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0. Introduction

Let G be a real reductive Lie group of Harish-Chandra's class, a an involution of G
and H an open subgroup of the group G0 of fixed points for CT. The purpose of this
paper is to study the principal series of the reductive symmetric space G/H. This is a
series of representations Ind^(^ ® e~^ ® 1), induced from a parabolic subgroup P, which
one may expect to contribute to the "most continuous" part in the Plancherel decomposi-
tion of L2(G/H). The actual contribution to a Plancherel formula has to be described
in terms of the (finite dimensional) spaces ^'(P:^:^)" of H-fixed distribution vectors
for Ind^(^®^~^(g) 1). The main result of the present paper is that the spaces
^(P: ̂ : ̂ )11 can be provided with Hermitian inner products which are preserved by the
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360 E. P. VAN DEN BAN

actions of certain normalized intertwining operators (Theorem 9.2, Corollary
9. 3). Since these inner products are not (and cannot be) restrictions of l^-inner prod-
ucts, this result is by no means an easy consequence of unitarity of normalized intertwining
operators. As we will show in a second paper ([Ba 88 II]), Corollary 9.3 has an important
consequence for the asymptotics of Eisenstein integrals related to the principal series: it
implies that these integrals behave asymptotically like a finite sum of vector valued plane
waves, whose amplitudes have a common absolute value (when ^ is imaginary). This is
analogous to the situation in the case of a group G = G x G/diagonal; in that case this
common absolute value determines part of the Plancherel measure (cf. [HC76II]). In
fact the consequence just mentioned has been one of our primary motivations for writing
the present paper.

We shall now describe the contents of our paper in somewhat more detail. There
exists a Cartan involution 9 of G which commutes with CT. In order that the induced
representation Ind^(^ OOe'^OO 1) contributes to the Plancherel decomposition, it must
have H-fixed distribution vectors. More precisely, let C°°(P:^: —X) be the space of
C00-vectors for Ind?(^ (g) e~^ ® 1) and ^'(P: ̂ : ̂ ) its topological anti-linear dual. Then
the space 0)' (P: ̂ : ̂ H of H-fixed elements in 0)' (P: ̂ : X) must be non-trivial. Now this
can only be true for generic ^ if P is (jG-stable. The contributions to the "most
continuous" part of the Plancherel decomposition are expected to come from minimal
oO-stable parabolic subgroups. This is known to be true firstly in the group case by
Harish-Chandra's work (cf. [HC 581, II], [HC 75], [HC 76 I, II]) and secondly in a
number of rank one cases ([Str 73], [Ro 78], [Fa 79], [D-P 86]). In Section 2 we classify
the K Pi H°-conjugacy classes of minimal cG-stable parabolics. We also introduce a
(finite) set ^y(A^) of special representatives of these conjugacy classes. Elements of
^y(Aq) have the same MA-part in their Langlands decomposition.

In Section 3 we investigate the further conditions to be imposed on the induction
data. For ^'(P: ̂ : ̂ H to be sufficiently rich we require that ^ be contained in a linear
subspace a^ of a* and ^ in a certain set M^ of finite dimensional unitary representations
of M (cf. Lemma 3.3). The resulting series of representations is called the principal
series for G/H (cf. Definition 3.4). It is unitary for imaginary values of 'k.

If Pi, P^ e ̂  (A^), then there exists an intertwining operator A (P^: P^: ̂ : K):
CW)(P^:^:'k)->C(x)(P2:^:'k) defined as in [K-S 80]. The fact that 'k varies in the
(generally) lower dimensional subspace a^ of a* forces us to study its existence and
meromorphic dependence on X, in some detail. This is done in Section 4 where we also
study its extension to distributions.

In Section 5 we begin the study of Q' (P: ̂ : ̂ H. We define a finite dimensional vector
space V(y and for — R e ( X ) — p p strictly P-dominant a linear map;(P:^:^) from V(y
into ^'(P:^:^)" which is bijective for generic X and then provides a parametrization
for ^'(P:^:^)". Moreover, ;(P:^:^) depends holomorphically on \ in the above
mentioned region (Lemma 5.7). The necessity to cover imaginary values of \ (corre-
sponding to the unitary principal series) forces us to show that the map j ( P : ^ : ' k )
admits a meromorphic continuation in ^ (cf. Theorem 5.10). The existence of such a
continuation was essentially announced in [Os 79], proved for symmetric spaces G/Kg by
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THE PRINCIPAL SERIES 361

[0-S80] and for spaces G/H with H=G0 by [0186]. Both proofs depend on [B-G69]
or [B 72]. Our proof is entirely different, using an a priori estimate of dim^ ̂  (P: ̂ : ̂ )"
(Corollary 5.3) and results of [S71] and [K-S80] on the meromorphic continuation of
intertwining operators.

In Section 6 we are finally prepared to study the actions of intertwining operators on H-
fixed distributions. More precisely, if Pi, ?2 e^(A^), then the equation A (?2: Pi: i;: X)
oj (Pi: ̂ : X) =j (P^: ̂ : ^-) ° B (P^: Pi: ̂ : ̂ ) uniquely determines an endomorphism
B(P^: Pi: ̂ : X) of V(^) which depends meromorphically on .̂ The basic result of our
paper is that V(^) carries a Hermitian inner product (independent of X,) such that
B (?2: Pi: ̂ : ̂ )* = B (Pi: P^: ̂ : - X) (Theorem 6.3). It is proved in the course of Sec-
tions 7, 8 by means of a a-split rank one reduction. In the final Section 9 results are
reformulated in terms of normalized operators.

In a slightly different form the endomorphism B has for the first time been introduced
by Oshima and Sekiguchi for spaces G/Kg (cf. [0-S 80]). Then Mp^ consists of only the
trivial representation and the matrix B(P^ : P ^ : l : ' k ) admits an explicit computation (cf.
[loc. cit. Lemma 4.14]). Moreover, it plays a crucial role in the theory of the Poisson
transformation for the above mentioned spaces.

Acknowledgements

I thank Henrik Schlichtkrull for offering his valuable criticisms to an earlier version
of this paper.

1. Preliminaries, root systems and Weyl groups

In this paper, G will always be a real reductive Lie group of Harish-Chandra's class,
CT an involution of G, and 9 a Cartan involution commuting with a (for its existence, cf.
[Be 57], [Ba 87 II]). Let H be an open subgroup of the group G° of fixed points for
CT. We call G/H a reductive symmetric space of the Harish-Chandra's class (cf. [Ba 87
II]).

In the course of the proof of our main result, Theorem 6.3, we shall also need the
following assumption on G:

(A) Every Cartan subgroup of G is abelian.

[Vo 81] works under the same assumption; notice that we do not require G to be
linear. Recall that (A) is inherited by Levi components of parabolic subgroups of G.
Therefore the usual induction arguments may be applied to our class of groups. It
should be noted that much of the theory of this paper holds for groups of the Harish-
Chandra's class not satisfying (A); in fact it is not until Lemma 6.16 that we do require
(A) to hold permanently. The above assumption is explicitly used only in the proofs of
Lemmas 5.4 and 6.16. Its necessity for Lemma 5.4 to be valid was pointed out to me
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362 E. P. VAN DEN BAN

by H. Schlichtkrull. This is illustrated by the following example, due to him and R.
Lipsman.

Let F = { — 1 , 0 , 1 } be the field of three elements. Then, being a finite group,
G=SL(2,F) is of Harish-Chandra's class; however, G is not abelian, hence does not

satisfy (A). Let a: G -> G be conjugation by ( ), then its group of fixed points

is H = { — I , I } . Let Jf^ be the 3-dimensional complex linear space of functions
IP1 (F) -> C whose average value is zero. Then the natural representation ^ of G on ^fp
is irreducible, and all of its vectors are H-fixed. In the notations of Lemma 5.4 we
have: M=G, ^eM^, and dimjf^0"^.

Notice that the above also provides an example of a reductive symmetric space of
Harish-Chandra's class whose discrete series are not multiplicity free.

Put K=G9, and let i and p (I) and q) denote the +1 and — 1 eigenspaces of 9 (a) in 9
respectively (as usual groups are denoted by Roman capitals; their Lie algebras by the
corresponding lower case German letters). We extend the Killing form on 91= [9,9] to
a non-degenerate bilinear form B on 9 which is positive definite on p, negative definite
on t and for which center (9) HI) and center (9) Oq are orthogonal. Then the joint
eigenspace decomposition

9=( inq)e( in t ) )e (pnq)e(pnt ) )
for 9 and CT is B-orthogonal. Fix a maximal abelian subspace doq of p F} q and extend
it to a cr-stable maximal abelian subspace do of p. The restricted roots £(9, do^) of OQq
in 9 constitute a (possibly non-reduced) root system (cf. [Ro 79]), which we denote by
£. Let So=S(9,ao). If 2^ and ^+ are compatible systems of positive roots for Eo
and E respectively, we agree to write Ao and A for the associated fundamental
systems. The reflection groups of So and S are denoted by Wo and W. Notice that
Wo^NK(cio)/ZK(cio). Now let Wo^^weW; ( jw=wa on %}. Then clearly
Wo^NK(ao)nNK(ao,)/ZK(ao). Put 2^={ae2:o;a| Oo,==0} and let W(2:o) denote
the associated reflection group.

LEMMA 1.1. — Restriction to OQ q induces a natural surjective map Wo y -> W with kernel
W(^o).

Proof. — The first assertion follows from ([Schi 84], Proposition 7.1.7). The assertion
on the kernel follows straightforwardly by application of ([Va 74], Lemma 4.15.15). •

LEMMA 1.2. — The map N^(0o g) —> End (do J, k —> Ad (k) | do q induces an isomorphism
NK(ao,)/ZK(ao,)^W.

Proof. — Let M^ be the centralizer of do^ in G. Then do is maximal abelian in
m^r\p. Moreover if ^eNfc(cio^), then k^ normalizes M^ and Ad(fei)ao is maximal
abelian in ntiOp. It follows that Ad(k^)aQ==Ad(k^)ao for some k^eM^F^K. Let
fe^^fei. Thenfe£NK(ao)nNK(ao^)andi t fol lowsthatAd(fei ) |ao^=Ad(k)[ao^W
(use Lemma 1.1). By Lemma 1.1 the map NiJdo^-^W is surjective, whence the
result.
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Let Wo K n H (WK n n) denote the image of N^ , H (%) (NK n H (%,)) in Wo (W). Then
obviously Wo K n H ^ Wo ^ and the restriction Wo <y -^ W maps Wo K n H mto W^ ^ H-

LEMMA 1.3. — The natural map Wo y -> W induces a bijection between the coset spaces
W(^) Wo ,\Wo K n H and W/W^ , H.

Proof. — By Lemma 1.1 we have W(S{9\Wo^W as groups. Hence it suffices to
show that Wo K n H niaps onto WK ^ H- Let k ie NK n H (^ q)' Then k i normalizes m^ Pi t)
(cf. the proof of Lemma 1.2) and do P» I) is maximal abelian in (m^ 0 % Pi P. Hence
Ad(fei)((to 0 I)) =Ad(^) (do 0 % for some fc^(Mi 0 H U K)°. Let k=k^1 k,. Then
^eN^^^) and Ad(fe) | do has image Ad (k 1)^0 4 under the natural restriction map. •

Let g+ denote the +l-eigenspace of <j9 in 9. It admits the Cartan decomposition
g+ =(101)) © (p H q). Let £+ =S(g+, ao^). Its reflection group W(S+) is contained
in WK ^ H- The following result is proved in [Ba 87 II].

LEMMA 1.4. - We have H=H°Z^H(%,) ^W(£J=WK,H.
The group H is said to be essentially connected if it satisfies the equalities of the above

lemma.

2. crG-stable parabolic subgroups

The purpose of this section is to classify K 0 H°-conjugacy classes of minimal o9-
stable parabolic subgroups. We first consider the Langlands decomposition MAN of
any a9-stable parabolic P. Its 9-stable Levi component M^ =MA=Ppi 9(P) is a-stable
because o and 9 commute. Since a = center (m^) PIP and m=mi Pia1 it follows that
A and M are a-stable as well (use that M=(Mi PlK)exp(mrip)). Finally
N = 9 (N) = CT (N). The following lemma is now obvious.

LEMMA 2 .1 .—Let P be a parabolic subgroup mth Langlands decomposition
P=MAN. Then the following conditions are equivalent:

(i) P is aQ-stable;
(ii) A is (jQ-stable and S (n, a) is cjQ-stable as a subset of the a-weights in 9.
If P is a a9-stable parabolic subgroup with Langlands decomposition P==MAN, then

A splits as a direct product A=A^A^, where A ^ = A H H and A ^ = { x e A ; cr(^)=x~1}
are closed subgroups of A. Moreover, M(,=MA/, is a reductive group of Harish-
Chandra's class, and we have a decomposition

P=M,A,N,

called the a-Langlands decomposition of P.

LEMMA 2.2. — Let P be a aQ-stable parabolic mth a-Langlands decomposition
P= My Aq N. Then M^=M^Aq is the centralizer ofAq in G, and dq = center (m^) Pi p H q.

Proof. - Put a^=ap|t). Then a=a^©a^. If aeS(n,a), then a^e^n.a), hence
a09 -^ — a. It follows that a | dq -^ 0. Using the direct sum decomposition 9 = n ® m^ © n
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364 E. P. VAN DEN BAN

we deduce that m^ equals the centralizer of a^ in g. Now let M^ denote the centralizer
of a in the complex adjoint group G^. Then M^ is connected and has Lie algebra
m^. The centralizer of a^ in G, is also connected, hence equal to M^. Hence
ZG(a,)=Ad^(M^)=Z^(a)=M,. •

We now turn our attention to K 0 H°-conjugacy classes of aO-stable parabolic
subgroups. If P is a parabolic subgroup of G, we denote its Lie algebra by the
corresponding German capital ^B. Let 9=g+ ® g _ be the decomposition of 9 in the
+1 and —1 eigenspaces for the involution oO. Notice that 9+ is a reductive subalgebra
with Cartan decomposition Q+=(iri t)) ©(? Pi q). Given a a9-stable subspace b e g
we often write b+ ==b P) g+ and b_ ==b 0 g_.

LEMMA 2.3. — Let P be a aQ-stable parabolic subgroup ofG, ̂  its Lie algebra. Then
^+ is a parabolic subalgebra o/g+.

Proof. — Since n and ^ are aQ-stable we have a direct sum decomposition
g + = n + © ^ + . If ae2:(n,a), then a|a^0 (cf. proof of Lemma 2.2). Hence if
Y en+\{ 0}, there exists X e dq such that [X, Y] en+\{ 0}. This implies that ^+ equals
its own normalizer in g+. •

COROLLARY 2.4. — Let P be a aQ-stable parabolic subgroup ofG. Then there exists a
keK pi H° such that P^ contains A(^ (and is of course still aQ-stable).

Proof. - Since doq is maximal abelian in pPiq, there exists a feeKptH 0 such that
^ contains aoq. •

The description of K Pi H°-conjugacy classes of oO-stable parabolics will be completed
in terms of standard parabolics. For the remainder of this section, let £^ and S4' be
compatible systems of positive roots (notations as in Section 1).

If F c= AQ, we let ^PF denote the associated standard parabolic subalgebra of 9,
S PF=mF©aF©nF its Langlands decomposition, and PF^MpApNF its normalizer in G
(cf. [Va 77]). Moreover, we write ?o for P^, etc.

LEMMA 2.5. — Let P be a aQ-stable parabolic subgroup of G, containing A() . Then
P contains Ao. Moreover, there exists a feeNiJcio) ONi^cio^) such that P^ 15 a (06-
stable) standard parabolic.

Proof. — Let m ^ ® a ^ © n be the o-Langlands decomposition of ^3. Then
^1=^0®^ equals ^nO^), hence contains doy Hence Oo^ is a maximal abelian
subspace of m^ Pi P 0 q. It follows that there exists m e M ^ such that Ad(m) dy c= do^
Since M^ centralizes c^, this implies that doq contains c^. Hence Ii, the centralizer of
Ooq in 9, is contained in m^ (use Lemma 2.2). In particular do c= m^, whence the first
assertion.

If a e So, put ^a = 901 n ^P. Then

^=OPnmo)©ao© S®^,
ae£o
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where nto denotes the orthocomplement of do in its centralizer. Moreover, if ^"^O,
then^^. LetT^aeSo^eg^c^.S^aeZo;^-^^""^ Then

So = T U S U (- S) (disjoint union),

and clearly T is the set of roots in ̂  r\ 9 (^P). If a e S, then ̂  c: n, hence <j (9,) n ^P = 0,
whence era e — S. It follows that o leaves T invariant, maps S onto — S and vice
versa. Fix a o-compatible system T'^ of positive roots for the root system T, i.e.
oceT^ oaeT'^ =5>ora=a. Then T'^ US is a a-compatible system of positive roots for
Zo. Hence T + U S=w- l(So') for a unique we Wo with w o o = a o w (cf. [Schi 84],
Proposition 7.1.7). Let fceN^cio) be a representative for w. Then /ceN^cio^) and
A d (k) ̂  is a parabolic subalgebra containing ^o- Using Lemma 2.1 we infer its a9-
stability. •

In the following we complete the description of oO-stable parabolic subgroups by
classifying the standard ones: they correspond 1 — 1 to subsets of A.

LEMMA 2.6. — Let F c: AQ. Then the following conditions are equivalent:
(i) PF is aQ-stable,

(ii) F contains { a e Ap; a (a) = a } and So p = ̂ o 0 ~S- F is a-stable,
(iii) there exists a subset ^F of A SMC/I ^af-

F^aeAoialao.eWU1?}.

Proof. — Let Ag = { a e Ag, a | % ̂  = 0}. Then there is a permutation a -> a' of order 2
of the set Ao\A^ such that

aa=-a'- ^ n(a,P)P
P6A^

for all a e Ao\AS. Here n (a, P) e N = { 0,1,2, . . . } (cf. [Schi 84], Lemma 7.2.3). Let
f=SA, and ? i = f t { a e A o A^a'^a}. Then the elements of A() may be enumerated
oci, . . . , a^ so that

oc;.=a, (1^;-;,),

^•=^+4 (l-li<J^\

and A^ = { ^ + ̂  +1, . . ., a^}. Moreover, A = {o^. | % ̂ ; 1 ̂ j ̂  ?} ([Sch. 82], Lemma 7.2.4).
"(O => (iiy\ Since a(nF)=9(nF)=nF, a maps So'\^F into -(2;o'\I^F). So if

aeAo\F, then <ja<0, hence a^A^ and we infer that A()\F c: A()\A^, whence
F => A^. Moreover, if aeAo\F, then aae —(So'\^l F), and by the above description
of the action of CT on A()\A^, we infer that a'^F. We deduce that aeF<s>a'eF
(aeAo\A^). Hence Z()F 1s cr-stable.

