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THE SOCLE FILTRATION OF A VERMA MODULE

By RonNaLD S. IRVING

1. Introduction

1.1. In this paper two fundamental results on socle filtrations of Verma modules are
proved. Given a finite length module M, call a filtration of M a Loewy filtration if the
successive quotients, or layers, are semisimple and there is no such filtration of shorter
length. The length of such a filtration is called the Loewy length of M. Among such
filtrations is one which contains any other term-by-term, the socle filtration, and one
which is contained in any other, the radical filtration. The first main result of this paper
is that the socle filtration of a Verma module is the unique Loewy filtration; in other
words, the socle and radical filtrations on a Verma module coincide. From this the
second main result easily follows: a description of the simple modules in the layers of
the socle filtration as coefficients of Kazhdan-Lusztig polynomials. This second result
may be viewed as a strong form of the Kazhdan-Lusztig conjecture, which follows as a
special case by setting g=1 in the Kazhdan-Lusztig polynomials. In fact, as I will
explain further below, the proofs of the two results assume the validity of the Kazhdan-
Lusztig conjecture in the equivalent form known as Vogan’s conjecture. At the moment,
published proofs of the Kazhdan-Lusztig conjecture are available in the integral case,
due to Brylinski-Kashiwara and Beilinson-Bernstein ([3], [6]). In the non-integral case,
the proof depends on unpublished results of Beilinson and Bernstein and results of
Lusztig ([2], [19]). (Vogan’s conjecture is discussed in [20], [21], the equivalence to the
Kazhdan-Lusztig conjecture being stated and proved in part in [21]. A proof of the
equivalence, applicable more generally to generalized Verma modules, is in [14]. It also
follows from the Decomposition Theorem of [4], in the integral case.)

Versions of both results have been proved through the use of auxiliary filtrations and
deep geometric results. Jantzen defined a filtration on a Verma module called the
Jantzen filtration and asked if the filtrations on two different Verma modules are
compatible in a suitable sense. Assuming this question (the Jantzen conjecture) has a
positive answer, Gabber and Joseph proved that Jantzen filtrations are Loewy filtrations
and that coefficients of Kazhdan-Lusztig polynomials count multiplicities of composition
factors in layers of the Jantzen filtration ([10], 4.9). Also Barbasch and I independently
used this work to deduce that the socle and Jantzen filtrations coincide ([1], [13]). (The
Gabber-Joseph result was also conjectured by Deodhar and Gelfand-MacPherson
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48 R. S. IRVING

([9], [11]).) However, no published proof of Jantzen’s conjecture has appeared yet, and
the proof announced by A. Beilinson and J. Bernstein [2] requires geometric results
beyond those necessary to prove the Kazhdan-Lusztig conjecture. In an earlier version
of this paper, I constructed another auxiliary Loewy filtration, using antidominant
projectives in the category O; using Vogan’s conjecture, I proved that this filtration is
the socle filtration and that the analogue of the second result holds for it.

Fundamental to the geometric approach which now underlies much of representation
theory is the construction due to Gabber of weight filtrations on Verma modules. These
filtrations turn out to be Loewy filtrations, for which the analogue of the second main
result holds ([2], [4] see also [8]). A step in the proof by Beilinson and Bernstein of the
Jantzen conjecture is the result that the weight and Jantzen filtrations on a Verma module
coincide [3]. From this follows both the Gabber-Joseph result on the Jantzen filtration
and the coincidence of socle and weight filtrations. In the earlier version of this paper,
I also proved that the socle and weight filtrations coincide. Since the earlier version
was written, I learned from L. Casian that he has proved a general result about weight
filtrations which implies that the weight filtration on a Verma module coincides with
both its radical and socle filtrations [7]. In addition, Beilinson and Ginsburg have
announced results which have as a corollary that the weight and radical filtrations
coincide [5]. Thus, the first main result of this paper, the uniqueness of Loewy filtrations,
is also a consequence of the construction and analysis, by geometric methods, of weight
filtrations.

The proof in this paper that Loewy filtrations on a Verma module are unique, in
contrast, is an elementary induction argument, and the second main result also follows
in an elementary manner. As mentioned, the proofs still depend on geometry in their
dependence on the validity of the Kazhdan-Lusztig conjecture, but the actual proofs
make no use of geometric methods or of auxiliary objects whose definition depends on
geometry. Thus, if a more elementary proof of the Kazhdan-Lusztig conjecture were to
become available, the results of the paper would still follow as a consequence. Put
another way, the main theorems should be regarded as saying not that there is a unique
Loewy filtration on a Verma module, with multiplicities counted by Kazhdan-Lusztig
polynomials, but rather that this detailed structural information on a Verma module
follows merely from the knowledge of its composition factor multiplicities embodied in
the Kazhdan-Lusztig conjecture. It may not be surprising that such additional informa-
tion should be available, since the Kazhdan-Lusztig conjecture provides not just a list of
multiplicities in Verma modules but an algorithm for calculating them. Thus, one might
anticipate that buried within the algorithm lies stronger information, and the main results
may be regarded as a partial uncovering of this information.

1.2. In order to state some of the results more precisely, let me introduce the nota-
tion to be used in this paper. Given a module M of finite length, its Loewy length
will be denoted by [(M). Its socle (filtration will be denoted by
Ocsoc!Mcsoc?Mc ... csoc!™MM=M. The quotient soc'M/soc’"'M will be
denoted soc; M and called the i-th layer. The module soc! M is usually called the socle
of M and denoted soc M. Similarly, we will denote the radical filtration by 0=rad"™
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FILTRATIONS OF VERMA MODULES 49

Mc ... crad'M crad® M=M, and its layer rad’ M/rad’** M by rad; M. The module
rad! M is usually called the radical of M and denoted rad M. Given a submodule N of
M, it is well-known and easy to see that soc' N=N (M soc'M, and that rad’(M/N) is the
image of rad' M under the canonical surjection of M onto M/N. A less standard notion,
but one which will be convenient for us, is that of the i-th capital of M: it is the
quotient M/rad’M, and will be denoted cap’M. We may regard cap'M as the largest
homomorphic image of M of Loewy length i and soc’M as the largest submodule of M
of Loewy length i. The first capital cap’ M is sometimes called the top of M or the
head. In this paper it will simply be called the cap of M. A simple module L will be
said to be rigidly placed in M if (soc' M: L)=(rad"™ " M: L) for all . The module M
is rigid if every simple module occurring as a composition factor is rigidly placed. Thus
M is rigid if and only if its socle and radical filtrations coincide.

