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1. Introduction and statement of the main results

The basic objects we will be concerned with in this paper are families of polarized
complex algebraic varieties. By this we mean an algebraic family of pairs (X^, L(), where
X; is an algebraic variety and L( a line bundle on Xy or, more precisely, a proper flat
morphism n: X -> T and a line bundle L on X modulo pullbacks of line bundles on T.
We will always assume that X and T are separated, that T is irreducible and X pure-
dimensional; on the other hand, X and T need not be reduced. We let k be the
dimension of T and d the relative dimension of n.

What sort of cohomological invariants can one associate to such a family? Normally,
given a line bundle L on a space X, we could take the first Chern class of L; but since

(1) Partially supported by C.N.R. and by the MPI national project "Geometria Algebrica".
(2) Partially supported by N.S.F. grant DMS-84-02209.
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456 M. CORNALBA AND J. HARRIS

here L is only defined up to twists by line bundles from T, this is not a priori well-
defined. Another invariant we can look at is the first Chern class of the direct image
sheaf Tt^L, when this is locally free; but here again this class is not well-defined: if
U=L(S)K*M for some line bundle M on T, we will have n^ U = M (g) n^ L, and hence
Ci(7^I/) equals ^(^L^+rc^M), where r is the rank of n^ L. There is, however, a
linear combination of these two classes, or, rather, of the first one with the pullback of
the second one to X, that is invariant under twists of L by pullbacks of line bundles
from T, namely the divisor class rc^ (L) -TI* c^ (^ L) in the cycle group A1 (X). Instead
of working with it directly, we will find it more convenient to use the class

^(L)=(rCi(L)-7i*Ci(^L))n[X]eA,^_i(X),

where [X] stands for the fundamental class of X and "0" denotes cap product. We
can also define a divisor class on the base T by taking a power of the class
rci (L) —7i* Ci (n^ L) and pushing it forward: we set

^(L)=7lJ(rCl(L)-7^*Cl(^L))d+ln[X])eA,_l(T).

What can we say about the classes S and € in general? Apparently, not much. If,
however, we make a suitable positivity and stability assumption about the line bundle
L|^-i^ for general t, we find that € lies in the closure of the cone of effective divisor
classes. This is the content of Theorem (1.1) below, which is the main result of this
paper.

Before stating the theorem, we explain our terminology and assumptions. We begin
by generalizing slightly the definition of S and €. Let F be a locally free coherent sheaf
of rank r on T. We set

J(L,F)=(rCi(L)-7i*(ci(F)))n[X]eA^,_i(X)

^(L,F)=^((rc,(L)-7^*Cl(F))d+ln[X])eA,_l(T).

By the push-pull formula

^(L,F)=rd+l^(c,(L)d+ln[X])-(d+l)rdc,(F)n^(Cl(L)dn[X]).

Notice that <^(L, F) and <?(L, F) are left unchanged if we tensor F by a line bundle M
and L by TC* (M). Also, our old <f (L) and S (L) are just <f (L, n^ L) and 3 (L, n^ L).

One can define ^(L, F) [and J(L, F)] also when F is just a coherent sheaf, provided it
is locally free on an open subset U of T such that T—U has codimension two or greater
(notice that this is always the case when F is torsion-free and T is normal). In fact,
Afc_i(T) equals Afc_i(U), and one merely defines ^(L,F) to be the image of
^(L|^-i(u),F|u)inAfc_i(T).

The statement of Theorem (1.1) involves the notion of stability, whose meaning in
our context we now explain. Let Z be a projective variety, M a line bundle on Z, V a
vector subspace of H° (Z, M). Suppose that V has no base points and is very ample. Let

j : Z^P(V^)
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FAMILIES OF STABLE VARIETIES 457

be the embedding defined by V. Then, for large enough n, the natural map

(?„: Sym"(V)-.H°(Z,M")

is onto. Thus, setting N = h° (Z, M"),

AN (?„: A1^ Sym" (V) -> AN H° (Z, M»)

is a nonzero element of the vector space A^yrn^V)^® (A^H°(Z, M")). We shall say
that j is a (Hilbert) stable or semistable embedding if A1^ (?„ is stable or semistable, in the
sense of geometric invariant theory, under the action of SL(V), for arbitrarily large
values of n.

We then have:

THEOREM (1.1). — Let X and T be separated, mth T irreducible of dimension k and X
of pure dimension k +rf. Let n: X -> T be aflat proper morphism. Let L be a line bundle
on X, and F a coherent subsheaf of K^(L) that is locally free off a subvariety of T of
codimension two or greater. Suppose that the following conditions are satisfied:

(i) Ift is a general point of T, then F^® C c H° (n~1 (t), L^-1 ̂ ) is base-point-free,
very ample, and yields a semi-stable embedding ofn~1 (t).

(ii) L is relatively ample.
Then <^(L, F) lies in the closure of the cone in A^_ i (T) (g) Q generated by the effective

Well divisors; if¥ is locally free <^(L, F) lies in the closure of the cone generated by the
effective Cartier divisors.

How we topologize A^_i (T) (X) Q is immaterial: any linear topology will do, as will be
apparent from the proof. In most applications of the theorem, F will be equal to
n^ (L). We mention a simple consequence of (1.1).

COROLLARY (1.2). — Suppose the hypotheses of Theorem (1.1) are satisfied. Assume
moreover that condition (i) holds outside of a finite number of points of T, that T is
projective, and that F is locally free. Then the class (^(L,F) lies in the closure of the
ample cone in A^_ i (T) (x) Q.