"(n) ^> (iiiy\ From (n) it follows that F ̂  A^, and that aeF^a'^aeAo^^).
Henceifwedefine lF={a^|ao^ 1^'^;, a^eF}, thenF={aeAo; a |ao^{0} U^}.

"(Hi) => (f)". From the description of the action of a on A()\A^ we deduce that a
leaves Sop invariant. Hence 0(111^)= nip and 0(01,)= dp. Moreover, since F =3 A^, it
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follows that CT(AO\F) c= -Zo-, and hence that a maps So^17 onto -(^o'\^F).
Therefore a(nF)==riF=9(nF), and ^Pp is crG-stable. •

We conclude this section with a description of the minimal aO-stable parabolic
subgroups of G. First, by Corollary 2.4 and Lemmas 2.5, 6 we have:

COROLLARY 2.7. — Let F={aeAo;a | ao^=0} . Then the standard parabolic subgroup
PF is minimal aQ-stable. Moreover, if? is any minimal cjQ-stable parabolic subgroup then
there exist k e K 0 H°, w e N^ (%) Pi N^ (do „) SMC/I that

(pfc)w^p^

Let ^(AQ^) denote the set of oO-stable parabolic subgroups whose split component
contains A()^. If Pe^(Ao^), then P => Ao and P^ is standard for some
weN^cio) nN^cio^) (cf. Lemma 2.5). The split component of Pw contains AQ^, so
P^ is the standard minimal o'9-stable parabolic subgroup (Lemma 2.6). It follows that
^a(^oq) consists of all minimal oG-stable parabolic subgroups containing Ay. The
action of N^(00^) by conjugation induces an action of W on ^(AO q) (use Lemma 1.2).
For Pe^(Ao^), let S(np, OQ^ denote the set of do ̂ -weights in Up, the nilpotent radical
of ^P. The following is now obvious.

LEMMA 2.8. — The map Pi-^£(np,ao^) defines a bijection from ^(Ao^) onto the set
of positive systems for S and commutes with the action ofW. In particular, W acts simply
transitively on ̂  (A() ^).

Remark. — In particular, the K 0 H°-conjugacy classes of minimal a9-stable parabolics
are in bijective correspondence with W/W^ ^ H-

3. The principal series for G/H

If P is a parabolic subgroup with Langlands decomposition P=MAN, we define
ppea* by pp(X)=l/2tr(adX|n). Let ^ be a unitary representation of M in a Hilbert
space ̂ , and 'ke a*. Then by C00 (G: P: ̂ : ̂ ), or more briefly C°° (P: ̂ : ̂ ) or C00 (^: X)
we denote the space of C00-functions G -> e^ satisfying

(3.1) /(manx)=a^P;;(m)/(x),

for x e G, (m, a, n) e M x A x N. The right regular representation of G on this space is
denoted by Ind? (^ ® ̂  ® 1). We define a pairing C°° (^: X) x C°° (^: - X) -. C by

<f\g>=[
JK

(3.2) <f\g>=\ (f(k\g{k)\dk,
JK

where ( . , . ) ^ denotes the unitary structure of Jf^ and the vertical bar in the left hand
side of the equation indicates that the pairing is anti-linear in the second variable. It is
well known that the pairing (3.2) is G-equi variant. In particular, if ^ is purely imaginary,

46 SERIE - TOME 21 - 1988 - N° 3



THE PRINCIPAL SERIES 367

it follows that Ind^(^ ® e^ ® 1) is unitary (for these and other standard facts concerning
parabolic induction, we refer the reader to [K-S 80]).

Let C°° (P: ̂ : —X) be endowed with the usual structure of Frechet space. Its topologi-
cal anti-linear dual is denoted by

(3.3) ^(G:P:^),

or, more briefly, ^ ' (P :^ :^ ) or ^'(^:^). Naturally, the group G acts on this
space. Moreover, the pairing (3.2) induces a G-equi variant and complex linear embed-
ding

(3.4) C°°(P:^)c;jr(P:^).

To ensure that the space

^(P:^)"

of H-fixed elements in ^ ( P ' . ^ ' . ' k ) is sufficiently rich, we assume from now on that P is
a9-stable.

LEMMA 3.1. — Let P= MAN be a aQ-stable parabolic subgroup. Then pp==0 on a Pi t)-
Proof. — Since a6 stabilizes a and n, we have pSI^pp. On the other hand, on an I)

we have pp° = pp = — pp. •
We now restrict our attention to induction from parabolics Pe^(Ao^) (for the

definition and properties of this finite set, cf. the end of Section 2). All elements of
^(AQ^) have the same CT— and 9-stable Levi component M^=MA. Here

(3.5) a=0{kera; aeSo, a|ao,=0},
(3.6) A=expa,
(3.7) MA=Ze(ao,)

(cf. Lemma 2.2). From now on we reserve the notations M and A exclusively for the
objects defined by (3.5-7). Thus we have a^ = a C} q = % q, and

^q=^oq-

The following lemma is easy to prove.

LEMMA 3.2. — Let vel^^(aq). Then v normalizes M^, M^, M and A P\ H.
Thus N^(0^) acts in a natural fashion on representations of M by the rule

v^(m)=^(v~lmv), for ^ a representation of M, i^eN^ci^), and meM. Since
^K^q) ^K-n M I = K H M this induces an action of W on the unitary dual My of M.

Let now i; be an irreducible unitary representation of M on a Hilbert space Jf^ (in
the sequel we abbreviate this as R]eMy, or by abuse of notation, as ^eMJ. Let J^
be the space of C°°-vectors endowed with the usual structure of Frechet space and let
Jf^~ °° be its topological anti-linear dual. By unitarity we have equivariant embeddings
Jf^° c= j^ c, ̂ -00. Let G=(9(P) denote the union of the open double cosets in
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P\G/H. If ^r is a set of representatives for W/W^ n H in NK(C^), then

(3.8) ^(P)= U PwH
weir

(c/ Appendix B).

LEMMA 3.3. —Let Pe^(A^), ^eMy, and ^-ea*. If there exists a non-trivial right
H-invariant function f: ̂ P(P) -> Jf^"00 transforming according to the rule (3.1), ^n
^ | a Pi t) = 0 and there exists a v e N^ (c^) such ^a( (J^00)1^1 n H ̂  0.

Proo/. - Let ̂  be as in (3.8). If/fulfills the above conditions then/(w)^0 for
some we^. Moreover if a e A O H then ak+ppf(^v)=f(\v\v~law)==f(w) (use Lemma
3.2). Hence ^=^+pp=0 on aC^i) (use Lemma 3.1). Finally, if m e M H H then
[w~1 ̂ (m)/| (w) =/(wm) =/(w) and the last assertion holds for i;=w~1. •

Let M^ denote the set of n eMy for which there exists a weW such that ^^00

contains non-trivial (M C} H)-fixed elements. Then by the above lemma, a representa-
tion Ind^?(^(g)^(g) 1) can only be expected to have H-fixed distribution vectors with
non-trivial restriction to ^P(P) if ^eMp, and ^|apit)=0. This motivates the following
definition.

DEFINITION 3.4. — Let PeP^(A^). We call the series of representations
Ind^(^ ® ̂  g) 1), R] e M^ Xe a .̂, t^ (non-unitary) principal series for G/H.

Remarks. — Via the form B we view a^ as a subspace of a*. Thus
a^={^ea*;?i=0ona^=ant)}.

If Qe^(A^), then Q=P" for some MeNi^) (Lemma 2.8). The operator
L(u): C°°(P: ̂ : ?i) -. C^Q: u^: uk) defined by

(3.9) (LO^O^/^-1^

defines an equivalence between Ind{?(^®^® 1) and Ind^(u^(g)^® 1). Thus up to
equivalence the above series is independent of the choice of P. Of course a similar
argument shows it to be independent of the choice of the maximal abelian subspace a^
of p Pi q.

The following lemma gives, among others, a different characterization of the set
Mp,. We write K^ = K Rl M.

LEMMA 3.5. — (i) Let K] e My. Then [Q e Mp^ if and only if there exists w e W such
that w [^] belongs to the discrete series of M/M n H.

(ii) 1ft, is a discrete series representation of M/M H H, then dim(^) < oo, ^ [ (m n p) =0
and ^ | KM is irreducible. Restriction to K^ induces a bijection between the discrete series
of M/M n H and those of K^/KM Ft H.

Proof. — We first prove (ii). Since Oq is maximally abelian in p r}c\ we
have m r i p = = m r i p r i t ) . Since M = K^ exp (m 0 p) it follows that
exp(mnp)=exp(mnpn()) acts trivially on L^M/MHH). Moreover, the map
KM -> M induces a bijection (p: K^/K^ 0 H -^ M/M H H and by pull-back an isometric

46 SERIE - TOME 21 - 1988 - N° 3



THE PRINCIPAL SERIES 369

isomorphism q>* from L^M/MOH) onto L2 (KM/KM ̂ H) (provided we normalize the
invariant measures appropriately). The map (p* is KM-equivariant and since exp(m P| p)
acts trivially on L2 (M/M n H) it sets up a 1—1 correspondence between the M-in variant
subspaces of L2 (M/M OH) and the K^-invariant subspaces of L^KM/K^CH). All
assertions now follow.

It remains to prove (i). For this it suffices to show that (J'f^00)^1^ if and only if ^
belongs to the discrete series of M/M OH. If r^Jf^00)11, r|^0, then the map
7:^ff -)-C°° (M/M 0 H) defined by j (v) (m) = < T| , n (m ~1) v > is an equi variant continu-
ous and complex linear embedding. Since m n p acts trivially on C°° (M/M OH), i; | K^
is irreducible. In particular dim(y < oo, hence Jf|° =Jf^ and im (j) is a closed subspace
of L2(M/M^}H). It follows that i; belongs to the discrete series for
M/M F} H. Conversely, if ^ belongs to the discrete series for M/M P\ H, then obviously
(^~ ̂  = (Jf^)" = (e^^M n H + 0. •

Remark 3.6. — In particular it follows that Mp, <= M^y, where M^ denotes the set of
equivalence classes of finite dimensional irreducible unitary representations of M.

We conclude this section with a result on the irreducibility of the unitary principal
series for G/H.

PROPOSITION 3.7.— Let Pe ̂  (A^, ^ e Mp,, and ^ e i a^. J/ < ̂ , a > ̂  0 /or a» a e £,
^n ^e unitary principal series representation Ind^(^ ® e^ g) 1) ?s irreducible.

Proof. — Since ^ is finite dimensional unitary whereas centre (m) C\ p = 0 we have that
^= 1 on M n Ao. It follows that the restriction of ^ ® e^ ® 1 to Ao equals ^\ If weW
does not centralize a, then \v'k^'k in view of the hypothesis. The result now follows
from ([Br 56], p. 203, Theoreme 4). •

Remark. — Using a different technique and under the conditions that G is connected
semisimple and admits a simply connected complexification and finally that H=G°,
[01 87] proves the irreducibility of Ind^®^® 1) (Pe^(A^) and ^eMp,) for ^ in
the complement of a countable union of complex algebraic hypersurfaces in a .̂. In
particular this implies irreducibility for almost all 'k e i dq.

4. Intertwining operators

Retaining the notations of paragraph 3 recall that any parabolic subgroup Pe^(A^)
has the same Levi component MA. Fix an irreducible unitary representation ^ of M in
a finite dimensional Hilbert space ^^. Then for generic X 6 a*, the induced representa-
tions Ind^(^g)^®!) (Pe^(A^)) are related by intertwining operators (cf. [K-
S 80]). The purpose of this section is to study these operators when 'k varies in the
(non-generic) subspace a .̂ of a* (i.e. ^[ a Fl t)=0).

Let P,=MAN; (f=l,2) be parabolic subgroups (from their Langlands decomposition
we read off that they belong to Po(A^); cf. Section 2). If X-ea^., then we formally define
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an intertwining operator A (P^: Pi: ^: )̂ from C°° (Pi: ̂ : 'k) into C00 (P^: ̂ : k) by

(4.1) A(P,:Pi:^:^)/(x)=f /(nx)^.
JN2 n NI

Here dn denotes the bi-invariant Haar measure of the nilpotent group N^ONi,
normalized as in ([K-S 80], Section 4).

We first investigate absolute convergence of the integral (4.1). If ^ea^, let H^
denote the element of OQ c determined by < H^, H > = ̂  (H) for all H e do,. Given a linear
subspace b of % we identify b* with the subspace {^eaj^H^eb,,} of a^.

Select a choice of positive roots for % C\ m in m and define p^ as half the sum of
these positive roots, counting multiplicities.

Given pe£, we define

(4.2) Cp=max{pM(HJ;a6£o,a |a ,=P}.

Moreover if Pi, P^e^^(\) we define the open subset ^(P^Pi) of a .̂ to be the set
of all kea^ such that

(4.3) <Re?i,P>>Cp

for all pe£ with ^ c= n^ Pi HI.
•

PROPOSITION 4.1.—L^ Pi, P2e^,(A^ /za^ Langlands decompositions P,=MAN,
0=1, 2). Then for 'ke^(P^\ Pi) r^? integral in (4.1) converges absolutely and defines a
continuous linear map A (P^: Pi: ̂ : ?i) from C°° (Pi: ̂ : ?i) into C°° (P^: ^: ^).

Proo/ — For y an a-weight in 9, let Cy be defined as in ([K-S 80], Lemma 6.5), i.e.
Cy=max {PM(HJ}, where the maximum is taken over all aeZg with a|a=y. Then
obviously C^^Cy for each a-weight y in 9. Now let ^^(P^Pi) and fix an a-
weight y such that ̂  c= n^ Pi Hi. Let p = y | a^. Then g13 Pi (1X2 H Hi) ̂  0. Since n^ Pi Hi
is a direct sum of c^-weight spaces, this implies that ^ c ̂  0 Hi. It follows that
< Re ̂ , y > = < Re X, P > > Cp ̂  C^. Hence the conditions of ([K-S 80], Theorem 6. 6) are
fulfilled and the result follows. •

We define C^K:^:^) (or briefly C°°(K:y) to be the space of all C°°-functions
/: K -> ̂ , transforming according to the rule

(4.4) f(mk) = ̂  (m)f(k) (k e K, m e KM).

Restriction to K induces a topological isomorphism from C°°(P:^:^) onto C°°(K:y
and by transportation we obtain a (^--dependent) representation of G in C°°(K: ^), called
the "compact picture" of Ind^(^ ® ̂  ® 1).

THEOREM 4 .2 .—Let Pi, P^ be as in Proposition 4.1, and te/eC°°(K:^). T^n
as a mapping into C^K:^), ^ function 'k->A(P^: Pi: ̂ :?i)/, mfnaHy rf^/inerf /or
^ej^(P2|Pi), extends meromorphically to a^. Moreover for each ^o^^c there is an
open neighbourhood N(^o) o/Xo m a .̂ and a non-zero holomorphic function (p: N(5lo) -> C
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such that the map (^g) -> ̂ (^)A(P^. P^: ̂ .K)f of N(^o) xC°°(K: Q into C°°(K:y is
continuous.

Remark. — We say that a (densely defined) mapping F from a complex manifold S
into a Frechet space E is meromorphic if for every a e S there exists an open neighbour-
hood U 3 a and a non-zero holomorphic function (p: U -> C such that (pF is holomorphic
as a map U -> E.

Before giving the proof of Theorem 4.2 we prove a corollary which will be useful for
the application to distributions at the end of this section. If re^l, let C^K:^) denote
the Banach space of r-times continuously differentiable functions K -> c^ transforming
according to (4.4).

COROLLARY 4.3. — Let the hypotheses of Theorem 4.2 be fulfilled and suppose that
^oGa^.. J/N(X()) 15 chosen sufficiently small, then there exists a ^eN such that

(i) The map (^, g) -> (p (X-) A (P^ : P ^ : ^ : ' k ) g extends uniquely to a continuous map
N(?io)xO(K:i;)^C(K:y.

(ii) The above extension is holomorphic in the first variable. For every /?eN it maps
N(?io) xC^^K:^) continuously into C^K:^). The induced map from N(^o) into the
Banach space B^^C^) of bounded linear maps from C^4 into C1' (endowed with the
operator norm) is holomorphic.

Proof. — (i) Shrinking N(^o) if necessary, it follows from the above theorem that
(X, g) -^ (p (^) A (P^: Pi: ̂ : ̂ ) g (1) extends uniquely to a continuous map
N(A-o) xC^(K:y -^C for some gef^J . By holomorphic continuation A(P2:Pi:^:^)
intertwines the G-actions for every 'kea^ which is not a pole, and so does
(p(^)A(P2:Pi:^:^) for every X-eN(^o). Since in particular the K-actions are inter-
twined, we obtain (i).

(ii) Denote the extension N()io) xC^K: ̂  ->C(K: Q by .̂ Fix local coordinates
z=(zi, . . .,zJ in a^ such that Xo corresponds to 0. Select £>0 such that the closure
of D (e)" = { z e C"; | z, \ < e, 1 ̂ j ̂  n} is contained in N (^o). Then for a fixed /e C00 (K: Q
we have absolutely converging power series

(4.5) ^(^-Z^COz01,
a

for zeD(e)". Here the summation involves all multi-indices ae^J", and we have used
the multi-index notation za=z([l. . . z^. From the Cauchy integral formulas for the
^(/)eC(K,^f^) we deduce that they depend linearly on / and satisfy the Cauchy
estimates

(4.6) | |cJ/)||^e-'alsup{||XF(z,/)| |;zeD(£)n}

(here ||.|| denotes the sup-norm on C(K,J^)). It now follows from (i) that the c^
extend (uniquely) to continuous linear maps C^(K: Q ->C(K: Q. Hence (4.5) holds
with absolutely converging power series for /eO^K: ̂ ), zeD(£)". Shrinking N(^o) it
necessary we thus obtain the first assertion of (ii). In fact, using (4. 5,6) and estimating
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|x? (z,f) | in terms of the C^-norm of / we even obtain that the map ̂ : D (e)" -> B (C^, C)
defined by ̂ ^f^^z, /), is holomorphic in the Banach sense.