A complex, semisimple Lie algebra g is fixed throughout, with Cartan subalgebra |
and Borel subalgebra b containing . The choice of §) determines a root system R with
Weyl group #°, and b determines a set of simple roots B. The half-sum of the positive
roots is p, and a dot action of #" on b* is defined as usual by w.A=w(A+p)—p. An
element A of h* is antidominant if s,.A < A for all roots o, where s, is the reflection
about a. The root system R, is {&eR: 2(A, o)/(2, ®) €Z} and B, is the unique base of
R, in R, N R*. The subgroup #", of # is generated by {s,: o€ B,} and w, is its longest
element. The Bruhat ordering < is defined on %", with e the unique minimal element
and w, the unique maximal element.

Let A be a fixed antidominant, regular weight throughout the paper; ©* is the block of
the category ¢ whose simple modules, up to isomorphism, are {L(w.A): we#,}. We
denote by L (p) the simple top of the Verma module M (p) of highest weight p, and P(p)
is its projective cover in ¢. The Kazhdan-Lusztig polynomials P, , (q) are defined with
respect to the Coxeter group #7,, for any y, we #7,, by the dual version of formula 2.2a
in [16]. Explicitly, if y < ws, and there is an a€B, with ys, < y and ws, > w, then

P, e, @=P,, ,(@+4P, ,(@— Y n(z w)qt™1OTV2P - (g),

zeWy,

where p(z, w) is the coefficient of ¢ ™ ~'@~D2in P, (q).

The basic assumption used throughout this paper is that all the simple modules in ¢*
satisfy Vogan’s conjecture. The conjecture is formulated in terms of the functor 6, of
translation across the a-wall, which is defined on @* for each « in B,. For more on the
properties of the functor 6,, some of which are reviewed presently, one may turn to
[10], [12], [13], [20]. Let us recall how 6, acts on a simple module L (w. A), for we#",. If
ws, < w, then 6, L(w.A)=0. Alternatively, if ws, > w, then 6, L (w. ) has a simple socle
L(w.\), a distinct simple cap L(w.A), and an intermediate subquotient
U,L(w.A). Thus, to be precise, U,L (w.A)=rad 6, L (w.A)/socO,L(w.)A). The module
U,L(w.A) is annihilated by 0,. Vogan’s conjecture for ¢* states that U, ,L(w.) is
semisimple for all a«eB, and all we #", for which ws, > w. We extend U, to arbitrary
semisimple modules of O* by having it commute with direct sums and setting
U,L(w.A)=0if ws, < w.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



50 R. S. IRVING

The effect of 6, on Verma modules is more easily' described. Given w < ws,, the
module 6, M (w.2) is a non-trivial extension of M (ws,.A) by M (w.}), and it coincides
with 8, M (ws,.2). In fact, this extension is the unique non-trivial one.

An equivalent way to state Vogan’s conjecture is that for a semisimple module M in
O*, the module 6, M has Loewy length at most 3. This can be extended to the statement
that for any M in O* the Loewy length of 6, M is at most l/(M)+2 [13]. It follows
from this extension that for any w in #,, the Loewy length of M (w. ) is exactly I (w) +1,
and the self-dual projective P(A) has Loewy length 21(w,)+ 1, where w, is the longest
element of #7,. In fact it was proved in [13] that Vogan’s conjecture holds for O if
and only if P(A) has Loewy length 21(w,)+ 1.

Another property of the category (¢* which will be used is the existence of a duality
functor D on it which fixes the simple modules. Given an indecomposable projective
P(w.}) in 0%, the dual module DP(w.}) is the injective envelope of L (w.)) and will be
denoted by I (w. ).

Let us recall one more notion: a module M in O* has a Verma flag if it has a filtration
whose successive quotients are Verma modules. For any w in #7,, the projective module
P(w.)\) has a Verma flag; the number of times [P(w.A): M(y.)\)] that M (y. ) appears
as a quotient of successive modules in the flag (up to isomorphism) is independent of
the chosen Verma flag. BGG reciprocity states that this number [P(w.2): M (y.A)]
equals the composition factor multiplicity (M (y.A): L(w.%)). (A proof of BGG reci-
procity will be given in 4.2 as part of a more general result.) It follows easily from this
that [P(A): M(y.M)]=1 for all y in #/,.

Given y and w in #/,, it is easily seen that any extension of M (w.\A) by M (y.A) splits
unless y < w. As a result, for any ze #",, the projective module P(z.\) has a Verma
flag 0=MycM,c... cM,=P(z.2) with the following property: let
M/M;_; =M(w;. M), if w; < w,, then i > j.

Aside from basic facts on 0, the proofs of the theorems in this paper depend essentially
only on the extended version of Vogan’s conjecture mentioned above. Thus, in order
to make the paper more self-contained, a proof that the extension follows from Vogan’s
conjecture is provided in an appendix. This proof has the benefit of being much shorter
and to the point than the original proof of [13].

1.3. The results of this paper can now be stated more precisely. Again, it is assumed
throughout that A is a fixed antidominant, regular weight and that Vogan’s conjecture
holds for the simple modules in the block O*. These hypotheses are re-stated in the two
main theorems for clarity.

THEOREM 1. — Let )\ be an antidominant, regular weight for which O* satisfies Vogan’s
conjecture. For any w in #',, the Verma module M (w. 1) is rigid.

We will be able to derive easily from this a compatibility condition for a pair of Verma
modules M (w. ) and M (ws,. L) which can be stated as follows:

CoROLLARY 1. — Let y and w be elements of #", with y <w and let o in B, satisfy
ws, > w.
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FILTRATIONS OF VERMA MODULES 51

(i) If ys, >y, then (soc; M (ws,.\): L(y.A))=(soc;M(w.7\): L(y.))).

