and when G=S1 acting freely, M admits a G-invariant metric of positive scalar curvature
if and only if M/G admits a metric of positive scalar curvature [5], Theorem C. Hence
we concentrate here on the case where G is finite or G=S\ but where the action isn't
free. (The case G=S1, M 3-dimensional is completely settled in [5].)

Fortunately, the problem is not completely hopeless because of the following two
positive results.

2.2. THEOREM (Berard Bergery [5, Theorem 11.1]). — I f G acts on M preserving a
metric of positive scalar curvature, and if M' can be obtained from M by an equivariant
surgery of codimension at least three, then M' has a metric of positive scalar curvature
invariant under its G-action.

This enables one to reduce, for group actions "without codimension-two complica-
tions," the problem of invariant positive scalar curvature to the consideration of cobord-
ism classes. To make matters simple we shall consider only G=Zp (p a prime) and
simply connected manifolds, although the general result (see Remark 2.4 below) can be
proven in virtually the same way.

2.3. THEOREM. — Assume Zp acts smoothly on a simply connected manifold M", -where
n^5, preserving a spin structure, and such that no component of the fixed set F has
codimension 2. If M is equivariantly spin cobordant to another (not necessarily connected)
spin Zp-manifold M\ and if M' has an invariant metric of positive scalar curvature, then so
does M.

Proof. — Consider an equivariant cobordism W in two stages (see Fig. 1). To begin
with, W restricts to a cobordism of the fixed sets F and F' along with their "fixed-point
data" (determined by the equivariant normal bundles). In this way (see [9], §§40-43)
the equivariant spin cobordism group Q^1"'^ maps to a direct sum of groups of the
form ^spm2(kl+ . . . +fc,) (KU^i) x . . . x BU(fe^)), where k, are the complex dimensions of
the eigenbundles of the Zp-action on the normal bundles. Any such cobordism between
F and F' is the result of spin surgeries on F' preserving maps to the appropriate classifying
space. Thus, they can be thickened to Zp-equivariant surgeries on all of M'. Any
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HIGHER G-INDICES AND APPLICATIONS 487

surgery in this step is on a sphere of dimension less than that of the fixed set, and hence
is of codimension at least three in M', so that this produces a new manifold M" with an
invariant metric of positive scalar curvature and F as fixed set. There is an equivariant
spin cobordism of this manifold M" to M. Now all surgeries are taking place in the
free part, which by the codimensionality hypothesis is simply connected. Actually, we
work on the quotient and observe that n^ =Zp and we have a spin cobordism over Zp of
the free parts, so that all remaining surgeries can be taken of codimension at least three,
as in the proof of [24], Theorem 2.2.

Fig. 1. — An equivariant spin cobordism. The first step puts an invariant metric
on the "upper boundary" M" of the shaded region.

2.4. Remark. — For the case of general compact G, one should assume that whenever
H <= H" <= G are closed subgroups, the codimension of each component of M11 in the
relevant components of M" is either zero or at least three. For nonsimply connected
manifolds, one must, of course, also take the fundamental group into account in the
bordism group. We shall see some examples later.

The following theorem gives our main necessary condition for existence of an invariant
metric of positive scalar curvature. It follows from the higher G—S index theorem
(Theorem 1.6 above) precisely as in the proof of [25, Theorem 3.4].

2.5. THEOREM. — Suppose M" is a closed spin manifold and G acts smoothly on M,
preserving the spin structure. Assume that M admits a G-invariant metric of positive
scalar curvature. Also assume n==n^ (M) -> K^ (M/G) splits (see Proposition 1.2). If[D]
is the fundamental class in KO^(M) defined by the real Dirac operator, the higher
G-S-class (3 (/^ ([D])) vanishes in KO^ (Cg (71)). If P: KO^ (B n) -> KO^ (C$ (n)) is infec-
tive, f^ ([D]) vanishes in KO^ (B 71).

