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A REDUCTION THEORY OF SECOND ORDER
MEROMORPHIC DIFFERENTIAL EQUATIONS, II

BY W. B. JURKAT AND H. J. ZWIESLER

ABSTRACT. — In this article we investigate meromorphic differential equations X7 (z) =A (z) X (z) of dimension
2 x 2 whose exponential behavior near the singularity at infinity is governed by a diagonal matrix Q(z)
containing polynomials in z112 but not in z. We discuss the possible simplifications due to meromorphic
equivalence T^AT—T^T and derive normalized standard equations with the least possible number of free
parameters in the sense that they cannot be generated by a subcollection with fewer parameters (Theorem 2
and its consequences). We are even able to define "natural" representatives under the above equivalence,
which are described by conditions that can easily be checked. To derive these results we determine the
possible transformations (mainly Theorem 1) and give a characterization of the minimality of the Poincare-
rank (Proposition 1).

1. Introduction

This article continues our investigations of meromorphic differential equations
X /(z)=A(z)X(z), abbreviated by [A], which we began in [6]. A(z) is meromorphic at
infinity, i. e. holomorphic in a punctured neighborhood of infinity with at most a pole
there, and X (z) is a fundamental solution matrix. (All occuring matrices have dimen-
sions 2x2.) If we define Y(z)=T - l(z)X(z) with a meromorphic transformation T(z)
[i. e. a matrix T (z) which together with its inverse is meromorphic at infinity], then Y (z)
solves the equation [B] with B=T~ 1 AT-T~1 T ([4], p. 8). We are interested in finding
simple representatives under this equivalence relation which may then be used for closer
examinations. This problem as well as many related questions was solved ([6]) in the
case when [A] had a formal solution of the form F(z)zA'^Q(^) ([4], p. 32). Here Q(z)
stands for the matrix diag(<^(z), q^(z)) ̂  0 with polynomials q^ q^ without constant
term. A' denotes a constant, diagonal matrix and F (z) is a formal meromorphic transform-
ation.

In this second part we treat the case when Q(z)=diag(<?i (z), q^ (z)) ^ 0 is a polynomial
in z112 without constant term not containing only integral powers of z. Then we know

that there exists a formal solution H (z) = F (z) z3 diag (1, zl/2)\JeQ (z) with U =

je(^ and a formal meromorphic transformation F(z). Moreover, ^i(z) and q^(z) are
analytic continuations of one another ([4], p. 32) and therefore, even powers of z112

have the same coefficients whereas the coefficients of odd powers of z112 differ by a
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260 W. B. JURKAT AND H. J. ZWIESLER

factor — 1. This enables us to compute the share of the even powers by using Wronski's
identity (detH(z)y=(trA(z))detH(z). It shows that (^1+^2)' equals the polynomial
part p ( z ) of the trace trA(z), i.e. trA(z)=/?(z)+0(z~1). [Here the Landau-symbol
f(z)=0(g(z)) is defined for a formal scalar or matrix series by deg(/) ^ deg(g) where
deg(/) denotes the highest power of z in the formal series of /wi th non-vanishing
coefficient or deg(0)=—oo.] Hence the even powers of z112 in q^ q^ are given by
r2 / r2 \p (w)/2 rfw. If we replace X (z) by Y (z) = exp ( - p (w)/2 rfw ) X (z) the equation [A]

Jo \ Jo /
is changed to [A—Ip(z)/2]. Although this is not a meromorphic transformation (but
still single-valued), it should be executed as a preliminary simplification, because it is a
scalar factor which commutes with all other transformations and can be undone in the
end. Thus, we require in the following that trA(z)=0 (z~1). This remains true if we
apply a meromorphic transformation T(z) since ^(T^A^^rA and
^(rT-lrT/)=0(z~l). Furthermore it forces Q(z)=diag(^(z), —q(z)) where q(z) ̂  0 is
an odd polynomial in z112. This assures that the leading coefficient of A (z) is nilpotent
([9], p. 100 ff). Now, it is reasonable to get rid of all superfluous leading coefficients by
reducing the Poincare-rank r=deg(A)+l until r=deg(Q)+l/2(^ 1). This is the least
possible value since A=H'H~ 1 shows that deg(A) ^ deg(Q').

To this equation we apply Birkhoffs reduction ([4], p. 15). It leads to a meromorphic
r-l

differential equation [A] with A (z)= ^ Aj^. We call this the standard form. In the
fc= -i

case of 2 x 2-matrices we can always obtain it without increasing the Poincare-rank
([5], Theorem 1) which therefore is still assumed to be minimal.

These standard equations (n=2) with minimal Poincare-rank r > 0, nilpotent leading
coefficient and a trace which is of order 0 (z~1) provide a suitable basis for our further
investigations. In section 2 we will show that the minimality of the Poincare-rank can
be nicely characterized in terms of the formal solution. This allows a good description
of all possible transformations between our standard equations. They turn out to be
mainly polynomial transformations in 1/z. These are examined in section 3 (mainly
Theorem 1) and afterwards we take a closer look at the special case of constant transfor-
mations in section 4. They allow the normalization of our standard equations to a form
which, in general, cannot be obtained from equations with a smaller number of parameters
as will be shown in section 5 (as a consequence of Theorem 2). The same is true for
certain subclasses which depend on a smaller, but fixed number of parameters and again
cannot be reduced in general. We will even be able to discuss whether a given standard
equation can be meromorphically transformed into another one with fewer coefficients
different from 0. Finally, section 6 is devoted to explain how natural, unique representa-
tives are chosen within each equivalent class. Examples of such representatives are the
generalized Airy equations y ' / ( z ) — z 2 m ~ l y ( z ) = 0 , m e ^ which should be written as a
system and transformed by T(z)=diag(z-lOT/2], z1^21) followed, in case of odd m, by

. Further examples are the equations with A(z)== + z'~1,

a, fce(p, b i=- 0 and 0 ̂  a < 1/2 (lexicographically) which are discussed in part II of [5].
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A REDUCTION THEORY OF SECOND ORDER MEROMORPHIC DIFFERENTIAL EQUATIONS, II 261

2. A characterization of the minimality of the Poincare-rank

Here we will show how the minimality of the Poincare-rank is reflected in the
formal solution. For that, we need the notion of an analytic transformation which is a
meromorphic transformation whose Laurent-series at infinity starts with a constant
invertible term ([4], p. 8). Since everything in this section depends only on the behavior
near infinity, we drop the requirement that the equation is in standard form.

PROPOSITION 1. — Let [A] be a formal meromorphic differential equation mth an
exponential polynomial Q(z) ^ 0 in its formal solution that contains only odd powers of
z112. Then [A] has minimal Poincare-rank if and only if it has a formal solution of the

form F(z)z^diag(l, z"172) ^Q(z), \vhere F(z) is an analytic transformation and

trA=((2^-l/2)/z)+0(z-2).

Proof. — Since a constant transformation does not effect the claim, we may assume
r° ^w.l.o.g. that A,_i== because it is nilpotent. Then the minimality of the

Poincare-rank is equivalent to deg (a^)=r- 2 where we use the notation A (z)=[^(z)]
(1^U^2).

(i) => : Upon introducing ^(^0) as one of the two square-roots of the leading
coefficient in a^i we write a^ (z)==)^2 zr~2-}-0 (z'"3) (which will be used throughout this
paper). If we define the new variable t by z=r2, then Y(Q=X(r2) satisfies
(d/dt) Y (0 = 21 A (t2) Y (0., We transform it with

T(o=r 1 -^i
W 1/(40 J

into the equation [B] where ,

^^[T -y^"24-0^^'

This equation has a formal solution of the form Fg (t) t^' ^QB (0 with

QB(0=diag(2?i, -2^)t2r-l/(2r-l)-{-0(t2r-2\

A^diag^i, Xy and Fg (0=1+0 (r1).

In the formal solution F^z^'diag^, Z^U^A^ of the original equation [A] we order
the polynomials in Q^ accordingly and obtain thus the following equation

FA (t2) t2 j diag (1, 0 U ̂ A ̂  = T (0 Eg (0 ̂  e^ ̂  C

with a constant, invertible matrix C. Since the exponential terms must cancel,
C=diag(ci, c^) with c^ ^ 0. We use the notation FA=L/^], FB=[^,] (1 ^ ij ^ 2),
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262 W. B. JURKAT AND H J. ZWIESLER

and compute the first row of the above equation which yields

(/ii^+^iiO^^^feii-^i^Wci^^Ci^^l+Oa-1)),

(/ll02)-^12^2))^J=tel2-^2/(4^))C2^2=-C2/(4^)^(l+0(rl)).