(ii) If ys, <, then

(U,soc;M(w.2): L(y.N)=(soc;+; M(ws,.A): L(y.\)+(soc;_; M(w.A): L(y.27)).
The recursion relations are precisely the ones obtained by Gabber and Joseph for the

Jantzen filtration [10], and one can now follow their proof to obtain the second main
result:

THEOREM 2. — Let A be an antidominant, regular weight for which O* satisfies Vogan’s
conjecture. Let y, w be elements of W', withy <w. Then

Pw;,w, wly(q)=2(socl(y)+1+2jM(w')“): L(y. V)¢
J

In view of Theorem 1, this could be rewritten as

P, .. w”(‘I):Z(radt(w)—t(y)—sz(W-X): L(y.N) ¢
J

Again following Gabber and Joseph, we can obtain as a consequence that the socle
filtration of a Verma module satisfies the Jantzen sum formula, which Jantzen proved
for the Jantzen filtration:

COROLLARY 2. — Given y, w in #",, we have
1(w)
(soMW.A): L(p.A)= Y (M(s,w.2): L(y.%).
=1

aeRt
Sqw < w

J

Another important consequence of the Jantzen conjecture is the description of Ext!
between two simple modules. (It is to be understood that all extensions are within the
category @®*.) Obtained by Gabber and Joseph in [10] (and discussed also in [1] and
[13]), it can now be proved without the Jantzen conjecture.

COROLLARY 3. — Given y and w in W with y < w,
dim Ext* (L (y.2), L(w.A)) =dim Ext (L(w.A), L(y.A)=p(, w).

As A. Joseph pointed out to me, the version of Theorem 2 proved by Gabber and
Joseph under the assumption of the Jantzen conjecture provides combinatorial informa-
tion on Kazhdan-Lusztig polynomials, and this information is apparently not known to
be accessible directly from the definition of the polynomials. Such information can be
deduced as well from the theorems of this paper. For example, we have:

COROLLARY 4. — Let x, y, z be elements of W', withx Sy <z. Then P, ,(q9)—P, .(q)
has non-negative coefficients.

As another example, Corollary 2 is easily translated into a statement about Kazhdan-
Lusztig polynomials via Theorem 2. A version of the resulting statement with g=1
appears in [9].
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52 R. S. IRVING

Since the weight filtration on a Varma module is a Loewy filtration, we also recover:

COROLLARY 5. — The socle and weight filtrations on a Verma module coincide.

The next few results deal with the projective indecomposable modules in O*. A
description of the antidominant projective P(A) was obtained in [13] under the assumption
of Jantzen’s conjecture, and more directly in the earlier version of this paper. But
Theorem 1 and the more elementary results of [13] have it as an immediate consequence:

CoROLLARY 6. — The indecomposable projective P(N) is rigid, and the layers in its socle
filtration are given by the formula

soc, P(M)= @ 50C,_; 4, wy M(W.A).

weWy

The formula of Corollary 6 can be rephrased, in view of rigidity, in terms of the
radical filtration. This version can then be extended to a hypothetical description of
the radical filtration of any indecomposable projective module P(w.A), which can be
proved in general, using Theorem 1:

COROLLARY 7. — Let we#",. Then

(rad, Pw.N): L(z.N)= Y Y (rad;(M(y.A): L(w.A\))(rad,_;M(».7): L(z.})).

yew iz 0

Moreover, the module P(w. \) is rigid if and only if  M(w,.A): L(w.A))=1.

The formula of Corollary 7 has the following natural structural explanation. The
module P(w.A) has a Verma flag with each Verma module M (y.)A) occurring as a
subquotient (M(y.A): L(w.7)) times by BGG reciprocity. For each occurrence of
L(w.\) as a composition factor of rad; M (y.)), we may form a quotient Q of M(y.\)
of Loewy length i+1 with L(w.)\) as socle. The dual module DQ has simple cap
L(w.)A) and simple socle L(y.)A), so is a homomorphic image of P(w.A) of Loewy
length i+ 1. There is a subquotient L(y.A) of P(w.\) in rad, P(w.A) which corresponds
under this map of P(w.A) to DQ to the socle of DQ and which may be viewed as the
cap of a copy of M(y.7) in a Verma flag for P(w.A). Thus each copy of L(y.A) in
rad; M (w. ) produces a Verma flag factor of P(w.\) isomorphic to M(y.A), with cap
in rad;P(w.A). It is then natural to expect that for each L(z.2) in rad,_;M(y.\), this
Verma flag factor lays down a copy of L(z.A) in rad,P(w.A). This picture of the
structure of P(w.\) leads to the numerical formula of Corollary 7.

The formula can also be re-interpreted as a filtered generalization (or g-analogue) of
BGG reciprocity. Let us introduce some notation in order to state this. For any
polynomial F(g), let F(g)* denote the polynomial F(¢~'). Write Q, ,(g) for the
Kazhdan-Lusztig polynomial P, ,, ,,,(q)- By the remark after Theorem 2, we have

Qy,w(‘I)=Z(radl(w)—t(y)—ZjM(W-x)3 Ly.N) ¢,
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FILTRATIONS OF VERMA MODULES 53

or

U Q ()* =Y (rad; M (w.): L(p. 1) 2
j

Let’s also introduce the polynomial U, , (q) which is defined to be

Y (rad,P(w.2): L(y.3)) g%~

We may introduce two square matrices ¥ (q) and 2 (q), each with I"/I/ xl rows and
columns and with polynomial entries: % (q) has as y—w entry the polynomial U, ,(q)
and 2 (q) has as y—w entry the polynomial ¢ ™~!®2Q  (9)*. Notice that € (1) is
what is usually called the Cartan matrix of the category ¢, with y—w entry the
multiplicity (P(w.\): L(y.A)), while 2(1) has y—w entry (M(w.A): L(y.A)). BGG
reciprocity states that

¢(1)="2(1)2(1),

where * denotes transpose. Corollary 7 may be rewritten to yield the following generali-
zation:

COROLLARY 8. — 4 (9)="2(9) 2 (9).