We will give a proof of the basic theorem, of a variant of it, and of the corollary, in
the next section. In section 3 we will give an example, due to lan Morrison, that shows
that the hypothesis of semistability on the general fiber is a crucial one. In section 4
we will apply the basic theorem to the case of a family of curves polarized by their
canonical line bundles, to obtain some inequalities among divisor classes on the moduli
spaces of curves. In particular we will prove the

THEOREM (1.3). — Let Mg be the moduli space of stable genus g curves, mth g'^2, and
let 'k, 8 eHc (IVy ® Q be the Hodge class and the boundary class. Then the class a ' k — b 6
has non-negative degree on every curve in Mg not contained in the boundary A=M^—M^
if and only if

^(8+4/^fc,
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458 M. CORNALBA AND J. HARRIS

and is ample if and only if

a>ll.b>0.

What was previously known [12] was that a'k—b6 is not ample if a < 11. b and is
ample for a ̂  (11.2). b > 0. The first part of Theorem (1.3) has also been independently
proved by Xiao Gang [15], using somewhat different techniques.

We thank the referee for a number of useful comments and suggestions of impro-
vements to the first version of the present work.

2. Proof of the main theorem

We shall now give a proof of Theorem (1.1). Clearly, it suffices to deal with the
case when F is locally free. For large enough n the higher direct images of L" vanish
and the inclusion of F in T^(L) induces generically surjective maps of locally free sheaves

qy Sym»(F)^^(L"),
A1^ cp^: A^ Sym" (F) -> A1^ n^ (L"),

where N stands for the rank of T^(L"). By condition (i) of the theorem, for arbitrarily
large values of n there is an SL-invariant homogeneous polynomial P that does not
vanish at A^ (?„ | p where t is a general point of T. Choosing local trivializations for F
and A^^L"), we get a local regular function/by evaluating P on A ,̂,. Since P is
SL-invariant, changing trivialization of F by a matrix A changes/by a factor (detA)"^^,
where r is the rank of F. Thus if, as we may, we choose P to have degree rm, the /'s
give a non-zero global section of the line bundle

(2.1) ^ = Jfom ((det F)"N w, (AN T^ (L"))^).

We may evaluate the Chern class of this line bundle by applying the Riemann-Roch
theorem for singular varieties (c/ [4]) to L"; this says that

ch (T^ (L")) n TT (^) = ̂  (^ (L")) = ̂  (^x (L")) = 7^ (ch (L") 0 Tx (W

Recalling that, for any Y,

^ (^v)= DH + terms of dimension < dim (Y),

and equating terms of degree k— 1, we find that c^ (^(L")) n [T] is a polynomial in n
with leading term

(l/^+l^n^Ti^L^ntX^

Thus Ci (^) C} [T] is a polynomial in n with leading term

(m/^+OOn^^rTTjc^L^^npD-^+^c^^n^^^ntX])}

^m/^+l)!))^1^!^).
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FAMILIES OF STABLE VARIETIES 459

In other words,

Cl(^)n[T]=(m/(rd(d+l)!))nd+l^(L,F)+Q(n),

where Q is a polynomial with coefficients in A^_ i (T) (x) Q of degree at most d. Thus, if
E is any effective Cartier divisor class on T,

(2.2) <T(L, F) =(E+(rd(rf+ 1) !/m). c, (̂ ) U [TD/n^1 +R (nVn^1,

where R is a polynomial of degree at most d. Since the divisor class
Ed4^(^+l)!/m).Ci(^.)r»[T] is effective, letting n go to infinity concludes the proof
of (1.1).

To prove Corollary (1.2), notice that its hypotheses imply not only that ̂  has a
non-zero section, but also that, for all but a finite number of points reT, it has a section
that does not vanish at t. In particular, the intersection number of ^ with any
irreducible curve in T is non-negative, so Seshadri's criterion of ampleness [9] implies
that, for any ample line bundle M, M ® ̂  is ample. Thus if, in (2.2), we choose E to
be ample, the conclusion of the corollary follows.

It should be observed that our methods of proof are very similar to those used by
Mumford in [12] to show that a ̂ -8 is ample if a^ 11.2. It has also been brought to
our attention by the referee that our proof of (1.1) is essentially the same as the proof
of Theorem 8.1 in Viehweg's paper [14].

Theorem (1.1) can be sharpened somewhat; in particular hypothesis (ii) can be slightly
relaxed. To exemplify this, we shall look at a proper flat family n: X -> T of noded
curves over a smooth complete one-dimensional base (here, and in the sequel, by noded
curve we mean a complete reduced curve that is either smooth or has at most nodes as
singularities). We let L be a line bundle on X and F a (necessarily locally free) coherent
subsheaf of n^ L. As in Theorem (1.1), we assume that F stably embeds a general fiber
of 7i. In particular, the restriction of L to a general fiber is ample; we shall not require,
however, that this be true for every fiber, but merely that the restriction of L to any
component of any fiber have non-negative degree.

Now, let's analyse the proof of (1.1). This is based on the fact that

^ = ̂ fom ((det F)"N w, (A^ n^ (L"))^)

has a nonzero section for large n. To be more precise, this is also true of

^ = ̂ fom ((det F)"N m, (AN jyj^),

where J^ is the image of

(?„: Sym^F)^^^).

Thus ̂  has non-negative degree. Notice, incidentally, that JSf^ equals T^(L") except at
a finite set of points. On the other hand, under our hypotheses, R1 n^ L" is not necessarily
zero for large n, but is concentrated at a finite set of points, so that the Grothendieck
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460 M. CORNALBA AND J. HARRIS

Riemann-Roch theorem gives

(2.3) deg (^) = deg (^) - rm. h° (T, n^ (L")/^)

^m^r^deg^L, F)-rm. h°(T, ̂ (L")/^) +rm. fc°(T, R1 ̂  L")+0 (n).