Since (p(^)A(P2: Pi: ̂ :^) intertwines the G-actions, ^ maps N^xC^ continu-
ously into C7. Let feCP+q, and fix an element u in the universal enveloping algebra
U (t) of I with order (v) ̂ p. Then R (v) ̂  (V) = ̂  (^, R (v)f) depends holomorphically
on ^ as a function from N(?io) into C(K: ^). It follows that ^¥: N(^o) x C^4 -> C^ is
continuous and in addition holomorphic in the first variable. Finally, applying Cauchy's
integral formula in the same manner as above, we see that the latter statement implies
that the induced mapN(^o) -> B^^, CP) is holomorphic. •

Proof of Theorem 4 . 2 . — First assume that CT = 9. Then A = A() and M = M() = Z^ (ao),
i.e. ^y(Ay) consists of the minimal parabolics with split component A(). If G has split
rank one the result follows from ([K-S 71], Theorem 2). This implies the result for
groups of higher split rank if P^ and P^ are adjacent ([loc. cit. Lemma 5.6]). For
general P^ and P^ the result follows from Schiffmann's product decomposition (cf. [S 71],
Theorem 1.1) when Corollary 4. 3 is applied (see also the remarks in ([K-S 71], p. 563).

The proof in the general case is now essentially contained in ([K-S 80], Theorem 6.6).
Following [loc. cit.. Section 6], let P^MQA^NM be the standard minimal parabolic
subgroup of M with respect to the selected choice of positive roots for % 0 m in m. We
now embed ^ in a principal series representation of M. Since ^ is finite dimensional
and unitary, the embedding is very special.

LEMMA 4.4. — Let CT=^|M(). Then aeMo and there exists a M-equivariant embed-
ding i of Jf^ into C°° (M: PM : a: - PM).

Proof. — Since ^ is finite dimensional and unitary, whereas centre (m) H p = 0, it
follows that ^ is trivial on a^ and all its root spaces in m. Using density of N^MoAMN^
in M we infer that cr=^ |Mo is irreducible. The embedding may be defined by
i(v)(x)=S,(x)v, for reJf^, xeM. •

We proceed with our proof of Theorem 4.2. Since the full representation space Jf.
is equivariantly embedded onto a closed subspace of C°°(M: P^: C T : — p ^ ) we may
completely avoid the closure operation occurring in ([K-S 80], Lemma 6.1) and proceed
directly. Instead of [loc. cit.. Lemma 6.2] we have

LEMMA 4.5. — For je{ 1,2} let (Pj)p denote the minimal parabolic subgroup PMAN^ of
G. Ifke a^ then the embedding i o/Jf^ into C°° (M: P^: a: — p^) induces a G-equivariant
continuous linear embedding i9 of C°°(G: Pj: ̂ :X) onto a closed subspace of
C00 (G: (P^: a: ̂  - PM). Moreover, as a map C°° (K: K^: ̂  -> C°° (K: Mo: a) the embed-
ding i* is independent ofj and X.

Proof. - The map 1̂  is defined by (i*f)(x)=ev^ o;o/(x). Here
^C^IVLPM:^: -pM)-*^a denotes evaluation at the identity. We leave it to the
reader to verify the statements of the lemma. •
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As in [loc. cit., p. 35] we now have a commutative diagram for 'ke^/(P^ | P^):

A (P2 : PI : ^ ; ^)
C°°(K:KM:y ——————————. C°°(K:KM:y

l^ ^

A((P2) :(Pi) : O : X - P M )
C^KrMM:^——p——p————.C°°(K:MM:a)

Now A((P2)p:(Pi)p:a:^—pM) admits a meromorphic continuation, by the first part
of our proof. From the fact that f has closed image independent of ^, it follows by
holomorphic continuation that im (i^) is stable for this meromorphic continuation. The
assertions of the theorem now follow from the corresponding results for
A ((P^p: (^p: cr: X— pjj by an application of the closed graph theorem. •

The following transformation properties for intertwining operators are straightforward
consequences of ([K-S 80], Proposition 7.1 and Corollary 7.7).

PROPOSITION 4 .6 .—The analytic continuation of the operators A(P^:P^:^:'k) have
the following transformation properties as continuous linear operators from C°° ( P ^ ' . ^ ' . ' k )
into C°°(P,:i;:?i) (Pi,P2e^(A,Ue<):

(i) IfP^e^y(Aq) is such that n^ 0 Hi ^ 1X3 p| n^ then

A(P2:Pi:^^)=A(P,:P3:^^)A(P3:P,:^^);

(ii) A (P^: Pi: ^ :X)*=A (Pi:P2:^: —^), w/i^r^ * denotes the adjoint with respect to
the pairing (4.2).

Moreover, from ([K-S 80], Proposition 7.3) we immediately obtain:

PROPOSITION 4.7. — Let P;=MANf(f= 1, 2) be parabolic subgroups in ^(Ag). Then
there exists a scalar-valued function r\ (P^: P^: ̂ : ̂ ) meromorphic in X-e a^ suc/i r/iat

A(Pi:P2:^)A(P2:Pi:^)=r|(P2:Pi:^)I.

77i6? function T| satisfies TI (P^: Pi: ̂ : ̂ ) = ri(Pi: P^: ̂ : X).

PROPOSITION 4.8.— L^ Pi, P^ e ̂  (A^). If ̂  e M^, d^/in^ r^ (X,) = T| (P^: Pi: ̂ : X,).
TTi^n

(a) T|̂  depends only on the class of ̂ ,

(b) ^(^)=^(-X),

(c) T|^ (k) > 0 /or a;/ ^ e i a^.

Proof. — Of course T|̂  is the restriction of the corresponding function in ([K-S 80],
(7.5)) from a* to a .̂. The results now follow from ([loc.cit.]. Theorem 7.6 and Proposi-
tion 7.4). For the strict inequality in (c) see also the note at the bottom of p. 42 in [K-
S 80]. •
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In particular we deduce that T| (P^: PI : ̂ ) does not vanish identically on a .̂. From
Proposition 4. 7 and ([K-S 80], Theorems 6.6, 7.6 (v)) we now obtain:

COROLLARY 4.9. — There exists a locally finite union s of complex hyperplanes in a^
such that for ^oea^\$ the meromorphic continuations of the intertwining operators
A (P^: Pi: ̂ : 'k) and A (P^: P^: ̂ : ̂ ) have no pole and are invertible for 'k = ̂ ,0.

For later purposes we also list how intertwining operators behave under conjugation
by elements of N^(0^). Recall that N^(0^) operates on ^y(A^) by conjugation. If
Pe^(A^), weN^ci^), then left translation L(w) by w~ 1 defines an intertwining operator

L(w):CCO(G:P:^:K)->CCO(G:wPw~l:^v^:^vX).

The following lemma is easy to verify.

LEMMA 4.10. — Let Pi, P^e^A^, ^ea^,. Then

L ( w ) o A ( P 2 : P l : ^ : ^ ) = A ( w P 2 W - l : w P l W - l : w ^ : w X ) o L ( w ) ,

/orweNiJc^).
In the final part of this section we extend the definition of intertwining operators to

distributions. If M is a C°°-manifold, ^'(M) denotes the space of distributions on M,
i.e. the topological linear dual of the locally convex space of C^°-densities on M; here we
follow ([Hor 83] §6.3) to ensure that C(M) is naturally embedded into ^'(M). In
view of (3.4), we may identify ^(P'.^'.K) (Pe^(A^)) with the space of distributions
(p e ̂  (G) ® c J^ transforming according to the rule

(L^(x)l)(p=(l(8)^+PP^(m))(p,

for meM, aeA, neNp; here L denotes the left regular representation. We define
^(K:Q to be the topological anti-linear dual of C^K:^). Via the pairing (3.2) we
may also view it as the space of distributions fe^(K) (g) Jf^ transforming according to
the rule (4.4). Recall that restriction to K induces a topological isomorphism from
C°° (P: ̂ : —X) onto C°° (K: i;). By transposition we obtain a linear isomorphism

(4.7) ^(K:Q^^(P:^:^).

Its inverse extends the restriction map C°° (P: ̂ : ̂ ) -^ C°° (K: i;). We now topologize
^"(K:^) as follows. If qeM, let Cq(K:^) denote the space of ^-times continuously
differentiable functions (p:K-^Jf^ transforming according to (4.4), provided with the
usual structure of Banach space. Its (Banach-) anti-linear dual ^q(K:Q corresponds
to the space of distributions in Q)' (K: ^) of order ^ q. We topologize

oo

^'(K: ̂ ) = \J ^(K: Q by taking the inductive limit of locally convex topological vector
<?=o

spaces. The resulting topology actually is the strong dual topology (by a standard
application of Ascoli's theorem the embeddings C11 ->Cq+l are compact. Now use [Kom
67] (Theorem 11). Similarly we topologize ^ ( P ' . ^ ' . ' k ) by taking the inductive limit of

4° SERIE - TOME 21 - 1988 - N° 3



THE PRINCIPAL SERIES 375

the Banach spaces Q^P'.^'.'k) in the category of locally convex topological vector
spaces. Thus (4.10) becomes an isomorphism of locally convex spaces.

Let now Pi, P^e^^A^) and assume that ^ea^ is not a pole for the intertwining
operator A (Pi: P^: ̂ : — X). Then this operator maps C°° (P^: ̂ : — X) continuously into
C00 (Pi: ̂ : - X). Its transposed A (Pi: P;,: ̂ : - X)* maps 3)' (PI : ̂ : ̂ ) into
^'(P^:^:^). In view of Proposition 4.6 (ii), the operator A(Pi: P^:—X) may
be viewed as an extension of the operator A(P^:P^:^:'k) from smooth functions
to distributions. Hence we also write A.(P^:P^:^:^) for A(Pi: P^:—X)*. From
Corollary 4.3 we now easily deduce the following.

PROPOSITION 4.11.—Let Pi, P^e^y(Aq) have Langlands decompositions Pf=MAN,
(i=l,2) and suppose that ^ea^' Then there exists an open neighbourhood N(^,0) of^o
in a ,̂, a holomorphic function (p: N (X,o) -> C and a constant q^N such that for every p € ^1:

(i) the mapping (X, u) -> (p (k) A (P^: Pi: ̂ : X) u maps N (^o) x ^p (PI : ̂ : ̂ ) continuously
into ̂ JP2:^),

(ii) t^ induced map from N(^o) mto ̂  5pac^ B(^,,^p+g) of bounded linear operators
from @p(K: ^) mto ^p+^(K: ^) 15 holomorphic in the Banach sense.

Finally notice that by the above, Propositions 4.6,7 and Lemma 4.10 extend to
distributions.

We conclude this section with three results that will be needed at a later stage.

LEMMA 4.12. — Let Pf=MANf (f= 1, 2) be parabolic subgroups in ^y(Aq) and suppose
that K e c ,̂ is not a pole for A (P^: Pi: ̂ : ̂ ). If (p e 2' (Pi: ̂ : ̂ ), r^n

supp A (P^: Pi: ̂ : )i) (p <= cl ((N2 0 Ni) supp (p).

Proof. - If ^ej^(P2|Pi) and (peC°°(Pi: ̂ :^), then the statement easily follows
from the absolutely convergent integral representation (4.1). If KQ is not a pole and
(peC°°(Pi:^:^o), then we define a holomorphic family (p^eC°°(Pi :^:^) by
(p^|K=(p|K. Applying holomorphic continuation to A(P2:Pi:^:^)q\ we obtain the
result for (p. An easy density argument completes the proof. •

To formulate the next result we need some definitions and notations. If Q c G is a
left P-invariant open subset (Pe^(A^), then C°°(Q: P: !,:'k) denotes the space of C°°-
functions ^2 -> ^^ transforming according to the rule (3.1) for xeQ. Similarly, if U is
a left K^-in variant open subset of K, then C°°(U:KM:^) denotes the space of C°°-
functions U -> Jf^ transforming according to (4.4).

A map <1> from a C°°-(resp. complex) manifold S into ^'(K: ̂ ) is called smooth (resp.
holomorphic) if for every a e S there exists an open neighbourhood U 9 a and an integer
q^O such that <5> map U smoothly (resp. holomorphically) into the Banach space
^(K: y. A densely defined map <I> from a complex manifold S into ^(K: Q is called
meromorphic if for every aeS there exists an open neighbourhood Us a and a holo-
morphic function (p: U -> C such that (p. 0 is holomorphic on U. Finally recall the
definition of (9(P) above (3.8).
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LEMMA 4.13. — Let Pe^(A^), and suppose that an open set Q c C" and a holomorphic
map z - > ' k ( z ) from Q. into a^ are given and moreover for each zeQ a distribution
u^ e 3)' (G: P: ̂ : X (z)). If (z, h) -^ R^ u^ viewed as a map Q x H -> 3)' (K: Q is smooth and
in addition holomorphic in its first variable, then u^ is smooth on (P(P) for every
zeQ. Moreover, z->u^\ ((P(P) 0 K) 15 holomorphic as a mapping from Q into the Frechet
space C°°(^(P)nK:KM:y.

Proof. — Fix Z()£Q and put ^o=^(zo). We first reduce to the case that ^(z)=Xo for
all z e Q, as follows. For z e Q we define \J, e S>' (G: P: ̂ : ̂ o) by r^ (U^) = y\ (i^), where
y\ denotes the inverse of the topological isomorphism (4.7). Define real analytic maps
Vp, hp, [ip and K^ from G into Np, A, exp (m Pi p) and K respectively by

(4.8) x = Vp (x) hp (x) Hp (x) Kp (x) (x e G)

Then by a straightforward calculation one checks that r^(R^U^)=^ z^oo^^z)9 ^ere
^ , e C00 (K) is given by ̂ , (x) = hp (xhp -^ ̂ .

It now easily follows that U^ fulfills the hypotheses of our lemma, and we are done if
we can show that the map z->\]^\(Q(P) from Q into C00^?):?:^:^) is
holomorphic. Localizing in 0 we may assume that there exist an open neighbourhood
OH of e in H and an integer r^O such that the mapping (z,f t)-^R^U^ maps 0x0^
smoothly into ^(G:P:^:?I()) and is holomorphic in the first variable. Now suppose
that ^()G^(P) and fix local coordinates x^, . . . ,x^ on an open neighbourhood N(jo) of
Yo in ^(P), such that yo corresponds to X f = 0 ( l ^ f ^ n ) . Fix a relatively compact open
neighbourhood B of yo in N(jo). Then the space ^g of distributions
ue^(N(yo)) ®c^ of order ^r and with suppMcd(B), carries a Banach
topology. Fix a function \[/eQ°(B) such that \|/==1 on an open neighbourhood
of YQ. Then the linear map u -> \|/M IN (yo) from ^(P: ̂ : ^o) into ̂  B is continuous.

Shrinking Q^ if necessary we may assume that Qy is stable under inversion h->h~1

and that there exists an open neighbourhood Qp of e in P, stable under inversion, and
such that Qp(supp\|/)QH c= B. Then the map (z,p,h) ^LpR^(\|/U^) is smooth from
Q x Op x QH into ̂  B, and also holomorphic in its first variable. For every y e B, the
map (p, h) ->pyh, Qp x 0^ -> ^P(P) is submersive at (e, e). Hence differentiating in p and
h we obtain the following. If D is any smooth linear differential operator on N (jg), then
the mapping

(4.9) (z,^)-^DR,L^UJ

maps 0 x Op x QH smoothly into ̂  g and is holomorphic in z. In particular, the order
of \|/U^ does not increase, whatever smooth differential operator we apply. This implies
that \|/ U^ e C°° (N (yo)) ®c^^ foT ^^V z e Q-

Let now e (yo) denote evaluation at yo, viewed as a compactly supported distribution
density, i.e. a continuous linear functional on C°° (N(jo)). Then there exists a C^-density
9 and a smooth differential operator D on N(^o) such that 0^0)=^^ on B (cf.
[Schw 50], Theorem XXVI). Applying (p to (4.9) we see that the map

(z.p.^^^^-^oh)
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is smooth and in addition holomorphic in z. Using the fact that (p,h) ->p~lyoh is
submersive at (e,e), together with an argument involving a partition of unity, we
deduce that U^ 6 C°° ((9 (P): P: ̂ : ̂  for every z € Q and that the map (z, x) -^ U^ (x) from
Qx^(P) into ̂  is smooth and in addition holomorphic in the first variable. By a
standard application of the Cauchy integral formula (cf. also the proof of Corollary 4.3)
it follows that z -> Uj (9 (P) is a holomorphic map from 0 into C°° (^ (P): P: ̂ : X.o). •

COROLLARY 4.14. — In addition to the hypotheses of Lemma 4.13, let Q, be connected,
P'e^(A^), and assume that z-^(z) does not entirely map into the singular set of
A(P':P:^). Then for all zeQ such that X(z) is not a pole for A(P:P:^), the
distribution ̂  = A (P': P: ^: ̂  (z)) ̂  is smooth on (9 (P). Moreover, the map z -^ | ^ (P")
is meromorphic as a map from Q m^o C°° ((P (F) Pt K: K^: S;).

Proo/ - Let ZoeQ, ^0=^0) ^d let N(^o), <P be as in Proposition 4.11. Since
A(P:P:^:^) commutes with R^, for /ieH, it follows from Proposition 4.11 that
z -^ (p ( ,̂ (z)) i^ satisfies all hypotheses of Lemma 4.13. •

5. H-fixed distribution vectors

In this section we fix a parabolic subgroup Pe^(A^) and an irreducible unitary
representation of M in a finite dimensional Hilbert space ^fi. Let ^'(P: ̂ : X)11 denote
the space of H-fixed elements in ^(P: ̂ : ̂ ). Our objective is to construct, for generic
^6d^, a basis of ^'(P:^:^)" which depends meromorphically on 'k. For R^(^) in a
suitable region this basis can be defined directly: it then consists of continuous
functions. To obtain a basis for other, in particular imaginary, values of \ we shall
apply Proposition 4.11 to obtain a meromorphic continuation.

Recall that ^(P) denotes the union of the open H-orbits on P\G (cf. also (3.8)), and
that C00^?):?:^) denotes the space of smooth functions (9{P}->^^ transforming
according to the rule (3.1). Identifying 2' (G: P: ̂ : K) with a subspace of ̂  (G) ®c ̂
and using the H-in variance, we see that restriction to ^(P) induces a linear map
r^G:?:^)11^00^?):?:^)^/ also Lemma 4.13).

THEOREM 5.1. — Let Pe^(A^) and [QeM^. Ifk is a nonnegative integer then for
^ in the complement ̂  of a finite union of complex hyperplanes, the restriction map r
maps ^(G: P: ̂ : ̂  injectively into C°° ((9 (P): P: ̂ : ̂ ).

