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BERNSTEIN-GELFAND-GELFAND
RECIPROCITY

ON PERVERSE SHEAVES Q)

BY R. MIROLLO AND K. VILONEN

0. Introduction

The purpose of this paper is to extend the results of Bernstein-Gelfand-Gelfand on
infinite dimensional Lie algebra representations [BGG] to perverse sheaves on a wide
class of complex analytic spaces. Our method is to use the inductive construction of
perverse sheaves given in [MV1], [MV2]. We give alternative proofs of the theorems in
[BGG], and in some sense offer an explanation as to when such results should hold.
Our main results are stated in section 1, which follows very closely the introduction to
the [BGG] paper.

We thank J. Bernstein and R. MacPherson for bringing these questions to our attention
and E. de Shalit for pointing out the reference [Mu] to us.

1. Statement of the main results

Let k be a field which will be fixed throughout this paper. Let A be an associative
algebra with identity which is finite dimensional as a vector space over k. We say that a
category is of Artin type if it is equivalent to the category of finitely generated A-modules
for some A.

Such a category ^ has several special properties (see e. g. [CR]). It satisfies the
Krull-Schmidt and Jordan-Holder theorems. Furthermore, it has a finite number of
irreducible objects L^, . . ., Ly and each L, has a unique projective cover P;. These
modules P^ are precisely all the indecomposable projective modules.

Denote by [M : Lj the number of times the irreducible module L, occurs in the
Jordan-Holder series of M. The matrix C^=[Pf : Ly] is called the Carton matrix of j^.
As is pointed out in [BGG] the Cartan matrix turns out to be symmetric in many

(1) Partially supported by N.S.F.
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312 R. MIROLLO AND K. VILONEN

important examples. This is the case for modular representations of finite groups (see
[CR]) and modules over the restricted universal enveloping algebra of a semi-simple Lie
algebra in characteristic J?([H]). A third class of examples is given in [BGG] where the
category (9 of certain infinite dimensional representations of a complex semi-simple Lie
algebra is constructed.

In all these examples a stronger duality principle holds. There is a class of modules
Mi, . . ., Mi such that the modules P^ have a decomposition series with factors iso-
morphic to the M .̂. Let [P .̂ : My] denote the number of times Mj occurs in the decomposi-
tion series of P^. We say that the category ^ satisfies BGG reciprocity if
[Pi: Mj\=[Mj: LJ for all i and j. In this case C=T)D, where D^.=[M,: Ly] is the
decomposition matrix. In all the above examples we have such a reciprocity. In the case
of modular representations l+r and the matrix D is not square. In the case of category
(9 and in our case the matrix D is an upper triangular unimodular square matrix (if we
choose a proper ordering for L^, . . ., L^). In the category (9 the modules M are the
Verma modules.

In this paper we want to show that these results are true for the category of perverse
sheaves on a wide class of topological spaces. The results in [BBG] can be recovered
from ours by applying localization ([BB], [BK]) and the Riemann-Hilbert correspondence
([K], [M]). Here the topological space is the flag manifold of a semi-simple complex
group.

Let X be a complex analytic space with a complex analytic Whitney Stratification.
Let y denote the strata of y which are not of top dimension. We make the further
assumption that n^ (S)==0 for all Se^ and n^(S)==Q for all Se^. We will keep this
assumption all through this paper. Let P(X) denote the category of perverse sheaves of
k-vector spaces) on X which are constructible with respeact to the fixed stratification
([BBD], [MV2]). We recall that P(X) is the subcategory of the bounded derived category
of k-sheaves D6 (X) consisting of complexes of k-sheaves A' on X satisfying:

(0) H^ (f* A*) is a local system of finite rank on S

(1) H^A^Ofor^-dimcS

(2) tf (i1 A*) = 0 for k < - dim^ S
for all S e y, where i: S -> X is the inclusion.

It is shown in [BBD] that the category P(X) is an artinian abelian category.

THEOREM 1.1. — The category P(X) is ofArtin type and its Carton matrix is symmetric.