The sheaf ^fi is of the form ^L for a suitable ideal sheaf ^. Let e^(^) be the
multiplicity of ^ measured via L as defined in [12]. We claim that

LEMMA (2.4). — With the above hypotheses \ve have:

(i) ^(T.R^L^O^).
(ii) h° (T, ̂  (U)!^) = ̂  W. (n2/!) + 0 (n).
Proof. — Let's prove (i). Since R^^L" is concentrated at a finite set of points, the

statement is local on T. Thus we may replace T with an affine U and assume that
R^^L" is concentrated at ue\J. By an etale base change we may also assume that n
has sections r\, . . .,I\ over U such that L"(^r\.) is generated by its sections and
R^^L"^!"^)) vanishes for every n^l . For each i, let y^ be the point of F^ mapping
to M. Let a, (resp., b^ be a section of ^(L(^r\.)) (resp., n^ L) that does not vanish
identically on r;, and let o^ (resp., P .̂) be the order to which its restriction to r\. vanishes
at Yf. Then a^~1 is a section of ^(L^^I^)) whose restriction to r\. vanishes at y^ to
order a f+(n— 1) P^, so that, looking at the exact sequence

^(MEr^^R^L^O,

we conclude that

^(R^L^^a.+^-l)^

as desired.
As for (ii), the question is again local on T, which we may hence replace with an

affine. Then, by the definition of multiplicity,

(2.5) x (W L") = ̂  W. (^/2) + 0 (n).

in [12] it is shown that

(2.6) dim (H° (J^ L")/H° (J^)) = 0 (n).

Actually, in Proposition (2.6) of [12], of which (2.6) is a part, it is assumed that L is
generated by its sections; this hypothesis, however, is never used in the proof of
(2.6). Now consider the exact sheaf sequence

0 -> n^^U) -> n^L" -> ̂ (U/^U)-^ R1 n^ (J^L") -> R1 n^ L" -> R1 n^U/^U) -^ 0.

Part (i) of the lemma implies that

(2.7) h° (R1 T^ (L7^ L")) = 0 (n).

46 SERIE - TOME 21 - 1988 - N° 3



FAMILIES OF STABLE VARIETIES 461

On the other hand, the same argument used to prove (i), or, alternatively, the proof of
(2.6) in [12], shows that

(2.8) h° (R1 n^ (J^ L")) = h1 (J^ L") = 0 (n).

Putting (2.5), (2.6), (2.7), (2. 8) together yields (ii).
Q.E.D.

The remark that ̂  has non-negative degree, (2. 3) and (2.4) prove

PROPOSITION (2.9). — Let TC:X ->T be a flat family of noded curves over a smooth
complete curve. Let L be a line bundle on X, and F a coherent subsheaf of n^ (L) of
rank r. Let ^ be the ideal sheaf on X such that ^ L is the subsheaf of L generated
by F. Suppose that the following hold:

(i) If t is a general point of T, then F(® C c= H0^'"1^),].^-!^) is base-point-free,
very ample, and yields a semi-stable embedding ofn~1 (t).

(ii) For any t e T, the restriction of L to any component of n~1 (t) has non-negative
degree.

Then

O^L^^Tt^detF^))'2--^2.^^).

3. Morrison^s counterexample

It is natural to ask whether the condition of stability is really necessary for the
statement of Theorem (1.1), or just a requirement of the proof. The following example
of a family of unstable varieties, suggested by lan Morrison, shows that it is essential.

Of course, we have to start with an unstable variety. Perhaps the simplest such, from
our point of view, is the cubic scroll in P4, a surface of degree 3 that may be described
in several ways:

(i) as the image of P2 under the rational map given by the linear system of conies
through a point p e P2;

(ii) as the variety cut out by the 2 x 2 minors of a general 2 x 3 matrix of linear forms;

(iii) or, geometrically, by choosing a line L and a complementary 2-plane A in P4, a
conic C c: A, and an isomorphism between L and C, and taking the union of the lines
joining corresponding pairs of points on L and C (Fig. 1).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



462 M. CORNALBA AND J. HARRIS

Fig. 1

We now have to construct a family of these over a one-dimensional base T, in a family
of projective spaces that must be a non-trivial bundle over T. To do this, we note that
the destabilizing flag for a cubic scroll consists simply of the line L. This suggests that
we construct our P^bundle P E over T and our family X c= P E of scrolls in such a way
that the P1-bundle formed by the lines L on the scrolls is relatively negative. For
example, we can take T=P\ E the locally free sheaf

E^pi)®3®^^-!))®2,

and PE the projectivization of E (by which we mean the bundle of one-dimensional
quotients of fibers of the vector bundle associated to E). Note that PE has trivial
subbundles Y ^ T x P 2 and Z^TxP 1 corresponding to the two summands (^pi)®3,
(^pi(_l))©2 ̂  ^g direct sum decomposition of E. To construct our family of scrolls,
then, we will choose a conic C c= P2 and an isomorphism of P1 with C, and take the
fiber of X over each point (eT to be the union of the lines joining corresponding points
in the fibers of Z and T x C <= Y.