Proof. — The proof heavily relies on Matsuki's description of all P-orbits on G/H
([Ma 79] and [Ma82]) and secondly on an idea which goes back to Bruhat ([Br 56]).
We use the form it has been given in [KKMOOT 78], see Appendix A.

Without loss of generality we may assume that P is the standard minimal cyO-stable
parabolic. We may fix finitely many elements x^ . . ., Xi e K such that { Px^ H, 1 ̂  i^ I}
is the set of all non-open P-orbits on G/H.

LEMMA 5.2. — The elements ^.(l^i^I) may be chosen such that

Ad^r^cioXaonynt)^.
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This lemma is proved in Appendix B. We proceed with our proof of Theorem 5.1.
Fix U^eOo such that U^ do Pit) and Ad^)"1!^!) (l^i^I). Consider the action ^
of the group P x H on G given by

\p,h)g=Pgh~^

Fix l^i'^ I for the moment. The stabilizer S .̂ of x^ in PxH equals
{(p,h),p=XihXi~1}. Its Lie algebra s, equals { (X,Y)e^x t ) ; X=Ad(x,)Y}. Thus
(Uf, Ad (X{~ ̂  Uf) = Z; belongs to 5f. Let ^i(Z,), . . .,^^(Z^) be the eigenvalues of the
natural action of Z^ on T^G/T^.(^H), counting multiplicities (for the definition of this
action, cf. Appendix A). Moreover, put

n,

^i(k)=\ -S(v,+l)^,(Z,);V6^,|v|^k
I J-l

Then F, (fc) is a finite subset of C.
We now claim that the open dense subset

^={^ea,*;(^+pp)(Z^r,(fe),l^^I}

fulfills the requirements. Indeed, let T be the representation of PxH on Jf^ defined
by T (man, h)v=Qk+f)p^ (m). Let ̂  (G: r) be the space of distributions (p e 0)' (G) ® e^
transforming according to

(^man, h) ® 1) (P = (1 ® T (man, ^l) ~ ̂  (p,

for meM, aeA, neNp and AeH (c/. Appendix A for unspecified notations). In a
natural way we have

^(G^^G:?:^)"

Now T(Zf)==(^+pp)(Z^)I since ^ [ (AoQM) is trivial. Hence if Xe^, then the hypo-
theses of Proposition A. 1 are fulfilled and it follows that for each l^i'^I there is no
distribution (pe^(G: P: ̂ :^)11 such that Px.HQsuppq) is non-empty and open in
supp(p. Now suppose that (pe^^GrP:^:^)" and r((p)=0. If (p 7^0 then it would
follow that suppcp is a non-empty finite union of orbits P^fH. Fix an orbit
PXfHc=supp(p of maximal dimension. Then Px^H is open in supp(p, contradic-
tion. Hence (p=0. •

If (pe^'^:^)", then from the proof of Lemma 3.3 it follows that
r (q>) (w) e ̂ M n w H w 1 for every w e N^ (a^). Given w e N^ (c^), we let the space

r^H^^0""""1

inherit the Hilbert structure from J'f^. Now fix a set "W of representatives for W/W^ ^ H
in N^(0^) and define a (formal) direct sum of Hilbert spaces

(5.i) v(^)= e ^(^w).
\vei^
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The canonical injection of ^(^,w) into V(y is denoted by i'(^,w), the canonical
projection V(y-^(^,w) by /?r(^,w). The canonical image of Y^(^,w) in V(y is
denoted by V(^, w). Thus the spaces V(^, w), we^ are mutually orthogonal subspaces
of V(^), whereas the subspaces ^(^, w) may not be orthogonal in Jf^: e.g. if ^=1, then
the spaces i^(^ w) are all equal to J^^C.

For weNiJc^) we define the evaluation map ev^ from ^ /(^:^)H into y^(^,w) by
ev^ ((p) = r ((p) (w). We define ̂  from ^/ (^: ̂ )" into V (^ by

ev= © .̂
we^

The following is now obvious.
oo

COROLLARY 5.3. — For 'k in the complement ^= 0 ̂  of a countable union of complex
k=0

hyperplanes in a .̂, the evaluation map ev maps ^(G:?:^:^)" injectively into the finite
dimensional space V(^).

Remarks. — In particular ̂  is a Baire subset of a^. We have not been able to decide
whether generally ̂  is open dense or not. Notice that ̂  0 i a^ is a Baire subset of i a*.

Later on we show that for generic K the map ev actually is a bijection from ^(^: ̂ )"
onto V(^). Thus generically V(y will serve as a (^-independent) model for ^'(^: ̂ H.

Before proceeding we discuss some easy properties of the spaces "r(^, w). First, notice
that for M, ueNK(ci^) we have

(5.2) ^(^v)=-T(u^uv).

In particular i^(^v)=i^(v~1 ̂  1).
The following observation I owe to G. Olafsson.

LEMMA 5.4. — Assume that every Carton subgroup of G is abelian. If ^ e M^, then
dimpf^")^!.

Proof. — In the proof of Lemma 4.4 we saw that ^ | Mo is irreducible. Since G is of
Harish-Chandra's class, Ad(G) satisfies the hypotheses of [Kn 82]. From the proof of
[Kn82], Lemma 1.2 it follows in this particular case that Ad(Mo)=Ad(M^) F, where
F = Ad (K) H exp (i ad %). Put F = K n Ad ~1 (F). Then F centralizes mo ® OQ, hence
is abelian by our hypothesis. Moreover,

Mo=M€F.

Since F is central in M(), the infinitesimal representation ^ | mo is irreducible. Consider
the o-stable compact semisimple algebra u=[mo,mo]. Then either dim(^)=l or u^O
and ^ |u is irreducible. In the latter case it follows from standard semisimple theory
that dim (^ n H) ̂  dim (Jf^ n I)) ̂  1. •

COROLLARY 5.5. — Assume that every Carton subgroup ofG is abelian. I/weN^ci),
then dim^(^,w)^l.
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Proof. - Use (5.2) to reduce to w = 1. •
Constructing a meromorphic basis for ^'(P:^:^)" (for generic 'k) comes down to

constructing an inverse to ev which depends meromorphically on X. Now there exist
real analytic maps a^ rip and nip of PH into \, Np and M^: MJ(M^ 0 H) ̂ M/(M H H)
respectively, such that

(5.3) x e rip (x) a? (x) nip (x) H,

for xePH. This result easily follows from the corresponding result for Ad(G), Ad(H),
which is proved in ([Ba 86], Appendix B). Thus, if T| e ̂ (^, 1) we may define a function
£1 (P: ̂ : K: T|) from G into ̂  by

(5.4) f£i (P:^:^: r | )=0 outside PH,
[^(P:^^.r})(namh)=a^^(m)^

for meM, aeA^, neNp and /ieH. Moreover, if weNiJc^) and r|e^(^,w), we define
the map £^(P: ̂ : ̂ : T|) from G into ̂  by

(5.5) UP^^r^L^w^P^w-^w-^ri)

Then E^(P:^:^:T|) is the unique function G-> ̂ ^ transforming according to (3.1),
which vanishes outside PwH and on PwH is determined by

ev^-^(P:^:^:r[)=r[.

Recall that g_ denotes the — 1 eigenspace of a9 in g. We define a subset of a -roots
by

S.^aeS^ng^O}.

PROPOSITION 5.6. —Assume that H is essentially connected, let Pe^(A^), [^]eM^
and fix A-ea^. Moreover, let weN^ci^) and suppose that r|e'r(^w)\{0}. Then the
J^ ̂ valued function £^(P :^ :X:TI) is continuous if and only if <Re^+pp ,a><0 for all
ae2;(np,c^)nw(2:_).

Remark. — Observe that w(S_) only depends on the class of w in W/W^H? L^- on

the orbit PwH.

Proof. - Using (5.2), (5.5) and the fact that ^(n^-ip^a^w-^np, a^) we may
restrict ourselves to the case vv= 1.

Write Q=PH. Because of the real analyticity of the decomposition (5. 3), the function
£i(P:^:^:r|) is real analytic on the complement of 90,. By P-equivariance it follows
that 6i(P:^:^:r|) is continuous iff for every sequence {x^} in Q^=^nK converging
to a point x e 80^ = 90. Pi K we have lim e^ (P: ̂ : ̂ : T|) (x^) = 0. The restriction a? of

n -*• oo

a? to OK is a proper map ^->Aq (cf. [Ba86], Lemma 3.5). Moreover, (cf. [toe. cit.,
Theorem 3.8]).

(5.6) fm(log°ap)=r(P),
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where F(P) is the closed convex cone in a^ spanned by the vectors H,,
ae£(np, c^) US_. Now suppose Re(?i+pp)(HJ<0 for an aeS(np,c^) US.. If
{x^} is a sequence in Q^ tending to a boundary point xe^O^ then Re(^+pp) logap(xj
tends to —oo by the properness of Op and the characterization (5.6) of its image. It
follows that [ I £1 (^,) (xj || =ap(x„)Re ̂ "^ \\T[\\-> 0. This proves the continuity of s^ (^).

Conversely if £i(^) is continuous, we must have that ^(x^^^-^O for every
sequence { x ^ c O ^ tending to a point xe3^. Fix aeZ(np, c^) nS_, a sequence
{C^}c=[0,oo[ such that C^+oo and select x^eO^ ^ch that
logOp(xJ=C^H^ Passing to a subsequence if necessary we may assume that x^ tends
to a boundary point xe^Q^ (use that a? is proper). It follows that
C^Re^+ppKH^log^xJ^-^-^-oo. Consequently Re(5i+pp)(H,)<0 for all
ae2;(np,a,)ns_. •

Remark. — More generally, if H is not assumed to be essentially connected, then every
open orbit PwH(weNK(c^)) is a finite union UfP-^.H0, with x^eN^H (c^) (use that
^N^p^)110. (<^ [Ba86], (2.2)). Applying the above proposition to the functions
£f defined by £f=£^ on Px^.H0 and £^=0 outside Px^.H0, we deduce that
£^ = £^ (P: ̂ : X,: T|) is continuous if Re ̂  + pp is strictly P-dominant, i.e. < Re 'k + pp, a > < 0
for all ae£(np,c^).

Retaining the notations introduced before Proposition 5.6, for Re(X+pp) strictly
P-dominant we define the map; (P: ̂ : K) from V(^) into ^(G: P: ̂ : ̂ H by

7(P:^)= ^ £,(P:^:?i)o^ft,w).
we"^

Here we have used the embedding of C°(G:P:^:^) into ^(G:P:^:^) determined
by the pairing (3.2). The following is now obvious.

LEMMA 5.7.—For every r|eV(y, the family ^->j(P: ̂ :T|) (^ec^, and Re^+pp
strictly P-dominant) is holomorphic as a family in ^'(K: i;). Moreover,

evoj(P•.S,:fk)=id on V(^).

J/m addition Xe^, thenj(P:^:'k) is a bijection.

Remark. — For the exact meaning of holomorphy, cf. the definitions preceding
Lemma 4.13.

Before turning our attention to the meromorphic continuation ofj(P:y, we discuss
its dependence on the particular choice of W.

LEMMA 5.8. —Let it^' be a second choice of representatives for W/W^H in NK(CU
and define the map f(P:^:K) from T^ © ^(^u) into ^(P:^)" accordingly.

ueiy'

Then there exists a unique linear map R: V(y -> V(y such that

(5.7) /(P:;;:^)oR=,(P:^)
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for all ^ea^ mth Re(^+pp) strictly P-dominant. The map R does not depend on
P. Moreover, ifwei^ and w' e ̂ / represent the same element o/W/W^ n H? ̂ n R maps
V(^, w) unitarily onto V(^, w').

Proo/ — In view of Lemma 5.7 it suffices to show that for ^e^ the map
R=^i/oj(p:^:^) does neither depend on ^, nor on P and maps V(^,w) unitarily onto
V(^,0. Now w^hvfc, where (eMplH, and f eeKHH. Fix rieV(^,w). Then
supp(/(P:^:r|)) cPwH=Pw / H, hence R(r|)eV(^,0. Moreover,

pr/(^^v/)oR(rO=ev^oj(P:^^^

=i;(Oo^"7(P:^)r|

=^(0^r(^w)Ti.

Hence R is independent of ^ and P, and maps V(^,w) unitarily onto V^w") (notice
that^(0^(^w)=^(^w /)). •

The remainder of this section is devoted to the meromorphic continuation of
7'(P:y. The first step is to prove the existence of some meromorphic basis for
^ (P: ̂ : K). For a given real number r we define

^(P,r)={?iea^;(Re?i,a)>rforae2:(np,a,)}.

LEMMA 5.9. — F o r every reR there exists a meromorphic map J y from j^(P,r) into
Honi(c(V(i;), ^"(K: Q) such that for 'k in the complement of a countable union of (complex)
hyperplanes in j^(P,r), the map J^(^) maps V(y bijectively onto ^(G'.P:^:^. The
poles of3y are contained in a locally finite union of hyperplanes.

Proof. — We first prove the assertion for r=r^ sufficiently large. In that case 7 (P: ^)
may be viewed as a holomorphic map from ^(P,r^) into Hom<c(V(^), ^'(K:^)) (use
Lemma 5.7). By Proposition 4. 8 the map J^ defined by

J^)=A(P:P:^)o;(P:^)

is meromorphic. Since A(P:P:^:^) is defined and bijective for X in the complement
of a locally finite union of hyperplanes (cf. Corollary 4.9), all assertions now follow
from Lemma 5.7.

To obtain the result for other values of r we apply multiplication by the matrix
coefficient of a finite dimensional representation. Let n e a^. be as in Lemma C. 1
(Appendix C) and select a non-trivial real analytic function ^ in
C°° (G: P: 1: n - pp)". Then the mapping

M^: u -> \|/ u

maps ^'(P:^:^) continuously into ^'(P:^:^^). Now assume we have found J^,
fulfilling our requirements. Let

m =min {< ^, a >; ae£ (Up, c^) }.
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Then m > 0 (Lemma C.1, (Q) and ^ (P, r) + p, contains ^ (P, r - m). Hence

J,_,(5i)=M^"J,(5i-H)

defines a meromorphic map from ^/(P,r-m) into Honic(V(y, ^(K:Q) whose set of
poles is as required. To prove that it fulfills the other requirements we only have to
show that the mapping M^ maps ^(P:^)" bijectively onto ^(Pr^^+n)" for 'k in
the complement of a countable union of hyperplanes in ̂  (P, r). Define a linear mapping
^V(y-^V(^) by m^(r})=i(^u).^(u).pr^,u)r[, for r|eV(^,M), MG^. By real ana-
lyticity and equivariance, \|/(^)^0 for all ueiT, hence m^ is bijective. The following
diagram obviously commutes for every ^ea^.:

^/(^)H M! :̂?I+H)
"1 [ev

v(y 1 v(;;)

By Corollary 5.3 the evaluation map at the right is injective for ^e -n+^. Moreover,
the evaluation map at the left of the diagram is bijective for ^ contained in the complement
of a countable union of hyperplanes in e^(P,r), by our assumption on J, (use also
Corollary 5.3 and count dimensions). We conclude that M^ is bijective for X in the
complement of a countable union of hyperplanes in J^(P, r). •

THEOREM 5.10. — Viewed as a function with values in Honic(V(y, ^'(K: ̂ )), the map
j(P:Q extends meromorphically to a^. Moreover, if 'kea^ is not a pole for this map
thenj(P:^:'k) maps V(^) injectively into ^'(P:^:^)". Finally, for ^ in the complement
of a countable union of complex analytic hypersur faces in a^, the mapping j ( P : ^ : ' k ) is a
bijection from V(Q onto ^'(P: ̂ : ̂ H \vith inverse ev.

Proof. — Once we have established the meromorphic continuation, the other assertions
follow from first applying holomorphic continuation to Lemma 5.7 and then using
Corollary 5.3.

By Lemma 5.7 the function j (P: ^) is holomorphic on j^(P,0)-pp. Fixing the real
number r sufficiently close to - oo we may assume that [^ (P, 0) - pp] C\ ̂  (P, r) ̂  0. It
suffices to show that then ;(P:^) extends meromorphically to ^(P,r). Let J , be a
meromorphic map from ^/(P,r) into HomcCV^^K: ̂ )) as in the above
lemma. Then the map L:X-^yoj^) is meromorphic from ja^(P,r) into
Endc(V(y). Moreover, for ^ in the complement ^ of a countable union of complex
hyperplanes in j^(P,r), the endomorphism L(^) is bijective from V(^) onto V(^) (use
Corollary 5. 3 and Lemma 5.7). Since ^ is a Baire subset, hence dense in ^(P, r), the
determinant detL(X) does not vanish identically and L(X-)~1 depends meromorphically
on .̂ We claim that

(5.8) 7(P:^)=J^)oL(?i)-1

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



384 E. P. VAN DEN BAN

defines the meromorphic extension of ; (P :X) to e^(P,r). Indeed if
?i€j^(P,r)n(^(P,0)-pp) is not a pole L(^)-1, then ^oj^oL^)-1^^,
whence (5. 8). •

If R]eM^, we define the integer ^=dimV(^). The following result now justifies
our definition of principal series once more.

COROLLARY 5.11. — Let Pe^(A^), and ^eM^. Then
(i) d^O^eM,,

(ii) for 'k in the complement of a countable union of complex analytic hypersur faces in
a^dim^(P'.^.^H=^.

Remarks. — (i) Note that Ind^(^ ® ̂ ® 1) is an admissible representation of finite
length (use Lemma 4.5) in a Frechet space. Hence ^'(P:^:^)" is known to be finite
dimensional for every ^ea^. (cf. [Ba 87 II]).

(ii) If every Cartan subgroup of G is abelian, then by Corollary 5.5 we have:

|WK.H| .^=»{^6W;wR]G(M/MnH) '} .

6. Elementary properties of the matrix B.

Retaining the notations of the previous section recall that j ( P : ^ : ' k ) maps V(y
injectively into ^'(G:?:^)" whenever ^ is not a pole for j(P:Q. The image
im(/(P:^:^)) is preserved by the action of intertwining operators. More precisely we
have

PROPOSITION 6.1. —Let R]eM^, P^, P^e^y(Aq). Then there exists a unique mer-
omorphic map B(P^: Pi: ̂ ) from a^ into End(V(i;)) such that

(6.1) A(P,:P,:^^)o;(P,:^^)=;(P,:^^)oB(P,:P,:^^).