2.6. Remark. — For n^ (M) as in 1.7 or 1.8, this gives vanishing of the higher G-S
index. Even if P is only rationally injective. Theorem 2.5 gives vanishing of the higher
G-A-class in H^ (n, Q) ®z R (G) (just as in the Browder-Hsiang situation), and one can
do many explicit rational calculations by restricting to fixed sets as in Theorem 1.9.
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488 J. ROSENBERG AND S. WEINBERGER

2.7. Examples. — We now give some examples of group actions on manifolds of
positive scalar curvature, for some of which invariant metrics of positive scalar curvature
exist, and for some of which no such invariant metric exists.

1. Although every connected sum of any number of copies of S2 x S2 clearly has a
metric of positive scalar curvature there are J-p actions on such manifolds that have no
such invariant metrics. The construction goes as follows: Let p be any 2-dimensional
complex representation space not containing a trivial 1-dimensional sub-
representation. The sphere S(p) modulo the action of J-p is some 3-dimensional lens
space L. Suppose p is an odd prime. Now p L bounds a spin manifold (even taking
the fundamental group into account) since Wpin(BZp)=Zp, and after some surgeries on
(0- and) 1-spheres one can assume that n i of this manifold is I. p. Consider the universal
cover and glue in p copies of p. If necessary, take p copies of this manifold (and again
do some surgeries) to guarantee that its signature is a multiple of 16;?. (Rohlin's theorem
implies that it is already a multiple of 16.) One can now equivariantly pipe on some
number of p times the Kummer surface, permuted freely by the Zp to obtain a simply
connected spin manifold of zero signature with a J.p action with isolated fixed points all
with local representation p. By Wall's theorem [30] the connected sum with a sufficiently
large number of S2 x S^s (which we do equivariantly) will be diffeomorphic to a connected
sum of S2 x S^s. On the other hand the local formula for the Zp-A-genus in KO^P
shows that it is nonzero, so that there is no invariant metric of positive scalar curvature.

2. (Construction of Metrics of Positive Scalar Curvature Invariant Under Zp Actions
on the Sphere with a Knot as Fixed Set.) Now we consider the first interesting
codimension-two case, that of high-dimensional counterexamples to the P. A. Smith
Conjecture that a Z action on the n-sphere with a codimension two subsphere as fixed
set is in fact a linear action (or at least, that the subsphere is unknotted). We shall
show that all of these actions for p an odd prime preserve some metric of positive scalar
curvature, and in so doing, perhaps partially elucidate the nature of the difficulties unique
to codimension two. We let K denote the fixed set, X its closed exterior in the sphere
(i. e., the complement of an open tubular neighborhood of K), and £ denote a Seifert
surface for K (f. <?., an oriented submanifold of the sphere with boundary K). We note
that £ can always be "closed" in a canonical way by gluing on a disk along K. We
shall call the result of this operation Z'. One can show that 27 is always a spin manifold
(it is a codimension-one oriented submanifold in the spin manifold obtained by surgery
on K). The proof is somewhat simpler in case 2V is spin-nullcobordant (which certainly
implies ^=0), so we do this case first.

First we show that the class of X/Zp in ^""(BTI^X/Z^.BZ) is zero. This is true
because it clearly lies in the image of Q "̂1 (X/Zp, B Z) under the natural map
X/Zp -> BTti (X/Zp). Alexander duality applied to X shows that the inclusion of the S1

in the boundary of X induces an isomorphism on homology, so that the spectral sequence
of the covering shows that this is true for X/Zp as well, so that the Atiyah-Hirzebruch
spectral sequence applies to deduce the result for Q^*", which leads to the vanishing of
the relative group. (On the other hand, Q^BTT^X/Z^.BZ) can be very large.) As
a result, X/Zp is spin-cobordant, keeping track of fundamental group of interior and
boundary, to S1 x D"~1. As a result, it can be obtained by a sequence of surgeries with
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codimension at least three from the complement of the unknot. This is unfortunately
not of much help since the surgeries might touch the boundary (in such a way that we
could not extend them inward toward the knot). The trouble is that the cobordism
restricted to the boundary might not be the product cobordism S^S^^xI. The
obstruction to cobording the given cobordism on the boundary to this one lies in
^"(BZ)^^1"®^"1!. If this obstruction vanished, one could then attach this
cobordism to the one on the boundary and get the desired cobordism between X/Zp and
S1 x D"~1. The element that we have does have vansihing first component since p times
that component can be viewed as the result of surgery along K, which is spin cobordant
to the sphere, and Q^" has no /^-torsion for p odd. The second component is exactly
the class of S/. If this vanishes we are done since the original action can be obtained
from a linear one (which preserves the standard metric of constant positive scalar
curvature) by a sequence of equivariant codimension-at-least-three surgeries, so the result
follows from the theorem of Berard Bergery [5], Theorem 11.1. If not, then it cannot
be so obtained. However, one can instead arrange for the boundary to be the cobordism
(S-D^^xS1. Then one can take covers and glue in a copy of (S-D^^xD2