Another way to describe X is via coordinates on PE: let [Uo:UJ be coordinates on
T=P1; let Wo, Wi, and W^ be a frame for (^pi)®3, viewed as sections of E; let W^
and W^ be sections of (^pi(-l))®2 with poles at Uo=0 and set W,=UoW^
i === 3,4. Then on each fiber of P E over T, [Wo: . . . : W4] are a system of homogeneous
coordinates, in terms of which the fiber of Z is given by Wo=Wi=W2=0 and the fiber
of Y by W3 =W4=0. We can then take X to be the locus where the matrix

(3.1)
'Wi W2 W4'

.Wo Wi W3,

has rank not greater than one, that is, the subvariety defined by the 2 x 2 minors of (3.1).
Now, the Chow ring of the projective bundle PE is generated by two classes: the

pullback T{ to P E of the class of a point in T = P1, and the first Chern class ^ = c^ (d)p g (1))
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FAMILIES OF STABLE VARIETIES 463

of the tautological bundle. These classes satisfy the relations

^=0, Ti^npE^i, ^n[pE]=ci(E)n[T]=-2.
Note that the class of the sub variety Y is ^+2^, since it is the complete intersection
of the two divisors (W3) and (^4), each of which has class ^+T|; similarly, Z, being the
intersection Wo=Wi=W2=0 of three divisors linearly equivalent to ^, has class ^3.
Given this, it is not hard to determine the class of the threefold X: for example, the
hypersurfaces defined by the two minors

Wo W4 - Wi W3, Wi W4 - W^ W3

of the matrix (3.1) each have class 2^+r|, and so their intersection has class
4^+4^. But the intersection of these two hypersurfaces consists exactly (and with
multiplicity one) of the union of X and Y. We deduce that X has class 3^+2^.

Alternatively, we could also find the class of X by interpreting (3.1) as the matrix
representative of a bundle map (p: F -»G, where F is the pullback to IP E of the bundle
^e2 C ̂ (-1) on P1 and G is ^(l)®2. and applying Porteous' formula. We find the
class of X is the second graded piece of the quotient c(F^)/c(G^), that is,

[X]=[(l+Ti)(l-y-2],

=[(l+r|)(l+2i;+3i;2)],
=3^+2^.

Now, taking the line bundle L on X to be the restriction of ^pE(l)? we have of course

7l*(Ci(7^L))=7l*(Ci(E))=-2T1,

so the divisor class <?(L, n^ L) associated to L is

^(L,^L)=rank(^L)ci(L)-7c*(ci(^L))=(5^+2r|)|x,

and we have

j(L,^L)3n[X]=(5^+2r|)3(3^+2^r|)n[PE]

=(125. 3. ̂ +125.2. ̂ T|+3.25.2. 3.^)0 [IP E]
=-750+250+450=-50,

so that € (L, 7t^ L) = n^ (<? (L, n^ L)3) cannot lie in the closure of the effective cone.

4. Applications to moduli of curves

a. THE BASIC INEQUALITY FOR NON-HYPERELLIPTIC CURVES. — As indicated in section 1
above, one of the main reasons for proving Theorem (1.1) was the hope of applying it
to obtain informations about families of stable curves. In order to describe our results
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464 M. CORNALBA AND J. HARRIS

we need to recall the structure of the Heard groups of the moduli spaces of curves. This
we shall do rather sketchily, referring to [12], [8], or [2] for details.

Let Mg be the moduli space of stable curves of genus g. As we shall see in a moment,
one can define natural classes X (the "Hodge class") and 5o, . . ., 8^/2] (the "boundary
classes") in the rational Heard group Hc(M^) ® Q. It is a fundamental result of Harer
that these classes generate Pic(M^)(X)Q (cf. [5], [6]); furthermore it is not hard to see
that they are independent if g^3, while they satisfy one linear relation for ^=1,2
(cf. section 4fc below). It should be observed that they are not classes of line bundles
on Mg, but rather of "line bundles on the moduli stack of genus g curves" [11]. Roughly
speaking, a line bundle on the moduli stack is the datum, for each flat proper morphism
/: X -> S with stable curves as fibers, of a line bundle Ly on S, natural under base
change. There is an obvious notion of isomorphism for these objects, which makes it
possible to define a "Heard group of the moduli stack", to be denoted Pic(JSg).

Clearly any line bundle on Mg gives, by pullback, a line bundle on the moduli
stack. This yields a homomorphism from Pic(M^) into Hc(e^) which is easily seen to
have finite cokernel. It has been shown by Mumford [12] that, for g^3, this is in fact
an inclusion and Hc(e^) has no torsion, so that we may regard both groups as lattices
in Hc(M^)0<)Q. If L is a line bundle on J^g we shall write C1(L) to denote the
corresponding class in Hc(e^).

More specifically, the line bundle L giving rise to X, is defined by setting

Ly=A-%(^)

for each family /: X -> S of stable curves, where o)y = (Ox/s is the relative dualizing
sheaf. Instead, the line bundle M corresponding to 8̂ . is

My=^(D,),

where D^ is the effective Cartier divisor in S defined as follows. We say that a stable
curve has a singular point of type i at p if its partial normalization at p consists of two
connected components of genera i and g—i, for f>0, and is connected for f=0. Let q
be a point of S and let jpi, . . . ,ph be the singular points of type i in f~1 (q); thus X is of
the form xy=jj near pp where y^ is a function on S. Then, locally near q, D^ is defined
by the equation ny,=0.

All this assuming, of course, that D^ does not contain a component of S. Otherwise,
the definition of My is slightly more complicated. The only case that we will need in
the sequel is the one when S is a smooth curve and, in addition, the locus of singular
points of type i consists of isolated distinct points p^ . . .,/?„, plus disjoint sections
Sf, . . . ,£„ of /: X -^ S (we can always reduce to this case by a finite base change). Thus,
f'.X-^S can be thought of as arising from a family cp: Y -+ S of (not necessarily
connected) noded curves by pairwise identification of disjoint sections of smooth points
Si, TI, . . ., S^. T^. We also let n^ be the multiplicity of p^ in other words, near p^ X is
of the form xy = ̂ k, where t is a suitable local coordinate on S. With these notations,