We will prove this theorem in Section 2. We remark here that it suffices to prove
that P(X) has enough projectives to conclude that it is of Artin type. This follows from
the following well-known

LEMMA 1.2. — Let ^ be an artinian, abelian category mth enough projectives, finitely
many irreducibles and Horn (A, A7) having a structure of a finite dimensional ^.-vector space
for all A, A'ej^. Then ^ is of Artin type over k.
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BGG RECIPROCITY 313

Proof. — Let L^, . . ., L^ be the irreducible objects and choose projectives P, -^ L,.
Then P=©P, is a projective generator, and ^ is equivalent to the category of (right)
A-modules where A=Hom(P, P) (see [B]).

Next we impose a further condition on the space X. We assume that S—S is a Cartier
divisor in y (or empty) for all S e y. For all S, e y we define perverse sheaves M, as
follows:

M,=7,ksJdimcSj

where j : S^ -> X is the inclusion and k^ 15 ̂  constant sheaf on S^. This makes sense by
Lemma 3.1. Let ;(X)=max{dimcX-dimcS|Se^}.

We say that an object MeP(X) has a p-filtration if it has a filtration whose quotients
are M/s.

THEOREM 1.3. — In the category P(X) every projective object has a p-filtration^ the
BGG reciprocity is satisfied and P(X) has projective dimension ^2l(X).

We will prove this theorem in Section 3.
To recover the results of [BGG] from ours we remark that given a complex semi-simple

Lie Algebra g the category (PQ is equivalent to P(X), where X=G/B is the flag manifold
with stratification by the Schubert cells.

Remark 1.4. - The condition 7ti(S)=0 for Se^ and 7t2(S)=0 for all Se^ can be
replaced by the following weaker condition. Let X be a complex manifold with Whitney
stratification y. We call the stratification y a good Whitney stratification if all the
projections TT, : A -> S are fibre bundles, where A,=T^X— U T^X. For a good Whit-

s'^s
s ' e y

ney stratification c99 the condition we need becomes that the map
a : Ti^ (n^1 (x)) —»• TCi (Ag) is an isomorphism. The crucial point here is that this condition
implies that 7ii(S)=0. By different arguments one can show that for the results of this
paper to remain true it suffices to assume that a is injective with Coker a=7ii(S) finite
and char (k) = 0.

2. Construction of projectives
and the symmetry of the Cartan matrix

In this section we will prove Theorem 1.1. We first apply the results of [MV1] and
[MV2] to reduce it to an algebraic problem. We start by recalling the main construction
of these papers.

ANNALES SCIENTIFIQUES DE L'fiCOLE NORMALE SUP^RIEURE



314 R. MIROLLO AND K. VILONEN

Let ^ and ̂  be two abelian categories, F : ̂  -^ ^ a right exact functor, G : ̂  -> ̂  a
left exact functor and T : F -> G a natural transformation. Then we define a category
^(F, G; T) as follows. Its objects are pairs (A, B)e0bj^ x0b^ together with a
commutative diagram

The morphisms are pairs (/, g) e Mor ̂  x Mor ̂  such that the appropriate prism commu-
tes. The category ^(F, G; T) has a natural abelian category structure [MV2].

Recall that we have a complex analytic space X with a fixed stratification c97 satisfying
7ii(S)=0 for all Se^ and 7i2(S)=0 for all SG^'. We denote by ^ the category of
finite dimensional k-vector spaces. Under these hypotheses we have

THEOREM 2.1 ([MV1], [MV2]). — The category P(X) can be constructed by iterating
the ^(F, G; T) construction starting with^/=i^ and always using ^="r.

proof. — This follows from Theorem 3.3 and section 7 of [MV2] using the hypothesis
that Tii (S) = 0 for all S e ̂ , and n^ (S) = 0 for all S e ̂ /.

So in order to prove Theorem 1.1, it suffices to prove theorems about the categories
^(F, G; T) which arise from perverse sheaves. For simplicity, we assume from now on
that all abelian categories ^ or ^(F, G; T) under discussion come from iterating the
^(F, G; T) construction beginning with i^ and always using ^==i^. Such categories have
a natural k-vector space structure on their Horn sets.

GENERAL FACTS ABOUT ^(F, G; T)'s. — There are several interesting functors relating

ja^, ̂  and the ^(F, G; T) built from F -^ G : ^ -> ̂ . First, given an object

N=(A,B,m,n)e^(F,G;T))

we have restrictions of N to ^ and ^ :

N|^=A, N|^=B.