equivariantly. This gives an equivariant spin cobordism to the linear action which
respects the fundamental group of the complement, so that the method of proof of the
reduction to spin cobordism for the case of noncodimension-two fixed set applies, and
one sees that in any case one gets the invariant metric.

3. All of the above examples were simply connected. Now we shall study the effect
of crossing, say Example 1, with S1. If S1 has trivial action then 2.5 (and 2.6) apply
and there is no invariant metric of positive scalar curvature. On the other hand, if we
give S1 an action by rotation, the product action is free. Hence there is an invariant
metric of positive scalar curvature if and only if the quotient can be given positive scalar
curvature. The quotient is the mapping torus of a generator of the Zp-action on
#kS2xS2. This is a 5-manifold with 7ii=Z, and hence by [25], Theorem 3.6, has a
positive-scalar-curvature metric if and only if the higher A-genus vanishes. Since that is
clearly the case here, for this product action there is an invariant metric of positive scalar
curvature.

4. For S1-actions. Theorem 2.5 does not give as much information. But according
to [5], Theorem C, a free S1-action has an invariant metric of positive scalar curvature if
and only if there is a metric of positive scalar curvature on the quotient. This excludes
the case of a principal S^bundle M5 over a K3-surface K4. Then
(M-^S^D^Us^s1^4^1) can be made into a semi-free S^manifold, which is
simply connected if M is, and thus has a metric of positive scalar curvature (since
^pin^o). (Here take the S3 <= M to be S^invariant, with S3^ a 2-sphere in K, let S1

act on D4=(^xmt ball of C2) by rotation, and let S1 act trivially on D2.) However, this
manifold does not have an invariant metric of positive scalar curvature, since S1"
equivariant surgery in codimension 4 gives back M, which has no such metric. (This
example answered a question asked to us by Berard Bergery, of whether surgery theory
could be used to find an example of a manifold with a metric of positive scalar curvature,
but with no invariant such metric for a semi-free S^action.)
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5. If G is semisimple and nonabelian, then according to [18] there is always an invariant
positive-scalar-curvature metric for any effective G-action. As a result, (and for 711-split
actions, higher) G-ssi vanishes. We note that this fails for actions not preserving a spin
structure.

3. The higher G-signature theorem
and some of its applications

In this section, we apply the higher G-index formula, very much in the style of the
original paper of Atiyah and Singer, to show that for appropriately "homologically
trivial" G-actions on manifolds with a suitably restricted fundamental group, there is a
formula that relates the higher signature of the manifold to "twisted" higher signatures
of fixed sets. (For earlier results, see [31] and [42].) The idea is simply this: the G-
index of the twisted signature operator in the equivariant K-group K^ (C* (n)) can be
identified (by the method of Kaminker and Miller [13], for instance) with the image of
an equivariant Miscenko-Ranicki higher signature of the simplicial chain
complex. When the action is homologically trivial, the latter degenerates to something
essentially unequivariant. On the other hand, assuming a suitable form of the Novikov
Conjecture, the G-index of the signature operator can be given a homological interpret-
ation, yielding the formula.