4° SERIE - TOME 21 - 1988 - N° 3



FAMILIES OF STABLE VARIETIES 465

the formula for My is

(^ 1) My = ® (q>^ (NS,) (x) (p^ (NT,)) (1: n,/(^)),
j

where Nz stands for the normal bundle to Z.
One normally writes 5 for ̂  8f; the locus of points in Mg with a singular point of type

i is usually denoted A .̂.
Let/: X -> S be a family of stable curves. If ^ is a class in Pic(^), we let Hy-eA1 (S)

be the Chern class of the corresponding line bundle on S; if S is one-dimensional, we
shall write degy(n) or degg(n) to denote the degree of ^y. In addition to Xy and (8f)y,
i=Q, . . . , [g /2] , there is another natural class in A^S), namely the pushforward
f^ (c! ((0/)2) °f Ae self-intersection of the relative dualizing sheaf. It follows from the
Grothendieck Riemann-Roch formula that this is tied to ^ and 8=^5f by the relation

(4.2) f^c,^)2)=12^-^

Our first step in the proof of (1.3) is to apply Theorem (1.1), or rather Proposition
(2.9), to L=O)^, where n: X -> T is a family of stable genus g curves over a smooth one-
dimensional base T. In order to do this, we first have to assume, of course, that the
dualizing sheaf embeds the general fiber of n stably; this will be the case if the general
fiber of n is smooth and non-hyperelliptic. To see this, recall that a non-degenerate
curve C in Pr is said to the linearly stable (resp. linearly semistable) if, for any linear
projection

Tl:?'-^?5,

one has

deg(C) ^deg(n(C))
r s

[resp. deg (C)/r^deg(7i(C))/5]. By Clifford's theorem, a canonical curve is linearly
stable. On the other hand, it is known that linear stability implies stability [12] (3).

Now (1.1) or (2.9) say that the line bundle ((of9 ® n* det (^ ©„) ~1) has non-negative
self-intersection. This implies that

0 ̂  (©„. ©„) - 2 (co,. 7i* det (^ coj)

=g(^.^)-(4g-4)deg,(^

since ©„ has degree Ig— 2 on the fibers of 71. Taking (4.2) into account, this becomes

0^(12^-(4^-4))deg^)-^degJ5);

(3) What is proved here is that linear stability implies asymptotic Chow stability; but Chow stability implies
Hilbert stability [10].
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we have thus proved, in the special case when the general fiber is non-hyperelliptic, the

PROPOSITION (4. 3). — Any family of genus g stable curves over a smooth one-dimensional
base whose general member is smooth satisfies the inequality

(8+4/g)deg(^deg(8).

Actually, Proposition (2.9) gives a little more. Let p be a singular point of type i>0
in a fiber n'1^). Then every section of the dualizing sheaf of Ti"1^) vanishes at^.
Thus, if ^ G\ is the subsheaf of ©„ generated by n^ (co^), ^ is a proper ideal at p. In fact,
if Ci and €3 are the two components of 7t~1 (t) meeting at p, there is a differential (p on
Ci that does not vanish at p, or, which is the same, vanishes simply at p as a section of
the restriction to C^ of co^-i ̂ ; we can then find a section \|/ of o^ over a neighbourhood
of n ' 1 ^ ) that restricts to (p on Ci and to zero on C^ Therefore, if X is of the form
xy=t" near p, where y vanishes on Ci and x on C ,̂ then, locally, \|/=x. T|, where T| is a
section of ©„ that does not vanish at p. Hence ^p=(x,y), so

^(^)=Zdeg^(8,),
i>o

and (2.9) yields

(4.4) (8+4/^)deg^^deg^o+2 ̂  deg^5,
i>o

fc. THE HYPERELLIPTIC CASE. — As we have announced. Proposition (4.3) still holds for
families of hyperelliptic curves; indeed, it is sharp for some families, and in fact we will
see these are the only examples of families of generically smooth curves for which (4. 3)
is sharp.

We denote by lg the locus of hyperelliptic curves in Mg and by Ig its closure in Mg. As
a first step, we notice that

LEMMA (4. 5). — Pic(y is a finite group.
Proof. - It suffices to show that Pic(I^) is a torsion group. Let A be the divisor in

the symmetric product

Sym2g+2(Pl)=P2g+2

whose points are the effective divisors in P1 with multiple points. Clearly Ig is the
quotient of P^-^-A by PGL (2) and is normal. Now let X be the set of (2g-l)-
tuples (pi, . . - , p 2 g - i ) of points of P1 such that

pi^pj if i^j,
A-^0,1,0).

Notice that X is the complement of a divisor in affine (2^—l)-space, so Pic(X)
vanishes. Let

a: X-^lg
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be the morphism that sends (p^ . . . . p ^ g - i ) to the class of the divisor
2g+2

E Pi.
i=l

where p^ g = 0, p^ g +1 = 1, p^ g + 3 = oo. Clarly, a is a finite morphism: let k be its degree.
Now let M be any line bundle on lg; we know that a*(M) is trivial. On the

other hand, since a is a fe-sheeted covering and lg is normal, there is a natural map
H°(X,a*(M)) -•» H° (1 ,̂ M*), and any nowhere vanishing section of a*(M) maps to a
nowhere vanishing section of M^.

Q.E.D.
We denote by ^g the moduli stack of genus g smooth hyperelliptic curves, and by J

the moduli stack of stable genus g hyperelliptic curves. Mimicking what one does for
J^g and J^g, one can define Heard groups Hc(J^), Hc(J^). Our next goal is to
determine the rational Heard group

PiCQ(J,)=Hc(J,)(g)Q.

We begin by observing that Lemma (4. 5) implies that

Hc^)=0.

In fact, if L is a line bundle on ^y a power of L descends to a line bundle M on I ; on
the other hand a power of M is trivial, so the same is true for L.

What this means is that a class in HC<Q>(J^) should be a linear combination of
"boundary classes". Things are slightly complicated by the fact that, while A .̂ cuts out
on lg an irreducible divisor when f>0, the intersection of AQ with I breaks up into
several irreducible components. To see this, let C be a stable hyperelliptic curve of
genus g: then C has a semistable model C which is a two-sheeted admissible cover (cf. [3]
or [8]) of a stable (2^+2)-pointed noded curve R of arithmetic genus zero. Let/' C -> R
be the covering map, and let p be a singular point of R. The complement of p has two
connected components R' and R", so the set of marked points of R breaks up into two
subsets, those lying on R' and those lying on R"; let a and 2 ̂ +2-a^a be the orders
of these two subsets. We will call a the index of the point p, notice that a ̂ 2. Suppose
that/? has odd index a=2i+1, ?>0; then/must be branched at/?, and the unique point
q lying above p is a singular point of type f, according to the terminology introduced at
the beginning of this section. In particular, it follows from the irreducibility of the
space of A-pointed stable curves of genus zero that the intersection of A^ with lg is
irreducible. Suppose instead that the index of p is even and equal to 2f+2. Then/is
unbranched at/?, so/"^) consists of two points q^ and q^ and/'^R') and/'^R")
are semistable hyperelliptic curves of genera i and g-i-\, joined at couples of points
that are conjugate under the hyperelliptic involution. In particular, q^ and q^ are
singular points of type 0. We let S, be the locus of all curves C in lg such that R has a
singular point of index 2i +2. The preceding discussion shows that

Aom,=SoUSiU... u1 ̂  . . . \J^[(g-l)/2]'
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It is also clear that each S, is irreducible.

Atypical member of A jn l^

genus 1

genus g-1

21+1 branch 2g-2M branch
points points

A typical member of S^

2i+2 branch
points

2g-2i branch
points

Fig. 2

Let C be a general point of S^ or A .̂ n T<y, and /: C -> R the corresponding admissible
covering. Suppose C belongs to So. Thus C is obtained from a smooth hyperelliptic
curve of genus g—1 by identifying two points that are conjugate under the hyperelliptic
involution, while C is the blow-up of C at its singular point. It follows that the universal
deformation space of the admissible covering /: C -> R is a two-sheeted covering of the
universal deformation space of C, branched along the locus of curves in So. On the
other hand, if C belongs to A^ or to S,, f ^ l , then the universal deformation spaces of
/: C -> R and of C are the same.
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The divisors S, pull back to Cartier divisors on J y since the universal deformation
space of a hyperelliptic curve within hyperelliptic curves is smooth; the class of 3^ in
Pic(J^) will be denoted ^. In what follows, we shall improperly use the symbols \ 8,
also to denote the restrictions of \ and 8, to Jg. In view of the discussion above, the
class 80 is related to the i^ by the identity

(4.6) 8o=^o+2^+. . .+2^_^,

If L is a line bundle on J ' g which is trivial on ^g there are integers n^ m, such that

Cl(L)==^^^+^m,8,
i>o

The rii (resp. m^) are determined as follows. Choose a nowhere vanishing section s of L
on ̂ , and let C be a curve in 3f(resp. A^). Then n^ (resp. m,) is the order of zero of 5
along the locus of hyperelliptic curves belonging to 3; (resp. A .̂) in the universal deforma-
tion space (as a hyperelliptic curve) of C. Thus ̂  • • •»^i(g-i)w 6^ ' ' ' ' \gi2} generate
PicQ(J^). In particular ^ is a rational linear combination of them.

PROPOSITION (4.7).— The classes ^ • • •»^-i)/2]? ^•••^/z] fr^ly generate
Pic^e )̂. Furthermore in Pic^^g) \ve have:

[(9-I)/2] [g/2]

(8^+4)5i=^o+ Z 2(f+l)(g-0^.+E 47(^-7)8,.
»=1 j = l

Since we already know that X is a linear combination of the ^ and the 8^, to prove
Proposition (4.7) it is enough to check that the degrees of the two sides of the identity
in the statement are the same on sufficiently many "independent" families of hyperelliptic
curves with a one-dimensional base.

To see all this, let's start with the simplest case of a family n: X -> T of hyperelliptic
curves, the case where T is a smooth curve and X is given simply as a double cover
TI :X-^Y of Y = T x P 1 branched along a general curve C of type (2 ̂ +2,2m) in Y
(here "general" means C is smooth and simply branched over T). In this situation, X
will be smooth since C is, and all the fibers of X over T will be irreducible curves with
at most one node. In particular, if singular, they will be stable and will not belong to
3f or A, for i>0. Thus the degree of ^ and of 8, is zero for f^ 1, while the degree of
^o equals the number of branch points of C over T, i. e.,

deg^o=(C.o)Y/T)+(C.C)
=-2.2m+4w.(2^+2)

=8m^+4m,

since the relative dualizing sheaf (Oy/T has type (—2,0). Next, to calculate the self-
intersection of the relative dualizing sheaf ©„, observe that, by the Riemann-Hurwitz
formula,

®n=T1*®Y/T(C).
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where C c: X is the ramification curve of T|. We then have

(TI* (OY/T. T|* (OY/T) =2(o)Y/T. O)Y/T) =0,

(T1*(OY/T.C)=((OY/T.C)=-2.2m,

(C.C)=(C.C)=2m.(2^+2),
and so

(o^.o)^)=-8m+2m.(2^+2)

=4m^—4m.

Using formula (42) we find that the degree of the Hodge bundle is

4m^—4m+8m^+4mdeg^ ̂  = ——————_—————— = mg,

so that
(8^+4)deg^=^.deg^o.

as desired.
The analysis of a general family of hyperelliptic curves over a smooth one-dimensional

base is of course more complicated. Since we are only interested in comparing the
degrees of the two sides of the identity in (4.7), we may limit ourselves to families
7i: X -> T of admissible covers; that is, double covers of families /: Y -> T of stable
(2^+2)-pointed noded curves of arithmetic genus 0, branched along the lg+1 distingu-
ished sections o, of / and possibly at some of the nodes of fibers of/, in accordance
with the local description of such covers given in [3] or in [8]. In fact, from any family
of hyperelliptic curves over a smooth one-dimensional base we may get a family of
admissible covers by base change and blow-up of singular points in the fibers, and these
operations have the effect of multiplying all degrees by the same constant.

We begin our analysis with the base Y of our family of double covers. Let {p^} be
the set of points of Y that are nodes of their fibers; if the local equation of Y at p, is
xy-t^ we will say that p, has multiplicity m,. We also let a, be the index of /?,. We
have then the:

LEMMA (4. 8).—(2^+l)^(a, . a,)=-^m,a,(2^+2-a,).
i i

Proof. - First, observe that both sides of (4.8) are unchanged if we resolve the
rational double points of Y; we may thus assume that Y is smooth, and thus is the
blow-up of a P1-bundle Z over T at a sequence of points smooth in their fibers. Now,
if TI, i2 are sections of a P1-bundle over the curve T, the difference T ^ — T ^ is numerically
equivalent to a multiple of the fiber, and so has self-intersection zero; thus

(Ti .T i )+(T2.T2)=2(Ti .T2) .

Given n sections T .̂, we can sum over all couples of indices i, j such that i<j to obtain

(4.9) (^-1)E(T,.T,)=2S(T,T,).
i i<J
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Now, blowing up the bundle Z at a smooth point of a fiber through which exactly k of
the sections T; pass, we create a node p of a fiber with index fe; at the same time the left
hand side of (4.9) decreases by fc(n-l) and the right hand side decreases by
k (k— 1). We deduce that after any sequence of such blow-ups we will have

(n-l)^(T,.T,)=2^(T,.T,)-^a,(n-a,).
i i<j h

Assuming that all the sections ^ are disjoint and setting n=2g+2 we arrive at
formula (4. 8).

Q.E.D.

We may now start our analysis of the family n: X -> T. We denote by T| the double
cover X -> Y and by R c X its ramification divisor. We denote by Sj the number of
points pi of index 27+1, counted according to their multiplicity, and by Vj the number
of points p, of index 2j + 2. Clearly

deg^o=2vo
(4.10) deg^=v,, i^l

deg^8f =£,/2, f^l .

To determine the other invariants of K note that, by the Riemann-Hurwitz formula

CD^=T|*G)^(R).

Writing CT for ̂  c^ and observing that, since CT consists of a bunch of disjoint sections of
/, (o.o) equals —(o.co^), we have

(^.^)=(Ti*co^Ti*co^)+2(r|*co^R)+(R.R)
=2(o)p o^.)+2(G)p or)+(a. a)/2
=2(co^.(o^)-3(CT.a)/2.

Since Y is (after resolving its rational double points, which won't affect this) the blow-
up of a IP1-bundle over T a total of I^f=]^£y+^v^ times, we have

((^.(^)=-^£,-^V,.

Next, by Lemma (4. 8),

(2^+l)^(a,. a,)=-^(27+2)(2^-27)v,-I:(2j+l)(2^+1-27)8,.
j j

Putting these together, we have

2(2^+l)(o),.co^=^[60-+l)(2^-27)-4(2^+l)]v,

+Z[3(27+l)(2g+l-27)-4(2^+l)]e,,
j
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and combining this with (4.10), (4.6), and the standard relation (4.2),

24(2^+l)deg^=2(2^+l)[((o,.(^)+deg,S]

=6gdeg^o+ E 6(/+l)(2g-27)deg^,
J>0

+^6[(27+l)(2^+l-27)-(2^+l)]deg,8,.
j

We arrive finally at the relation

(4.11) (8^+4)deg^=g.deg^o+ Z 2(f+l)fe-0deg^+ ^ 4j(g-7)deg^8,,
i>o j>o

as desired.

Proposition (4.7) now follows readily from looking at families of curves obtained by
taking double covers of T x P1 branched over curves of type (2m, 2^+2), generic except
for ordinary 7-1 old points: it is easy to see that, in addition to the family constructed
above with all deg 8f and deg ̂  zero except for deg ^o? there exists for each j > 0 a family
with all deg8^ and deg^- zero except for deg^o ^d deg^. (resp. deg 8^).

Q.E.D.
Observe that formula (4.11) proves Proposition (4.3) in the hyperelliptic case; one

simply has to use (4.6) and to remark that, for l^i^[(g—\)/2] (resp., l^i^\g/7\),
(f+1) (g—i) [resp., 4 f (^—f) ] is strictly larger than g. This concludes the proof of (4. 3);
it also shows that the families of hyperelliptic curves all of whose singular fibers are not
in Af or in S, for i^l are the only ones for which equality holds in (4.3). In fact, these
are essentially the only families of curves, hyperelliptic or not, for which this happens,
as our next result indicates.

THEOREM (4.12). — Let n:X ->T be any non-isotrivial family of stable curves of genus
g \vhose general member is smooth. Then equality holds in (4. 3) if and only if the general
fiber of n is hyperelliptic and the singular fibers of n do not belong to A( or to S^ for i ̂  1.

Proof. — It suffices to show that the general fiber of n is hyperelliptic if equality holds
in (4.3). Assume this is not the case: to get a contradiction, we go back to the proof
of Theorem (1.1), with L=G)^ and F=TI^(L). The proof is based on the fact that the
line bundle ̂  [cf. (2.1)] has nonzero sections for large n, and thus the degree of its
Chern class is non-negative. This degree, in the case at hand, is a polynomial in n of
degree at most 2, and our hypotheses precisely say that its degree 2 term vanishes. Thus
the coeeficient of the degree 1 term is non-negative; on the other hand, the Grothendieck
Riemann-Roch formula shows that this coefficient is

mfe-l)deg^-^z((o„)•2=-^[(10.^+2)deg^-^.deg„8],

4" SERIE - TOME 21 - 1988 - N° 3



FAMILIES OF STABLE VARIETIES % 473

which is negative as soon as g> 1 unless the family is isotrivial.
Q.E.D.

Remark (4.13). — When ^=1, 2, Proposition (4.7) implies that, over Q,

12^=8,

m=§o4-28i,

respectively. In fact, these equalities are valid over Z: the first follows from (4.2) by
noticing that (DX/T is trivial along the fibers of any family of elliptic curves, while the
second is due to Mumford [13]. Thus, (4.7) can be viewed as a partial generalization
of Mumford's result.

c. THE SINGULAR CASE. — It is natural to ask now whether the inequality (4.3) holds
as well for families of singular stable curves. The answer, of course, is no: there is the
standard example [12] of the family of curves {C^} obtained by taking a general pencil
{E^} of plane cubics with base point q and attaching a fixed curve C' of genus g—1 to
E^ by identifying a fixed point p e C' with q. For this family (as we shall see) the ratio
of deg8 to degX is 11. To complete our discussion, then, we would like to claim that
in fact this example is extremal, i. e., that for any family of stable curves we have

(4.14) ll.deg)^deg8.

To do this, suppose that n: X -> T is any family of stable curves of genus g. Possibly
after a finite base change, which won't affect the validity of (4.14), we can realize n as
the union of families n^: X^ -> T flat with generically smooth fibers over T, with sections
da of 7Cf(^ identified with sections ^y of TI^). We see from the exact sequence

0 -^ © 7î  ((D .̂) ̂  n^ (0 -^ ̂  ̂  0,

where the map R is given by residues along the sections a, giving rise to singular points
of type 0 in the fibers, and h is the number of these sections, that the degree of the
Hodge bundle of n will then be the sum of the degrees of the Hodge bundles of
the Tif. As for the degree of 5, formula (4.1) gives

deg^S^+ZW

We can thus write deg^ 5 as the sum of contributions y,., where y, is the sum of deg^ 5,
and of the self-intersections of all sections a, and T, lying on X .̂. We claim now that

LEMMA (4.15). — For any f, 11. deg .̂ X ̂  y;.

Proof. — We break this up into cases, according to the genus g^ of the general fiber
of X,.. First, if g^l, then we have (8+4/^)deg^.A,^deg^6, and since any section of a
family of curves of positive genus has nonpositive self-intersection (see [1] or [7]),

(4.16) Y, ̂  deg^ 5 ̂  (8 + 4/^,) deg^ X ̂  11. deg^ X.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



474 M. CORNALBA AND J. HARRIS

Next, if gi==l, the self-intersection of a section of n^ not passing through any singular
points of fibers is just minus the degree deg,̂  of the Hodge bundle of n^ (we have in
fact an isomorphism of n^ (co^) with the restriction of co^ to cr,). We thus have

(4.17) y, ̂  deg^ 8 - deg^ ̂ =11. deg^. ̂ .

Finally, if ^i=0, Lemma (4. 8) tells us that the sum of the self-intersections of 2 or more
disjoint sections of a family of noded rational curves is non-positive, which is what we
need.

Q.E.D.
d. THE AMPLE CONE IN MODULI. — We simply remark here that, taking into account the

inequality (4.14) above and Mumford's result that a . X — 8 is ample for large enough a,
the remainder of Theorem (1.3) follows from Seshadri's criterion for ampleness [9].

It should also be observed that, while this settles the question of ampleness for
linear combinations of ^ and 8, the more general question of what divisor classes
a'k—bo6Q—b^ 81— . . . are ample remains mysterious. To begin with, we can certainly
improve Theorem (1.3), and even (4.4), if we take into account the various boundary
components. For example, if a family of generically smooth curves has a reducible
fiber, we don't necessarily have to apply (2.9) to the relative dualizing sheaf of the
family; we can twist co by some linear combination E of the components of the reducible
fiber without affecting the hypotheses of (2.9), and, for some E, obtain a better
estimate. Consider, for instance, a family n: X -> T of stable curves over a smooth
complete curve T; suppose the general fiber of n is smooth and non-hyperelliptic. For
any singular point p of type i ̂  1 in the fibers of n, write the corresponding fiber as the
union of curves Ep and Dp of genera i and g—i, meeting at p, and let nip be the
multiplicity of p. Set

E=Zm,E,,

where the sum is extended to all singular points of positive type, and apply (2.9) with
L = o\ (E) and F = K^ L: one gets

[<7/2]

(8^+4)deg^g.deg^8o+ E 4(^-Qdeg^8,,
1=1

which is slightly better than (4.4). We have not yet, however, been able to obtain in
this way estimates that we believe are sharp.

A further problem arises when we try to look at the boundary. Specifically, one can
say something on the basis of the inequalities (4.16) and (4.17); but since in particular
(4.16) is known not to be sharp, we won't get an exact answer this way. Indeed, the
general rule seems to be that to determine exactly the ample cone in the Picard group of
Mg we have to understand what inequalities hold, not just between deg^ ̂  and deg^ 8 on
families of generically smooth curves, but among deg^X, deg^8 and (oj2 for a family of
generically smooth curves of genus g with sections a,. Put another way, we need to
know what divisor classes on the moduli space Mg ̂  of stable fe-pointed curves have
nonnegative degree on every curve not contained in the boundary of M^ ^.
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There is some hope of getting information about such families by applying (2.9) not
only to the relative dualizing sheaf, but to linear combinations of it and the sections
or,. It is possible to give estimates on the ample cone in this way, but we do not as yet
have any sharp inequalities. Indeed, to know that a given estimate was sharp, we would
need a stock of examples of such families to try it on, and at present we don't know of
any families that might even be suspected of being extremal.
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