The restriction functors are exact. In fact, a complex N'e^(F, G; T) is exact if and
only if N' [ ^ and N* | ̂  are exact. This follows immediately from the description of
kernels and cokernels in ^(F, G; T) in [MV2].

There are three functors F, T and G from ^ to ^(F, G; T). If A e^ we set

There are obvious maps F -> T -> G. Note that these functors F, T and G correspond
to the functors p/,, ̂  and p/* in P(X) (see example 4.6 in [MV2]).

4e SERIE - TOME 20 - 1987 - N° 3



BGG RECIPROCITY 315

The functor F is right exact and the functor G is left exact. We also have

LEMMA 2.1— For NeC(F, G; T) and A e<^ \ve have

Horn (F A, N)=Hom(A, N|^)

and

Horn (N, GA) = Horn (N | e< A).

This lemma implies that F preserves projectives and G preserves injectives.

IRREDUCIBLE OBJECTS. — We wish to describe all the irreducible objets in any ^(F, G; T)
built on ja^, i^.

PROPOSITION 2 . 3 . — The category ^(F, G; T) has the following irreducible objects:
1.

FO ———-GO

2. TL, where L 6 ̂  is irreducible.
Hence any ^(F, G; T) has finitely many nonisomorphic irreducible objects.

Proof. — Suppose

FA ———-GA

is irreducible, A 7^0. Then m is surjective and n is injective, because otherwise there
would be nontrivial maps of N to or from the irreducible

FO ———- GO

Hence N=t(N|^)=TA. We need to show that Aej^ is irreducible. Let A'->A be
any nonzero map. Then TA' -> TA is a nonzero map, and so must be surjective. Hence
A' -> A is surjective, so A is irreducible.

Q.E.D.

REPRESENTABILITY OF FUNCTORS

PROPOSITION 2.4. — Assume ^ has enough injectives. Then any left exact functor
G : ^ -> i^ is representable by an object R e ̂ .

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



316 R. MIROLLO AND K. VILONEN

Proof. — This follows from Grothendieck's pro-representability theorem [Mu]. How-
ever we give a simple direct proof. G is exact when restricted to injective objects of ^.
It suffices to show that there exists Re^ and a natural isomorphism Hom(R, I)=GI
for I injective in ^. If leja^, let /ii=Hom(I, .). Given veGl there exists a natural
map

h,: h^G

defined by (h,N)(f)=(G f)v, fe Horn (I, N). If N=I then (h,l)(ld,)=v. Choose a
spanning set v^ . . ., Vy for GI. Then we get a natural map

(pi=©^: h,r->G.
i

(pi has the property that (pi(I) : ^r(I) ->GI is surjective. Let I^, . . ., 1̂  be the inde-
composable injectives, corresponding to the irreducibles objects of ^\ Consider the sum
I=©I^and

fe

(p = @ q>^ : ̂  = © h^k -> G.
k k

Then (p : ̂  -> G has the property that (p (J) : h^ (J) -^ GJ is surjective for any injective

Jeja^. Let G^ker^i -^ G). Then G' is also exact, so there exists (p' : \, -^ G'. Hence
we have produced a 2-step resolution of G:

\. -> h^ -^ G -> 0.

Q( ___

By Yoneda's lemma, we get a map I-^F. Let R=kera. Then R represents G because
for any injective J,

Hom(R, J)^ Horn (I, J)/ImHom(r, l)^h,(J)/lm h^ (J)^GJ.

Q.E.D.

Remark. — A similar statement holds for right exact functors F : ̂  -> i^ : If ^ has
enough projectives, there exists an object S e ̂  st

FN^Hom(N, S)*

where * is the dual in the sense of k-vector spaces.

PROJECTIVES AND INJECTIVES IN ^(F, G; T). — The following proposition together with
Lemma 1.2 establishes the first part of Theorem 1.1.

PROPOSITION 2 .5 .—Suppose ^ has enough projectives (injectives). Then any
^(F, G; T) built on ^ / , i^ has enough projectives (injectives).