3.1. THEOREM. —Let M2^ be a connected, closed, oriented manifold and n a group
with the property that P: K^ (B n) -> K^ (C* (n)) is rationally injective. (In the notation of
[23], this is SNC2-fcy [16], §6, and by [23], Propositions 2.7 and 2.8, it suffices to
assume that n has a subgroup of finite index which, modulo a finite normal subgroup, has
a discrete embedding in a connected Lie group.) Suppose G=Z^ acts smoothly on M,
preserving the orientation, that f: M -> B n factors through M/G, and that G acts trivially
on H* (M; R [n]) (the local coefficients being determined by f). Then

2fc^(^(M)n[M])=^2 t-r^{[^(v(-l))- l^v(-l))^(F,)]
j

K C)\-s(Q) -| -)
x ft ^n-) ^°(v(9)) n[F,]^H^(B7i,C),

o<e<n 2/ J J

where (¥j) are the components of the fixed set F=Mfl^ of a generator g of G=Z^,
2t=dimF., v(—l)=(—l)-eigenspace of the normal bundle of ¥ p e its Euler class,
2r=dimv(—l) , s(Q)= complex dimension of the subbundle v(9) of the normal bundle of
¥j where g acts by e16, and M^ is as in [4], p. 581. (For simplicity of notation, we suppress
the subscript] on t, r, etc. As in [4], Theorem 6.12, one needs to use local coefficients in
case ¥j isn't orientable.)

We note some special cases.
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3.2. COROLLARY (cf. [26]). — If the fixed set F=M° 15 empty, then the higher signature
ofM in H^ (B TC, Q) is zero.

This was proven for free actions in [31], where it was shown to hold for all homologically
trivial actions on manifolds with fundamental group n (/"and only if the Novikov Conjecture
holds for n.

3.3. COROLLARY. — Ifn=2 (i. e., if we are dealing with an orientation-preserving involu-
tion), then the higher signature of the self-intersection of F = M° is equal to that of M.

This follows from the proof of Proposition 6.15 of [4].

3.4. COROLLARY. — Ifn=2 and dimF<(l/2)dimM, then the higher signature ofM is
zero [fnH^(B7i,Q)].

Proof. — We can push F away from itself by general position.
Corollary 3.4 can be seen to be equivalent to the Novikov Conjecture. Though there

is a (less precise) version of Theorem 3.1 for non-smooth actions. Corollary 3.4 fails
for PL actions, even in the simply connected case.

3.5. Remark. — Changing the generator of Z,, in (3.1) does not change F, nor the
left-hand side of the equation, but it does change the 9's and their characteristic
classes. The formula obtained by averaging (3.1) over all choices of generators was
shown in [32] to be equivalent to the Novikov Conjecture, at least for semifree
actions. However, our present formula appears to be somewhat stronger. One could
prove our formula for groups in CappelFs class [8] by combining the arguments below
with [32] and with well-known connections between K-theory and L-theory.

3.6. Remark. — As in Theorem 2.1, one can partially reprove for S^actions the
result of [32] that the higher signatures of M and F always agree. This is also true (by
a trick of [17] attributed to one of us) for Z^actions that extend to S1-actions.

Now for the proof of (3.1). Using the factorization

Tli (M) 4 71,

7ii(M/G)

we can define an element cr^(G, l^QeL^Ztl/nnGxTi]), extending the symmetric signa-
ture of Miscenko [19] and Ranicki [22]. To define CT^, note that/defines a covering of
M with covering group TC, and the algebraic chain complex of this cover (for some G-
equi variant triangulation or G-CW decomposition), with the obvious G x n action, defines
an element of the group of algebraic Poincare complexes. (L-groups are decorated by
indicating the type of modules allowed and the amount of control of bases
demanded. Our L-groups are constructed from projective modules over Z[l/n][Gx7i]
that are free—even based if you like—over Z[l/n][7t]. All of this only affects 2-torsion
which will not be of interest to us here. Once we invert the order n of G, permutation
modules become projective. Actually, we can merely invert the order of the isotropy.)

Another way to describe this construction, using complex coefficients, is as
follows. C [G x n] = C [G] [n], which breaks up according to the representations of
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G. Now (for the chosen decoration, or inverting 2), the L-theory of a product ring is
the product of the L-theories, so that our obstruction lies in L^C^]) (g)R(G). For
geG one can now define a^(g,M), the higher signature of M, as a weighted sum of
the components of this element in L2k(C[n])(S^(G) according to their characters
on g. Explicitly:

oJg,M)=^Xpte)[^(G,M)]p,
peG

where [c^(G,M)]p is the p-primary part of a^(G,M). When 71= {e}, this is the G-
signature defined as the trace of a representation by Atiyah and Singer [4], pp. 578-580.