Remark. — If ^Mp,, then V(i;)=0 by Corollary 5.11 and the proposition is
vacuous. We have used the above formulation for reasons of induction that will become
apparent later on.

Proof. — Uniqueness is obvious by Theorem 5.10. Define

B(P2:Pi:^)=^oA(P,:P,:^)oy(P,:;;:X).

By Theorem 5.10 and Corollary 4.14, this map is meromorphic. The identity (6.1)
now holds for all X in a Baire subset of a .̂ (use Theorem 5.10), hence in a meromorphic
sense. •

From the uniqueness statement in Proposition 6.1 we immediately deduce the following
transformation properties of B from the corresponding properties of intertwining oper-
ators (cf. Propositions 5.6 and 4.7 and the remarks below Proposition 4.11).
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PROPOSITION 6.2. — Let K|eM^ and let P^ P^e^A^). Then for Xea^. we have
(i) B(Pi:P2:^)oB(P,:P,:^)=r|(P,:P,:i;:^)I;
(ii)_B(P2:P3^:^)°B(P3:P,:^^)=B(P2:Pi:^?i), for any P,e^(A,) mth

T^nni cn2nni .
A priori it is not clear whether the analogue of Proposition 4.6 (ii) holds for the

matrix B(P^P^:^:'k). The reason is that the pairing (3.2) does not induce a pairing
of ^'(P: ̂ : ̂ )" and ^(P: ̂ : -X)11. Surprisingly, the analogue does hold.

THEOREM 6.3. — Assume that every Carton subgroup of G is abelian, and let [^] e M^y
and Pi, ?2 e ̂  (A^. 77î  for ^ e a .̂ w^ have

(6.2) B(P2:P,:^^)*=B(P,:P2:^:-X).

T^r^ * indicates that the adjoint mth respect to the unitary structure ofN(Q defined by
(5.1) has been taken.

Remarks. — (1) A consequence of the above is that an analogue of Harish-Chandra's
Maass-Selberg relations (cf. [HC 76, Theorem 14.1]) holds for Eisenstein integrals related
to minimal aO-stable parabolic subgroups. We prove this in a second paper [Ba 88].

(2) The matrix B has (in slightly different form) for the first time been studied by
Oshima and Sekiguchi for the restricted class of semisimple symmetric spaces of Kg-
type. Then dq is maximally abelian in both p and q and H => Z^(dq) (cf. [0-S80]). In
that case Mp, consists merely of the trivial representation and the matrices B can be
explicitly computed (cf. [loc. cit., Lemma 4.14]).

The proof of Theorem 6.3 goes by reduction to the a-split rank one case
(i.e. dim(a^) = 1). This reduction, based on an idea of [0-S 80] is carried out in the next
section. Finally Section 8 is devoted to the proof for the rank one case.

In the remainder of the present section we derive the elementary properties of B which
will be needed in Sections 7, 8. First we describe B's dependence on the choice of
IT. If ' W ' is a second choice of representatives we may define the endomorphism
B' (?2: Pi: ̂ : \} of V (Q by formula (6.1) with j replaced by / (cf. Lemma 5.8). Then
the following lemma is an immediate consequence of Lemmas 5.8 and 6.1.

LEMMA 6.4. — Let K] e M^, suppose that i^' is a second set of representatives for
W/WK^H m ^K^q) and let ^^^ -^V'^) be the unitary map of Lemma 5.8. Then
for all Pi, P^e^y(\) we have

B'(P2: Pi: ̂ : ̂ ) - R =R ° B(?2: Pi: ̂ : X).

Remark 6.5. — Since R is unitary and independent of the choice of parabolics, it
suffices to prove Theorem 6.3 for a particular choice of 'W. It is then valid for any
choice of IT.

Next we study B's dependence of the choice of ^ in its class. Suppose that [r|] e M^y
and that T: Jf^ -> Jf^ is a unitary intertwining operator. Then T naturally induces an
intertwining operator Ind{?(T:^) from ^'(P:^:X) onto Q ' ( P : r { : ' k ) by acting on the
second component of the tensor product ^/ (G) ® Jfp.
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LEMMA 6 .6 .—Let [i;], [r|]eM^ and suppose a unitary intertwining operator
T:Jf^^ is given. Then there exists a unique linear map fc(T, r|,^):V(y-^V(r|)
such that

Ind?(T:?i)o;(P:^X)=7(P:r|:?i)ofo(T,r|,y

for Pe^(A^) and ^ea^.. The map b(T, T|, Q is unitary and bijective, and maps V(^, w)
into V(r|,w) (we^).

Proof. - Since Ind^?(T:X) maps ^'(P:^)" bijectively onto ^(P: r^X)", uni-
queness follows from Theorem 5.10. The mapping T maps i^(^,u) unitarily onto
^(r|,u), for uEiT. Define the unitary map &(T,T|,^) from V(^) into V(r|) by
fc(T,r | ,y=f(^ ,M)°T°/?r(^M) on V(^), Me-T-. Then obviously
eu°Ind?(T:^)=fc(T,r|,y°ei; on S^:^)". The result now follows from Theorem
5.10. •

COROLLARY 6.7. — Under the assumptions of Lemma 6.6 we have

B(P2:Pi:Ti:?i)ofc(T,T|^)=fc(T,T| ,yoB(P2:Pi:^:^

for?,, P^e^A,).

Proof. — The result follows from Proposition 6.1, Lemma 6.6 and the corresponding
formula for intertwining operators:

A(P;,: Pi: T| : X) o!nd^(T: ?L)=Ind^(T: X) °A(P2: Pi: ̂ : X). •

Later on it will be of crucial importance to have a similar result when T : ̂ f? -> ̂  is
an anti-linear intertwining operator which is anti-unitary^ i.e. (Tu,Tw)^=(u, w)^ for
v, weJ'f^ (for instance, ^ and its contragredient are connected by an operator of this
type). The operator T now induces an anti-linear intertwining operator Ind^(T: X) from
^'(P: ̂ : ̂ ) onto ^'(P: T| : I ) by acting on the second component of ^'(G) ® ̂ .

LEMMA 6.8. — Let K], [r|] e Myy, and suppose T: ̂  -> ̂ f^ is an anti-unitary and anti-
linear intertwining operator. Then there exists a unique anti-linear map
fc(T, T|, Q: V(^) -. V(T|) such that

Ind?(T:)i)oj(P:^^)=;(P:Ti:X)°fc(T,r|,^),

for Pe^(A^) and Xea^. The map &(T,T|,^) is anti-unitary and bijective and maps
V(^,w) on^V^wKwe^).

Proof. — Analogous to the proof of Lemma 6.6. The anti-unitarity follows from
the anti-unitarity of T and the fact that the subspaces V(^,w) of V(^) (resp. V(r|,w) of
V(r|)) are orthogonal (by definition). •

COROLLARY 6.9. — Under the assumptions of Lemma 6. 8 we have

B(P,:P,:r | :X)o&(T,r | ,y=fc(T,r | ,yoB(P2:Pi:^^),
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forP,,P^^(A,).

Proof. — From formula (4.1) we obtain:

A(P2:Pi :Ti :^)olnd^(T:X)=Ind^(T:X)oA(P2:Pi :^ :X)

(use analytic continuation). Now proceed as in the proof of Corollary 6.7. •
We shall now describe how B transforms under the action of the intertwining operator

L(w) from ^(P:^) onto ^'(vvPw"1: w^:wX,) (where weNiJc^)). We define an
action T of N^ (dq) on "W as follows. If weN^ci^), uei^, then r (w)M is the element of
i^ which represents the same element in W/W^ n H as wu-

LEMMA 6.10. — Let K|eM^ and weN^ci^). Then there exists a unique linear map
L (^, w): V (^ -^ V (w y such that

(6.3) L^o^P^^^wPw-^w^w^oL^w),

for Pe^(A^), and ^-ea^.. The map L(^,w) is unitary and maps V(^,u) into
V(W^,T(W)M) (ueiT).

Proof. - Since L (w) maps ̂ / (P: ̂ : X)" bijectively onto ̂ / (w P w ~ x : w ̂ : w ̂ )", unique-
ness follows from Theorem 5.10. As for the existence, notice that ^^w^ i^ is a set
of representatives for W/W^nH- Let R be the map V(^) ->T(Q of Lemma 5.8. If
uei^, then R^=pr(^\v~l^:(\v)u)°Roi(^u) maps ^(^M) unitarily onto
-T (^, w -1 T (w) M) = -T (w ̂ , T (w) M). We define the map L (^, w) by

L (^ w) = i (w ̂  T (w) M) o R, opr (^ u) on V (i, ̂ ).

Then it remains to prove (6.3). Fix uei^. Then

^T(w)M 0 7(wPw - l :w^:w?l )oL(^ ,w)=7?r (w^T(w)M)oL(^w)=R^/?r (^M) .

On the other hand,

^^^L(w)o7(P:^:^)=^^-l ,^^o^(P:^:^)o==^ /(^w - lT(w)M)°R=R^o^r(^M).

It follows that the equality (6.3) holds at every vei^. The proof is completed by using
Theorem 5.10. •

COROLLARY 6.11.—Let K]eM^ and weN^ci^). Then for any two parabolic
subgroups Pi, P^e^y(Aq) we have

L ( ^ w ) o B ( P 2 : P l : ^ : ^ ) = B ( w P 2 W - l : w P l W - l : w ^ : w ^ ) o L ( ^ w ) .

Proof. - Use Lemmas 4.10, 6.1 and 6.10. •
The existence of automorphisms with certain invariance properties is the source of

other transformation properties. If (p is an automorphism of G which commutes with
a and 6 and leaves A^ invariant, then (p induces a map P-^(p(P) from ^(A ) into
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itself. Moreover, (p leaves M^, hence A = centre (M^) 0 exp p and

M=(MinK)exp(/?nmina1)

invariant. Hence given ^ e M^ we may define ̂  e M^ by

^^^((p-^m)),

for m e M. Also, we define

^=^ocp-1,

for ^-ea^. Finally, if Pe^(A^), then (p induces a linear map ((p~1)* from
^' (G: P: ̂ : X) onto ^' (G: (p (P): y: ̂ ), defined by

(CP-1)*^/0^-1.

LEMMA 6.12. — Ld Pi, P2€^(A^), ^eM^. TTi^n

((p-l)*oA(P,:P,:^X)=A((p(P,):(p(P,):^:^)o((p-l)*.

Proof. — Use formula (4.1) and analytic continuation. Using that (p stabilizes K
and A it is straightforward to verify that the normalizations of Haar measures agreed
upon in paragraph 4 transform appropriately. •

The automorphism cp~1 stabilizes A^ and K, hence N^(0^) and Z^(dq). Therefore it
induces an automorphism (p^ of W (c/ Lemma 1.2). We know already that (p (H°) = H°,
since (p commutes with o. If we assume in addition that (p(H)==H, then (p^ stabilizes
WK ^ H ^d induces a bijection (p^ of W/W^ ^ n onto itself (use the definition of W^ ^ H
above Lemma 1.3).

By transportation we obtain a bijection (p^: 'W -^ i^. Though (cp"1)* is not an inter-
twining operator, it does map ^(G: P: ̂ : ̂ H onto ^(G: (p(P): ^<p: X^)", since (p stabi-
lizes H.

LEMMA 6.13. — Let ^eM^,. Then there exists a unique linear map &((p, ^) from V(^)
onto V(^<p) SMC/I that

(6.4) ((p-l)*o;(p:^^)=;(cp(P):^:^)oh(cp^)

/or Pe^(A^), ^ea^. 77î  ma^ fc((p,y i5 unitary and maps V(^,w) onto V^cp^w),
/or we^.

Proof. — Uniqueness follows from Theorem 5.10. For existence, put ^^(p"^^)
and let R be the map V(^) ->• V'^) of Lemma 5.8. Then R is unitary and maps V(^, w)
onto V (^, (p ~1 o <p^ (w)), for w e ̂ T. Now ̂  (^, (p ~1 (w)) = V (^, w) (use the fact that (p
leaves M H H invariant). We denote the induced map V'(^) -> V^) by ^, and define
fc((p,^)=e^oR. Then fc((p,y is unitary and maps V(^,w) onto V^.cp^w)). To see
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that it is the required map, fix wei^. Then

ev^(^-l)^j(P'.^.^=ev^-l^oj(P:^.K)

=^<p-^)°/(P:^)°R
^(^(p-1^))

=pr(^,\v)o^oR

=^o^((p(P):^:^)ofc((p^)

and (6.4) follows. •

COROLLARY 6.14. — Let cp be an automorphism of G which commutes with 9 and CT
and leaves \ and H invariant. Then for P^, P^ e ̂  (A^), ^ e M^ and X e a^, w^ fea^

&((p,yoB(P2:Pi:^^)=B((p(P2):(p(Pi):^:^)ofc((p,y

Proo/ — Use Proposition 6.1 and Lemmas 6.12, 13. •

COROLLARY 6.15. — Let Pi, P2e^(A^) and ^eM^. Then

B(P2:P^:?i)=B(P2:Pi:i;:-?i).

Pyw/. - We apply Corollary 6.14 with (p=9. First of all, using the notations of
the proof of Lemma 6.13, we have that 9^=6on^r. Hence R is the identity of
V(y. Next, ^ is trivial on m U p (cf. the proof of Lemma 4.4), hence SQ=^. We see
that b(Q, Q is the identity of V(^) and the result follows. •

In the rest of this paper we assume that every Carton subgroup ofG is abelian.
Given ^ € M^, we write ̂  for the contragredient representation on the complex linear

dual Jff of c .̂ It is unitary for the dual inner product on ̂ .

LEMMA 6.16. — J/^eM^ possesses a (M Fl H)-fixed vector, then there exists an anti-
linear and anti-unitary map S.-e^f^Jf^ which intertwines ^ with £°, i.e.
y (m) o S = S o ̂  (w) for all m e M. Moreover, any such S satisfies S2 = 1.

Proof. - Consider ^^L^M/M QH) together with the left regular representation
L. Fix rie^f^^O, and define 7:^-^ by j (v) (m) = < v, ̂  (m) T| >, for ue^,
w e M. Then j is an equivariant embedding. By Lemma 5.4, its image equals the space
^(^) of functions of type ^ in ^. Via the equivariant L^inner product we see that
the map C:/h-»/ maps ^(^ onto the space ^'(0. In particular the function
(p: m ̂  < T|, ^ (w) T| > belongs to ̂  (Q. Clearly

(6.5) (P(m)=<r|,^(a(m))r|>

for meexp(moHq). The group F introduced in the proof of Lemma 5.4 is o-stable
and abelian, hence m e F => m CT (m) e F 0 H. Since F is central in M(), we see that (6.5)
holds for m6Fexp(monq)(MgnH), hence by real analytic continuation for
meFMg=Mo. From the proof of Lemma 4.4, we recall that ^ is trivial on N^, A^,
and NM. By density of N^MOA^NM in M, we see that (6.5) holds for all weM. It
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follows that 0 ̂  (p e ̂  (^) U ^ (0. Hence ̂  (^) = ̂  (Q and ^CT - ̂ . The mapping
^* ̂ /1-^/0 cr maps ^(^T) into ^'(y. One readily verifies that

S^-^a^Co;

fulfills the requirements.
If S' is a second anti-linear and anti-unitary operator Jf^ -> Jf^ intertwining ^ with ^CT,

then S' = ̂ S for some ?i e C with | K \ = 1. It follows that (S')2 = U S2 = 1. •

LEMMA 6.17. —Let Pi, P^e^y(Aq) and assume that ^eM^ possesses a (MOH)-
fixed vector. Then

(6.6) B(P^P?:^:-X)ofc(a,^)ofc(S,^,y=fo(a,^)oh(S,^^)oB(P2:Pi:^?i) .

Moreover, b (a, ^CT) ° fc (S, ^CT, ^) is an anti-unitary, anti-linear map from V (^) onro iTs^/ It
maps V(^, w) on^o V(^, a^ w) (we ̂ ) anrf its square is 1.

Proo/ — Except for the assertion about the square, all assertions follow straight-
forwardly from Corollaries 6.9, 14. In view of Lemmas 6.8 and 6.13, the map
b (a, ̂ ) o b (S, ^CT, Q is characterized by

(6.7) a*oInd?(S:^?i)o^(P:^^)^(P-^-X)o^(a,^)ofc(S,^,y.

Now observe that S also intertwines S° with ^<T2=^, so that
CT* ° Ind^p (S: ̂ : - X) = Indp" (S: ̂ : ^) ° o*. Applying the latter map to the left hand side
of (6.7), we obtain IndS>(S:^:X) oIndp^S: ̂ :^)oj(P:S,:^ which equals j (P: ̂ : ̂ ),
since S^I. On the other hand, application of the map to the right hand side of (6.7)
yields7'(P: ̂ : o) °(^(a, ^°) ofc(S, ̂ , Q)2 (use Lemmas 6. 8 and 6.13 once more). In view
of Theorem 5.10 the obtained equality implies the result. •

7. Reduction to the a-split rank one case.

The purpose of this section is to reduce the proof of Theorem 6.3 to the o-split
rank one case, i.e. dimc^=l. As before we fix K]eM^. The first step is the usual
decomposition of intertwining operators as a product of operators coming from adjacent
parabolic subgroups.

Two parabolics P, I^e^^A^) are called (a—) adjacent iff P^F and all c^-roots in
n Pi n' are proportional. Notice that F is adjacent to P iff P^P5", for a a simple root
in S(ttp, dq) (the latter is a positive system for Z). A (o—) minimal string of parabolics
from P to P" is defined to be a sequence of parabolics P(), . . .,P^e^(A^) of smallest
possible length r^O such that Po=P, P^P" and P,, P^.+i are adjacent for
0 ̂  i < r. Clearly any two parabolics in ̂  (A^) are connected by a minimal string. Since
W acts simply transitively on ^y(A^), minimal strings correspond to reduced expressions
of Weyl group elements just as in the case of (ordinary) minimal parabolics. Indeed
p^pw ̂  ^ uniquely determined weW. If w =s^° . . . ° 5, is a reduced expression
for w (in terms of the simple roots in £ (np, c^)) then a minimal string { Py} is defined by

4€ SERIE - TOME 21 — 1988 - N° 3



THE PRINCIPAL SERIES 391

PO=P and Pj=s^o. . . °5^.Ps^.o... 05^ for l^j^k. Conversely any minimal string
{P,} from P to F determines a reduced expression for w satisfying the above
equalities. From the corresponding result for intertwining operators (a consequence of
Proposition 4.6) we immediately obtain the following.