Proof. — We must show that any object Ne^(F, G; T) is covered by a projective.
We can assume N is irreducible. If N=TA, Aeja^ irreducible, A'-^A a projective
covering of A, then FA" -> TA is a projective cover of N.

4'5 SERIE - TOME 20 - 1987 - N° 3



BGG RECIPROCITY 317

So it suffices to cover the new irreducible

FO ———- GO

k

By Proposition 2.4 G is representable. Suppose G^Hom(R, .). Form the object P :

FR———-GR=Hom(R,R)-\ /•
FR ® k

where m = (Id, 0), n | ̂  = TR, n (0,1) = Id^. For any N e ̂  (F, G; T)

Hom(P, N)^N|^;

i.e., a map P-^N is uniquely determined by the image of the element (0,1) in N[y.
Since [ y is exact, P is projective. Clearly, P covers the new irreducible. Hence ^(F, G; T)
has enough projectives. A similar proof works for injectives.

Q.E.D.
To complete the proof of Theorem 1.1 we have to prove the symmetry of the Cartan

matrix. However this symmetry is not true for ^(F, G; T)'s in general. The category
of perverse sheaves P(X) has an involution A ->• A* given by Verdier duality which
satisfies

(a) Hom(Ai, A^Hon^, A?),
(b) L* ̂  L for L irreducible.
Condition (b) holds because n^ (S) =0 for all strata S. If ^ is a complex link of S at a

point ([MV2], [GM]) then F(A)==H-d- l (^, A) and G(A)=H,-d-l(^, A). By Verdier
duality we then have

F(A)=G(A*)* and T(A*)=T(A)*

which means that the representing objects S and R for F and G satisfy S=R*.
Motivated by these considerations we develop a notion of duality for ^(F, G; T)'s.

DUALITY. — Let ^ be an abelian category. A duality on ^ is by definition a
contravariant functor A -> A* st.

(a) If A, B6e< Horn (A, B*)^Hom(B, A*) naturally;
(b) * is fully faithful.
Condition (b) is equivalent to
(V) The natural map A -> A** is an equivalence of categories.
Suppose ^ has a duality *. We wish to extend * to ^(F, G; T). However, we need

some conditions on the representing objects for F and G.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



318 R. MIROLLO AND K. VILONEN

We assume that S=R* and that the diagram

(TA)*
Hom(R, A)* —————^ Horn (A, R*)

Hom(A*, R*)* ————^ Hom(R, A*)

commutes: i.e., T(A*)=(TA)* under the above identifications.
If

N=

we can let N* be the object

(GA)* (TA)^ (FA)* Hom(R, A)* (TA)* » Horn (A, R*)./ = \ ̂
B* B*

Then * is a duality on ^(F, G; T) extending the duality on ja^. Note that *F=G*,
*T=T* and * fixes the new irreducible object. Hence if * on ^ fixes irreducible objects
in e^, * on ^(F, G; T) will also fix irreducible objects in ^(F, G; T).

SYMMETRY OF THE CARTAN MATRIX. — Let Li, . . ., Ly be the distinct irreducibles in
ja^, and Pf -» L, the projective covers of L^. Note that the L .̂'s have the property that
dim^ Hom(Lf, L^.)=8y.

Consider the Grothendieck group K(jaQ. This is a free abelian group with basis [LJ,
. . ., [LJ. We have by definition

r

[N]=E[N:L,][L,], Ne^.
j'=i

Note that [N : L,] = dim,, Horn (Pp N), because both sides are additive functions on K(j3/)
which agree when N = L^.

Recall that the Cartan matrix of ^ is C^.=[Pf : L^]. We are interested in the symmetry
ofQ,.

The category of perverse sheaves P(X) is constructed by iterating the ^(F, G; T)
construction where F==Hom(., S)* and G=Hom(R, .) are represented by dual objects
S=R*. Since * fixes irreducibles, [R*]=[R] in the Grothendieck group. Therefore the
following proposition shows that the Cartan matrix for P(X) is symmetric, and completes
the proof of Theorem 1.1.