Since the even and odd terms on the left cannot cancel it follows that X^X^X"
holds. Then we can compute

FA^T^FBCOCU^diagO, r1)^-2^

J c,-c2/(4?i)+o(r1) (c^c^^r^o^-2)!^.,
L^+c^r^or2) (^-c^r^oo-3) J

Now the left-hand-side is an even function of t, forcing either ^Ci+0^/4=0 or
^c! —^2/4=0. In the first case (02= —4Xci ) we obtain

FAW^fl"01 , 1+0(r l))diag(l,r-2)^=F(Odiag(l,r2)tv

\ L O ?icJ /

where F(t) must be an even analytic transformation. Inserting this for F^ we find the
claimed formal solution with ^/=X72. In the second case (c^=4'kc^) we get

F Aw^fp1 ' i+o^vr ° ^i
\LO ?icJ 7 it-1 0 ]

We argue as above and insert it into the formal solution which shows the required form
when we multiply it by diag(l, — 1) from the right.

(ii) <=: We dissect the formal solution H (z) = F (z) G (z) with

G(z)=zr diag (1, z-lf2)\JeQ(z\

Then G(z) satisfies the differential equation [G' G~1] with leading coefficients

[; ̂ -^ j2-2^-'
where Q'(z)=diag(^, -?l)zr-3/2+0(zr~5/2). Hence it has minimal Poincare-rank
which is the same for A^'H-^F'F^^^G'G-^F-1.

(iii) Considering this logarithmic derivative we also obtain the equation between X'
and trA.

Q.E.D.
Notice that F is uniquely determined by [A] up to an arbitrary scalar constant (7^ 0)

once Q and X/ have been selected. Furthermore, the proof shows that, if we require

A, _ i = , then F (z) has constant term Fo = c ' (c ̂  0).
l_0 OJ |_0 ^J
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A REDUCTION THEORY OF SECOND ORDER MEROMORPHIC DIFFERENTIAL EQUATIONS, II 263

Remark 1. - Proposition 1 enables us to discuss all formal transformations between
equations of minimal Poincare-rank which satisfy the stated assumptions. Any such
transformation can be proceeded and succeeded by an arbitrary constant similarity; hence

we may assume w.l.o.g. that all equations start with A _ i = . Obviously we
Lo oj

can change ^ to X/-fe with arbitrary feeZ using T(z)=zfcI. But it is also possible to
change ^ to X/-1/2 without violating our assumptions. This is achieved by
rT(.z)= 2 n r (Notice that fkl is a formal meromorphic invariant.) What other

transformations T (z) are there? If T (z) transforms [A] into [B] the corresponding formal
solutions are connected by

FAZ^diag(l, z-^U^AC^FfiZ^diag^, Z-^^U^B

where we may assume that QA=QB. and hence C=diag(ci, €2), c^ ^ 0. From this
equation we learn that Z^A-^B is a formal series in z172, i.e. ^==^(mod 1/2). Because
we know already how to change ̂  hy arbitrary multiples of 1/2 we can perform this
task in a preliminary step and then assume w.l.o.g. ^A=^B- ^en
diag(l, z-^UCU-1 diag(l, z112) =F^1 TFg is formally meromorphic which shows that
C=cl, c^O. Since a scalar constant does not change a meromorphic differential
equation, we assume w.l.o.g. that c=l, i.e. T=FAFfi1 . Hence T must be formally

analytic with constant term TQ= 1 2 \(d^ 0). On the other hand, any such T
L 0 diJ

leaves ^ and all other assumed properties (including A ^ _ i = ] untouched. If

we furthermore require that all equations are in standard form, we learn that T must be
holomorphic in 4; - {0} (in this article S - T always denotes the difference of the two
sets) and has at most a pole at 0. Therefore T must be a polynomial in z~1 with
constant determinant since Wronski's identity shows that any solution of a standard
equation has a determinant of the form ep(z)za(ae(^). We may as well restrict ourselves
to det T = 1 because a constant, scalar factor, does not change a differential equation.

3. Polynomial transformations

The polynomials in z~1 constitute a main part of the transformations we
encounter. Therefore, we want to study them more closely in this section. For con-
venience of notation, we choose the singular point located at infinity rather than at
zero. These two points can be easily exchanged replacing z by 1/z.

Our goal is to clarify how a polynomial with constant determinant can change a
differential equation with a singularity of the first kind ([2], p. 111). This turns out to
be a purely algebraic problem and thus it makes no difference whether we treat it
formally or with convergent series. Therefore, we will not distinguish between these two
cases in this section since all statements hold in either one. The stated problem was
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264 W. B. JURKAT AND H. J. ZWIESLER

solved in [6], Theorem 1 for the case of incongruent eigenvalues and we will extend these
results. For that purpose we restate the result of section 4 in [6] as

LEMMA 1. — Let F(z)=I+0(z - l)=[y^(z)](l ^ 1,7 ^ 2) be a power-series in z ~ 1 and
K=diag(fe, —k\ keZ. Then there exists a polynomial matrix P(z) such that
P(z)F(z)zK=I+0(z - l) if and only if there are relatively prime polynomials p(z\ q(z)
satisfying: deg (p) = \ k |, p is monic, deg(^) ^ [ k | and

^ll+^/2l=^(^k-l) if k^Q

qf^Pf^=0(z-^-1) if k<0.

Proof. - This is essentially Theorem 1 (with T'^P, r=0) and Remark 7 in [6]
whose proofs are mainly based on a detailed discussion of the equation
T~1 Fz^I+0 (z~1). We will only point out the necessary modifications. Actually,
deg(^) < | k | since deg(^)= | k \ and f^, /^i are both of order 0 (z~1); but the presented
statement is better suited for our later applications. Furthermore, the fact that p and q
are relatively prime is equivalent to their uniqueness ([6], proof of Theorem 1) if we
assume they possess all the remaining properties. It should be noted that det P = 1 is a
consequence of P==(I+0 (z'^z^F"1 since taking determinants on both sides leads
to a polynomial on the left side whereas on the right we obtain l+0(z~1). Finally,
for k=0 we find immediately P=I.

Q.E.D.

Remark 2. — Notice that P~1 is also a polynomial because of det P = 1. We use
this as follows to prove the uniqueness of P. Suppose that P^Fz^F^ (f==l , 2). Then
the polynomial P^P^l=¥^¥^l=l-{-0(z~l) must equal I. Thus P is unique. It has

the form I for k=0 and for k > 0 resp. for k < 0 where r, s are
iq p_\ [_r s j

polynomials which are uniquely determined by the following conditions: ps—qr=. 1,
deg(r) < deg(/?), deg(s) < deg(^f) ([6], proof of Theorem 1).

Remark 3. — Lemma 1 remains true if we allow f^ =0(1) for k > 0 resp. /i2=0(l)

for k < 0. To show this in the case k >0 where F(z)== +0(z~1) we apply
|_c I j

Lemma 1 to PFz^I+C^z-1) with P=pP °1,F=r1 °1 'F^+C^z-1). This
L C I j ic I j

gives conditions for p and q +/?c; but these are obviously equivalent to those claimed for
p and q. Here we may actually find deg (q) = \ k |.

Let us now consider a differential equation [A] with d e g ( A ) ^ — l . w.l.o.g. we
assume that A _ i is in lower-triangular Jordan canonical form, which is easily achieved
by a constant transformation, with the ordering of its diagonal diag(^i, ^2) as

follows. We split (uniquely) ^ = m f + k f where 0 ̂  m^ < 1 ["=" for complex numbers
always indicates the use of the lexicographical ordering (real part first)] and k^-eZ, thus
each m^ belongs to a fixed system of representatives modulo 1 in (p (?=!, 2). Then we
require m^ ^ m^ and if m^=m^ we want k^ ^ k^. According to [3], p. 192, the equation
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A REDUCTION THEORY OF SECOND ORDER MEROMORPHIC DIFFERENTIAL EQUATIONS, II 265

[A] has a solution of the form F(z)zKzM with M^^ ° | , w=0 if m.^m.
\_m m^\

K=diag(ki, fc^) and F(z)=I+0(z-1) =[./;,]. If M=^ w l ° 1 and k,=k^ we find
L m m ^ J

that M + K = A _ i and hence m=0 or m=l .
On the other hand, every matrix F(z)zKzM with these properties and the m^ k, chosen

as above solves a differential equation [A] of the form described above. This is verified
by just computing the logarithmic derivative (Fz^^Fz1^)"1. The matrix F(z) is
not unique as will be seen in section 5, thus whenever necessary we choose one of the
possible solutions (e. g. the one singled out by Lemma 2). The value w= 1 can also be
obtained when k^ exceeds k^ by using the similarity T=diag(l, m) which has the effect
that