PROPOSITION 7.1.— Let P, Pe^(A^) and suppose that P,, O^i^r is a minimal string
from P to K Then

B(P /:P:^)=B(P,:P,_l:^)o...oB(Pl:P,:^).

In view of the above it suffices to prove Theorem 6. 3 when P^ and P^ are adjacent. So
assume this to be the case and let a be the reduced c^-root whose root space 9° is
contained in n^Pmi. Then P2=Pslol. We agree to write ^=5:^, the summation
extending over f^Ja U 2. Thus, putting n^ = 9 n^, N, = exp (nj and N, = ON, we have

N^nN^N,

The group W acts on W/W^ ^ H by left multiplication. We denote the induced action
on the set ̂  of representatives by T.

LEMMA 7.2. — Suppose Pi, P^e^y(Aq) are adjacent parabolic subgroups and let a be
the reduced a^-root mth g" c n^ 0 n^. If w e ̂  then B (P^: Pi: ̂ : ̂ ) leaves the subspace
V(^,w)+V(^T(sJ (w)) o/V(^) invariant.

Proof. - It clearly suffices to prove that B(P^:P^:^:K) maps V(^,w) into
V(^,w)+V(^T(sJw), for any we^T. By Remark 6.5 we may pass to a different set
of representatives so that 1 e 'W. The map L (^, w) of Lemma 6.10 maps V (^, 1) unitarily
onto V(w^, w) and V(^, r(s^-i J 1) unitarily onto V(w^, r(sj w). Now put P=w~ 1 P^ w
andp=w - l a . Then

(7.1) B(P2:Pl :^)=L(^w)oB(P S P:P:w- l ^:w- l ^)oL(^w)- l

by Corollary 6.11. We see that it suffices to prove the lemma for w = l and all
choices of P^, P^, ^ and \. So fix r|eV(^,l). Then supp;(Pi :^)r| c: c;(PiH)
(for generic 'k). From Lemma 4.12 it follows that supp A (P^: P^: ̂ : ̂ )j(P^: ̂ '. ̂ ) r\ is
contained inc;(N,PiH). From Lemma 6.1 and the lemma below we infer that
7(P2:^)oB(P2:Pi:^)r| has support contained in c/(PiH UPiS,H), whence the
assertion (use Theorem 5.10). •

_ LEMMA 7.3.—Let Pe^(A^) and a a simple root in 2:(np,a). Then
N,Pc:c;(PHUPs,H).

Proof. - The centralizer Gi(a) of kera in G is a group of Harish-Chandra's class
satisfying assumption (A) (cf. Section 1). Its Lie algebra Qi(a) equals
m © a ® £p g ̂  n za ̂ ' Let P! (a) be the parabolic subgroup of Gi (a) with Lie algebra

^(o^meaeSpesn^-

Then P^ (a) is a minimal aO-stable parabolic subgroup of Gi (a), and Hi (a) =Gi (a) C\ H
is an open subgroup of G^ (a)0. Hence if s is a representative of s^ in N^c^) H G^ (a),
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then by Appendix B we have

(7.2) Gi(a)=c;(Pi(a)Hi(a)UPi(a)5Hi(a)).

Let Q be the parabolic subgroup of G with Lie algebra ^P+n,. Then
N^Pc= Q. Moreover, Q=NoGi(a) with NQ its unipotent radical. Now observe that
P=NQPi(a). Hence from (7.2) we obtain that Q=d(PHi(a) UPsHi(a)) and the
proof is complete. •

Reduction to <j-split rank 1, first step. — According to Remark 6.5 it suffices to prove
Theorem 6. 3 for one fixed choice 'W of representatives. We fix 'W such that 1 e i^. In
view of Proposition 7.1 it suffices to prove the equation (6.2) for adjacent parabolics P
and P\ and by Lemma 7.2 we may restrict ourselves to proving it on the subspace
V(^, w) +V(^, r(sj w). By (7.1) and unitarity of the map L(^, w) we may even restrict
ourselves to proving the equation on V(^, l)+V(^,T(s,) 1), for all choices of ^, P, P501 (a
simple in 2 (np, c^)) and generic X.

For the rest of this section we fix P=MAN in ^y(A^) and a a simple root in
S^EOt.a,). Let^={l,T(s,)l},put

V^^J^V^+V^T^)!)

and define endomorphisms of V(^, 'W'J by

B^P^: P5.^: ?i) =B(P5«S: P5: ̂ : K) | V(^ ̂

(s=l,sj, whenever ^ea^. is not a pole. Then according to the above it suffices to
prove that

(7.3) BJP^P^^^BJP:?^:-!).

Reduction to a-split rank 1, last step. — The final step in the reduction consists of
comparing B, with the B for a a-split rank 1 group G(a). Recall the definitions given
in the proof of Lemma 7. 3. Since ker a is central in g^ (a) and contained in g^ (a) H p,

G(a) =(Gi (a) U K) exp(9i (a) U P U (ker a)^

is a closed subgroup of Harish-Chandra's class satisfying assumption (A). Moreover
H(a) =H Q G(a) is an open subgroup of G(a)°. The group G(a) has Lie algebra

g(a)=m©a(a)®5:p^n2a9^

with a (a) = a P| (ker a)1.
Its Langlands decomposition is P(a) = MA (a) N(,, where A (a) =exp a (a). Since G(a)

centralizes ker a, a representative s for 5ja^(a) in N^(a)(a^(a)) is also a representative
for 5, in N^(0^). Hence we may select a set of representatives IT such that ̂  c G(a)
(cf. Remark 6.5). Let W(a) and WK^H(°O be the Weyl groups for G(a) defined as in
Section 1. Then W(a) naturally embeds into W. Moreover,

W(a)nWK,H=WK,H(^
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hence ̂  is a set of representatives for W^oO/W^^)- ^e following lemma reduces
the proof of Theorem 6.3 to the a-split rank 1 case.

LEMMA 7.4.— Assume that ̂  c: G (a). Then for all 'k e a^ such that \ = K | a, (a) is
not a pole for B (G (a): P(a)s»: P(a): Q \ve have

BJPS«:P:^)=B(G(a):P(a)s«:P(a)^:V

Remark. - The regions in aja)* where A (G(a): P(a)s«: P(a): Q and j (G (a): P(a): Q
were defined initially (before meromorphic continuation took place) need not have any
overlap. Consequently, there are no integral representations for the endomorphisms in
the above equation and this is the main difficulty in the proof. It is overcome by using
a trick of ([0-S80], Lemma 4.13).

Proof. - Let pr^ denote the orthogonal projection from V(^) onto V(^,^J and
define ev^ ==pr^ ° ev. Then we must show that

(7.4) ^°A(P«:P:^:?i)o;(P:^:^:^)=^oA(P(a):P(a):^^)o^(P(a):^^:Ti),

for r|<=V(^Trj. Fix TieV(^^). We introduce a new parameter vea^(a)* and
define A to be the set of all (^, v) ec^. x c^(a)* satisfying

(a) <Re5i,a>>C,
(b) <Re(^-v)+pp, P > < O f o r p e A .

Then clearly A is a non-empty open set. Moreover, the subset A' consisting of (X, v) eA
such that

(c) n=^-v is neither for;(G: P: ̂ : ̂ : T|), nor for;(G(a): P(a): ̂ : ̂ : r}) a pole,
is open and dense in A.

Let hp be the real analytic map G -> A defined by

xeN^ip(x)MK,

for xeG. Then hp maps G(a) into A^(a). We define distributions, meromorphically
depending on (^, v) e c ,̂ x a^ (a)*, by

(7.5) J(G:)i:v)=47(P:^:5L-v:Ti),

(7.6) J(G(a):^:v)=[4|G(a)n(G(a):P((x):^:^-v:T|).

Then J(G:X:v)e^'(G: P:^:?L), and J(G(a):X:v)6^(G(a):P(a):^:^. Moreover,
if (X,v)eA', then by Proposition 5.6 the generalized functions J(G:X:v) and
J(G(a): ̂ : v) are continuous and

J(G:?i:v)|G(a)=J(G(a):?i:v).

Moreover, because of condition (a),

A(P«:P:^:^J(G:5i:v) and A(P(a):P(a):^)J(G(a):?i:v)
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are then continuous functions defined by absolutely convergent integrals (use Proposition
4.1 and the fact that (d)o'ke^(P^\P)). It is readily checked from the definitions
that the first of these functions restricts to the latter on G(a). In view of Appendix B,
the union of the open P(a) xH(a)-orbits in G(a) is given by
^(P(a))= U P(a) wH (a), hence contained in (9 (P5"). We obtain

we-Toi

(7.7) A(PS«:P:^?l)J(G:?l:v)|^(P(a))=A(P(a):P(a):^:^)J(G(a):?l:v)|^(P(a))

still for (X,v)eA'. Now fix (^ Vo) e a^ x dq (a)* for the moment. Then there exists a
holomorphic function (p defined on an open neighbourhood N(^o,Vo) of (Xo,Vo) in
atxaqW such that (^,v)->(p(^,v)7(P:^:^-v:r|) is holomorphic as a map from
N(^o,Vo) into ^'(K:^). Since j(P: i;: X-v: r|) is right H-invariant as an element of
0)' (G) ® J^, whereas hp is a real analytic function, it follows that the map
(^,v,^)^(p(?i,v)[R,J(G:X:v)], from N(?io,Vo)xH into ^(K:Q is smooth and in
addition holomorphic in (X,v). By Lemma 4.10 we obtain that
(X, v) -> A (P5": P: ̂ : X) J (G: 'k: v) | ̂  (P5") is meromorphic as a C°° (0 (P5") U K: K^: ̂ )-
valued map. By a similar reasoning we infer that

(?i,v)-.A(P(oc):P(oc):^:)i)J(G(a):?i:v)|^(P(a))

is meromorphic as a C00 ((^ (P(a)) 0 K (a): K^: ̂ -valued map. By analytic continuation
it now follows that (7.7) holds as an identity of meromorphic functions on the whole
of c^.xc^(a)*. Now if ^ea^. is not a pole for any of 7(P:^:X:r|),
7(G(a): P(a): ̂ : ̂ : T|), A(PS«: P: ̂ : X) and A(P(oc): P(a): ̂ : XJ, then (X, 0) is not a pole
for left or right hand side of equation (7.7) (use definitions (7. 5,6)). Substituting v=0
in (7.7) we obtain (7.4) on a Baire subset of a .̂, hence in a meromorphic sense. •

8. Proof of Theorem 6.3 when dim A^ = 1.

As before we fix P= MAN in ̂  (A^), and ^ e M^. If ̂  Mp, then V (^ = 0 and there
is nothing to prove, so we may assume that w^ possesses a (M r\ H) -fixed vector, for
some weN^c^). Applying Corollary 6.11 if necessary we may as well assume that
w= 1, i.e. i; possesses a (M C} H)-fixed vector.

Put E^i^n,^) and let a be the unique simple root in I^. Then
W = { l,s,}. Consequently there are two cases: either W/W^H has one, or it has two
elements. We treat these cases separately.

8 A. The case | W / W K ^ H | = = I - - In this case we may fix iT={ 1} (cf. Remark 6.5).
By Corollary 5.5, dimV(^) = 1, so B(P: P: ̂ : ̂ ) is a scalar. Now ^ possesses a M 0 H-
fixed vector, so we may apply Lemma 6.17. Fix r|eV(y\{0}. Then there exists
£ e C with | e | = 1 such that fe(<7,^)ofo (S, ^CT, Q is given by z T| -^ £ ZT{ (z e C). It follows
that B (P0: P": ̂ : - X) = B(P:P:^:?i), and since P° = P, this implies the result. •
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8 B. The case \ W/W^ ^ H I =2. - In this case we have | W^ ^ H | = 1. hence W(2+) = {1},
and £ + = 0 (c/ Section 1). Fix a representative s of s^ in N^ (a^). As a set of representa-
tives for W/WK „ H we shall use iT = {1, s } (c/. Remark 6.5).

Before turning to the actual proof of Theorem 6.3 we shall prove a few lemmas which
seem to distinguish the present case in an essential way from the other o-split rank 1
cases.

Since I + = 0, we have oX = - 9X for all X e n © n. Hence, if t)» = t) P| (n © n), then

(8.1) t^=pn(n©n).

LEMMA 8.1. — The map (m, X) -^ m exp X 15 a diffeomorphism from (M n H) x !)„ onto
H.

Proof. — From (8.1) we infer that

i)np=(i)nmnp)©i)n-
Now ad (t) C\ m r\ p) normalizes !)„ but maps p into I, so it actually centralizes !)„. It
follows that (X, Y) -> exp X exp Y maps (I) Pi P Pi m) x !)„ diffeomorphically onto
exp (1) Up). On the other hand, ^pil=0 by (8.1), hence l)nt=l)mnm, and we
see that H°nK=(HnK)° c= H O K U M . From our assumptions it follows that
|WK,H|=I . hence NK,H(^ H O K U M .

Since H=NK,H(ao<,)H° (cf. [Ba86], p. 25, (2.2)) it follows that

H U K = H n K n M .

The proof is now completed by combining the diffeomorphism

(i) n p n m x ̂  ̂  exp(t) n p)
with the Cartan decompositions

H = ( H n K n M ) e x p ( ^ n p ) a n d M n H = ( H n K n M ) e x p ( t ) n m n p ) . •

LEMMA 8.2. — There exist unique maps riy Op, mp and §p from Q = PH into N, Ay My
and exp(^) respectively, such that

(8.2) x=np(x)ap(x)mp(x)$p(x),

for x e Q. These maps are real analytic. Moreover, Up and a? are equal to the correspond-
ing maps defined earlier by (5. 3).

Proof. — Let Up, a? and mp be the maps defined by formula (5.3), and define a real
analytic map §p from Q into (H n M)\M by §p (x) = mp (x) ~1 Op (x) ~1 yip (x) ~1 x. By
the previous lemma there exists a real analytic map s: (H 0 M)\H -> exp !)„ such that
s((H n M) fc)e(H n M) h for /ieH. Define

§p=5°$p, and mp(x)=ap(x)~ lnp(x) - lx§p(x) - l, for xeQ.
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Then rip, a?, nip and §p are real analytic maps satisfying (8.2). Their uniqueness follows
from the uniqueness statement in ([Ba86], Lemma 3.4) and Lemma 8.1. •

LEMMA 8.3.—The set Q=PH is right K^-invariant. Moreover, if xe^l,
leK^=M(^K,then

(i) ap(xl)=ap(x),
(ii) mp(xl)=mp(x) I.

Proof. — From (8.1) it follows that K^ normalizes ^. From Lemma 8.2 we infer
that 0=Pexp(^), whence the invariance. Moreover, (i) and (ii) easily follow from the
above and the uniqueness of the NA^ My exp (^-decomposition. •

The above lemmas enable us to define a special family of intertwining operators. Since
M^M x(A OH) (cf. Section 2), we may extend ^ to a representation of My which is
trivial on A 0 H. Let p = pp, and put

^i={^ec^, ;<ReX+p, a ><()}.

Then for Xe^i and any (pe^f^ we define a J^- valued function on G by

f 8(^:(p)(x)=ap(x)^^(mp(x))(p for xeQ,
} =0 outside Q.

Then it is straightforward to verify that e(^: \: (p) satisfies the transformation rule (3.1).

LEMMA 8 . 4 . — J / X e ^ i and (pe^ then e(^: X: (p)eC(P: ̂ : .̂). Moreover, as a
B(^f^,C(K: Q)-valued function, e(^:X,) depends holomorphically on ^e^i.

Proof. — The continuity follows exactly as in the proof of Proposition 5.6 (notice
that H is essentially connected, since W K ^ H = { I } , see Section 1). Holomorphy is
obvious. •

We now define ^U to be the set of (X, v) e a^ x a .̂ such that

(8.4) Ke^(P\P) and X-ve^i.

For (K, v) 6^, the operator A (P: P: ̂ : ̂ ) is defined by the absolutely convergent integral
(4.1) (cf. Proposition 4.1). We define real analytic maps Vp:G->N, hp:G->A,
Hp: G -> exp(p 0 m) and Kp: G -+ K by

(8.5) x=Vp(x)hp(x)[ip(x)Kp(x),

for x e G. If (K, v) e ̂  and w e N^ (a^), we define the linear endomorphism L (w: ̂ : ̂ : v)
of ̂  by

(8.6) L(w:^:^:v)(p=^,°A(P:P:^:?L)[4£(^:^-v:(p)],

for (p€e^.

LEMMA 8.5. — The linear endomorphism L(w: ̂ : ̂ :v)eEnd(Jf^) depends holomorphi-
cally on (^, v) e^ and intertwines ^ wft/i w"1 Sy
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Proof. - The holomorphy follows from Lemma 8.4, Corollary 4.14 and the fact that
^€J^(P| P) is not a pole for A(P: P: ̂ : X). To see that the intertwining property holds,
we use that for (X,,v)e^< the endomorphism L(w:^:X.:v) is given by the absolutely
convergent integral

(8.7) f h, (nwY a, (mv)^-^^ (m? (nw)) dn
J N n f t w " 1

[use (4.1) and (8.3) to rewrite (8.6)]. Now fix leK^. Then the automorphism
n->lnl~1 transforms the Haar measure dn by multiplication by a positive scalar. The
scalar must be 1 by compactness of K^. Moreover, from Lemma 8.3 we infer that
UN 0 Qw~1) l~1 =N H ̂ w~1. Hence (8.7) equals the integral

(8.8) _ hp^nl-^Yap^nl-^^-^^^mp^lnl-^^dn.
J N n f t w " 1

Now obviously hp(lnl~lw)=hp(n)==hp(n^v) and ap(lnl~1 w)=ap(nw - lw^ l w)=ap(nw)
by Lemma 8. 3. Moreover, mp (Inl ~1 w) = / nip (n\v) \v ~11 ~1 w by the same lemma. Substi-
tuting these relations in (8.8) we obtain

^(OoL^^^v)"^-1;-1^)^^:^:^),

for ?€KM. This equation holds for every leM, since ^ is trivial on M 0 expp. •
Before studying the operator L (w: ̂ : ̂ : v) in more detail, we discuss its relation with

B(P:P:^).

PROPOSITION 8.6. — Let u, v e ̂ , (p e ̂  (^, u). Then L (vu ~1: ̂ : X: v) (p, originally
defined for (X, v) e ̂  extends to a meromorphic ^^-valued function of(\ v) e a^ x a .̂. Jts
5^t of poles does not entirely contain a^. x { 0 }. Moreover,

(8.9) ^r^,F)oB(P:P:^?l)of(^M)(p=L(^- l :^:)L:0)(p.