4s SfeRIE - TOME 20 - 1987 - N° 3



BGG RECIPROCITY 319

PROPOSITION 2.6. — The Carton matrix o/^(F, G; T) is symmetric precisely when the
Cartan matrix of ̂  is symmetric and [R]=[S] in K(j2/).

Proof. - In ^(F, G; T) let L,=TL,, P,=FPf, l^'^r,

4+1 =FO ———-GO, p,+i ———4+1

its projective cover.
Let C^ be the Cartan matrix of ^(F, G; T). If f, j^r then by adjunction C^.=

dim Hom(FP,., FP^)=dim Hom(P,, Pf)=C^. So we need only check that that
C^ ,. +1 = C,. +1^, 1 ̂  ̂  r. Write the new projective

P=FR————-GR

F R © k

in terms of P^s:

P=P^i© © P?1

1=1
r

Then dim Horn (P,+1, P;) = dim Horn (P, P,) - ̂  a^ C .̂, and dim Horn (P,, P,+1) ==
j-i

r

dim Horn (P,, P)— ^ a/C^. So we need to compare Hom(Pf, P) and Horn (P, P,).
j= i

By adjunction

dim Horn (P,,P)= dim Hom(P,, R)=[R : L,]

and

dim Horn (P,P,)= dim FP,=dim Hom(P,, S)*=[S : LJ.

So C^ is symmetric ^[R]=[S] in K(^).
Q.E.D.

3. The BGG reciprocity

In this section we will give a proof of theorem 1.3. We start with some topological
considerations. As in the previous section, after this the rest of the proof is purely
algebraic.

We recall that we have a complex analytic space X with an analytic stratification y
satisfying the Whitney conditions. As before we assume that 7Ci(S)=0 for all Se^ and

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



320 R. MIROLLO AND K. VILONEN

^2(^=0 for all Se^'. From now on we assume furthermore that S—S is a Cartier
divisor in S (or empty) for for all Se^. (If X is algebraic this means that S->X is
affine.)

LEMMA 3.1. — Let Sey and j : S ->X be the inclusion. Then 7, kg [dime S] is perverse.
(See [BBD] 4.1. 3 for the algebraic case).

Proof. — Clearly 7, kg [dime S] satisfies the first perversity condition. It remains to
check the second condition or equivalently the first perversity condition for the dual
RJ* kg [dime S]. Let ri=dimcS.

Cutting by a normal slice reduces the problem to the case of a point stratum
S' = { x} c S. Let i: {x} -> X. Then if B is a small neighborhood of x in X,

Hk(f*R^ks[fl)=H fc+d(R^ks)^H fe+d(B, R^ks^H^^B U S, k)^0 for k>0

because B n S is a Stein manifold of dimension d.
Q.E.D.

For any stratum S^ e y we define the object Mj^ by M^ =7, k^ [dim^ SiJ, where j : S^ -> X
is the inclusion.

The construction of the objects Mj, can be done inductively as follows. Let X c X such
that X is stratified by Si, . . ., S, _ i and let X - X = S,. We assume that dim S^ = dim S^ if
k^h. Let j : X -> X, j^ : S^ ->• X and j^ : S^ ->- X be the inclusions. Then if we denote
Mfc =/, kg^ [dime SJ we have M^^M^ for f e ^ r — 1 . Or because M^ is perverse we can
phrase this as M^^/', M^ for k ^r—1.

If we interpret this in terms of the ^(F, G; T) via theorem 2.1 we get that M,=F(M^)
for k ̂  r — 1 and M,. = L^.

LEMMA 3.2. — We have L^M^O.

Proof. — It suffices to show that given any exact sequence 0 -> N" -> N ->• M^ -^ 0 the
sequence 0 -> ¥W -> FN -> FM^ -> 0 is exact. Because p/, M^ =7, Mj^ we have an exact
sequence 0-^^N"-^^N ^^M^-^O in P(X), but this is just the exact sequence
0 -> FN7 -> FN -> FMfc -^ 0.

Remark. — Because we are using a fixed stratification in our definition of P(X) it is
not true that Ext^A, B) is the same in P(X) and in D^X). It is however, clearly true
fo rk =0,1.

We now turn to algebra. We make the additional hypothesis that L1^^!^)^ at
every stage of the construction of our ^(F, G; T). We also assume duality at every
stage.