T-l(l+0(z-l))zKzM=(l+0(z-l))zKzMT-l with M^^ ° ].
L 1 wj

Thus we assume from now on that m = 1 in this case.
After all these preparations we now turn to the question of how to transform such an

equation [A] into an equation [B] satisfying the same conditions by a polynomial T(z)
with detT= 1. For each equation we choose a solution as above and are led to
FAZ^Z^^FBZ^Z^C with constant, invertible C. Therefore z^Cz"^ is single-
valued. Since M^ and Mg are Jordan-matrices whose eigenvalues are representatives
modulo 1 with the same ordering, we conclude that MA=MB==M and C commutes
with M. Moreover we learn, by taking determinants on both sides, that trK^trKg
and detC=l. Thus, the diagonal of B_i , denoted by diag(jli, ^), differs from

diag(^i, 1112) only by integers, such that t r A _ i = t r B _ i ; furthermore if M A = | 1

i,m m^J

and ^=^==^ then B _ i = ^ ^ . To a given [A], we call any B_i admissable, if it
|_m ^ij

satisfies the properties just mentioned.
With all these assumptions (normalized A _ i etc.) and notations we formulate

THEOREM 1.—Given A ( z ) = A _ l Z ~ l + 0 ( z ~ 2 ) and an admissable B_ i . Then there
exists a polynomial T (z) with det T = 1 which transforms [A] into some [B] with
B (z) = B _ i z ~1 + 0 (z ~ 2) if and only if there are relatively prime polynomials p (z) and q (z)
satisfying one of the following conditions

Pf2l+qfll=0(z-k-l) if fe=^-^0

or

/V^^-^"'"1) if f e = H i - H i > 0

or
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266 W. B. JURKAT AND H. J. ZWIESLER

^(/21-^22^2^1)+^(/ll-^12^2-^l)=0(z-fc- l)

for some suitable ce(p if k=\i^—^>0 and M=m^l -where deg(p)=fe, p is monic and
deg(^fe.

Proof. — Our previous discussion shows that the existence of T(z) means that the
following equation holds:

FAZ^^I+C^Z-^Z^C

where F^, K^ and Kg are given and C is some constant invertible matrix with det C = 1
which commutes with M. Because of det T = 1 we know that P(z)=T~1 is also a
polynomial, i.e. we may as well discuss the existence of P satisfying
PF^AC^z-^I+^z-1).

(i) m^ ^ m^: Then C is diagonal and commutes with Kg, which leads to the (equivalent)
equation C^PFAZ^-^^c-^I+OCz-^C^+C^z-1). Since C^Pis also a poly-
nomial we can apply Lemma 1 which immediately proves the claim in this case.

/ . . . , , rm, 0 1 , , - re, o(ii) M == ml : Here C = cl where Ci = ± 1 because of det C = 1 and there-
L 1 ^ i_ L^2 ^iJ

fore C-'z-^z-^ cl. . ° 1 with Ke=diag (K,, ^).
_ —c^z"2 kl Ci "J

As above our proof is completed when we apply Lemma 1 to C~1? if ^1=^2
(i. e. ?i =U2) or c! P if ^i > ^2 since then

c^i+^z-^r 'f, °i=i+o(z-1).
LC^Z^ fc! C^J

(iii) M=mil : In this case, C is arbitrary provided detC=l. If C~1 and hence C is

lower triangular we argue almost as in (ii) the only difference being that C = | 1

L^21 ^22 J

withcnC22=l. Therefore Lemma 1 applies to C~1 P if ^==^2 ̂ P- d^gO/Cn, 1/022)?
if Hi ^ ?2-

Otherwise we decompose C=LUV where L is lower triangular with de tL=—l ,

U= | and V= ([I], p. 235). (This is possible since €12 ^0.) Inserting

this into the equation for P we obtain the equivalent equation

PFAZ^V-^U^z-^^I+^z-^z^Lz-^.

Now V~1 =V and hence

[1 —^2-^1-1

z^V^U-^-^V zK

0 1 J

with K=diag(fe2—^i, k^—K^)=disig(—k, k).
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A REDUCTION THEORY OF SECOND ORDER MEROMORPHIC DIFFERENTIAL EQUATIONS, II 267

The right-hand-side is treated as in (ii) and we are led to the equivalent equation

pp. /"-^•"•i/.,^-,)
L/12 /ll-C/^-.J +u(z )

with the polynomial I^L^PV if ?i=^ or P=diag(^\ l^)P\ if ^ + ̂  (L=[/,,]).
For every fixed c we can now apply Lemma 1 which leads to the third of the claimed

possibilities since k^-k^ =^2-^1 in this case. We may exclude pi =^2, i. e. fe=0, since
then Hi==H2=?i=?2 because of the prescribed ordering and thus the possibility for
k =Hi —p4 =0 always applies with p = 1, q = 0.

Q.E.D.
Remark 4. - The fact that detT is 1 and the use of Remark 2 enable us to construct

one possible T under each of the three conditions in the following way (of course T=I
forfe=0):

T= \ p | for fe=Hi-?i >0,
L-q s J

T== for fe=jli-pi > 0
L-r p J

or

T = for k = Hi - U2 > 0, M = m 11 and some suitable (fixed) c e (L
L —s —<?J

where r, 5 are polynomials uniquely determined by ps-rq = 1 and deg (r) < deg (p),
deg (s) < deg (g). We explain the last case since the other cases are easier. From the
proof we learned that T=P~1 =VP~1 L (^ =^) resp. VP~1 diag L (^ ^ jl^).

Now L resp. diag L commute with B_i. We could also use

T=VP-1 diag(-l, 1).

The last factor leads to detT = 1. By Remark 2 we know that P=| q \ and hence
\_r sj

obtain the claimed form. (This T may yield a different [B], but still the same
B_i.) Notice that always deg(T) =k. The proof of Theorem 1 helps us to discuss how
to obtain all possible transformations (not necessarily det T = 1) from a single one.

(i) m^m^: Here T(z) can be replaced by Tdiag(ci, €3) with arbitrary
GI, C2e(p-{0}. This matches with the fact that B(z) is determined by B_i up to
transformations of the form diag(ci, c^) as can be seen from [4], p. 175.

(ii) M= ^ : In this case, we can only use cT(z) if ^ > ̂  resp. T(z)|
L 1 ^J |_d cj

with arbitrary de^ for fe\=^ (c ̂  0). We should recall that the requirement m = l
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268 W. B. JURKAT AND H. J. ZWIESLER

restricts the class of equations, (if we dropped it, any transformation Tdiag(ci, c^)

resp. T \ 1 with c ^ c ^ ^ O would be allowed. ) This proves that here for K^ > K^
id^ c^J /

(resp. K^=K^) meromorphic differential equations with the same coefficient at z~1 are

meromorphically equivalent if and only if they are identical ( resp. related by the constant

transformation ). This allows an extension of Theorem 2 and its consequences
[_d c_|/

in [6]. There we considered equations (NSE's) where the eigenvalues of A _ i were equal
or incongruent modulo 1. We now learn that this assumption can be dropped in the
case that log z occurs in the actual solution. This can be seen by reversing the processes
used in [6] in the following way. First one uses shearing-transformations to change the
formal monodromy matrix by arbitrary integers. Then it is kept fixed and we can
influence the actual monodromy. But this can only be done by polynomial transforma-
tions in 1/z and then Theorem 1 (with variable 1/z) saves the validity of the arguments
in [6].

(iii) M=mi l : This case is easy if K^=K^ i.e. B_i= j I^ I . Then B(z) can only be
transformed by constant similarities if B_ i is to be preserved. Hence T can be replaced
by TC for any invertible C.

I f B . i ^ l ^ i I the situation is much more complicated since now the third possibility
in Theorem 1 may produce transformations for different values of c which happens e. g.
in the following example:

A ̂  r1 °~i -i r ° 2! 2 r1 °1 3A(z)= z l+\ P + ^
LO -i j L- l OJ LO -i j

is transformed into

by

B(,)=P °1z-^P/2 ^w-.n-^ -^/4-i_3
LO - ij L - l -b/2 J L -b -1+^/2 J

T-.r-^/2)^1 -(^2/2)+-(^z/4)-A/2-]-
L b/2 (hz/^-^+l J

Here we see where the problem lies. For B _ i = A _ i there exist transformations which
are not constant due to the third possibility in addition to similarities of the form
diag(c, 1/c) with ceC — {0}. All polynomial transformations which leave B_i unchan-
ged are exactly the factors with which a given T transforming [A] into [B] can be
multiplied from the right.

Theorem 1 also enables us to discuss the least possible change of k^ (a minimal step)
which at the same time changes k^ in the opposite direction. For the moment we
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exclude M=m^ I and start with trying to increase k^ to k^ +fe (fe e N). This depends on
solvmg^/'l2+(?/22=^ (z-fc-l) wlt^ relatively prime polynomials p and q.

Since this prevents q from vanishing identically, we must have /i2 ^ 0 and then
A:=deg(p)=deg(^)—deg(/i2) ls smallest if deg(^)=0, i.e. q is a constant different from
zero. Obviously we can satisfy all conditions for p and q in this case. From the
normalization of the differential equation and the chosen solution we see that
deg(/i2)=deg(ai2)+l ([3], p. 179 ff) which shows that k^ can be increased if and only
if ^12 ^ 0 and the minimal step in this case is —deg^^)--!.

In order to decrease k^ to k^—k ( feef^J) we use an analogous reasoning, but we must

[ n ~1
keep in mind that for M = 1 we require K^ ^ ̂  which forces

1 m ^ J
k ^ (k^—k^/2. Hence k^ can be decreased if and only if a^ ^ 0 for m^ + m^ resp.

0 < —deg(^2i)—l ^ ( k ^ — k ^ / 2 for M== 1 and the minimal step then is
L I m ^ J

-deg(a2i)-l.
For M=mi l the situation is different because the value f e ^ + 1 could now also be

obtained by a transformation of degree k^—k^+1 as the third possibility of Theorem 1
shows. We may still discuss the equations for p and q for minimal values of k but
because of the three possibilities we can in general for k > 1 not be sure whether this is
the least possible change. As before we can increase k^ by —deg(ai2)—l if a^ ^ 0
and decrease it by —deg^i)—! if —deg(a2i)—l ^(k^—k^/2. In the third possible
equation for p and q the value f e = ? i — ^ 2 ls bounded below by the inequality
k ^ (k^—k^/l which is equivalent to k^-}-k=K^ ^ K^=k^—k. Hence the smallest pos-
sible value k produced here is fe=min(—deg(a2i )—l, k^—k^) but only if this is positive
and at least (k^—k^)/2. Now k=k^—k^ would lead to Hi==Hi , 1^2= 1^2 which is no
change at all. Hence we can definitely decrease k^ to k^—deg(a^^)—l if
(k,-k,)/2 ̂  -deg(a2i)-l < k,-k,.

4. Constant transformations and normalizations

After our careful discussion of all possible meromorphic transformations we will now
proceed towards finding simple differential equations in each equivalence class. We
recall that so far we have already narrowed our choice to standard equations of minimal
Poincare-rank whose trace is cz~1 with arbitrary ce(p and where z112 actually occurs in
the exponential part Q(z). The simplest transformations are the constant ones, i.e.
similarities, which we will discuss now in the context of equations [A] as above with
fixed Poincare-rank TEN. As we remarked earlier, we can always obtain

A - , = which will be assumed from now on. Then any allowed similarity must
LO OJ ' '

commute with A^_i and hence, w.l.o.g., has the form since a constant, scalar
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factor (^0) does not change [A]. Such an equation contains 4(r+l) complex para-
meters in the matrices A^(-l ^ k ^ r-1), and we associate a vector in (p4^^ with

it. The matrix c can now be used to influence A _ i which can be brought into
|_0 i j

one of the two forms: either R11 or ^ with a, &e(L b ̂  0.
L a ^J LO HJ

These can never be transformed into one another, and we call the new matrix again

[A]. If A _ i equals [il or \ ^ the similarity c commutes with A_i ,
LO nJ LO IJ

too. Thus we can influcence another coefficient-matrix. (Notice that in this case r > 1
since Ay_^ must not be upper triangular.) For convenience we choose A^_^ because of
a^^ 9^0 since we required the Poincare-rank to be minimal. If we demand that in
this case the diagonal elements of A,. .2 are zero, we find a normalization which is always
possible. The sole effect, which a similarity can now have, is to exchange Hi and ^ if

[1 c~|Hi ^ ^2- Since we are only allowed to use this is possible if and only if

a^^^O, i.e. A _ i is not diagonal, and then the transformation has the form

(P-i -P^/^i -F^g shows that we could obtain differential equations which are
LO 1 J
unique under similarities if we would require Hi ^ ^2 m case ^at A _ i is not
diagonal. Then cl are the only similarities not destroying any of these properties
(cet — {0}). In order to obtain a more natural approach we will not prescribe this
ordering.

In section 2 we saw that it was especially easy to change the formal monodromy
X'. Is this still true in the presence of our normalizations? Obviously zkl still changes
^/ to ̂ —k by an arbitrary integer k. Thus we only have to examine the transformation

T(z)=| ° | which yields ^-1/2. It leads from A (z) = [a^ (z)] to the matrix
LO^I ) Oj

[ 22 2 1 / 2 1 which has all the required properties unless A < = =a^a^z a^-l/z J 4 P P ' LO HJ
with b -^ 0. This last case can be avoided if we undertake a preliminary treatment as
proposed by Theorem 1. To do this we first replace z by 1/z to exchange the points

zero and infinity which changes A(z) to -A(l/z)/z2=B(z) with B _ i =
L 0 -nJ

Then we use and a minimal step to obtain diag(—n+fc, — n — f c ) as coefficient

of z~1 where k = —deg^i) — 1 > 0 [recall the permutation applied to B (z)]. The value
r-2

k can also be directly found from a^(z)= ^ a^z3 where a^i'^^O. This shows
j = k - l

that k ^ r— 1 because of a^i"^ + 0. If we undo the replacement of z by 1/z we see that
an analytic transformation exists changing A _ i to diag (^ — k, \i + k) (k e N) which enables
us to restore all the required properties by using a final similarity. These preparations
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are analytic at infinity and hence do not change ̂  but they show how we can avoid the

case A _ i = . Therefore we can always change ^ by an arbitrary, integral

multiple of 1/2. Because this is done so easily we may assume that we fix one of these
values of ̂  and leave it untouched during the remaining transformation which then must
be a polynomial in z~1. The only assumption we will make about this choice is that if
^-\t^eJ- then actually ^-^=Q (mod 2). Otherwise we are not able to make con-
gruent eigenvalues of A _ i equal by means of polynomial transformations in z~1. If
l^i -1^2 is odd, we change ̂  to ^/-1/2 and thereby obtain an even difference. Then we
can demand w.l.o.g. that trA = 0 since this is guaranteed by the use of ^(^'/^-i^
instead of ^p(z) alone as a preliminary scalar factor. We are now able to define when
we call [A] a normalized standard equation (NSE), viz.

(i) A (z) is in standard form with minimal Poincare-rank re fU
(ii) trA =0.

'"•^-[s;}
(iv) A _ i is either lower triangular or ^ with b -^ 0.

LO ^ij

(v) If A _ i equals ^ or ^il, then diagA,_2=diag(0, 0).

(vi) If |̂  = ^(mod 1) holds then already ̂  = ̂  (mod 2).
[Notice that trA = 0 leads in condition (iv) and (v) immediately to ^i=0.]
These NSE's will turn out to contain the least number of parameters because they

cannot be generated by a subcollection with less parameters. It is in this sense that
they are the simplest representatives. Of course, the above normalizations cause some
dependencies among the 4(r+l) complex parameters of such an equation. The four
coefficients of A,._i are fixed by (iii). Because of condition (ii) the r parameters in the
(2,2)-position depend on the remaining ones and condition (iv) shows that one further
parameter ( i nA_ i ) is zero. Hence an NSE contains 3 r — l free parameters,
i. e. parameters whose domain contains an open set. If we consider only those NSE's
where A _ i has eigenvalues 1^1,^2 that are congruent modulo 1, then t r A = 0 and
condition (vi) force ^i, [i^eZ. Hence they assume only countably many, discrete values
which reduces the number of free parameters to 3r—2. Furthermore we may restrict

our attention to NSE's with A _ i = which have 3r-3 free parameters for b -^ 0

and 3 r — 4 free parameters for b=0 as condition (v) shows. This last case is only
possible if r ^ 2.

Any meromorphic transformation between NSE's is a polynomial in z~1 which can
have the following two effects: exchange of ^ and ^ or leading to |^i+fe, ^-k
(keZ). This suggests to describe its impact by grouping the NSE's in types. To do
that we recall the splitting ^.=m,+fe, with 0 ̂  m, < 1 and fe.eZ (i=l, 2). Besides the
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integers k^, k^ we also introduce two criteria:

(1) Wi > w^, Wi < m^ or mi =W2.

(2) If m^=m^ then either the monodromy M is m ^ I (no logarithm) or 1

|_ w miJ
(m 9^ 0, with logarithm).

There exist exactly four possibilities according to (1) and (2). Now a type is defined
as the set of all NSE's corresponding to a particular choice of k^ k^ and one of the
four possibilities. From this definition one deduces immediately that there are only
countably many types and each NSE belongs to exactly one of them.

Remark 5. — The condition that trA vanishes identically restricts the possible values
of m,, ki (f= 1, 2). First we see that m^ -hm^ eZ, and 0 ̂  m; < 1 leads to the following
possibilities:

m i + m 2 = 0 o m^=m^=0 o k^-}-k^==0

or

m^-\-m^=\ <=> m^^m^ o k^+k^=—\,

since condition (vi) excludes the case m^ =m^= 1/2.
Remark 6. — The discussion in Remark 4 proves that two NSE's within the same

type [where we exclude M==0 in (2)] can only be meromorphically equivalent if they are
similar. But then the normalizations in this section guarantee that they are
identical. Hence any NSE is unique within its type under meromorphic equivalence
(if M 7^ 0). If M==0, the situation is much more intricate. We know already that
besides similarities also transformations of degree Hi—p^ m2iy fdate NSE's within one
type. Therefore uniqueness is only true if we restrict our transformations to similarities
or our NSE's to A _ i = 0 since in the latter case the arguments of [4], p. 175 apply.

For the rest of this section and the next two sections we exclude the case M=0 unless
something different is stated. We want to discuss how the NSE's of one type can be
transfromed into NSE's of another type. For that purpose, we fix the two types, say t^
and t^ Then Remark 6 guarantees that to any NSE in ^ there exists at most one
meromorphically equivalent NSE in ^. We call the totality of all these equivalent pairs
the complete mapping between ^ and (3. These complete mappings are the main objects
of our further investigations because they describe exactly the possible effects of mer-
omorphic transformations, namely exchanging j^ and ^2 or changing them by an integer
(in opposite directions).

5. On the number of parameters

The key to our results lies in the observation that the complete mappings between
types can also be characterized by the way in which they transform the original
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parameters. The occuring functions are not just arbitrary, but show a specifically
piecewise rational behavior. This makes them accessible for considerations which involve
algebraic independence or measure theory. It turns out that the best suited measure for
our purposes is the p-dimensional outer Hausdorff-measure on ^(ne^J, 0 ̂ p ^ n) which

00 00

is defined for a set S g r as Hp(S)=supinf ^ ^(A,) where S g U A, and the dia-
e > 0 1=1 f = i

oo

meters d(A,) < e for all i ([7], p. 53). Moreover S is called Op-finite if S= U S, with

Hp(S,) < oo (for all Q. The sets S which we encounter are not just arbitrary ones, but
rather possess a precise dimension p, by which we mean that S is o -finite with
Hp(S)>0. We want to apply these notions to functions between complex
parameters. Therefore we think of these parameters as split into real and imaginary
part, which yields twice as many real parameters, without actually mentioning it.

In order to define the essential properties of the occuring functions we fix subsets
X, Y, Z (^ 0) of (^ (with fixed Nef^J). Moreover in the sequel, all polynomials and
rational functions belong to Q (x). Then a set S g X is called a P-set in X if there exist
polynomials p^ ...,/?,, . . . , /? , (r, s e ^ o , r ^ s ) such that

S = { x e X : pj(x)=0 for l ^ j ^ r and^(x) ̂  0 for r < k ^ s}.

A function/mapping a subset of X into Y is called a PR-function (/: X -^ Y) if there is
n

a disjoint partition X= U X,(n€^o) of X such that X^, . . ., X^ are non-empty P-sets
1=0

n

in X, /is defined exactly on U X,.=X-Xo and the restrictions f\^: X;^Y have
1=1

(componentwise) rational representations (for 1 ̂  i ̂  n). Two PR-functions /: X -> Y
and g : Y - > Z can be composed to h=gof which is defined on the maximal set
X' g= X-Xo such that /(XQ g= Y-YQ and maps X' into Z. A PR-function /: X -^Y
is called PR-invertible or a PR-transformation if / possesses an inverse g which is also a
PR-function (g: Y-^X). We use the notation g=f~1 and assume w.l.o.g. that the

partitions X= U X, for / and Y= U Y^ for g are always such that n=n/ and
1=0 j=o

/(Xf)=Y;(l ^ i ̂  n) which can be obtained by refining the initial partitions
([6], section 3). Now we list the properties of these functions which we will use later:

(i) The composition of two PR-transformations is a PR-transformation.
(ii) Suppose/is a PR-function (on X) and M g= X is Op-finite resp. satisfies H (M)=0

for some p(0 ^ p ^ 2N). Then /(M) is Op-finite resp. Hp(/(M))==0. Thuŝ , a PR-
transformation preserves the precise dimension of a set.

(hi) If Xi, . . ., XN ((xi, . . ., x^eX-Xo) have transcendency degree t ([8], p. 229)
over a field F with Q g F g (p and/is a PR-transformation on X, then the components
off(^i, . . ., x^) have the same transcendency degree over F.

The proofs of these properties as well as a detailed discussion of these concepts
can be found in [6], section 3 and Lemma 3 and Proposition 4. In the discussion of
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transformations between NSE's we make extensive use of Theorem 1. It relates the
transformation to the coefficient-functions of a solution. Thus, in a first step, we
examine the relation between the differential equations and their solutions F^z^^^
which were introduced in section 3.

LEMMA 2. — Let a meromorphic differential equation [A], normalized as in section 3
(but without requiring that m = 1 for u^ ^ [i^) be given. It has a unique solution of the
form F(z)zKzM with F(z)==I+0 (z~1) if, in case of^—^e^, we further demand that in
/2i the coefficient of z^~^1 is zero.

Proof. - According to [3], p. 191 f we know that [A] has a solution F(z)zKzM

with F(z)=I+0(z~1). Then any solution is of the form F(z)zKzMC with constant,
invertibleC. Hence the question is: How can we use C to obtain another solution
^(z)z^z^ with F(z)=I+0(z-1). From [3], p. 179 ff we learn that our K and M are
uniquely determined by [A]. Hence zMCz~M=z~K¥~l¥zK must be single-valued which
shows that C must commute with M ([4], p. 38). We distinguish three cases:

(i) m i ^ m^: Here C = diag (c^, c^ and therefore F = FC = C + 0 (z ~1). Hence C = I,
i. e. the solution is unique.

(ii) m^==m^ M= 1 , m ^ 0: In this case C = | 1 and thus
_ m rn^J |_^2 ^iJ

[^ c 0
F=F / . From that we deduce C i= l and the coefficient of z^'^i in the

0^2-k! C,_

(2, Imposition/^ can be annihilated. Recall that in this case k^ ^ k^. Hence our extra-
assumption for H i — ^ e ^ leads to €2=0, and again this solution is unique.

(iii) m^=m^ M=m^ I: Here C is arbitrary with det C ̂  0. But

^Z^Z-^F-^I+C^Z-1)
22 J

Cn <-12^

r 7k2~kl rC ^ i Z z €22 J

shows that C==I for k^ =k^ resp. F=F for k^ > k^. Therefore we draw
LC^Z^ k! l j

the same conclusions as in (ii) to see that the prescribed solution is unique.

Q.E.D.

Remark 7. — From [3], p. 179 ff we also see that in this unique solution with ¥=[f^]
00

and fij(z)= ^ fiwz~k the coefficients f^ are rational functions of the coefficients
k=0 oo

0^(1 ̂  w ^ fc+1) where we use the notation A=[aJ, a^(z)= ^ a^z-^ Further-
w = l

more the (2,l)-element in M is, in case of ^-^e^o. a rational function of the
a^(l ^ w ^ H i — j ^ + l ) . Moreover the denominators of these rational functions must
be polynomials in pi, |̂ . In the case that A (z) has only a fixed, finite number of
coefficient-matrices which may not vanish, we see that m and the /-fc) are rational
functions of the parameters in A (z). This applies e. g. to our standard equations if we
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replace z by 1/z. With this information we will now describe more carefully the para-
meter-sets we encounter. The NSE's are defined in terms of equations

( t r A = 0 , A , _ i = h or conditions that certain expressions do not vanish

(^T^ ^ 0 because of the minimal Poincare-rank); furthermore if ^ ^ ̂  then a[~^ is 0
and Hi-^2 is not an odd integer and if ^1-^2=0 we have the choice between
^1) ̂  0, a^^O resp. fl^^O, a^^^O corresponding to the different normalizations
of A_ i . Thus the parameter-set of all NSE's is the finite union of linear manifolds
from which countably many lower-dimensional submanifolds are excluded. The main-
part is determined by:

-.0, A,,,[^J

^ ̂  0, ^1) + 0, a[-^==0, Ui-MZ

and has precise dimension 6r-2. All other submanifolds have smaller precise
dimensions. A type is a subset of all NSE's and includes inequalities of the type
fci ^ Hi <fc i+l forsomegivenfe i (=Zaswel lase .g .mi=Hi-fe i > ^2-^2=^2- Further-
more for m^ =m2=0 we distinguish between the cases in which logz does resp. does not
occur; this is decided by checking whether m + 0 or m=0 and by Remark 7 this results
in checking if a certain polynomial vanishes. This shows that our types are Borel-sets
and hence always measurable. Furthermore we deduce that in many cases our types
have precise dimensions, viz.

6r—2 if m^ ^ m^,
6 r — 4 if Hi =42=0 and logz occurs,
6r-8 if Hi -|Li2=0 and logz does not occur (recall Remark 5).
In the following the sets X, Y contain exactly the parameter vectors of all NSE's

belonging to some given type. We assume again that types with M=0 are excluded so

that in the case of criterion (2) we are always in the situation that M==| |
LW OJ

m ̂  0. In this situation we can now formulate the main result about the structure of
the transformations between types. It will enable us to explain that our NSE's have the
least number of parameters, but it is also the key to a discussion of possible simplifications
of individual equations.

THEOREM 2. — The complete mapping between two given types induces a PR-transforma-
tion between the coefficients of their occuring N S E ' s . This PR-transformation can be
explicitly determined.

Proof: First we should remark that there are many pairs of types between whose NSE's
no transformations at all are possible, namely m^m^ can be never be transformed into
mi==m2 or vice versa. In these cases the claim is trivial since X=Xo where X is the
parameter-set of NSE's of the initial type. Another trivial case is the identity map of
one type onto itself which is a PR-transformation. From now on we exclude these
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cases. The exchange of p-i and \JL^ for |̂  + ̂  is one of the complete mappings since its
occurrence is competely determined by the type because of opposite orderings of m^ and
m^ in criterion (1) and reversed values of fei and k^ the corresponding transformation
was computed in section 4 and leads to a PR-function. Since every meromorphic
transformation possesses an inverse we can analogously construct the transformation
leading from the final type back to the initial one. But then the uniqueness of an NSE
within its type as explained in Remark 5 shows that the two transformations are inverses
of one another thus proving the claim.

The last conclusion is true in all of our cases, hence in the following it suffices to
show that a complete mapping leads to a PR-function. Let us first consider the case
m^ + m^. We want to apply Theorem 1 of which only the first two possibilities can
occur, since M==0 is excluded.

To do this we must replace z by z~1, i. e. consider —A (z'^/z2 instead of A (z). We
call this matrix again A(z). First we have to normalize A _ i so that it matches the

assumptions of Theorem 1. For that purpose we diagonalize it by . The new
|_c 1J

parameters are rational functions of the old ones. If the ordering due to criterion (1)ro 11of the type does not match the requirements of Theorem 1 we permute using

We call the resulting matrix again A (z). The integers k^ k^ of the second type as well
as the ordering of m^, m^ prescribed there enable us to determine the admissable matrix
B_i from which we compute the value j I i — U i = k e Z by which the eigenvalues of A _ i
are changed. Notice that k depends only on the two types. Since k==0 was treated
before we assume w. 1. o. g. that k > 0. We compute the coefficients f^, f^ of the
series f^ (z), f^ (z) in the unique solution of Lemma 2 (0 ^ j ^ 2 k) from A (z) by means
of rational functions as explained in Remark 7. Hence these are also rational functions
of the original parameters. Now we must solve p (z) f^ (z) + q (z) f^ (z) = 0 ( z ' 1 ' ' 1 ) with
relatively prime polynomials p, q satisfying: deg(p)=k,p is monic and deg(g) ^ k. This
is equivalent to solving a system of 2 k +1 equations in the 2 k +1 unknown coefficients
of p and q. We recall from the proof of Lemma 1 that relatively prime here is
equivalent to uniqueness. But this uniqueness can be checked by determining whether the
determinant of the system vanishes or not, which is a polynomial condition leading to a
P-set. In the first case there are no transformations for the corresponding NSE's whereas
in the second case the coefficients ofp and q are determined by Cramer's rule as rational
functions of the parameters. Then the transformation T (z) is completed by computing
polynomials r and 5 as explained in Remark 4 which is again done by solving a system
of 2 k linear equations for the 2 k coefficients of r and 5. Since we already know that r
and s are unique we can use Cramer's rule immediately. Thus T(z) is found and T(z~1)
can be applied to the original A (z) yielding a standard equation B (z) of minimal
Poincare-rank r with the prescribed coefficient-matrix B_i . Thus the parameters of
B (z) are rational functions of the original parameters. The last step is to find an NSE
in the second type which is similar to B (z). For that purpose we first permute B (z) by
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if this is required by the ordering of w^ and m^ in the second type. Then we

use to transform the coefficient-matrix of z~1 to the form . Obviously
La b ] LO OJ

this last step also leads to a PR-function. More precisely, we have seen that the complete
mapping is factored into three steps, of which the first is always possible while the other
two involve a polynomial restriction in each case and the complete mapping requires
both of these restrictions. Moreover we see that the complete mapping is given by a
single rational transformation on the P-set where it is defined. Summarizing the cons-
truction we learn from Remark 2 and Theorem 1 that the above procedure yields the
complete mapping between the two types, and we see that it in fact induces a PR-function
which proves the claim in this case. The case k < 0 is treated analogously. Now we

continue with w^ = m^ == 0, i. e. M = , m ^ 0. The proof proceeds along the same
|_m OJ

line as for m^ ^ m^, and we will only point out the necessary adjustments. For k^ ^ k^
we normalize A _ i as before. Whereas in case k^=k^=0 we face two situations. If

^121) ̂  ^ an^ hence a^^a^'^O we permute A by , otherwise (fl^^O) we

leave A. In all the cases we now have to guarantee that m is 1 before Theorem 1
applies. Hence we compute m which is a rational function of the parameters and use
T=diag(l, m) which leads to w=l. These steps can always be performed. Then
Theorem 1 is applied as before and followed by a similarity which leads to an NSE of
the given type. In this last step we face again the exceptional situation corresponding

to as coefficient-matrix of z~1 if ^=^==0 in the image type. Here it is
L° °J r-o o~|

characterized by b^ ^=0 since B _ i = = . Thus we can use the transformation

r o i ~ i r 1 <n. r ^ ' ^ ^ r.in this case where c is used to adjust B-_2.
ib^ O J L O i j J r 2

With these supplements the previous arguments carry over to this case if we notice
that ^=^2=0 in the image type only if k^ ^ k^ in the original type since k==0 was
treated before and is thus excluded. We see again that the complete mapping is given
by a rational transformation on a single P-set unless k^=k^==0 either in the preimage
type or in the image type. To complete the proof we merely observe that each of the
steps above allows the explicit computations of all necessary quantities.

Q.E.D.
Theorem 2 enables us to decide whether a given NSE of one type can be meromorphi-

cally transformed into another type by checking certain polynomial equations. If it is
possible the new equation is unique and can be explicitly computed.

Furthermore the proof shows that the coefficients of the transformation-matrix T are
given as PR-functions of the original parameters. [We remind the reader of the fact
that the degree of the polynomial T(z~1) is given by the two types as Remark 4 tells.]
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COROLLARY 1. — Let a collection of NSE9 s be given whose parameters form a set which
is (jp-finite (resp. with Hp=0 resp. with precise dimension p) for some
p(0 ^ p < 6r—2). Then the parameters of all meromorphically equivalent N S E ' s form a
set which is still a p-finite (resp. with H —0 resp. with precise dimension p.).

Proof. — All the properties under consideration are o-additive. Hence we can restrict
our attention to only those initial NSE's which belong to a fixed type and consider all
NSE's which are meromorphically equivalent to them and lie in another fixed type. By
Theorem 2 these two types are connected by a PR-transformation whose properties
assure exactly what we want to prove.

Q.E.D.
This Corollary is the exact formulation of the statement that our NSE's are simplest

possible. Their parameters form a set of precise dimension 6 r — 2 which cannot be
obtained by meromorphic equivalence from a subcollection with a parameter-set S that
satisfies He^-2(S)=0. The same is true if we restrict ourselves to equations with

M= L m + 0, whose parameter-set has precise dimension 6 r — 4 and which can
|_m Oj

also not be generated from NSE's with a smaller set of parameters.
Although Theorem 2 clarifies the structure of the complete mapping between two types

as a PR-transformation of the corresponding coefficients this may still lead to the
apprehension that the involved functions are very complicated. In the following we will
demonstrate that actually one rational function suffices to transform almost all NSE's
of one type into the other if such a transformation is possible at all. It is only on the
remaining nullset that other functions occur.

COROLLARY 2. — Let two types be given such that both satisfy either m^^m^ or

M = (m 7^ 0). Then there exists a polynomial p over ~L such that:
|_m OJ

(i) Any NSE of the first type can certainly be meromorphically transformed into one of
the second type if p does not vanish when the coefficients of the original NSE are
inserted. And then the new coefficients are rational functions of the original ones.

(ii) All N S E ' s of the first type for which p vanishes yield a parameter-set which is o^r-^'
finite ifm^ ^ m^ resp. a^^^-finite ifm^=m^=0.

Proof. — We want to take a closer look at the proof of Theorem 2. First we recall
that the assumptions for the two types do not immediately make a transformation
impossible since they assure that f c ^ + k ^ stays constant (see Remark 5). The cases of
the identity (p = 1) or the exchange of Hi and u^ if they are different (p=a(nl)) obviously
satisfy the claim. Hence they are excluded from now on. In the proof of Theorem 2
the transformation between the two types was constructed in four steps. In the first
A _ i was normalized according to the requirements of Theorem 1. Then the coefficients
f^ and m were computed. Afterwards the polynomials /?, q, r and s were obtained
from Theorem 1 and Remark 4. And finally the resulting equation was normalized
corresponding to the second type. We show that each of these steps is executed by
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applying one (componentwise) rational function to the coefficients of the differential
equation if one polynomial does not vanish. The normalization of A _ i is always

possible and can be carried out by one rational function if A _ i = is

avoided. This is guaranteed when we require a^ ̂  0.
Then the f^ and m are rational functions of the old coefficients. To find p, q, r and

s we had to solve two systems of linear equations which was possible if the determinant
D of the first was different from zero. Then Cramer's rule gave the needed rational

functions. Finally we permuted by if required by the second type and

tried to normalize the obtained matrix B(z) which is done by applying

[-b^lb^ l/^] to come up with the leading coefficient [°Q i] if

b^^ + 0. Hence we consider p = a^ D b^1) as the desired polynomial. Part (i) is
thus proved, and it remains to show that also (ii) holds. First we discuss this for types
with mi +m^ To any type with diag(A_i)=diag(|^, -^) we add all equations of

the form ^ - i + . . J ^ ^-i with deg(a^)=r-2 and vanishing
L I OJ |_ 0 -HiJ

trace. Their parameter vectors form the sets X, Y. Notice that the additional equations
occur only if r ^ 2 and are not equivalent to any of the NSE's in the given type. With
the equations of an initial set X we want to perform a minimal step leading to |̂  +1 resp.

Hi -1. This is done by diagonalizing A _ ^ using _ . Then the possibility
L4i VC^i) I j

to change ^ as required depends on either a^\ + 0 or
^-a^a^/^-a^^a^)2/^^) ̂  0 (see section 3). These two polynomials vanish
on a6^_4-finite P-sets. If we avoid the corresponding set we can change ^4 as desired
and normalize the resulting equation to obtain parameter-vectors in a set Y. The inverse
operation is again a minimal step and thus we find that we deal with a PR-transformation
( f ' ' X -> Y) such that/resp. f~1 are defined everywhere but on o^^-finite sets XQ ii X
resp. YQ g= Y. In X — X o and Y—Y() we consider the sets formed by the additional
equations which are not NSE's. Together with their images under/resp. / -1 they form
(76^-4-finite sets. Hence if we restrict / to the NSE's in X and Y, we see that the
domain of/and its image-set fill up X and Y up to (7(,,._4-finite sets. The same is true
if we simply want to exchange ̂  and j^ which depends on a^ ^ 0. This shows that
the complete mapping between two types (with m^^m^) maps almost all NSE's of the
first type onto almost all equations of the second type (the exceptional sets beeing a^r-4.
finite) if K^=k^ ± 1 or ^2=^1 ± 1 (minimal steps). But then it holds in general since
every complete mapping includes a multiple application of minimal steps. What must

be changed if M= , m ^ O? First we consider fc< =fe. =0. Here we include the
Lm OJ

equations with ^ z-i + . . . + ° and a^ ^ 0, a^ ̂  0 and vanishing
L I °J L^21 °J

trace into X. Then the minimal step depends on a^ ^ 0. Since the original set has
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precise dimension 6r—4, the same now holds for its image. But then we can use the
above reasoning to deduce the same consequences for the complete mapping between

two types with M== , m ^ 0, where only 6 r — 4 is replaced by
LW OJ

6r—6. Furthermore we find inductively that every type has a parameter-set of precise
dimension 6r—4.

But then p satisfies also part (ii) since a^ ^ 0 excludes only a o^y_^- (resp. o^-e-)
finite set, D ^ 0 is in this case necessary according to Theorem 1 and b^^ ^ 0 excludes
the possibility of a final equation where the coefficient of z~1 is upper triangular, again
belonging to a set which is <j^r_^-(Tesp. G^y_^-) finite.

Q.E.D.

Remark 8. — This proof also shows that to every type there belongs a parameter-set

of precise dimension 6 r — 2 for m^ ^ m^ resp. 6 r — 4 for M== (m ^ 0); especially
|_m OJ

the rational expression for m in the coefficients of the differential equation is not only
not identically zero on this set, but its zeros can constitute at most a set which is cT^-e-
finite. It follows:

The complete mapping between two types is either empty or takes almost all equations
of the first type onto almost all equations of the second type (in the sense that for r= 1
there are no exceptions and for r > 1 the exceptional sets are o^r-^' T^?' ^6r-6~fml^e

as can be seen in the proof).
We already pointed out that Corollary 1 can be applied to various situations. One

of these will be discussed in the following. In the theory of meromorphic differential
equations the equivalence classes under meromorphic equivalence are characterized by
invariants, i. e. quantities which are associated to the differential equations but remain
unchanged if the equations are transformed ([4], p. 124). Some of these are easily
identified in the equation whereas others (e. g. connection matrices) have a rather difficult
relation to the equation. Therefore it is reasonable to fix those invariants which are easy
to compute and investigate the restricted PR-transformations. This view is supported by
the fact that the fixed invariants give rise to invariant relations between our parameters
which introduce a certain structure into these PR-transformations. These invariants are
the equivalence-classes modulo 1 of the actual monodromy (i.e. m^, m^) as well as the
formal invariant Q (z) ([4], p. 124). Notice that ̂  = 1/4 because of the condition tr A = 0;
but even if we relax this to trA =0 (z~1) we can obtain ^/ = m^ +m^ (mod 1). How is
Q(z) related to A(z)? We want to explain that under the conditions, that trA = 0 and

[A] has minimal Poincare-rank r ^ l with A ^ _ i = , we can compute

Q"(z)=diag(^(z), —^(z)) exactly as the leading part of the eigenvalues of
A(z). Because of trA = 0 these eigenvalues are X(z) resp. —Mz), and we know that
det A = — ^,2 (z). On the other hand A (z) can be computed as the logarithmic derivative
of the formal solution F(z)z174 diag(l, z"172) U eQ(z) of Lemma 1 which yields
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—(L-^ ̂ F-^-
We recall that deg(q/)==r-3/2 and therefore obtain

de,A-d..([;/<,̂ , J^'J+Ofe-'))- -(,')'+0(/-.).

Hence we find ^2 ==(^)2 (1 + 0 (z^)) and, if we choose ^ with the same leading coefficient
as^,

?l=^(l+0 (7-^=^+0 (Z-3/2)

or

Qf+^z-3/2))2^^^^.

The last equation suggests to replace a^^ by ^?_i where we use the notation
r-l

^00= Z ^^-1/2. We require (?,-i > 0 (lexicographically) and notice that all results
fc=0

so far remain correct since ^_i is an invariant and therefore unchanged during our
transformation. Then the equation between q' and the fly shows that if we replace the
parameters a^\ by ^+i(-l ^ k ^ r-3) the two parameter-sets are related by a PR-
transformation (actually rational transformation) where the denominators are powers of
<^_i. If we fix m^ ^= m^ and q^ . . ., q^_^ the permitted NSE's are determined from
a^ (which contains exactly r — 1 free complex parameters and one free integer) and a^
(which contains exactly r— 1 further free complex parameters).

If M = , m ̂  0 we first consider only NSE's with A _. = | ° .
L^ Oj |_. oj

If (?o, . . ., ^-i are fixed these NSE's are determined from a^ (which contains exactly
r— 1 free complex parameters) and a^ whose coefficients are restricted by the requirement
that a^^O. When we investigate the equation (q/+0(zr~3/2))2=a2n+a^cl2l
we find that ^1) occurs there for the first time in the coefficient of z^2 which
is also true for a^. Thus a^ ^0 is equivalent to the fact that a^ avoids a certain

value which is determined by a polynomial in ^(0 ^ k ^ r-1), a^\ (0 ^ k ^ r-2) and
a^(l ^ f e ^ r - 2 ) divided by ^?_i. Thus a^ are also free complex parameters for
0 ^ k ^ r-2 besides this condition for a^. Thus we face a parameter set which does
not satisfy H4,_4==0. On the other hand for given q' and fe^eZ, a^ is completely

determined by a^, a ̂  which contain only 2 r — 2 complex parameters (even if

A _ i = I since then deg a^ < r — 2 ). Thus we find:

The NSE's mth fixed values ofm^ m^ q^ . . ., q,_^ and M^m^l have a parameter-
set in (l:4^1) of precise dimension 4r-4 regardless of whether m^=m^ or
Wi 7^ m^ These numbers can therefore not be reduced by meromorphic transformations.
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After these measure-theoretic considerations we also want to look at a single NSE and
ask whether we can simplify it, e. g. by transforming it into an NSE with the maximal
number of zero-coefficients. In general this can only be found out by checking whether
countably many polynomials vanish or not when we insert the coefficients of our
NSE. Nevertheless we can replace this in many cases by computing the transcendency
degree ([8], p. 229) of the coefficients.

COROLLARY 3. — Suppose that [A] and [B] are meromorphically equivalent NSE's mth
M^m^I. // the coefficients of A(z) have transcendency degree t over a field
F(Q ^= F ̂  (p), then the coefficients o/B(z) have the same transcendency degree over F.

This follows immediately from the general properties of PR-transformation (rational
coefficients!).

This Corollary can be applied in many concrete situations with F=Q or ¥=Q(m^ m^)
or F=Q(mi, m^ <?,-i, . . ., ^o)-

Remark 9. — At this point we can eliminate the requirement that in the case
of eigenvalues H, —p. of A _ i which are congruent modulo 1 their difference
should in fact be even. The case of an odd difference can be adjusted by
r 0 ^~\ ( [~0 fe~| \. 2 - 1 / 2 . ( Notice that A _ i = cannot occur in this case. j Of course,
\Jk z 0 _ 1 \ L ^ O J /
this transformation is not meromorphic but it induces a rational transformation between
the coefficients which enables us to extend all measure-theoretic results to this case as
well as the considerations concerning the transcendency degree. Thus Theorem 2 and

" |~0 0~|"its Corollaries remain true if we replace the assumption M== by the two
|_m Oj

possibilities M = or M = with m ^ 0.
|_m Oj im 1 / 2 ]

6. Representatives

All of our results on the irreducibility of NSE's were obtained when M==0 was
excluded. The reason for this can be found in the observation that NSE's with M==0
have 3 r — 4 free, complex parameters if k^=k^ but seem to have 3 r — 3 complex para-
meters for fei ^ k^ if we take the polynomial equation m =0 into account. This suggests
that these NSE's can be reduced if we can attain k^=k^ by meromorphic trans-
formations. Unfortunately this is not always possible as we will explain, but it gives
the idea at least to minimize 1pi —^ |. This is another moment where our discussion of
the minimal steps is fruitful. They enable us to decide whether or not | Hi —^2 I can be
decreased. For that purpose we recall that ̂  = - ̂  e Z holds and we only deal with
the case Hi ^ 0. To clarify our strategy we start with the easiest case ^4 < ̂  1- G- ^i < 0.
and A _ i diagonal. Then we can apply Theorem 1 immediately after we replaced z by
z~1. There the first and third possibility match our situation since | ^1—^21 should
become smaller. The first condition leads to a minimal value of k = —deg (a^ (z~1)) +1
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but this is only possible if H i = = H i + ^ ^ 0 due to the imposed ordering j^ ^ ̂ , i.e. if
—deg(a^^(z~l))+l^—[i^ Otherwise we can reduce | H i — H 2 | = — 2 ^ only by using
the third possibility. Again we pay attention to the fact that we want
l^i"^! < | H i — H 2 | - Since in the present case fe=—deg^^z"1))-!-! > — U i , this is
possible if and only if k < Hi ~H21 (see our discussion at the end of section 3).

Altogether this proves that | H i ~ H 2 | can be decreased if and only if
—deg^^z'^+l < | Hi—1^21- The other cases are now easily reduced to the one
which we discussed. If A _ i is not diagonal, but still lower triangular because of our

normalizations, we first diagonalize it using and then apply the above
|_4i V^Hi 1J

result with a^i (z) replaced by

a^(z)-a^(z)a^/^-a^(z)(a^)2/(4^).

In the case Hi > H2 we diagonalize A _ i and then permute A by which leads to

the above situation with a^ replaced by a^. To summarize these results we introduce
the function

^^=Ia2l(z)-^l^)^-ll)/Hl-^2^)(^"ll))2/(4^) It Hi <H2

1 a^(z) if H i ^ H 2

Then | Hi "H2 | ls wfmmaJ if and only if

-deg^z-^+l^l^-^l.

The assumption that [A] is an NSE and hence not diagonal enables us to find a bound
for the minimal | Hi ~ H21? namely [ ̂  — ̂  | ̂  r? ^ Hi < H2 holds and A _ ^ is diagonal we
even know that | Hi — H 2 1 <r' Since Hi? H2 e^ we learn that r ^ 2 is necessary since this
follows immediately from our inequalities if H 2 = ~ H l ^ Hi^ 3Ln(^ f01 Hi=0 we know
already that logz must occur if r= 1.

Let us now discuss this minimal situation. We know that a non-trivial similarity can
only be applied to it if A _ i is not diagonal and then results in an exchange of Hi and
H2- In view of the definition of h (z) this suggests that \ve require Hi > H2 whenever A _ i
is not diagonal which simplifies h(z) to a^(z) in the case of Hi < H2- Then
A (z) is unique under similarities, and we can only influence it using the third possibility
in Theorem 1 with 0 < f e = | H i — H 2 1 - Up to constant factors this is done by the

transformation T(z)= with p(z)= ̂  p ^ z ~ l ( p k ^ 0). We apply it to
1_0 1 J 1=0

A(z)=[a,,] if Hi<H2 and obtain the matrix \a^-a^ ^^p-^-a^
L ^21 -^11+^21^ J

(recall a22=~all)' We already know that h(z)=a^^(z) satisfies
—deg^z'^+l ^ [ u ^ — H 2 | = ^ but it can even be seen that this must be a strict
inequality because otherwise we apply the shearing diag(l, z^) and come up with a
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coefficient of z~1 consisting of one single Jordan-block. This would be a case where
logz occurs in contradiction to our assumption that M=m^L Hence
— deg (021 (z ~1)) +1 > k. From that we learn that we can choose p^ arbitrary and always
compute the other coefficients from the (1,2)-position recursively such that the resulting
equation is an NSE satisfying all of our assumptions (pk=0 can be included because it
leads to p = 0). This suggests to use p^ to annihilate the coefficient of z5 in On (z) where
s= —k—deg(a^^(z~1)) = 0. Thus the NSE with minimal value l ^ i — ^ l ls unique if we
furthermore require that a^\=0 with s=-\^-[i^\-deg(a^(z~1)). This could even be

done if Hi -H2=° or if A-! = , b + 0. The case Hi > ̂  is treated analogously

by T== where p has no constant term and shows that [A] 15 unique ifa^\ =0 with
LP IJ

s=-|Hi-H2|-deg(ai2(z-1)).
These normalizations do not only lead to a unique representative in each equivalence

class but also to an NSE without an unnecessarily large number of free parameters. This
suggests a similar procedure for the other cases. There we also want a prescribed

ordering of HI and H2 as well as minimality of l ^ i — p ^ l - If M= , m ^ 0, we
\_m Oj

treat the equation as before, but then we can only use the second condition of
Theorem 1 which allows to influence | H i — 1 ^ 2 1 by fe=—deg^z'^+l if
k ^ | Hi |=| Hi—H21/2. Thus in this case | H i — H 2 | is minimal if and only if

- deg (h (z ~1)) +1 > | Hi -1^21/2, with an exception if A _ i = , b + 0. To include

this case also we simply permute A by . Finally, consider m^ ^ m^ Here

minimizing | Hi —H2 I ls equivalent to minimizing | Re(Hi —^2) I -
Again we want to apply Theorem 1 and prepare (only for convenience) the equation

as we did above with Re(Hi) ^ Re^) [replace ̂  be Re(^.)]. Then the second condition
of Theorem 1 can be used and yields a minimal change of n^ to [i^+k with
k=-deg(h(z~l))+L This is only a progress if Re(|Lii)+k < Red^). Hence l^i-^l
is minimal if and only if -deg^z'^+l > [Red^-^)!. If equality holds we have
two different NSE's with minimal [Re^-^) | ̂  1 which can be meromorphically
transformed into one another with a minimal step. An application of a minimal step

p z) [if Re (pi) < Re(H2)] resp. | ° [if Re(^) > Re^)] shows that the
LO 1 J [ _ p ( z ) I j

p | [if Re (Hi) < Re(H2)] resp. [if Re(Hi) > Re ̂ 2)] shows that the
0 1 J ip(z) I j

values Hi of the two equations differ by the sign of Im(Hi) (even if we prescribe
Hi ^ H2 when A _ i is not diagonal). Hence we can guarantee uniqueness if we require
Im(Hi) <0. Furthermore, note that in this case Re (^^2)^ ^Ids and therefore
Re (Hi) is not a free parameter. Hence these equations belong to a subset of precise
dimension 6 r — 3. We can summarize these observations in a definition of "meromorphic
representatives" as follows (compare with the definition of NSE's in section 4)

(i)-(ii) remain unchanged;
(iii") A _ i is lower triangular;
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(iv') A ^ _ i = or A ^ _ i = (but the second case may occur only if
0 0 LI 0_| \ '

--[: :]^}
(v') Hi ^ U2 when A _ i is not diagonal; and Hi—jL^ ls not an °dd integer;

(vi') |Re(^l—^2) |^—deg(/ l (z - l ) )+l unless M== , m + 0, in which case
[_m OJ

|Re(^-^)| < 2(-deg(/l(z- l))+l) with

(a^ if Re(^)^Re(^)
n = = ^

[ a^i otherwise

(vii') If M=0 or A ^ _ i = , then the coefficient a^\ is zero where

5=-|(Hi-H2)|-deg(/i(z-1));

(viii') If Hi ^ ̂ (mod 1) and [Re(Hi-n2) |=-degC/i^'^+l then Im(ui) < 0.

We then know that these "representatives" are unique under meromorphic equivalence.

Thus we have found "natural" representatives which can easily be identified and such
that every NSE can be transformed by an explicit meromorphic transformation into
one of them. We remark that the number of possible types corresponding to these
representatives is 0 (r).
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