Now recall that if A is a C*-algebra, there is a map L* (A) -^ K^ (A) that arises from
spectral theory. Composing this map [for A = C* (n)] with the map in L-theory induced
by the inclusion C [71] q; C*(7i) gives a map (discussed in [20] or [13])

m: L^CKD-^K^C^TC)) or 1^(0 [71]) ® R(G) -^ K?(C*(7i)),

in terms of which the higher G-signature theorem computes the image m (CT^ (G, M)). The
connection is provided by the following result.

3.7. PROPOSITION. — In the above situation, the G—C*(n)-index of the signature opera-
tor of M mth coefficients in the flat C*(n)-bundle defined by f: M -> Bn coincides with
m(a,(G,M)), the image of the equivariant Miscenko-Ranicki symmetric signature.

Proof. — There is no difficulty in carrying through the proof in [13] once one gets
used to dealing with projective, rather than free, modules. The only significant change
is that complexes of C* (Tc)-modules and chain homotopy equivalences between them
must be chosen G-equivariant.

Now we can complete the proof of Theorem 3.1. Using the higher G-index theorem
(1.5), we obtain from Proposition 3. 7 the equality

P(/*([D]))=m(^(G,M))eKo(C*(7i))^R(G).

Now chf^([D])(l)=2kf^(^(M) Pi [M]), the usual higher signature. On the other
hand, ch/^ ([D]) (g) may be computed using the localization theorem of [27] as in Theorem
1.9, yielding (by the calculation in [4], p. 581), the right-hand side of the formula in the
theorem. Since we assumed that P is rationally injective, we only need to show that

m(a^,M))=m(aJl,M))=m(c^(M))

(after tensoring with Q or R).
But assuming that G acts trivially on H*(M; IR[7i]), we even show that

a^(G,M)=<7^(M). In fact, this is equivalent to showing that the image of
<J^(G,M)GL2k(C[G][n]) in L2k(^G[K\) vanishes, where J^ is the augmentation ideal
of C[G]. But when the action of G is homologically trivial, the cochain complex
C*(M) ®C[G]^G ls acyclic, hence chain contractible, and this is obvious.
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In fact the hypothesis of the theorem is perhaps stronger than necessary. It does not
seem to follow that <J^(G,M)=O^(M) if G only acts "homologically trivially in the
middle dimension," but the definition of m is such that m(a,(G,M)) only depends on
the hermitian form on middle dimensional cochains, exactly as in [4], pp. 574-576 (see
for instance [13, Proposition 3. 8] or the discussion in [20] in the analogous case of higher
signatures defined by Fredholm representations). Thus in some cases it might suffice
only to assume G acts trivially on H^M; R[n]).

Let us note that in the course of proving Theorem 3.1, we have also established an
equivariant version of Kasparov's theorem in [16]. For this we no longer require any
homological triviality.

3.8. THEOREM (Equivariant Novikov Conjecture).—Suppose M^ is a connected,
closed, oriented smooth manifold, and suppose n is a discrete group such that
P: K^ (B n) -> K^ (C* (n)) is rationally infective. Suppose a finite group G acts smoothly on
M, preserving the orientation, and that f: M -> B n factors through M/G. Then the higher
G-signature ofM in H^ (B n, Q) 0^ ̂  (G) is an (oriented) equivariant homotopy invariant.

Proof. — This follows immediately from Proposition 3.7 and Theorem 1.5, once we
make the obvious observation that CT^(G,M) is an oriented equivariant homotopy
invariant.

3.9. Remark. — One can also formulate versions of the Equivariant Novikov Conjec-
ture for cases where the map /: M -> B n can be made equivariant for a non-trivial action
of the finite group G on B n. For instance, one may consider the case where M has a
G-fixed base-point XQ but G acts non-trivially on n=n^ (M, Xo). In this case, the higher
G-signature will live in K^ (BTI) 00 zQ, which may be computed using the localization
theorem, and a^(G,M) will live in the L-theory of C[7ixG]. One case where one can
get reasonable results is when BTT can be chosen to be a complete manifold of non-
positive curvature on which G acts by isometrics, in which case the results of Kasparov
(as presented in [11]) can be made G-equivariant. We shall defer a more complete
discussion to another paper.
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