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ON THE EXISTENCE OF MINIMAL HYPERSPHERES
IN COMPACT SYMMETRIC SPACES

BY WU-TEH HSIANG, Wu-Yi HSIANG AND PER TOMTER

1. Introduction

In the study of Riemannian geometry, symmetric spaces constitute a remarkable family
of natural generalizations of the classical spaces of constant curvatures; the compact ones
are generalizations of the spherical spaces, and the non-compact ones are generalizations
of the hyperbolic spaces. Therefore, it is rather natural to seek generalizations of various
fundamental results of the spherical (resp. hyperbolic) geometry in the realm of symmetric
spaces of compact (resp. non-compact) type. Among all the hypersurfaces of S"(l), the
equator S""^!) is certainly one of the simplest, nice global objects. Thus, one is
naturally led to the following question of "generalized equator" in a given compact
symmetric space M" [5].

Question. — Among all the hypersurfaces of a given compact symmetric space M",
what kind of simple, nice hypersurfaces deserve the title of the "generalized equators"
ofM"?

In [5], it was proposed that imbedded, minimal hyperspheres (i. e., hypersurfaces of the
diffeomorphic type of a sphere) should be amo^ ^ the reasonable candidates for general-
ized equators and the method of equi variant gee netry was used to establish the existence
of such nice objects in the four compact symmetric spaces of A2-type. Hence it is quite
natural to study the following more specific problem:

PROBLEM 1. — Is it true that every simply connected, compact symmetric space contains
some imbedded, minimal hyperspheres?

Furthermore, many new examples of (non-equatorial) minimal hyperspheres in S"(l)
have been constructed in some recent papers ([4], [7], [9], [10], [12]). Therefore, as a
generalization of the "opposite" spherical Bernstein problem [7], it is also quite natural
to pose the following

PROBLEM 2. — Is it true that every simply connected, compact symmetric space of
dimension ^ 4 contains infinitely many congruence classes of imbedded (or immersed)
minimal hyperspheres?
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Although the whole family of symmetric spaces can be neatly characterized by a single
condition that they are centrally symmetric with respect to every given point, a survey of
the classification list of E. Cartan ([I], [2]) indicates that it consists of a remarkable
collection of natural geometric models with fascinating individualities. Therefore, for
global geometric problems of the above type, even though there may, eventually, emerge
some kind of uniform final results, the technical routes that lead to such answers will,
most likely, inevitably, involve quite a lot of case studies. It is in this spirit that we
shall begin the study of the above existence problem of minimal hyperspheres in some
special cases of compact symmetric spaces.

In this paper, we shall mainly treat those special cases which happen to accommodate
some particularly suitable geometric structures that enable one to establish the existence
of infinitely many distinct minimal hyperspheres with a rather small amount of technical-
ities. We state the main results of this paper as the following theorems.

THEOREM 1. — There exist infinitely many congruence classes of imbedded, minimal
hyperspheres in the complex projective n-space C P(n), for each n ̂  2.

Remark. — In fact, even in the case of spheres, S"(l), n ̂  4, the existence of infinitely
many congruence classes of imbedded, minimal hyperspheres have, so far, been proved
only for the dimensions 4, 5, 6, 7, 8, 10, 12 and 14. Although one expects that the same
type of existence results should also hold for all higher dimensional spheres, it is
technically rather difficult to prove. Therefore, it is quite remarkable that there exists a
uniform construction which works for all CP(n), n ̂  2. The above result was known
to us back in 1983 and was announced in [6].

THEOREM 2. — There exist infinitely many congruence classes of imbedded, minimal
hyperspheres in the real Grassmannian manifold, SO(m+2)/SO(m)x SO (2), for each
m ^ 3 .

THEOREM 3. — Let M be one of the following list of compact symmetric spaces of
rank 2, namely,

S2 (1) x S2 (1), S3 (1) x S3 (1), SU (3)/SO (3), SU (3), Sp (2).

Then there exist infinitely many congruence classes of imbedded minimal hyperspheres in M.

THEOREM 4. — There exist infinitely many congruence classes of immersed, minimal
hyperspheres in the product of two copies of isometric complex projective n-space,
C P(n) x C P(n), for each n ̂  2.