Proo/. - Recall the definition of £^(P: ̂ : ̂ : (p) by (5.5). Then for ^e^i we have

(8.10) e,(P:^:?i:(p)=R,-i£(^:^:(p).

This is seen as follows. Since N^(0^) normalizes \ and M, we have

PHu=Pexp(VM=Puexp(V=PMH.

Hence R^- is (^ :X:(p)=0 outside PMH=Puexp (()„). On the other hand, i fneN, aeA^,
meMy and /ieexp(t)J, then

R^-l£(^:^:(p)(namM/I)=e(^:^:(p)(namM/^M-l)=^+p^(m)(p=£JP:^:^:(p)(namM/^),
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and (8.10) follows. Hence for (^, v) e^i we have

(8.11) L(l;M- l :^:^:v)q)==^,-loA(P:P:^:^)[^e(^:?l:v:(p)]

=^oA(P:P:^)°R,-i[/ip£(^:v:cp)]
=^°A(P:P:^)[4£,(P:i;:?i-v:(p)]

=^oA(P:P:^:^)[47(P:^^-v:f&M)q))].

Applying Theorem 5.10 and Corollary 4.14 to the latter expression we deduce that
L (vu~1: ̂ : 'k: v) (p extends to a meromorphic function of (X, v) e a .̂. Moreover, substitu-
tion of v=0 in (8.11) yields (8.9) (use the formula for B occurring in the proof of
Proposition 6.1 and notice that ev^=pr(^, v)^ev). •

We now proceed with our investigation of L(w: ^:X:v) . By Schur's lemma and
Lemma 8.5 there exists a fixed operator T(w:^)eEnd(^) intertwining ^ with w ~ 1 ^
and a scalar ? (w:^:^ :v) depending holomorphically on (^,v)e^, such that
L (w: ̂ : ' k : v) = I (w: ̂ : ̂ : v) ° T (w: Q. These objects can actually be computed from the
integral representation (8.7). The following lemma enables us to reduce to a SL(2, R)-
computation.

LEMMA 8.7. — S={a, —a}.
Proof. - Suppose 2ae£. Then g"", g^cg. (since S+=0). Hence

te"0^2"]^^?!^-, g-Jcg^O. It follows that g2" centralizes g-" and g", hence
centralizes a^ c= [g"", g"], contradiction. •

Let H^ be the unique element of Oq with a(HJ =2. We define a subset of n^g"" by

S = { Y e n ; - B ( Y , 9 Y ) = 2 < a , a > }

(since B restricts to the Killing form on g^, the bilinear form -B(.,9(.)) is positive
definite on it). If YeS we put X(Y)=-9Y. Then H=[X(Y),Y] belongs to
^i 0 P 0 q = \ and invariance of the Killing form yields B (H, H^ = 4 < a, a >. Hence
H=H(, and we see that H^, X(Y), Y is a standard s;(2, [R)-triple. Its linear span is
denoted by g(Y). On g(Y), o is given by aH,=-H,, oY=X(Y), and aX(Y)=Y
(use that 06= -I on g"", since £+ =0). The connected (closed) analytic subgroup of
G with Lie algebra g(Y) is denoted by G(Y). Given any closed subgroup (subalgebra)
B (b) of G (g), we get_ B (Y) = B U G (Y) (respectively b (Y) = b 0 9 (Y)). Thus
\ (Y) == A^ = exp (R H,), N (Y) = exp (R Y), and M (Y) = centre (G (Y)). Moreover,
K(Y)=exp(R(Y+9Y)) and H(Y)°=exp(R(Y-9Y)). Finally, we define
s (Y) = exp (Ti/2) (Y + 9 Y). Then s (Y) is a representative of ^ in N^ (Y) (%)•

LEMMA 8.8. — Let Y e S. Then:
(1) N ( Y ) n O = { e x p ( r Y ) ; [ ^ | < l } ,
(2) N(Y)nns(Y)={exp(^Y); H>1},
(3) logoAp(exprY)=-(l/2)log(l+^)H, (reIR),
(4) logoap(exprY)=-(l/2)log(l-^)H, ( | t |<l) ,
(5) ^^(exp(tY)s(y))=-(l/2)\og(t2-l)H,(\t\>l\
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(6) m^(exptY)=l ( | t |<l),
(7) mp(exp(^Y)5(Y))=5(Y)2 (t>\).
Proof. — Since

OHG^NA.M.exp^nG^NA^M.nG0) exp (/iJ=(PnG°) (HUG0),

we may restrict ourselves to the case that G is connected. Put 0(Y) =P(Y) H(Y). The
disjoint open subsets G(Y) 0 ̂  and G(Y) Pi Os(Y) of G(Y) are P(Y) x H(Y)-invariant.
Since G(Y) has at most two open P(Y) x H(Y)-orbits we conclude that

G(Y)H^=^(Y) and G(Y) nOs(Y)=0(Y)s(Y).

Hence

N(Y)nQ=N(Y)nn(Y) and N(Y) UQ5(Y)=N(Y) nO(Y)5(Y)

and it suffices to prove (1) and (2) when g^5<(2, R). The decompositions

G = NA exp (m n P) K and G (Y) = N (Y) A (Y) exp (m (Y) H p) K (Y)

are compatible. The same holds for the decompositions

Q = NA, M, exp (^) and Q (Y) = N (Y) A, (Y) M, (Y) exp (^ (Y))

(where^(Y)=^ng(Y)). Hence

l)p|G(Y)=t)p(Y), dp|Q(Y)=ap(Y) and mp|Q(Y)=mp(Y)

and we may restrict ourselves to proving the lemma when G=G°, 9^sJ(2, IR).
If G^SL(2,IR) then (1)-(5) follow by a straightforward matrix calculation. This

implies (1)-(5) for the adjoint group of 9 and via the adjoint representation the results
may be lifted to any G with Lie algebra ^s?(2,R). Since M^(Y)= centre
(G(Y))= (centre (G)), (6) and (7) require a different treatment. We first notice that the
map t-^mp(exptY) maps]—!, 1[ continuously into the discrete subgroup centre (G); it
must therefore be constant and (6) follows. Similary, t -> Wp((exp t\) s(Y)) is identically
mo, for some mo£ centre (G). Now observe that G=NA, K is an Iwasawa decomposi-
tion for G and define K : G -> K by x e NA, K (x), for x e G. Then

mp (exp (t Y) 5 (Y)) == mp (K (exp t Y) s (Y)).

We claim that

(8.12) . K(exp^Y)=exp(arctan(0(Y+9Y)),

for all tetR. By analytic continuation it suffices to prove this for t sufficiently
close to 0, so we may pass to the adjoint group SL(2, R)/{ ±1}. There the result follows
from a straightforward SL (2, ^-computation. Now (8.12) implies that

lim K(exp?Y)=5(Y), hence mo= lim mp(K(exptY)s(Y))=5(Y)2 . •
( ->• + 00 t - > + 0 0
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The above result enables us to separate variables in the integral for L (w: ̂ : X: v). The
map (r,Y) -^exp^Y maps ]0, oo[xS diffeomorphically onto N {e}. Let rfcr(Y) be the
unique measure on S such that for every (peC^.(N) we have

(8.13) \^(n)dn= | \ ^(expt^t"1^-1 dtda(\).
JN JsJo

Here m(a)=dim(9a). Obviously da(Y) is preserved by —B(.,0(.))-orthogonal
transformations.

PROPOSITION 8.9.—Let weN^ci^). Then there exists a holomorphic function
I (w): W -> C and an endomorphism T (w: Q e End {^^) "which intertwines ^ mth w~1 ^, such
that

L(w:^:?i:v)=;(w:^:v)T(w:y,

for (̂ , v) e (JU. They are given by the following formulas (where we have written
^o=(l/2)^(HJ=<a,a>-l<^,a>/or^6a,*).

(i) J/WGK.M, then

l(w:'k:v)= | (l+r2)-vo(l-^2)vo-^-Po^w(a)- lA,
Jo

T(w:y=rfrfa(Y)1^(w).
Us J

(ii) IfwesK^, then

r00
;(W:^:V)= (l+^2)-VO(^2-l)VO-^0-PO^(a)-l^

T(w:y=f^(5(Y)w)da(Y).
Js

Proof. — We first prove (ii), so assume wesK^. In view of Lemma 8.8 (2) we may
use the substitution of variables n=exprY, t>l, YeS in (8.7). From Lemma 8.8 (3)
and (5), we obtain

log o hp (nw) = log ° hp (exp t Y) = — log (14-12) H,

and

logoflp(nw)=logoap(exp(rY)w)=logoflp(exp(tY)5(Y))=—log(t2-l)H„

[the second equality follows from Lemma 8.3 (i)]. Next from Lemma 8.3 (ii) and
Lemma 8.8 (7) we obtain mp(nw)=mp(exp(tY)s(Y)) s(Y) - lw=5(Y)w. Using the
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above relations, (8.13) and Fubini's theorem we obtain (ii). The proof of (i) is similar
and involves Lemma 8.8(1), (3), (4) and (6). •

Remarks. — Notice that l(w: 'k: v) is independent of ^. From its integral representa-
tion we read off that ?(w:^:v) extends to a meromorphic function of (5l,v)ea*xa*.
Hence L(w:^:^:v) has a End(^)-valued meromorphic continuation, the set of poles
being independent of ^. From the integral representations we also deduce that

^w:X:0)= lB(-Xo- lm(a)+l, lm(a)) (weE^),
^ z^ z,

; (w:^:0)-B(^,-^o-l^(o0+l) (we5KM),

where B denotes Euler's Beta function.

COROLLARY 8.10. — //weN^c^), then

Mw^^v^LOv-1:^:^.

Proof. - Since J(w:^:v) = / (w: X: v), it suffices to show that T (w: Q * = T (w ~1 : Q. If
we KM, then this is obvious. If w^K^, then

T(^v:y=(^-ls(-\))da(y)

^^(-A^w-^eY)^-1)^^).
Js

The endomorphism Y-^ -A^w '^OYis -B^ .O^ ))-orthogonal hence leaves S invari-
ant and preserves d<7(Y). It follows that

T(w:y^ l?=f^(5(Y)w- l)da(Y)=T(w- l:y. •
Js

Completion of the proof of Theorem 6.3. - Let u, veiT, r[^ei^(^,u),
^ e 'r (^ v). Then by Corollary 8.10 we have

(L(^- l:^X:0)r^„,T1^=(T^„L(^- l:^X:0)r|^.

Using (8.9) we infer that

(B(P:P:^:X)f(tM)^,z(t^)Ti,)=(m^)^B(P:P:^X)i(^i;)^).

Hence

B(P:P:^:X)*=B(P:P:^:X).

The proof is completed by using Corollary 6.15. •
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PROPOSITION 8 .11 .— I f f y is not equivalent to s^ then B(P:P:^:X,) preserves the
decomposition V(^) =V(^, 1) C V(^, s).

Proof. — More generally the assumption implies that ^w~1 i; when wesK^. Since
L (w: ̂ : ̂ : v) intertwines ^ with w~1 ^ it follows that L (w: ̂ : K: v) = 0. Now use Proposi-
tion 8.6. •

9. Normalized operators, final remarks

Retaining the notations of Sections 3-7, let ^eM^. Then ^ may be embedded in a
non-unitary principal series representation with parameters (o, A^), where A^ is real (in
fact, A M = — P M , cf. Lemma 4.4). It is this knowledge of A^ (and not the stronger
condition that ^'s infinitesimal character be a real linear combination of roots), which is
used in [K-S 80] to normalize the intertwining operators A (P^: P^: ̂ : K), for P^, P^ (not
necessarily oG-stable) parabolic subgroups with 9-stable Levi component MA, and for
^ea*. Given such parabolics P^, P^ we define a meromorphic function
y(P2: Pi: Q: a* -^ C as in ([K-S 80], p. 50).

LEMMA 9 .1 .— I f Pi, P^eP^A^), ^n y(P2:Pi:y restricts to a non-trivial mer-
omorphic function on a ,̂.

Proof. — By definition the function y==y(P^:P^:Q may be written as a product

(9.1) 7W= ft Ya«^a»,
a e E (tt2 n ttl* a)

a reduced

where each y, is a meromorphic function on C which does not vanish identically
(cf. [K-S 80], p. 50). Thus it suffices to show that no a e £ (n2 H n^ a) vanishes identically
on dq. Now this follows from Lemma 2.1. •

Following [K-S 80] we define normalized intertwining operators

^^^^^(p^pi^^r^p^pi:^)
(P^P^e^y(A^)). They depend meromorphically on ^-ea^, in the sense of Corollary
4.3 and Proposition 4.11. Moreover, we define normalized endomorphisms of V(^)
by

^(P2:Pl:^)=Y(P2:Pl:^)-lB(P,:P,:i;:?l).

In view of Proposition 6.1 we have

(9.2) ^(P,:P,:^^)oj(P,:W=j(P^^K)o^(P,:P,:^K).

THEOREM 9.2.— Let P, e ̂  (\) (i = 1,2, 3). Then
(i) ^(P3:P2:^)°^(P2:Pi:^)=^(P3:Pi:^),

(ii) ^(Pi:P2:^)o^(P2:Pi:^)=Iv(^
(iii) ^(P^Pi:^)*^^:?^:-^.
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Proof. - (i) and (ii) follow immediately from ([K-S80], Lemma 8.3 (i) and Theorem
8.4), (9.2) and Theorem 5.10. In view of Theorem 6.3, (iii) follows from
Y (?2: Pi: ̂ : X,) = y (Pi: ?2: ̂ : -1) which is proved in [loc. cit., proof of Proposition 8. 5
(iv)]. •

COROLLARY 9 .3 .— Let Pi, P^e^A^. Then ^(P^'.P^.^'.'k) extends to a holo-
morphic function of X, for 'keia^. Moreover, for 'keia^ the endomorphism
^(P2:Pi:^:^) is unitary.

Proof. - We copy the argument of ([K-S80], Proposition 8.5 (v)). Once we have
proved the holomorphy, the unitarity will follow from Theorem 9.2 (ii), (iii) and a
density argument. Using Theorem 9.2 (i) we may reduce the proof to the case that P^
and Pi are (a-) adjacent. Let then a be the reduced a^-root in n^ F} HI. Then every a-
root P in n2 Pi Hi restricts to a or 2 a on c .̂ Hence from (9.1) and Lemma 9.4 below
we infer that ^ (P^: Pi: ̂ : k) = ̂  «5i, a », where ̂  (z) e End V (^ depends meromorphi-
cally on zeC. Assume that ^(z) has a pole at Z o e f R . By meromorphy it has a pole
of finite order fe, which may be characterized as the smallest integer f e^O for which
(z-Zo)k^(z) remains bounded as z-> ZQ, z e i R { z o } . Since ^(z) is unitary for
z e i R { ZQ } sufficiently close to ZQ, we see that k = 0, hence ZQ is removable. •

LEMMA 9.4. — Let Pi, P^ &^ ^-adjacent parabolics in ^(A^), and let a fc^ r^ reduced
a^-root in n^ 0 Hi. 77i6?n B (P^: P^: ̂ : K) is a meromorphic function of < X,, a >.

Proo/. — Let w e i^. In view of Lemma 7.2 it suffices to show that the restriction
of B (?2: Pi: ̂ : ̂ ) to V (^, w) + V (^, T (5,) w) depends only on < ̂  a >. Using (7.1) and
observing that < w - l ^ , p > = < w ~ l ^ , w - l a > = = < ^ , a > we may restrict ourselves to pro-
ving this for w = 1. By Lemma 7.4 the restriction B^ (P^: P^: ̂ : ̂ ) of B (P^: Pi: ̂ : 'k)
to V(^,l)+V(^,T(sJ 1) only depends on ^=?i|c^(a), which in turn only depends on
a,oc>. •

We conclude this section with a slight improvement on Theorem 5.10.

LEMMA 9.5. — Let Pe^(A^). Then the singular set ofj(P: ̂ ) 15 a locally finite union
of hyperplanes of the form <X, , a>=z^ (aeZ.z^eC). For 'k in the complement of a
countable union of complex hyperplanes in a ,̂, j ( P : ^ : ' k ) maps \(Q bijectively onto
^(P:^)".

Proof. — Since ev°j(P: ̂ : k)=idy^ the second assertion will follow once we have
established the first one (use Corollary 5.3). We prove the first assertion locally at a
point KQ e a^. Using the notations of the proofs of Lemma 5.9 and Theorem 5.10, fix
r^>Q such that j (P:^) is holomorphic in 'ke^(P,r^) (use Lemma 5.7). Fix N e N
such that ^o-Nne^(P,ri). Then

J(^)=M^°A(P:P:^-NH)°7(P:^:)i-NH)

is defined as a meromorphic function for ^ in a neighbourhood N(^o) of ^o. Its singular
set is contained in the singular set of A(P: P: ̂ -N^1) which is a locally finite union
of hyperplanes of the form <^ ,a>=z^ (aeS.z^eC), in view of ([K-S80], Theorem
6.6) (use that a-roots in n restrict to non-trivial c^-roots in n, see also the proof of
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Lemma 9.1). Moreover, since ev° M^=m^°ev, we infer from Proposition 6.1 that

^°J(X)=m^°B(P:P:^:X-NH),

so that

j(P:^^=JWoB(P:P:^^-^^-lo(m^rl'

By the above observation on the singular set of J, it now suffices to show that the poles
of B(P :P :^ :^—NH)~ 1 in N(X()) are contained in a locally finite union of hyperplanes
of the form <^,a)=z,. In view of Proposition 6.2 (ii) we may restrict ourselves to
proving a similar statement for B(P2: P^: ^ :X—Np)~ 1 , when P^, PiG^(A^) are CT-
adjacent. But then the result follows from Lemma 9.4. •

APPENDIX A
Equivariant distributions

In this appendix we prove a version of results of [Br56], [KKMOOT 78], which is
most suited for our purposes. Let G be a Lie group acting smoothly (i.e. C°°) on a
smooth n-dimensional manifold M. We denote the action of geG by \. The induced
action of G on C°° (G) is denoted by X*. Thus ̂  cp (x) = (p (^~1 x) for (p e C°° (M), g e G,
xeM. We extend this action continuously to the space ^'(M) of distributions on M
(following [Hor 83], Section 6.3 the latter is defined as the topological linear dual of the
space of C^-densities on M; thus C°° (M) is naturally embedded in ^'(M)).

Suppose now that a finite dimensional representation T of G in a complex vector space E
of dimension d is given. Let ^/ (M, r) denote the space of distributions u e 0)' (M) ®c E?
transforming according to the rule

(^(x)!)^!®^-1))^

Given an orbit V of G on M, we denote the linear space of distributions ue^(M,T)
satisfying

(A.I) V C\ supp u is open in supp u

by ^'(M, T, V). Moreover, if fee^J we define ^(M, T, V) to be the space of
ue^^M^, V) whose order is at most k at any point of V, and we define

^ (V, T) = ̂  (M, T, V)/{ u e ̂  (M, T, V); supp u 0 V = 0 }.

If xeV, then the stabilizer G^ of x in G naturally acts on T^M, the tangent space of
M at x, by the rule

g.X=d(^)(x)X (geG^XeT^M).
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This action naturally induces an action on T^M/T^V. Differentiating once more we
obtain a representation of 9^, the Lie algebra of G^, in T^M/T^V. If He ̂ , we let

?4(H),.. . ,^(H)

denote the eigenvalues of the action of H on T^M/T^V (so V has codimension m
in M). Let k e N. We say that an element H e ̂  satisfies condition C (I, fe) iff

(A. 2) ^(v.+l^I^+H^O

for every eigenvalue p, of r(H) and every vef^ with |v |^k (here
|v |=Vi+ . . . +vJ. We say that He ̂  satisfies condition C(IU) iff (A. 2) holds for
every eigenvalue n of T (H) and every v e N"1 with 1 ̂  [ v | ̂  k.

PROPOSITION A.I . — Let keN.
(i) If there exists a Heg^ satisfying C(I, fe), r^n ^(V, r) =0;

(ii) J/t/iw exists a Heg^ satisfying C(II,fe), ^?n ^(V,T) c= ^o(V^) ̂  the dimen-
sion of^o (V, T) 15 at most ̂  multiplicity of^ (H) + . . . +^(H) as eigenvalue of -r(H).

The next two lemmas are needed as a preparation for the proof of Proposition
A.I . The first of them is straightforward to verify.

LEMMA A. 2. — Let E, F be finite dimensional complex vector spaces. Let A e End (E),
BeEnd(F) and let L respectively M be their sequences of weights, counting
multiplicities. Then the weights of A ® I +1 ® B are ^ + [i (X e L, |LI e M), counting multipli-
cities.

Let now m e N {0}. For 1 ̂ j ̂  w, let 9 / 8 Sj denote differentiation in the 7-th coordinate
of R"*, and let 5(1^) denote the algebra of constant coefficient differential operators on
[FT. Then as an algebra over C, S^) is generated by the vector-fields
8 / 9 Si, . . ., 918s^. For ne N, the subspace of homogeneous elements in 8(1^) of degree
n is denoted by S"^), and we write S^IR"*) =5:̂ ^(11^").

LEMMA A. 3. — Let A =(a^) be a complex m x m-matrix with eigenvalues X^, . . ., ̂ ,
counting multiplicities. Let the vector field ^(s)=5:^,^^^fl^s,a/as, act on 8(1^) by the
rule

^.P=-ad(yP=[P,a.

Then the weights of this action on S^IR"*) (n^l) are contained in the sequence
( (XiXi+ . . . +a^J, ae^T, |a[^n, counting multiplicities.

Proof. - On C the action of ^ is multiplication by zero. If 1 ̂ k ^m, then

^8^-^±
9Sk 9sj

so ^ leaves S1 (R") invariant and the matrix of ^ on S1 (HT) is A. Counting multiplicities
the eigenvalues are ^,...,^. If P=PiP2, P^eS^"), then
^. P= (^. Pi) ?2 + PI (^. P^). Hence by induction it follows that ^ preserves degrees and
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homogeneity. Let \ denote the sequence of weights of ^'s action on S^H^), and
consider the natural surjective map \|̂ : S1 ® Sfc -^ S^1. Then \|/fc intertwines the actions
of ^ if we let ^ act on S1 ® S^ according to the tensor product, i.e. as
(^. ® !)+(! (g)^.). Applying Lemma A.2 we obtain that A^+i^C^i^^ 1^^^
j^eAfc). The result now follows by induction.

Proof of Proposition A. I . - Following ([KKMOOT 78], Appendix I), we fix a
coordinate system (s^, . . . ,s^, t^ . . .,^,-w) for a neighbourhood 0 of x, such that x
corresponds to the origin and (locally at x) V is defined by s^=. . . =s^=0. Now let
^^(M^V). Shrinking Q if necessary we may assume that supp u H Q c V . By
equivariance, u |Q is smooth in the variables r^, . . . , ?„_„ , . Now every distribution
(pe^^Q) with supp (p <= V, of finite order and smooth in t^ . . ., t^-m admits a unique
expression

(p=P(a/^,08^®^_,,
where 5^ is the Dirac measure in W^ supported at the origin, !„_„, is the constant function
1 on V" and P( 8 / 9 s , t ) is a smooth linear differential operator with coefficients
depending only on t and of order zero in <9/3^., l ^ f ^ n — m . For [ieV" sufficiently
close to 0, put N^={(s, QeO; t=\i}. Using 5^, . . .,5^ as coordinates on N^, we define
the restriction (p | N^ of (p to N^ by

cp|N,=P(a/as,H)8,.

One easily checks that if Q(s, 8 /8s, t) is a smooth linear differential operator of order 0
in 9/9ti, l ^ i ^ n — m , then

Q(5, 9/9s, t) cp | N,= Q(s, 9/9s, n) (cp | N,).

Retaining our previous notations, let v^ be the restriction of u to N^. Then
supply c: {0}.

We identify every Xeg with the vector field with flow (y,t)\—>9/9t (^-exp(-tX)^) on

M. Thus, the distribution u satisfies the equation

( X ® I ) M = - ( I ® T ( X ) ) M (Xeg).

Let Xi, . . . ,X„_^e9 be such that g=c^+I^=T^Xfc, and fix Hec^. Then there exist
smooth functions c^ (5, t\ . . ., c^_^(s, t), vanishing at the origin, such that

(H+2:^ ̂ .(s,OX^)4=0 ( l^fe^n-m)

(c/: [KKMOOT 78], Appendix I). Therefore the vectorfield H+£j=i"^X^. is of order
zero in 5/5 .̂, l^i^n—m, and can be restricted to a vector field H=^m=^a^(s)8/9s^ on
No. Moreover by what we said earlier, the distribution H+S^^CyX^M restricts to
H VQ on No. Hence

(H(g)l+l®B(s))i;o=0,
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where B(5)=T(H)+^rlwc,(5,0)T(X,)eEnd(E). Moreover, a,(0)=0 (l^m) and as
in [toe. cir.], the eigenvalues of (8a,/8Sj(0)) are -^i(H), . . ., -^(H).

Let ^/ denote the space of we^Hr*) ®E with suppw c: {0}. Then VQ^^. The
linear map 0: S (R") (g) E -» ̂ /, defined by

0(P(x)60=P8^(x)6? (PeSm(nm),e€E),

is a bijection. Moreover, order (OW)= degree (W) for WeS(ffr)(x)E and we may
view ^ as a graded vector space. Since H vanishes at 0 it follows that
order [(H®l)w] border (w) for we^. Let 0^=80,18s j(0) (l^ij^m), A=(^,) and
define ^ as in Lemma A. 3.

LEMMA A. 4. — Let

L=(ad^-tr(A))(g)l+l®T(H), and L'=gr(H® 1+1 (x)B(s)).

Then the following diagram commutes

S(Br1)® E ^ S ( R W ) ® E
°i i°

^ ^ ^

Proof. - If w e 2\ then order [(1 (x) B (s) -1 ® B (0)) w] ̂  order (w). Hence
^r(l ® B(5))o<D=Oo(i ® r(H)). Moreover, by application of Taylor's formula to the
a^ it follows that

order (2; a, (s) — w - ̂  w) < order (w).
as;

Hence ^r(H®l)=^r(^ ® 1). IfPeS^flr), then

<PS.-[,-P]5..P,-^''^--['•i;^-^
Now (5; 819s) 8^ = 0 if f ̂ 7, = - 5^ if i =j. It follows that

^P8.=R,P]^-tr(A)P§,.

Since ad^ preserves degree and homogeneity (proof of Lemma A. 3), it follows that
gr (^ g) 1) o o = 0 o (ad ^ - tr (A)), whence the commutativety. •

We proceed with_ the proof of Proposition A.I . Because of Lemmas A. 2-4, the
eigenvalues of H®1+1®B(5) on ^ are contained in the sequence
^(Vi+l^O^+H, with vef^, |v |^fc and [i an eigenvalue of r(H). Thus, if
M£^(M,T,I;) has order ^k along V and H satisfies C(I,fe), then the restriction 1:0 of u
to No is zero. Since the condition of Proposition A. 1 (i) is independent of the choice
of xeV (use the G-action), it follows by the same reasoning that I^=M[N =0 for all |LI
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near 0 in R""^ This implies that u vanishes in a neighbourhood of x, so that
supp u 0 V = 0 by equivariance.

Finally suppose that condition C(II,fe) holds for He ̂ , ue^(M,T,V). Then the
eigenvalues of H 001 4-1 (g) B (s) on ^/^o are A6 same as those of
(ad(y-rr(A))00 l- lg)T(H) on [ © S^R^OOE, hence contained in the sequence

1 ̂  i ̂  k
m

^ (v;+l)X,f(H)+H, with veN"*, l^ |v |^k and p, an eigenvalue for r(H) (s^ the proof
1=1
of Lemma A. 2). Hence for all [i near 0 in W"1 it follows that order (i^)=0. This
implies that u has order 0 along V. The linear map Mi-^|No from ^o(M,T,V) into
^o has kernel equal to the space of ue^o(M, T, V) with supp u 0 V=0, and maps into
the zero eigenspace of the restriction of H (g) 1 +1 (g) B (s) to Q)^. Hence dim QQ (V, r) is
at most the multiplicity of zero as eigenvalue of (ad^-tr(A)) ® 1—1 (g)r(H) restricted
to S^ffr^E. Since ^ acts trivially on S0^), the proof is completed by using
Lemma A. 2. •

APPENDIX B
H-orbits on P\G

The purpose of this appendix is to derive some properties of the structure of H-orbits
on P\Gr, for P a minimal a9-stable parabolic subgroup of G containing Ao=exp (do)
(notations are as in Sections 1, 2). We do this by comparison with Matsuki's description
of the H-orbits on the quotient of a connected semisimple group and a minimal parabolic
subgroup (cf. [Ma79]). Thus, the main problem is that P need not be a minimal
parabolic subgroup.

PROPOSITION B.I. — Let IT be a set of representatives for W/W^ ^ H in NK^O^. Then
the open H-orbits on P\G are 1—1 parametrized by PwH, we IT.

Proof. — Select a minimal parabolic subgroup Po of G with Ao <= Po c P. The map
PoX^Ad^"1)^ defines a bijection between PQ\G and the set Po of all minimal
parabolic subalgebras of 9. Since all elements of Po are G°-conjugate,
PoXG^PonG^VG^Ad^PortG^AdetG0) and we obtain from ([Ma79], Proposi-
tion 3.1) that the open H°-orbits on Po\G correspond 1 — 1 to Wo o/Woic n H° (here the
notations are as in Section 1; use that K U H° ^ K U G° U H° = K° U H°). If
w G Wo O/WQ K n H°» ^en the corresponding open orbit is Po w H°, where w is any represen-
tative of w in N^cio) (of course the orbit does not depend on the choice of
representative). Now fix u e Wo o/Wo K n H°» ^d select a representative u of u in
NK:( ̂ o) ON^cio^)- Then PuH° contains the open set Po^H0, hence is an open
orbit. Let ̂  be a set of representatives for W(£o) m M^ HNiJao), where M^ denotes
the centralizer of %, in G (cf. Section 1). Then PMH° => Po vuH° for every veV. We
claim that

(B.I) PuH° czcl(U Po^H°).
ueV
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Indeed, using that W(5^) is a normal subgroup of Wo<y (Lemma 1.1), we may reverse
the order of v and u in (B. 1). Replacing P and P() by uPu~1 and uPQU~1 if necessary,
we may as well assume that u= 1. Applying Matsuki's orbit description to the minimal
parabolic subgroup PQ 0 M^ of M^ we obtain that

Mi c= ci u (Po n MO i; (H n Mi)0,
v e V

hence PH°=PoMiH° is contained in the right hand side of (B.I) (we assumed that
M=I) . This proves the claim. From (B.I) and Lemma 1.3 we infer the validity of
the proposition for connected H. The proof is completed by using that
H = NK , H (ao ,) H° (cf. [Ba 86], p. 25, (2.2)). •

LEMMA B.2. —Let PxH be a non-open orbit in P\G/H. Then there exists ax^eK
such that PxiH=PxH and

(B.2) Ad(x,)-1 [ao\ao 0 W 0^0.

Proof. — Let Po be as in the proof of Proposition B.I. Then PxH => PoxH°, so
the latter double coset cannot be open. It suffices to prove the existence of x^ eK with
PoXiH°=PoxH° and (B.2). For this we may pass to the connected component of
the adjoint group of G. Hence we may as well assume the G is connected and semi-
simple and that H=H°, so that Matsuki's description of P()\G/H applies.

Let OQ, a, (1 ̂ f^r) be a set of representatives of K 0 H°-conjugacy classes of a-stable
maximal abelian subspaces of p. Then the orbit P()XH equals PoX^H, where x^eK is
such that Ad(xi~1) maps do onto some a? O^j^r. Here j is unique, and x^ is unique
up to left multiplication by Z^(do) (or equivalently right multiplication by Z^(aj)). This
is an immediate consequence of ([Ma79], Corollary 1.1). Moreover, the fact that
PoxH° is not open implies that one of the following conditions holds (cf. [loc. cit.],
Proposition 3.1):

(a) 7=0 and Ad^Kao H^^OO Ut),
(fc)7>0.

In the first case (B. 2) follows at once. In the second we have that a, is not q-maximal
(cf. [Schl. 84], Lemma 7.1.5), hence din^Ad^i'^ao^din^c^nq) and it even follows
thatAd^r^ao.r^a.ny^O. •

APPENDIX C

The purpose of this appendix is to prove the following lemma.

LEMMA C.I. — Let Pe^(A^) have Langlands decomposition P=MAN. Then there
exist a n e a^ and a non-trivial real analytic function \|/: G -> C such that

(i) <H,a><0/oraHae2;(n,a^) ,
(ii) v|/ is a right G°-invariant element of C°° (G: P: 1: H— pp).
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Proof. — Clearly it suffices to prove the result for the case that G is the adjoint group
of a semi-simple algebra 9. The function v|/ will be obtained from a matrix coefficient
of a finite dimensional representation by passing to a suitable dual real form.

Let G, be the complex adjoint group of 9^, Q^ the dual real form Q+ © fg- in 9^, and
G4 its adjoint group sitting in G,. , Put ^ = t), F| ̂ , p^q, 0 9^. Then 9^=1^® p^ is a
Cartan decomposition. The corresponding Cartan involution 9^ is the restriction of (the
complex linear extension of) o to 9^. The involution a^ = 9 [ 9^ commutes with 9^. Let
9d=^)d©qd be the corresponding eigenspace decomposition of 9< Then 0^=%^ is
maximal abelian in p^ 0 q^p 0 q. Extend a^ to a maximal abelian subspace c^ of p^
and define 2:$, 2^ as in Section 1. Then 2^=2:, so ̂ d+ =Z(n, do,) is a choice of positive
roots for S< Select a compatible choice S^ of positive roots for 2^, and define
corresponding fundamental systems A^ and A^ as in Section 1. Then A^A. Let
(Xi, . . ., a^ be a numbering of the elements of A^ as in ([Ba 86], Proposition 3.10).
Then A = { a, | a^; 1 ̂ j ̂  I}, where ; = dim c^ ^. Select v e (a^ ^) * such that
l/2<v, Oy><0y, o^.)"1 is a positive integer for every l^j^l. Then (i) holds for
\i == — 2 m v, for any positive integer m. Moreover, < v, a > < a, a > ~1 e ^J for every a e A^
(cf. [loc. cit], proof of Proposition 3.10), hence by ([He 84], Theorem V.4.1) there exists
a finite dimensional irreducible spherical representation 71 of G^ with highest c^-weight
v. Let V be a representation space for TC, e^ a non-zero highest weight vector for 71, and
e e V* a 7iv (K^-fixed vector (where K^ = G? U G^), such that < e, ̂  > = 1. Let m be the
order of the centre of the universal covering group Q^ of G^. Then the real analytic
function ̂  on Gd, defined by

^(^(E.TlOc)-1^)2-

extends holomorphically to G^ (the factor 2 in the power will be needed later on). We
claim that v^^G fulfills our requirements. Let P^=M^A^N$ be the standard mini-
mal parabolic subgroup of Gd. Writing 1.1 = — 2 m v as above, we have

(C.I) x¥(manxk)=a^(x),

for meM$, aeA^, neN^, feeK^ and xeG^. The group G^ is a complexification of
K^. Moreover, if F is the (finite) group of quadratic elements in A^=exp(a^), then
G?=F(G^)° (c/. [Ko-Ra71], Proposition 1). Also, if M^ denotes the centralizer of ai,
in G^ then M^=F(M^)° (use [War 72], Lemma 1.1.3.8). Now a^a-"1^ extends
holomorphically to A^ and we see that a^^a2)^^! for ae¥. It follows by holo-
morphic continuation that (C.I) holds for meM^, aeA^, neN^, feeG^ and
xeP^G^. By density of P^cCr^ in G^ the latter condition may be relaxed to
xeG^. Finally, let M^N^ be the 9-stable (hence also o-stable) Levi decomposition for
the normalizer P^ of ̂  in G^. Then M^ = M^ „ A^, where M^ ^ is the algebraic subgroup
consisting of all meM^ with rr(Ad(m)|n^=0 (c/. [Ba 86], Lemma B.3.1). Now
(P^, 0 M^,) (Kf n M^,) is a dense subset of M^,. Moreover,

M,, U P'o c = M ô c exp (a$ U ̂  (M^ 0 N^)
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and it follows that v|/== 1 on M^. Therefore

v|/(manxfe)=a^\|/(x)

for meM^, aeA^, neN^, fceG^ and xeP.G^. By density of P,K;? in G, the latter
condition can be relaxed to xeG^ and (ii) follows for \|/=^ [ G. •
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