The referee pointed out that the theorems of this paper also have an application to
the theory of primitive ideals of U(g). Let us recall some of this theory. Given we #/,,
let J(w.)) be the annihilator of L (w.2) in the enveloping algebra U(g). By a theorem
of Duflo, the set X of ideals {J(w.)): we#7,} is the complete set of primitive ideals in
U(g) containing the minimal primitive ideal J(A). The surjection © from #°, to X
sending w to J(w.A) generally is not injective, but there is a distinguished subset X2 of
involutions of ¥#°,, known as the Duflo set, such that the restriction of © to Xy is a
bijection. For cin X0, let C,={we ¥ ,: J(w.A)=J(c.A)}. An important consequence
of the Kazhdan-Lusztig conjecture is that the sets C, are determined by the Kazhdan-
Lusztig polynomials [16]. An argument of Joseph in section 4.9 of [15] essentially proves
the following statement: given a Loewy filtration 0 c M, = ... « M,=M(w,.7A) of the
dominant Verma module M (w,.A), there is an i such that (M (w,.A)/M;: L(c.A))=1
but (M (w,.A)/M;: L(w.A))=0 for weC, with w # o. Thus, the elements of #7, which
lie in X are determined by the multiplicities of composition factors in layers of a Loewy
filtration of M (w,.A). By Theorems 1 and 2, these multiplicities are determined by the
coefficients of the Kazhdan-Lusztig polynomials. Thus we obtain our final application:
%2 can be described in terms of Kazhdan-Lusztig polynomials. Joseph had proved this
in [15] with respect to the Jantzen filtration, under the assumption of the Jantzen
conjecture.

1.4. Some of the results and arguments of this paper are discussed in a more general,
axiomatic setting in [14]. Once one has an appropriate analogue of Corollary 1 for a
suitable Loewy filtration, analogues of Theorem 2 and Corollary 2 can be obtained. In
particular, this axiomatic setting is applicable to generalized Verma modules, for which
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the argument for Theorem 1 can be extended to show that the weight filtrations coincide
with radical filtrations. (This is also a consequence of Casian’s more general result.)

Corollary 1 and Theorem 2 were announced at an Oberwolfach meeting on rings and
modules in May 1986, and contained in a preprint circulated in September 1986. As
noted, the proof there of Corollary 1 depended on an auxiliary filtration constructed
from P(\) and was more circuitous.

I would like to thank David Collingwood for helpful discussions on the results of this
paper and the NSF for partial support during the preparation of this paper. In addition,
I thank the referee for his considerable patience in reading with care the several versions
of this paper. I have incorporated a number of his suggestions into this final version.

2. The proof of rigidity

2.1. For the proof of Theorem 1, it is convenient to rephrase rigidity in terms of the
notion of capitals.

LEMMA 1. — Let M be a finite length module of Loewy length r and let L be a
composition factor of M. Then

(i) (cap'M: L)+(soc" iM: L) = (M: L) for any i between 0 and r, and

(i) L is rigidly placed in M if and only if (cap'M: L) +(soc" M: L)=(M: L) for all i
between 0 and r.

Proof. — By definition of capitals, we have
(cap'M: L)+(soc" "M: L)=(M: L)—(rad’M: L) +(soc" ‘M: L).

But since soc” ‘M 2 rad’M, we have (soc" ‘M: L)—(rad’M: L) 2 0, and L is rigidly
placed in M by definition if equality holds for all i. The result follows immediately.

2.2. The key to the proof of Theorem 1 is to relate rigidity of the three modules
M(w.A), M(ws,.A), and 6, M(w.}), for w in #7,. This is done in the following two
lemmas.

LEMMA 1. — Let we#", and o€ B, satisfy ws, > w. Let y be an element of W",. If
L(y.A) is rigidly placed in M (w. L) and M (ws,.\), then it is rigidly placed in 6, M (w.}).

Proof. — By the Loewy length results reviewed in 1.2, the Loewy length of 6, M (w. )
is I(w)+3, while M (ws,.A) is a submodule of Loewy length I(w)+2 and M(w.}) is a
homomorphic image of Loewy length [(w)+1[13]. One can describe the extension
0, M(w.A) of M(ws,.A) by M(w.A) a little more precisely. The socle of any Verma
module M (z.A) is L(A) and (M (z.A): L(A))=1. Thus(0,M(w.A): L(A))=2 and, since
0, L(A) is a submodule of 6, M (w. ), the two appearances of L()A) in 6, M (w. 1) are as
its socle and in soc; 6, M (w.)). We may deduce that soc? 6, M (w.A) is in the kernel of
the map of 8, M (w. 1) onto M (w. ).

Let r=I(w)+3 and choose i between 0 and r. As an elementary consequence of
the definitions of socle and capital, soc" ™0, M (w. L) N M (ws,. L) =soc" "' M (ws,.A) and
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FILTRATIONS OF VERMA MODULES 55

cap'0, M (w.\) maps onto cap'M (w.A). The observation at the end of the last para-
graph implies that soc”"'6, M (w.\)/(soc" 10, M (w.A) N M (ws,.A)) has Loewy length at
most r—i—2, which means that it lies in the submodule soc" " 2M(w.A) of
M(w.2A). Also, since M(ws,.A) lies in rad9, M (w.A), the image of M(ws,.\) in
cap'0, M (w.A) has Loewy length at most i—1. Thus, cap’ ! M (ws,.)\) maps onto the
image of M (ws,.A) in cap’0, M (w.}). This yields the two inequalities

(1) (soc" '@gM(w.A): L(y.A)

< (soc" iM(ws,.N): L(y.A) +(soc" I "2M(w.A): L(y.))),
and
(2) (cap'6,M(w.\): L(y.A)) < (cap' ' M(ws,.A): L(y.N))+(cap’M (w.\): L(y.A)).

Let us assume that L(y.A) is not rigidly placed in 6, M(w.2). If it is not rigidly
placed in M (ws,.2), the lemma is proved. Assuming instead that it is rigidly placed in
M (ws,. ), what we must show is that it is not rigidly placed in M (w.}). We have the
trivial equality

(3) O, MW.N): L(y.N)=(M(ws,.A): LO.N))+(M(Ww.A): L(y.N).
By Lemma 2.1 there is an i such that
4 O,MW.N:L(y.0) <(cap'8,M(w.2): L(y.A)) +(soc" 6, M (w.A): L(y.7)).
Inequalities (1), (2), and (4) then yield:
(5) (6,M(w.4): L(y.N)

< (cap' " *M(ws,.A): L(y.\) +(soc" (M (ws,.A): L(y. M)

+(cap'M (w.0): L(y.A) +(soc" " 2M(w.A): L(y.Q)).

By the rigidity of M (ws,. ), we may rewrite the right side of the inequality as
(6) (M(wsy.A): L(».A)+(cap'M(w.2): L(y.A) +(soc" ""2M(w.A): L(y.})).

Subtracting (M (ws,.A): L(y.A)) from both sides of (5), taking (3) and (6) into account,
we obtain the inequality

(I (MW.3): L(y.A) < (cap M(w.A): L(».N)+(soc” "2 M (w.2): L(y.)).

By Lemma 2.1, we conclude that L (y.A) is not rigidly placed in M (w. ), proving the
lemma.

Remark. — Suppose, as in the preceding Lemma, that L(y.A) is rigidly placed in
M(w.A) and M(ws,.\) [and therefore in 6, M (w.A) as welll. Then Lemma 1 of 2.1
implies that the terms on each side of the inequality symbols in (1) and (2) have as their
sums the respective terms on either side of the equality in (3). This forces the inequalities
in (1) and (2) to be equalities.
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LEMMA 2. — Given y, w in #, and o in B,, with ys, >y and ws,>w, if L(y.}\) is
rigidly placed in M (w. ), then it is rigidly placed in M (ws,.\).

Proof. — The unique up to scalars embedding of M (w.)) in M (ws,.A) has its image
in rad M (ws,.A). Thus for any i, the image of M (w.2) in cap’*! M (ws,.)) has Loewy
length at most i, and must be a homomorphic image of cap'M (w.)\). The multiplicity
of L(y.A) in both M (w.X)( and M (ws,.7) is the same, so all the appearances of L (y.})
in cap'*! M(ws,.)) actually must be in the image of cap'M (w.A). Thus we have the
inequality

(cap'M(w.A\): L(y.2) = (cap’™* M (ws,.N): L(y.\).

Let r=I(w)+1, the Loewy length of M(w.A). Using Lemma 2.1(i) and the inequality,
we obtain:
(MW.N): L(y.A)=(soc" ‘M(w.A): L(y.A))+(cap M(w.)\): L(y.]))
= (soc" ‘M(ws,.M): L(».A) +(cap'* ! M (ws,.A): L(y.))
= (M(ws,.N): L(y.0N).
Since the two extreme numbers are equal, we have equality throughout. The last equality
proves that L (y.2) is rigidly placed in M (ws,.A).
2.3. The proof of Theorem 1 now follows easily from the lemmas of 2.2.

Proof of Theorem 1. — If the theorem is not true, there are y and w in #7, such that
L(y.%) is not rigidly placed in M (w.)A). Let us suppose that y < w,. Then there is
some o in B, for which ys, > y. By Lemma 2 of 2.2, we may assume that w satisfies
ws, >w. Letr=I(w)+1 and choose i so that

(8) (soc "M W.A): L(y.N)+(cap’M(w.A): L(».2)) >(M(w.A): L(y.N).

The module 6,soc” ' M (w. ) is a submodule of 6, M (w.A) with Loewy length at most
r—i+2, and L(ys,.)) cannot be in the cap of 8,s0c" *M (w.)\), since it is annihilated
by 6,. Therefore we obtain the inequality

9 (0,50 "M (W.A): L(ys,.A) < (soc" i*10,M(w.A): L(ps,. 7).

Similarly, 6, cap’'M (w.A) has Loewy length at most i+2, and L (ys,.)) cannot be in its
socle, yielding the inequality

(10) (6,cap’M (w.2): L(ps,.N) < (cap'*10,M (w.DN): L(ps,.N).

Given any module M in ¢*, the occurrences of L (ys,.A) in 8, M can be accounted for as
follows: there is one for each occurrence of L(y.A) in M; in addition, any other occur-
rences arise in the subquotients 0,L(z.A), for each L(z.A) in M with z>y and
zs, > z. Thus we obtain the formula:

(0,M: L(ys,.\))=(M:L(»¥.M))+ Y, (M:L(z.4)(8,L(z.1): L(ps,.A).

zeW),
z>y

4° SERIE — TOME 21 — 1988 — N° 1



FILTRATIONS OF VERMA MODULES 57

Combining this formula for various M’s with (8) to (10), we obtain (I):

(cap'*'0,M (w.)\): L(ys,. M) +(soc" "0, M (w.A): L(ys,. 7))

> (6,cap'M (w.A): L(ys,.N)+(6,s0¢" "M (w.A): L(ys,.]))

—(cap' M (w.A): L(y. 1) +(so¢ " M (w.2): L(.})

+ Y, ((cap'M(w.N): L(z.A)+(soc” "M (w.A): L(z.1)))(8,L(z.1): L(ys,.1))

zeW,
z>y

2 (cap’ M (w.A): L(y.A)+(soc" "M (w.A): L(y.\)
+ 3 (M@W.): LEA)O,LE.N): LEs,. )

zeW),
z>y

>MW.2):LO.A) + Y (MW.N): L(z.A)(0,L(z.2): L(ys,.N)
ze W,

=(0,MW.A): L(ys,.N)).

This proves that L(ys,.\) is not rigidly placed in 6, M (w.)). It follows by Lemma 1
of 2.2 that L(ys,.)) is not rigidly placed in either M (w. L) or M (ws, . ).

Continuing this argument I(w,) —I(y) times, we eventually obtain that L(w,.A) is not
rigidly placed in some Verma module. But the only Verma module in which it occurs
as a composition factor is M (w,.}), and we are forced to conclude that L (w,.}) is not
rigidly placed in M (w,.}A). This is a contradiction, since L(w,.A) occurs just once in
M (w,. ), as the simple cap, trivially implying that it is rigidly placed. The contradiction
completes the proof of the theorem.

Remark. — We may deduce a little more from the proof of the theorem. Suppose
that M(w.A) and M(ws,.A) are rigid. Then (8) is an equality and the one strict
inequality in the chain (I) of relations may be replaced by an equality. By Lemma 1,
the module 6, M (w.2) is also rigid. Thus the end terms of (1) are equal. This forces
all the relations to be equalities. We may conclude, using the first of these equalities,
that formulas (9) and (10) are themselves equalities.

2.4. The results of 2.3 yield a short proof of Corollary 1.

Proof of Corollary 1. — Part (i) is automatic, since (M (ws,.A): L (. A)=(M(w.7):
L(y.A)) and M(w.A) is a submodule of M(ws,.A). Thus, let us assume that
s, <y. Let r=I1(w)+3. By the remark after the proof of Theorem 1, formula (9) is
an equality. Also, the remark after the proof of Lemma 1 in 2.2 yields equality in
formula (1). Combining the equalized versions of (9) and (1), with a change of indexing
and parameters, we obtain:

(11) (8,s0c'M(w.A): L(y.A))=(soc’* 16, M(w.A): L(y.1))
=(soc'* M (ws,.A): L(y.A) +(soc’ *M (w.A): L(y.N).
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Proceeding by induction on i, we obtain from this that:
(12) (B s0c; M (w.A): L(y.A)=(soc;,; M(ws,.A): L(y.A))+(soc;_, M(w.A): L(y.Q)).

Since for any z all occurrences of L(y.A) in 6, L(z.)) occur in the subquotient U, L (z. A),
this proves (ii) and the corollary.

3. Theorem 2 and three corollaries

3.1. We first prove Theorem 2 and Corollary 2:

Proof of Theorem 2 and Corollary 2. — Theorem 2 follows from Corollary 1 by the
same argument used by Gabber and Joseph ([10], 4.9) to prove the analogous result for
the Jantzen filtration. Parts (i) and (ii) of the corollary play the role of formulas 4.3
(v) and (4.8) (iii) of [10] in the proof. Corollary 2 follows from Theorem 2 by differentia-
tion, as in [10] (4.10). For a further discussion of the arguments used for these two
results, with applications to generalized Verma modules, see my paper [14].

3.2. Corollaries 3 through 5 follow easily from Theorem 2, as we now see.

Proof of Corollary 3. — Because O* has a duality functor which fixes simples, it is
obvious that dim Ext! (L (y.)A), L (w.A))=dimExt!(L (w.)A), L(y.1)). It is a standard
fact that dim Ext* (L (w.A), L(y.\))=(rad; M(w.7), L(y.\)). Basically this is because
any non-trivial extension of L (y.A) by L (w.}) is a homomorphic image of M (w.\A). By
Theorem 2, p(y, w)=(rad; M (w.A), L(y.A)), proving the corollary.

Proof of Corollary 4. — Using the notation introduced in 1.3, we may prove the
equivalent statement that Q, ,(9)—Q, ,(9) has non-negative coefficients for
x <y <w. By Theorem 2, this is the statement that

(soc/ M (w.A): L(x.\)—(s0¢/ M (».1): L(x.%)) = 0.

But M (y. 1) embeds as a submodule of M (w. ), so
soc M(y.A)=M(y.\) Nsoc/ M (w. 7).
The inequality follows immediately from this.

Proof of Corollary 5. — The basic property of a weight filtration on a Verma
module is that the successive quotients are semisimple. Moreover, the multiplicities of
composition factors in these layers are counted by the coefficients of Kazhdan-Lusztig
polynomials in exactly the same way as multiplicities in layers of the socle filtration are

counted in Theorem 2. (See for instance [8], Theorem 4.6 and Proposition 4.15.) In
* particular, the weight and socle filtrations have the same length. Using Theorems 1 or
2, we may thus conclude that the two filtrations coincide.
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4. Radical filtrations on indecomposable projective modules

4.1. In this section we turn to the proofs of Corollaries 6 and 7. Recall from the
discussion at the end of 1.3 that Corollary 8 is a refinement of Corollary 7, requiring no
additional proof. Corollary 6 follows easily from Theorem 1 using results of [13].

Proof of Corollary 6. — As discussed at the end of section 1.2, the projective module
P(2) has a Verma flag with each M (w. ) occurring once as a factor, for win #7,. Let
0=MycM,c... cM,=P(A) be a Verma flag for P(A) of the form described
in 1.2. Each Verma module M (w.), which has Loewy length I(w)+ 1, occupies the
Iw)+1 layers from 2I1(w,)—2I(w)+1 to 2I1(w,)—I(w)+1 in the socle filtration of
P(A). To be more precise, let n(w)=2I(w,)—2I(w) and choose r with
M, /M, =M(w.\). Then

(SOCn w)+1 Mr+1 : L()“))=(SOCn w+1 Mr: L()“)) +1

([13], 5.1, Proposition 2); in effect, this means that the copy of L(A) contributed to
M, ., or P(A) by the socle of the Verma flag factor M (w.\) occurs in layer n(w)+1 of
the socle filtration of M, ., or P(A). It follows, since IM(w.A)=I(w)+1, that L(w.})
occurs once as a composition factor in M, , ,/(M,+soc" ™+ ™M, _ ). But

(P(A)/s0c" ™ I PRy : L(w. M) =1=(S0C, 1w +1 PV : L(W. 1))

by [13], 5.1, Proposition 1. Thus the copy of L (w.A) contributed to P(A) by the cap
of the Verma flag factor M (w. A) occurs in layer n(w)+1(w)+ 1 of the socle filtration of
M, ., or P(A).

We may conclude, since M (w. 1) is rigid, that soc; M (w.A) appears in layer n(w)+i
of the socle filtration of P(A). This proves the formula of Corollary 6. Rigidity can
now be proved in one of two ways. First, versions of the above formulas hold for the
radical filtrations, as proved in [13], so one may repeat the argument to get a formula
for rad,;(y+1-,P(A). But by rigidity of the Verma modules, the formulas will
coincide. Alternatively, one can use the self-duality of P()A) to deduce rigidity as in [13].

4.2. In order to prove Corollary 7, we need a couple of preliminary lemmas, of interest
in their own right. All homomorphisms and Hom spaces below are to be understood
as consisting of morphisms in the category O*; equivalently, they are g-module homomor-
phisms.

LEMMA 1. — Let y and w be elements of #°,. For any nonnegative integer r,
(rad, P(w.A): L(y.7A))=(rad, P(y.\): L(w.))).

Proof. — For a module M and a composition factor L it follows from the definitions
that (rad,M: L)=(cap"*'M: L)—(cap"M: L). Therefore the lemma will follow by
induction if we show for all r that

(13) (cap"P(w.N): L(y.A))=(cap"P(y.A): L(w. 7).
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The duality functor reverses the socles and capitals of a module. More precisely, for a
module M, we have soc DM =Dcap'M. Since D fixes simples and therefore preserves
composition factor multiplicities, it is equivalent to show that

(14) (cap’ P(w.A): L(y.N)=(s0c I(y.A): L(w. )

for all r.

Given any z in %/, and any finite length module M in @, it is a standard fact easily
proved by induction on length that

(15) dim Hom (P(z. 1), M)=(M: L(z.\))=dim Hom (M, I(z.})).
Using (15), we may rewrite (14) as:
(16) dim Hom (cap” P(w. A), I(y.\)) =dim Hom (P (w. }X), soc"I(y. ).