So far, the only method that enables one to prove theorems of the above type is the
method of equivariant differential geometry which, of course, relies heavily on the
existence of some particularly suitable equivariant geometric structures of the ambient
space. In paragraph 2, we shall exhibit the orbital geometries of those specific transform-
ation groups which enable us to reduce the proofs of the above theorems to the existence
of infinitely many global solution curves of specific geometric type of the reduced
ODE. The analytical techniques involved in the proof of existence of those global
solution curves are essentially modifications of that of ([7], [9]). We believe that the
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existence of infinitely many congruence classes of imbedded, minimal, hyper spheres is
probably true for all simply connected compact symmetric spaces of dimensions
^ 4. However, such a uniform result would be extremely difficult to prove even if
it holds in general for all cases of simply connected, compact symmetric spaces of
dimension >: 4.

2. On the orbital geometries of some specific transformation groups

In this section, we shall exhibit one specific, workable transformation group for each
of those compact symmetric spaces mentioned in the above theorems. Various specific
features of their orbital geometries are actually the basic ingredients that make the
analytic proofs of later sections applicable.

2.1. THE CASE OF CP(n). - Let G=U(1) xU(l ) xU(n-l) be the subgroup of a
unitary transformation group on Cn+l=Cl © C1 © C""1 and S1 be the subgroup of
scalar multiplications of unit complex numbers. Then the G-action on S2 n+l (1) induces
an action of G==G/S1 on CP(n)=S2n+l(l)/Sl such that

(1) CP(n)/G^S2n+l/Q(=A).

Let(X, Y, Z) be a generic point in C^C1®^"1 and x=|X |, ^=[Y| , z=|Z|. Then
the above orbit space. A, can be parametrized by

(2) A ^ {(x, y, z); x, y, z ^ 0 and x2 -^-y2 +z2 = 1}

which is geometrically an octant of the unit sphere. The generic G-orbits are of the
type S^S^S2""3, namely, in the case x, y, z > 0, the G-orbit with coordinate (x, y, z)
is isometric to S l(x)xS l(J)xS2 w - 3(z). Therefore, the volume function, v, which
records the volume of generic G-orbits, is as follows

(3) ?(x, y, z) = (2 n)2 C xyz2 n ~ 3

where C = the (2 n — 3)-dimensional volume of S2" ~3 (1). Since each G-orbit is a Rieman-
nian fibration over its corresponding G-orbit with totally geodesic fibres isometric to
S1 (1), it is easy to see that

(4) v(x,y, z)=2KCxyz2n~3

records the volume of generic G-orbits in CP(n).

2.2. THE CASE OF S" (1) x S" (1). - Let G = 0 (n) x 0 (n). Then the space of G-orbits

(5) A=M/G=[Sn(l)/0 (n)] x [S^IVO (n)] ̂  [0, n] x [0, n\

is isometric to a flat square of size n, namely,

(50 A = {(x, y); 0 ̂  x, y ^ n}, ds2 = dx2 + dy\
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For the point (x, y) with 0 < x, y < n, the corresponding orbit is isometric to
S""1 (sin x) x S""1 (siny). Hence, the volume function is given by

(6) v (x, y) = C2. [sin x. sin y]" ~1

where C==the (n—1)-dimensional volume of S""^!).
[In this paper, we shall only need the special case of n=2, 3].

2.3. THE CASE OF CP(n)xCP(n). - Let G=U(1) xU(n)xU( l ) xU(n) be the
subgroup of U ( n + l ) x U ( n + l ) acting on S2"^!) x S2"^!) and S^S1 be the
subgroup of scalar multiples. Then

(7) CP^xCP^tS^^xS^^MS'xS1]

and the above G-action induces an action of G=G/[S lxS l] on CP(n)xCP(n) such
that

(8) [CP^xCP^/G^tS^^xS2"4-1^)]/^ (=A).

It is easy to see that S2n+l(l)|[\J(l)xV(n)] is isometric to an interval of length
7i/2 and the generic U(l) xU(n)-orbit corresponding to 0 < x < n/2 is isometric to
S1 (sinx) x S2 "-1 (cosx). Hence

(9) ^=^x,y); O ^ x , ^ ^ 7 1 ^ ds2=dx2+dy2

and the volume function which records the volume of G-orbits in CP(n)xCP(n) is
given by

(10) v (x, y) = C2. sin x sin y. [cos x cos y]2

where C==the (2n-l)-dimensional volume of S2""^!).

2.4. THE CASES OF SU(3)/SO(3), SU(3) AND Sp(2). - Let K=SO(3) (resp. SU(3),
Sp(2)) which acts on M=SU(3)/SO(3) [resp. SU(3), Sp(2)] via left translations
(resp. conjugations). Then the principal isotropy subgroup type is the maximal Z^-ton
(resp. tori) of K. Let H be an arbitrarily chosen principal isotropy subgroup and
W=N(H)/H. Then, the fixed point set of H in M, F(H, M), is a Hat, totally geodesic
torus of rank 2 with a natural induced action of W. Moreover, the above flat torus, T2,
intersects every K-orbit perpendicularly and

(11) M/K^T^W (=A).

Therefore, the orbit space A is isometric to a flat triangle in IR2 = {(x, y); x, y e R} defined
by the following inequalities, namely,

(12) (Xi ^ 0, oc2 ^ 0 and P ^ n
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where o^, ̂  are the simple roots and P is the highest root (with respect to a chosen
ordering). Therefore, in the cases of SU(3)/SO(3) and SU(3), A can be represented by

(12/) A=={(x, y); y ^ 0, y-^/3x ̂  0 and y+^/3x ̂  2 71},

and in the case of Sp(2), A can be represented by

(I2") A={(x, y); y ^ 0, x^y ̂  0 and x+y ^ 71}.

The generic K-orbits are represented by interior points of the above triangle and the
volume functions that record the volumes of generic K-orbits are, respectively, as follows:

(13) v(x,y)=
8 7i3. siny. sin 1/2(^/3 x-y). sin 1/2(^3 x+y),

64 7i3. [siny. sin 1/2(^/3 x-y). sin 1/2 (^/3x+^)]2,
(4 7i)4. [sin x siny sin (x +y) sin (x —y)]2.

2.5. THE CASE OF SO(2+m)/SO(2)xSO(m). - In the general setting of a simply
connected symmetric space M=G/K, let g=l+p be a decomposition of the Lie algebra
of G into the (± l)-eigenspace of the involution and a be a maximal abelian subalgebra
of 9 contained in p. Then A=Exp(a) is a maximal, flat, totally geodesic submanifold
of M which intersects perpendicularly with all K-orbits in M. Let t)= a® (10% be a
Cartan subalgebra of 9 and A^(g, I) be the set of complementary roots of the pair (g, t)
with respect to t) and A(M) be the projection of A^(g, t) onto a. Then, it follows from
E. Cartan's generalization of the maximal tori theorem in the realm of symmetric spaces
that

(14) M/K^A/W

where W is the group generated by reflections with respect to the perpendicular hyper-
planes of the roots in A(M). In the special case of G=SO(2+m), K=SO(2) x S0(m),
the Lie algebra 9 is equal to the set of all anti-symmetric real matrices of rank (2+m). It
is convenient to choose the following basis for 9, namely

(15) {A,,=E,,-E,,; 1 ̂  i <j ^ m+2}

where E^. is the matrix with only one non-zero entry, 1, at the (i, 7')-place.
Then

(16) [ ^W (^)=(1' 2) or 3 ̂  i <j ^ m+2}
I {A^.; i ̂  2, j ̂  3 and i <j ^ m+2}

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



292 WU-TEH HSIANG, WU-YI-HSIANG AND P. TOMTER

are, respectively, bases of f and p. Moreover, it is convenient to choose a and t) as
follows:

a={x.A^3+^.A2,4; ̂ y^^},

i)=ae{z^A^3,, , ,J, ;=r^1-i.
u=i J L ^ J

Geometrically speaking, A = exp a is a flat totally geodesic subtorus of M, which is the
product of two great circles passing the base point 0 contained in S^S^the SO (4)
orbit of 0. Straightforward computation will show that the W-action on a is generated
by the reflections with respect to the following four lines, namely

(18) x=0, ^=0, x+y=0 and x-y=Q.

Therefore M/K ^ A/W is isometric to the following flat triangle

(19) A={(x, y)\ y ^ 0, x-y ^ 0 and x+y ^ 71}.

Moreover, the volume function that records the volumes of generic K-orbits is given by

(20) v (x, y) = C. (sin x. siny^'2 sin (x —y) sin (x +y).

3. The reduced differential equations and some analytical lemmas

Let (K, M) be an equivariant geometric system of cohomogeneity 2, i. e., dim (M/K) =2,
and let E be a K-invariant hypersurface. Then Z/K is called the generating curve of Z
and the mean curvature of £ at a generic point p e £ can be computed as follows. It is
quite natural to equip the orbit space, M/K, with the orbital distance metric which
measures the distance between orbits. Let v: M/K -> R be the volume function whose
value at a generic orbit ^ is exactly the volume of ^ in M, namely,

(21) v (K (p)) = the volume of K (p) c M

if K (p) is an orbit of the principal type. Then the mean curvature of £ at a point, p,
on a principal K-orbit £, = K (p) can be neatly computed by the following formula

(22) H(2: ,^ )=K(£/K,y-- r f ln^ l
an^

where K (£/K, ^) is the curvature of the curve, Z/K, and d/dn^ is the directional differentia-
tion in the direction of the unit normal n^.

3.1. REDUCED ODE OF INVARIANT MINIMAL HYPERSURFACES. — In the Specific CBSCS Of

the equivariant geometric systems of paragraph 2, one can easily apply the above formula
to compute the following explicit forms of ODE which characterize the generating curves
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of invariant, minimal hypersurfaces in the respective systems. We state the final form of
each case separately as follows.

(i) The case ofCP(n). — In this case, it is convenient to parametrize the orbit space,
A, by the following spherical polar coordinates, namely, set

x=sinrcos9, ^=sinrsin9, z=cosr,

(23) 0 < 9 < 7 1 , 0 ^ r < 7 1 .
~" ""2 •" ~2

Thus it follows from (2) that

(2') A^r.e^O^r.e^l, ds2=dr2+sm2rdQ2

I 2 j

and the volume function becomes

(4Q i;(r, e)=27^csin2rcos2n~3rsin9cos9.

Hence, the generating curve, y, of a G-invariant minimal hypersurface, F, in CP(n) is
characterized by the following ODE:

(24)

dr d6 sin a— =cos a, — = ——
ds ds sin r

dot dQ 2 dr dQ—+3cosr—-——cot29—-(2n-3)sinrtanr—=0
ds ds sinr ds ds

where a is the angle between the radial direction 9/8r and the tangential direction of y.

(ii) The case of Sn(l)xSn(l). — In this case, the orbit space is isometric to a flat
square of size TC, namely,

(5Q A = {(x, y); 0 ̂  x, y ^ 71}, ds2 = dx2 + dy2

and v (x, y) = c2. (sin x siny)"'1. Hence, the generating curve, y, of a G-invariant minimal
hypersurface, F, in S"(l) x S"(l) is characterized by the following ODE:

(25)

dx dy
—=COS<7, —=Sin<7
ds ds

da— +(n—l)s inCTCOtx—(n—l)cosacot^=0
ds

where o is the angle between the direction 8/8x and the tangential direction of y.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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(iii) The case of CP(n)xCP(n). - According to paragraph 2.3, the orbit space is a
square of size jr/2, namely

(9) A=J(x, y)\ 0 ̂  x, ̂  ̂  n^ dsl=dxl+dy^

and ^(x.^^-sin.xsin^cosxcos.y]2""1. Therefore, it follows from (22) that the
generating curve, y, of a G-in variant minimal hypersurface F in CP(n)xCP(n) is
characterized by the following ODE:

(26)

dx dy—=cosa, —=sm(j,
ds ds

^+sinCT[cotx-(2n-l)tanx]+cosCT.[(2n-l)tan^-cot.y]=0
ds

where CT is, again, the angle between 8/8x and the tangential direction of y
(iv) The cases o/SU(3)/SO(3) and SU(3). - In these two cases, the orbit space is a

flat, regular triangle of height 71. Hence, direct application of (13) and (22) will show
that the characterizing ODE for the generating curves of minimal K-invariant hyper-
surfaces are, respectively, as follows.

dx dy
—— = COS CT, — = Sin CT
ds ds

- a =fe .^cosCTCOt^-s in(a+ 7 l )cot l /2( /3x-^)(27) — ==fe.^cos(7cot^—sin
asds [ \ 6/ v

-sinta-^cotl/l^x+y)}

where k = 1 and 2 and a is the angle between 8/8x and the tangential direction of y.

(v) The cases ofSp(2) and SO(2+m)/SO(2) x S0(m). - In the above two cases, the
orbit space is a flat, rectangular, isosceles triangle, namely,

A={(x, y); y ^ 0, x - y ^ 0 and x+y ^ n}

and, moreover, the volume function

f (4 7i)4. [sin x siny sin (x -{-y) sin (x —y)]2

^ c.(sinx.smy)m~2sin(x-{-y)sin(x—y)

for Sp(2) and SO(2+m)/SO(2) xSO(m) respectively. Hence it follows from (22) that
the characterizing ODE for the generating curves of minimal K-invariant hypersurfaces
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in the above two cases is as follows.

dx dy
—— = COS <7, — = Sin (7ds ds

(28) —=2^cosacot^—sinacotx— /2sin( a+ - }cot(x—y)
ds [ v \ 4/

-/2sin((7-^)cot(x+^)}
^ ^ 4 7 J

resp. — = (m — 2). {cos a cot y — sin a cot x}
L rfs

- /2^sin(( j+- )cot(x-^)+sm((7-71 )cot(x+^)^ .
I \ 4/ \ 4/ JJ

3. 2. SYMMETRIES OF ORBITAL GEOMETRY AND EXPLICIT SIMPLE SOLUTIONS. — In the Study

of existence of global solution curves with certain specific geometric characteristics, the
existence of symmetries as well as certain explicit, simple solution curves are often very
useful. We list below such useful "assets" of the above analytical systems.

(i) The case of CP(n). - The ODE (24) is reflectionally symmetric with respect to
the line 9 = n/4 and it has the following four explicit simple solution curves, namely,

(1) the line 9== 7i/4;

(2) the line r = tan ~ 1 \———;
y2n-3

(3) sin r cos 9= /—;
y2n

(4) sin r sin 9= /—.

(ii) The case ofSn(l)xSn(l). - In this case, one has the following four straight-line
solutions of the ODE (25), namely

(1) x=n/2;

(2) y=n/2;

(3) x-y=0;

(4) x+y==n,

and, moreover, the ODE (25) is reflectionally symmetric with respect to the above four
lines.
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(iii) The case of CP(n) xCP(n). - The ODE (26) is reflectionally symmetric with
respect to the line x—y=0 and there are the following three straight-line solutions to
the ODE (26), namely,

(1) x-y=0, ___

(2) x=tan-1 /-1—;v / V 2 n - l

(3) y=tm~1 /—^—.v / ' V2n-l

(iv) The cases o/SU(3)/SO(3) and SU(3). - The ODE (27) is reflectionally symmetric
with respect to the three bisectors, namely,

(1) X=7t/^/3,

(2) x-^=0,

(3) ^/3x+3^==27i,
and they are solutions of the ODE (27).

(v) The cases ofSp(2) and SO(2+m)/SO(2) x S0(m). - The line x==7c/2 is a solution
of the ODE (28) and the system is reflectionally symmetric with respect to the line
X=7l/2.

3.3. THE BEHAVIOR OF THE SINGULAR BOUNDARY. — Geometrically, the boundary points
of the orbit spaces (of §2) represent singular orbits of those specific transformation
groups. Correspondingly, the volume function vanishes at the boundary and hence the
d/dn In v term of the reduced ODE becomes singular. Since minimal submanifolds of a
given Riemannian manifold M are clearly invariant under homothetic magnifications,
the ODE of paragraph 3.1 is also naturally invariant under homothetic magnifications.
Therefore, it is advantageous to exploit the above homothetic invariance to reduce the
study of local analysis in the neighborhood of a singular point to that of a limiting ODE
which is geometrically associated to the equivariant geometry of the slice representation
of the given singular orbit (cf. p. 66 of [7]-[I]).

In the specific cases considered in this paper, the orbit spaces are either a flat square
or a flat (or spherical) triangle. Moreover, for the interior points of each given side,
the singularity of the ODE is of a regular type studied in [5] and one has the following
lemma on the unique existence as well as the analytical dependence of solution curves
originating at such a singular point.

LEMMA 1. — Let A be one of the orbit spaces described in paragraph 2 and AB be one
of its sides. Then, to each interior point b of AB, there exists a unique solution curve, y^,
of the corresponding ODE with b as its initial point and, moreover, the family of such
solution curves {y^; fceAB0} depends analytically on the coordinate ofb.

Proof. — The above lemma is a direct consequence of Proposition 1 of [5]. Due to
the particularly simple type of singularity, a solution curve originating at such a boundary
point b is necessarily perpendicular to AB and locally analytic. Therefore, the unique
existence follows from the method of power series substitution and majoration. We
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refer to [5] for the details of such a proof.
Q. E. D.

Next, let us consider the singularities of some corner points. One of the important
special features of the family of specific transformation groups of paragraph 2 is that
every one of them contains an isolated singular orbit whose slice representation is of the
focal type (cf. p. 361 of [7]-[II]). In terms of the coordinate system of A, used in
paragraph 3.1 in exhibiting the reduced ODE, they are respectively the following.

(i) the origin r=0 for the case of C P(n);

(ii) all four corners, namely, (0, 0), (n, 0), (0, n), and (n, n), for the case of
Sn(l)xSn(l),n=2,3;

(iii) the origin, (0, 0), for the case C P(n) x C P(n);

(iv) all three corners for the cases of SU(3)/SO(3), SU(3) and Sp(2);

(v) the corner (n/2, n/2) for the case SO(2+m)/SO(2) x S0(m).

Straightforward computation will show that the slice representations of the singular
orbits corresponding to the above corner points are as follows

(a) (SO(2)xSO(2), (R2 © R2) for the cases of CP(n), S^xS^l), CP(n)xCP(n)
and SO(2+m)/SO(2) x S0(m);

(fc) (S0(3) xSO(3), R3 © R3) for the cases of S^l) xS^l) and the corner (n/2, n/2)
in the Sp (2) case;

(c) (S0(3), IR5) for the case of SU(3)/SO(3);

(d) (SU(3), (R8) for the case of SU(3);
(e) (S0(5), R10) for the corners (0, 0) and (n, 0) in the case of Sp(2).

Therefore, the proofs of [7]-[I], p. 66 and [7]-[II], p. 358-361 can easily be adapted to
obtain the following lemma.

LEMMA 2. — Let A be one of the orbit spaces described in paragraph 2 and let A be one
of its corners, which is of the focal type, and moreover, with an explicit solution curve I
(cf. §3.2) originating at A. Let b be a nearby boundary point and y^ be the unique solution
curve originating at b. Then as b -> A along the boundary of A, the number of intersection
points of I and the portion of jj, within a fixed neighborhood, U, of A tends to infinity,
namely,

# (Y& 01 H U) -^ oo as b -> A.

LEMMA 2\ — Let u be a non-trivial solution of the Jacobi equation along I, namely, the
linearization of the ODE of paragraph 3.1 along I. Then u has infinitely many zeros on
uru

(We refer to page 66 of [7]-[I], pages 358-361 of [7]-[II], and pages 227-229 of [9] for a
proof of the above two closely related lemmas.)
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4. The proof of theorem 1

In this section we shall construct infinitely many mutually non-congruent examples of
imbeded, minimal hyperspheres in CP(n), for each n ̂  2, which are G-invariant with
respect to the specific G-action given in paragraph 2.1. Analytically, this amounts to
proving the existence of infinitely many global solution curves of the ODE (24) which
originate at the side r=n/2 and terminate at the sides 0=0 or 7i/2.

The orbit space A=C P(n)/G is a spherical triangle which can be conveniently parame-
trized by polar coordinate (r, 9). Then the generating curves of G-invariant minimal
hypersurfaces in CP(n) are characterized by the ODE (24). It has four explicit, simple,
solution curves, given by 6=71/4, r=tan~1 /3/(2n—3), s inrcos9=/ l /2n and
sinrs in9==/ l /2n, and the corner A is a singularity of the focal type. By Lemma 1, to
each boundary point b (n/2, t) e BC, 0 < t < 7t/2, there exist a unique solution curve, y^,
that originates at b(n/2, t). Let y^ be the arc of y^, from b up to its first minimum
in r. Then {y^; 0 < t < n/2} forms an analytical family of solution curves perpendicular
to the side BC, e. g., y, are exactly the following explicit simple solution curves, namely

when

Set U == {(r , 0); r < tan-1 ^/3/(2n-3)}. It follows easily from the ODE (24) that the
terminating point (i. e., the first r-minimum point) of y^ must be in U. Let N(Q be the
number of intersection points of Y( and 7^4, namely

(29) N(0=#{y,ny^}, t^.
4

Then it follows from Lemma T that

(30) N(0->oo as t^.
4

Based on the above facts, we shall prove the following existence result, namely
"To each positive integer f, there exists a suitable value ^ such that N(^.)=f and y^.

terminates at a boundary point different from A."
Let i be an arbitrary given positive integer. It follows from (30) that there

exists a sufficient small 5 > 0 such that N((7T/4)—8)^(i+l) . Observe that
N(sin~1 / l /2n)=l and, as t continuously varies from (7i;/4)—8 to sin"1 /l/2n, y^ can
never become tangential to y^. Therefore, the deformation must go through the
following two stages, namely, there exists M( and 1^+1 such that
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--dr^sur^dO2

Fig. 1.

and y^, y^^ intersect 7^4. perpendicularly, i.e., exactly at the points of r-minima. It is
easy to see that the values of dQ/ds at the above two points of r-minima must be of
opposite signs. Therefore, there must exist a value u, < t, < u,+i such that N(t,)=i and
Y^ terminates at a boundary point. For otherwise, the family of solution curves
{y^ te[u^ Mf+i]} forms a (^-continuous family and hence cannot have a sudden reversal
of signs of dQ/ds at the end points! Finally, one may, of course, assume that u^^ is the
smallest such value satisfying (31). Then N ( r ) < f + l for all t<u,+^ and it follows
from Lemma 2 that the terminal point of y^. cannot be A. Hence, it is easy to see that
the inverse images of {y^, f ^ ; < 00} forms an infinite family of imbedded, minimal
hyperspheres which are mutually non-congruent. This completes the proof of
Theorem 1.

Remark. — Among the above infinite family of examples, the first one is generated by
the curve y^ with ^ =sin~1 ̂ T/2n. It is clearly the simplest, nicest one which deserves
the title of the equator. Hence, it is a natural problem to work out various characteriz-
ations of this simplest, hypersphere of CP(w) in the same fashion as J. Simons did for
the equator of S"(l) in [11].
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5. The proof of theorem 2

Let M=SO(2+m)/SO(2) xSO(m), m ̂  3, and K=S9(2) xSO(m). Then the orbit
space A=M/K is a flat, rectangular, isosceles triangle and the generating curves of K-
invariant minimal hypersurfaces of M are characterized l?y the ODE (28). Moreover, it
is symmetric with respect to the line x=7i/2; the corner A(7i/2, n/2) is a singularity of
the focal type and the line x==7i/2 is a solution curve of the ODE (28).

Let us first consider the family of solution curves

(32) ^=^;y,(0)=&=(t,o,o<t<,

Set Y( to be the arc of y^ between its initial point b = ((, t) and its first ^-minimum. Let
N (t) be the number of intersection points of Y( with the line I : x = 7i/2, namely

(33) N( t )=#{y,n0.

Then for sufficiently small 8 > 0, one has

(34) N(8)=0 and N -8 I is rather large.

Hence, it follows from the continuity of ^ that there exists a smallest value to such that
N (to) > 0. Then y^ must intersect I perpendicularly at its first ^-minimum and, hence,
by the reflectional symmetry, the y^ with bo=(to, to) is a global solution curve which
starts at (to, to), terminates at (n—to, to), and intersects I perpendicularly at its
unique ^-minimum point (as indicated in the following Figure 2).

Next let us consider the following family of solution curves

(35) ^={Y.;y.(0)=fc=(u,0),0<u<7r}.

A^^)A\^ /

B (0.0) C ( 7 L O )
Fig. 2.
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Set Yy to be the arc of y^ between its initial point b = (u, 0) and its first ^-maximum. Let
v(u) be the number of intersection points of y^ and I; U be the region of A above the
above solution curve yo. Then it is not difficult to show that all the terminal points of
Yy must be inside of U.

Again, it follows from Lemma T that

(36) v(u)->co as u->-.
2

Let a be the minimal value of v (u\ 0 < u < n/2. Then, essentially the same kind of
proof as that of paragraph 4 will show that

"to each integer i ̂  a+1, there exists a suitable value u^ such that v (Mf)=f and y^
terminates at a boundary point different from A".

Hence, the inverse images of {y^.; i^a+1} provide infinitely many mutually non-
congruent examples of imbedded, minimal hyperspheres in SO(2+m)/SO(2) xSO(m).
This completes the proof of Theorem 2.

Remarks. — (i) It is not difficult to use the method of numerical estimation to establish
the existence of a y^ such that v(u)=l and y^ terminates at AC. Therefore, actually,
there exists a y^ for all positive integer i.

(ii) Again, among all the examples of imbedded, minimal hyperspheres in
SO(2+m)/SO(2) x S0(m), the one with v(u)=l is clearly the simplest minimal hyper-
sphere and should be crowned with the title of the equator in M.

6. The proofs of theorems 3 and 4

6.1. THE PROOF OF THEOREM 3. — In view of the orbital geometries of various cases
listed in Theorem 3, it is quite natural to divide the proof of Theorem 3 into the following
three cases.

(i) The case ofSp (2). — The proof for this case is almost identical to that of Theorem 2
in paragraph 5 and hence omitted.

(ii) The cases of SU(3)/SO(3) and SU(3). - In this case, the orbit space is a flat
regular triangle and the ODE (27) is symmetric with respect to each of the three bisectors
which are themselves solution curves of the ODE (27). Moreover, a global solution
curve of the same geometric type as y^o m ̂  P1100^ °f Theorem 2 had already been
established in [5]. Therefore, it is, again, quite straightforward to adapt the proof of
Theorem 2 to prove the existence of global solution curves of the desired geometric type
with v (u) = an arbitrary positive integer f.

(iii) The cases o/S^l) x S"(l), n=2, 3. — In this case, the orbit space is a flat square
of size TC. The ODE (25) has four straight-line solutions, namely

n K /. ,
x==-, y=--> x—y=0 and x-^-y=n
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C (0,n) A (n,n)

Fig. 3.

B ( n , 0 )

and the equation is symmetric with respect to the above four lines.
Let y be an arbitrary solution curve of the ODE (25) other than x=n/2 and

y=n/2. Then it is easy to deduce from the ODE (25) that the x-minima (resp. x-maxima,
^-minima, ^-maxima) of y can occur only in the region x < n/2 (resp., x > n/2, y < n/2,
y > Ti/2). Moreover, in the case n = 2, 3, the four corner points are singularities of the
focal type.
Let us consider the following family of solution curves ^

(37) ^=^;Y.(0)=fc=^0),0<^-

and set y, to be the arc of y^ between its initial point b and its first x-maximum. Let D
be the middle point of the diagonals OA and BC. Set

(38) N(r)=#{y,OOD}.

Then, it follows from Lemma 2 that

(39) N(0-.oo as t->0.

Therefore, it follows from the continuity of ^ that, for each given positive integer f, there
exists a suitable value r, such that N (r,) = i and D is exactly the last intersection point,
e.g., t^=n/2. It is easy to see that the angle between y^. and the diagonal BC is less
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than 7i/2 if i is an odd integer; but is greater than jr/2 if i is an even integer. Hence,
again by the continuity of J there exists a suitable value, ^.+1 < v^ < t^ such that

(40) N(^)=f and y^.-LBC.

Therefore, by the reflectional symmetry of the ODE (25) with respect to BC, y v, is a
global solution curve which starts at (v^ 0), terminates at (TI, H—V^) and has exactly li
intersection points with OA. The inverse images of {y^.; i= 1, 2, . . . } provide infinitely
many mutually non-congruent examples of imbedded, minimal hyperspheres in
S"(l) x S"(l), n=2 or 3. This completes the proof of Theorem 3.

6.2. THE PROOF OF THEOREM 4. — Let (G, M) be the equivariant geometric system
described in paragraph 2.3. Then the orbit space, A=M/G, is a flat square of size 7i/2
and the generating curves of G-invariant minimal hypersurfaces in M are characterized
by the ODE (26). It is reflectionally symmetric with respect to the line x—y=0 and
there are the following three straight line solutions, namely,

y=ta.n~1

(See Fig. 4)
Let

(41) F = fy,; Y, (0) = b = (r, 0), 0 < t^ tan

and let y^ be the arc of y^ between its initial point b and its first x-maximum. Set

(42) N(0=#{y,HOA}.

Since A is a corner singularity of the focal type, it follows from Lemma T that

(43) N(0-^oo as t-^0.

Therefore, it follows from the continuity of F and the fact that
N(tan~1 / l / (2n—l)) = 1 that, for every positive integer i, there exists a suitable value t,
such that

(44) N (t,) = i + 1 and y, 1 OA at the last intersection.

Hence, by reflection symmetry, one can continue y, to obtain a symmetric global solution
which starts, at (^, 0), terminates at (0, .̂), and has exactly i double points on OA.
The inverse images of the above family of global solution curves provide infinitely
many mutually non-congruent examples of immersed minimal hyperspheres in
C P(n) x C P(n). This completes the proof of Theorem 4.
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Fig. 4.
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