Recall [BBG] that we say that N has a p-filtration if there is a filtration N^ (=N3 c:. . .
such that N^/N^+1 ̂  M^ for some i. We will start by proving a lemma about the existence
of /?-filtrations which in particular shows that every projective object has a ̂ -filtration.

LEMMA 3.3. — Let ^ be a category -which is constructed by iteration mth the above
hypotheses. Then N has a p-filtration if and only f/Ext1 (M,, N*) =0 for all i.

4s SERIE - TOME 20 - 1987 - N° 3



BGG RECIPROCITY 321

Proof. — We proceed by induction. Assume that it is true for ^ and construct a
^(F, G; T) from ^. Suppose Ext1 (M,, N*) =0 for i= 1, . . ., r+1.

To calculate Ext^M^+i, N*) we use the resolution

0-^FR-^P-^M^i-^O.

This gives

Hom(P, N) -> Hom(FR, N*) -> Ext1 (M,+i, N*) -> 0.

LetN=FA^B-^GA.

Then Hom(P, N*)=B*, and

Hom(FR, N*)=Hom(R, N*U=G(A*)=(FA)*.
•

Therefore Ext^M.+i, N*)^Coker(m*)=Ker(m)*.
Hence m in an injection. It follows from this that we have a short exact sequence

0 -> F(N | j^) -> N -> M®A -. 0, g^O.

So it is enough to show that F(N|j^) has a/^-filtration or since I^F^M^O that N|j^
has a ̂ -filtration. But L1 FM^==0 means we have

Ext1 (M,, N* | ̂ ) =Exti (M,, N*) =0.

and therefore N* | ̂  has a ̂ -filtration.
For the converse it suffices to check that Ext^M^M*)^. By duality

Ext1 (M^., MJ')=Ext1 (Mp M*). If either i or j is ^r, then Ext1 (M,., Mp=0 by adjunction
and the vanishing of L1 FR. And Ext1 (M^+i, M*+i)=0 as before.

Q.E.D.
Next we give a proof of the BGG reciprocity. Assume that we have constructed a

category ^ by iteration, where F(A)=G(A*)*, (TA)*=TA*, and Ll¥(Mk)=0 for all k
at each stage of the iteration.

Note that the decomposition matrix D = [M, : L^] is unipotent upper triangular and
therefore the M, form a basis for K(^). Let E=[P, : M,], where [PJ=^[Pf : M,][M^]
in K(^). Since the P, have a /^-filtration the matrix E has positive entries.

THEOREM 3.4 (BGG Reciprocity). — We have E=T) and therefore C=T)D.
Proof. — We proceed by induction. Let E and D be the decomposition matrices of

^ and E and D the corresponding matrices in ^(F, G; T). Because the P^ have
7?-filtrations and Li F(M^)=0 we have

E^=E^. if l^ij^r

and

E; , , i = 0 if Ki<r.^i, r + 1 ~

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



322 R. MIROLLO AND K. VILONEN

So to prove the proposition we must only check that

D^i, ,=E,^i if l ^ f^ r+1 ,

i.e.

[P^:MJ=[M,:L^J.

We have the short exact sequence 0-^FR-^P->4+i-^0 where R represents G and P
is the new projective constructed in paragraph 2. Write

r

p=p.+iC e p?1
i = i

as before. Then if 1 ̂  i ̂  r
r r

[Pr+i : M,]=[P: M,]- ̂  a,[P,: M,]=[R : M,]- ̂  a,E^
j=i j= i

[M, : L^J= dim Horn (P^,M,)

=dim Hom(P, M,)- ^ a, dim Hom(P,, M;)Jl. U.J.11JL Al.^111^-1., IVA.^

J'=l

r

=dim FMf— ^ ^jD^
j=i

r

=dim Hom(M,, R*)- ̂  ^.D^.
7=1

So we must show that [R : Mj=dim Hom(M,, R*). We have Ext^M,, Mf)=0 and
dim Hom(M^, Mp=8^. (this can easily be established by induction). Using this and the
fact that R has a ̂ -filtration we see that [R : Mj=dim Hom(M^, R*).