But cap"P(w.)A) is the largest homomorphic image of P(w.\A) of Loewy length r
and soc"I(y.)) is the largest submodule of I(y.A) of Loewy length r. Thus both
Hom (cap"P(w. M), I(y.2A)) and Hom(P(w.A), soc’I(y.\) represent the subspace of
Hom (P(w.A), I(w.A)) consisting of those homomorphisms whose image has Loewy
length at most r. This proves the equality (16) and the Lemma.

Remark. — Such a result was proved by Landrock for projective modules over group
algebras of finite groups ([18], 9.10).

Before stating the next lemma, let us introduce some additional notation. Given w
and z in #,, let P(w. A, z.\) denote the largest homomorphic image of P(w.}) all of
whose composition actors have highest weight y.A with y <z This may also be
characterized as the homomorphic image of P(w.\) modulo the largest possible submo-
dule in a Verma flag for P(w.A) all of whose Verma module quotients have highest
weight £ z.A. An argument along the same lines as the previous proof allows us to
obtain a variation of BGG reciprocity, which will itself be reproved along the way.

LEMMA 2. — Given w and z in W',

) [Pw.2): M(@z. M)]=PWw.A z.0): L(z.A)=(M(z.7A): L(w.})).
More precisely,

(ii) (rad, Pw.A, z.X): L(z. M) =(rad, M (z.1): L(w.))).

Proof. — (i) The first equality follows from the definition of P(w.A, z.A). It has a
Verma flag containing M(z.A) as a quotient with the same frequency as P(w.})
does. But z. A is the highest weight occurring in P(w. A, z.A). Therefore all appearan-
ces of L(z.)A) are as caps of submodules isomorphic to M(z.A) and every subquotient
of the form M (z.2) is actually a submodule, proving the first equality.

For the second equality, the proof of Lemma 1 shows that it is equivalent to prove
that

dim Hom (P(w. A, z.), 1(z. 1)) =dim Hom (P(w. ), DM (z. )).
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The module DM (z. X) embeds as a submodule of I(z. ), and the quotient has a filtration
whose quotients are dual Verma modules DM (x.A) with x > z. With respect to this
embedding, we may identify Hom (P(w.A), DM(z.\)) as the subspace of
Hom (P(w.A), I(z.A)) consisting of those homomorphisms whose image has composition
factors only of highest weights y.A with y < z. By the definition of P(w.A, z. 1), we
may identify Hom (P(w. A, z. ), I(z. 1)) as the same subspace of Hom (P(w.}), 1(z.)\)).
This proves the lemma.

(i) As in the proof of Lemma 1, we can replace rad, in (ii) by cap”. Then we can
translate the resulting equality into the statement that

dim Hom (cap’ P(w. \, z. 1), I(z.\)) =dim Hom (P(w. ), soc’ DM (z. ).

It is then clear from the argument of (i) that both Hom spaces are the same subspace of
Hom (P(w. A, z.A), I(z.N).

4.3. We can now prove Corollary 7.

Proof of Corollary 7. — Fix win #7,. The discussion in 1.3 following the statement
of Corollary 7 shows that the formula is a consequence of the following description of
P(w.M\): choose z in #7, and a nonnegative integer i. Then for each copy of L (w.A) in
rad; M (z.)), there is a Verma flag factor M(z.A) of P(w.A) which contributes to the
radical filtration of P(w.A) by having its cap placed in the i-th layer of P(w.A) and any
other layer rad; M (z.2) placed in layer i+j of P(w.1). Notice that this is exactly what
was shown for P(A) in the proof of Corollary 6.

By Lemma 4.2.2, we have
(rad,P(w.A, z.A): L(z.N))=(rad, M (z.\): L(w.)\)).

Let this number be denoted by t. By the definition of P(w.A, z. 1), as noted in the
proof of Lemma 4.2.2, every composition factor L(z.A) in P(w.A, z.A) corresponds to
the cap of a submodule isomorphic to M (z.A). Thus it is indeed the case that for each
copy of L(w.A) in rad; M(z.A) the Verma flag of P(w.)) has a quotient M (z.}) with
cap occurring in rad,P(w.A). More precisely, there is a Verma flag for P(w.A) such
that occurring in the flag (not necessarily consecutively) are two submodules U c V
satisfying: V/U is a direct sum of t copies of M (z.A); the submodule V lies in rad’ P(w. )
but not in rad’** P(w.A); and V/V N rad’* ! P(w. ) is a direct sum of ¢ copies of L(z.A).

It follows that the hypothetical description of the radical filtration of P(w. ) given in
the first paragraph is an upper bound in an obvious sense: if it fails to be true, this is
because some composition factors occur in a layer of the radical filtration of P(w.A)
which is lower down, with a higher indexing number than that predicted. But M(z.)
is rigid, so to prove that the hypothetical description is correct, it suffices to show that
the t copies of M(z.)A) whose caps appear in rad; P(w.A) contribute t copies of their
socles L(A) to rad;,;,,P(w.A). As we allow z to vary in #", and i to vary as well, this
leads to a formula for (rad, P(w.A): L(A)) which is exactly that given by the statement
of the corollary with e in place of z and z in place of y. In other words, we have
reduced the proof of the corollary to the proof of the case z=e. Since M(y.A) has
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Loewy length I(y)+1 and L(A) occurs only once, as the socle, what we must prove is
the formula

(rad, Pw.2): L) = ¥ (rad,_,,, M(y.}): L(w.})).

yew

But by Lemma 1,

(rad, P(w.A): L(A))=(rad,P(A): L(w.})),

so we must prove that

(rad, P(A): L(w. M) = ) (rad,_; ;,, M(y.0): L(w. 7).

yYeWwy

But this is exactly the formula given by Corollary 6, proving the formula.

Regarding the rigidity statement, let (M(w,.A): L(w.A\))=r and assume that
r>1. Then M(w,.A) occurs r times as a quotient in a Verma flag for P(w.}), and
every appearance is as a submodule. Thus, P(w.\) has as a submodule the direct sum
of r copies of M (w, . A), and this accounts for all appearances of L (w,.\) as a composition
factor in P(w.A). Therefore, (soc; wp+1 P(w.A): L(w,.A)=r. Incontrast, the r occur-
rences of L (w. ) in M (w, . A) cannot all be in the same layer in its radical filtration. This
follows for instance from Theorems 1 and 2, since the constant term of any Kazhdan-
Lusztig polynomial is 1. But the Verma module M (w, . ) coincides with the projective
module P(w,.\), so Lemma 1 of 4.2 yields that the r appearances of L(w,.A) in the
radical filtration of P(w.A) cannot all be in the same layer. This implies that L (w,.7)
is not rigidly placed in P(w.A).

Suppose instead that r=1. Recall that any Verma flag of P(A) has each Verma
module occurring once as quotient. The discussion at the end of 1.2 shows that we can
choose a Verma flag of P(A) with a submodule Q having the following property: the
Verma flag Q inherits as a portion of the Verma flag for P(A) involves all and only
those M (z.A)’s as quotients for which z = w. One can show inductively on I/(w, w) that
Q has a simple cap. In other words, Q is a homomorphic image of P(w.A). The
assumption that r=1 and BGG reciprocity imply that [P(w.)X): M(z.A)]=1 for any
z=w. Thus both Q and P(w.A) have Verma flags with the same quotients, so they
must coincide. We see that P(w.A) is itself part of a Verma flag for P(A). The
argument of Corollary 6, using the results of [13], yields a description of the socle
filtration of P(w.A) which is the same as the description of the radical filtration provided

by the already proven formula of Corollary 7. Therefore, P(w.A) is rigid, completing
the proof of the corollary.
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A. APPENDIX

Loewy length under translation

In this appendix, a proof is given of the extension of Vogan’s conjecture recalled in
1.2, assuming the validity of Vogan’s conjecture, in order to make the paper more self-
contained. The extension was proved in [13] in an ungainly manner. In the interim, I
realized a much shorter proof could be given, and the referee suggested a short one as
well. The proof below incorporates some of the referee’s suggestions.

THEOREM. — Let A be an antidominant, regular wieght for which O satisfies Vogan’s
conjecture. Let M be a module in O* and let o be an element of B,. Then

ne,M s lIM+2.

Proof. — The theorem will be proved after some preliminary observations. There
exist natural transformations I from the identity functor on ¢* to 6, and J from 6, to
the identity functor, arising from the definition of 6, as a composite ¢,\, of certain
adjoint functors (see [10], 3.12). Thus for Q in ¢, there exist natural homomorphisms
I(Q) from Q to 6,Q and J(Q) from 6,Q to Q. If Q is a simple module not annihilated
by 6,, by definition I(Q) and J(Q) are non-zero, so they must be an embedding and a
surjection respectively. This observation can be extended to prove for arbitrary Q that
the kernel of 1(Q) is the largest submodule of Q annihilated by 6, and the cokernel of
J(Q) is the largest homomorphic image of Q annihilated by 0, ([10], 3.12).

Let Q be a module in ¢* of Loewy length r. There is a commutative diagram of
short exact sequences:

00— radQ - Q — capQ -0
(%) ! 1 1
0-606,radQ—-6,Q—-6,capQ—0,

in which the vertical maps are given by the natural transformation I. The image of
I(Q) lies in soc"8, Q, since IQ=r. We may decompose cap Q as a direct sum K, ® K,,
such that 6, annihilates no simple composition factor of K, and ,K,=0. Then I(cap Q)
annihilates K, and maps K, isomorphically to the socle of 6,capQ. The commutativity
of the diagram implies our first observation: (i) the image of soc”8, Q under the homo-
morphism from 6, Q to 8, cap Q contains soc(8, cap Q).

Let us continue with the same Q and suppose the theorem is known for modules of
Loewy length <r. Let m be the composition of the surjection from 6,Q to cap,Q
and the map cap J(Q) from cap0,Q to capQ. We will also need the following
observation: (ii) Ker w lies in soc"*'0,Q. There is a commutative diagram (**) with
the same rows as (*) but with the vertical arrows reversed, arising from the natural
transformation J. The right-hand square of (**) provides two other maps from 6,Q
to cap Q, which equal each other by commutativity. They coincide with n, as one can
see because the map in (**) from 0,Q through Q to capQ is also induced by
J(Q). Viewing m as the composition of the surjection of 6, Q onto 6,cap Q and J(cap Q)

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



64 R. S. IRVING

from 6, cap Q to cap Q, we find that the image of n is the image of J(cap Q): a submodule
K of cap Q such that 8, annihilates no simple summand of K but 6, (cap Q/K)=0. From
(**) one sees that 0,rad Q is in Kerm, while the commutativity of (*) implies that
the canonical image Q" of Q in 6,Q lies in Ker n. Hence, = factors through a map o
of 6, Q/(6,rad Q+ Q') onto K, and counting multiplicities shows that Ker ¢ is annihilated
by 6, Both 0,radQ and @ have Loewy length =<r+1, so
0,rad Q+Q = soc"*10,Q. Thus, o factors through a map t from 6,Q/soc"*! Q onto
K such that Ker is annihilated by 6,. Since 116,Q < r+2, the module 6, Q/soc’*!6,Q
is a homomorphic image of cap8,Q, none of whose composition factors is annihilated
by 6,. Thus 7 is injective and observation (ii) follows.

We can now prove the theorem. Let M be a module in ©* of Loewy length s and
proceed by induction on s, the case s=1 being Vogan's conjecture. Let
N=radM. Then lI6,N < s+1 by the inductive hypothesis. By observation (i), the
image of soc°0,M under the map of 6M to 6,capM contains
soc(0,capM). LetP=6,M/soc*0,M. Then P is an extension of soc,,,0,N (which
has Loewy length 0 or 1) by a quotient of 8,cap M/soc(6,cap M) (which has Loewy
length 1 or 2). We must show that [IP <2 Alternatively, we may show that
rad’0,M N 6,N < soc*, N, since this implies that P is a homomorphic image of
cap?0, M. Equivalently, the restriction to 8, N of the surjection of 6, M onto cap?6, M
has kernel in soc*6,N. Thus, it suffices to show that the restriction to 6,N of the
composition of maps from 6,M to cap?6,M to cap>M has kernel in soc*6,N. The
image of 6, N under this composition lies in rad (cap? M), for the commutativity of (*)
with M in place of Q shows that 6,N goes to 0 in the map of 6, M to cap M. But
rad (cap? M) =rad, M, and since N=rad M, this is just rad; N or capN. Thus we are
actually considering the composition of maps from 6, N to cap6,N to cap N. With
Q=N and r=s—1 in the previous paragraph, this map is © and observation (ii) is the
required statement. This proves the theorem.
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