Q.E.D.
We will conclude by proving that the projective dimension of P(X)^2^(X), where

;(X) =dimcX -min { dim^ S | S e^ }.

We define another length function l(k) by induction as follows. ;(1)=0. Suppose ^
has objects M^, . . ., My and ^==^(F, G; T) is constructed with representing object R.
Let ?(r+l)=?(r) if R has a decomposition series with M^ such that l(k)<l(r),
; (r+l)==;(r)+l otherwise. Note that if X has strata S^, S^, . . . then l(k)^codim^Sk.
Let J(^)=maxJ(k). Then J(^)^;(X).

f c = i

LEMMA 3.5. — We have p. d. M^ ̂  I (i).
Proof. — We proceed by induction. Construct ^(F, G, T) from ^. Since ^ has

finite projective dimension by induction, L^F(Mf)=0 for all q>0, i.e. the modules M .̂
are F-acylic. Hence p. d. FM^.=p. d. M^. Therefore it is enough to prove the result for
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the new M^+i =L,+i. But we have a short exact sequence
0->FR^P-^ L^-^0

so p. d. M,+i ̂ p. d. R +1 ̂ (r+ 1), because R has a /^-filtration.
Q.E.D.

PROPOSITION 3.6. — We havep.d. L,^2;(^)-;(f) and hence p.d. P(X)^2;(X).
Proo/. - If i=r+ 1 this follows from Lemma 3.5. Consider the short exact sequence

0 -^ K, -^ M, -^ L, -> 0.
The module K, has a decomposition series involving only L,, where l(j)>l(i). We
proceed by descending induction on i. Hence assume that p. d. t^2l(^)-l(j) forj>i.
Then

p. d. L,^max(p. d. M,, 1 +p. d. K,)^max(;(0, 1 +2^)-(;(i)+1))=2;(^)-;(0.

Q.E.D.

REFERENCES

[B] H. BASS, Algebraic K-Theory, W. A. Benjamin, New York, 1968.
[BB] A. BEILINSON and J. BERNSTEIN, Localisation des g-Modules (C.R.Acad. Sci. Paris, T. 292, Serie I

1981, pp. 15-18).
[BBD] A. BEILINSON, J. BERNSTEIN and P. DELIGNE, Faisceaux Pervers (Asterisque, Vol. 100, 1983).
[BGG] J. BERNSTEIN, I. GELFAND and S. GELFAND, Category of g-Modules (Functional Anal. Appi, Vol 10

1976, pp. 87-92).
[BK] J.-L. BRYLINSKI and M. KASHIWARA, Kazhdan-Lusztig Conjecture and Holonomic Systems (Inv. Math.,

Vol. 64, 1981, pp. 387-410).
[CR] C. CURTIS and I. REINER, Representation Theory of Finite Groups and Associative Algebras Wilev

1962.
[GM] M. GORESKY and R. MACPHERSON, Morse Theory and Intersection Homology (Asterisque Vol 101

1983, pp. 135-192).
[H] J. E. HUMPHREYS, Modular Representations of Classical Lie Algebras and Semisimple Groups (J Algebra

Vol. 19, 1971, pp. 51-79).
[K] M. KASHIWARA, The Riemann-Hilbert Problem for Holonomic Systems (Publ. R.LM.S., Kyoto, Vol.

20, 1984, pp. 319-365).
[MV1] R. MACPHERSON and K. VILONEN, Une construction elementaire des faisceaux pervers (C.R. Acad. Sci.

Paris, T. 299, Series I, 1984, pp. 443-446).
[MV2] R. MACPHERSON and K. VILONEN, Elementary Construction of Perverse Sheaves (Inv. Math., 1986).
[M] Z. MEBKHOUT, Une equivalence de categories et une autre equivalence de categories (Comp. Math

Vol. 51, 1984, pp. 51-88).
[Mu] J. P. MURRE, Sur la pro-representabilite de certains foncteurs en geometric algebrique, mimeographed

notes, 1964.

(Manuscrit re^u Ie 6 octobre 1986,
revise Ie 4 mai 1987).

R. MIROLLO,
Brown University,

Providence, R.I. 02912
K. VILONEN,

Harvard University,
Cambridge, MA 02138.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPfiRIEURE


