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SOLUTION OF A COMBINATORIALLY
FORMULATED MONODROMY PROBLEM
OF EISENBUD AND HARRIS

By RonaLp D. BERCOV anp Rosert A. PROCTOR (V)

1. Introduction

In this paper we will (mostly) solve a finite permutation group problem using combina-
torial reasoning and a century old result from the theory of permutation groups. This
problem arose when Fisenbud and Harris [1] introduced a combinatorial construction
into the study of the following geometric problem: Let X be a generic compact Riemann
surface of genus g, and consider linear systems of degree d and dimension r on X. If
g=(@r+1)(g—d+r), then only a finite number N=N(g, d, r) of such linear systems can
exist on X. By varying X within a suitable Zariski-open subset of the moduli space of
compact Riemann surfaces of genus g, one can obtain monodromy actions on (i. e.
permutations of) the set of the N linear systems on some fixed generic X,. It is natural
to ask whether the group of all such actions (called the monodromy group) is the entire
symmetric group Sy. When combined with the work of Eisenbud and Harris, our main
result will imply that these monodromy groups are always at least the alternating groups
Ay

Eisenbud and Harris explicity constructed certain monodromy actions and described
these actions in combinatorial terms. Let m=r+1 and n=g—d+r. Then m=1 and
n=1, and m and n determine g, d, and r since we are assuming g=(r+1)(g—d+r)=mn.
Let G (m, n) denote the monodromy group for the geometric situation indexed by g, d,
and r, and let H (m, n) denote the subgroup generated by the actions of Eisenbud and
Harris. Hence H(m, n)* G(m, n)* Sy. We interpret the combinatorial description
of [1] in terms of permutations of the set of all m x n standard Young tableaux. So then
N=N(g, d, r)=N(m, n) is the number of standard Young tableaux of m x n rectangular
shape.

When m =2 Eisenbud and Harris showed that H(2, n)=Sy. Therefore G (2, n)=Sy.
They then asked whether this approach might work in general: Does H (m, n)=S, when

(1) Supported by an N.S.F. Postdoctoral Fellowship.
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242 R. D. BERCOV AND R. A. PROCTOR

m=27? [It is trivial that H(m, 1)=S, and H(1, n)=Sy.] Our results are as follows:

THEOREM 1. — For m, n=1, the group H(m, n) is always either the symmetric group
Sy or the alternating group Ay.

THEOREM 2. — The group H (m, 2) is the symmetric group Sy, if and only if m =242 —1
for some i2j2=0.

THEOREM 3. — For m, n=3 and mn=<108 the group H (m, n) is the symmetric group Sy
or the alternating group Ay according to the Table. (There “S” denotes Sy and - denotes
An)

TABLE

n
Vo]
i

w
w
11 Onhnhoni
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A COMBINATORIALLY FORMULATED MONODROMY PROBLEM 243

Eisenbud and Harris conjectured that the monodromy group G (m, n) is always the
entire symmetric group. The results above imply that G(m, n) is always at least the
alternating group A,. Geometers tell us that it is certainly true that G (m, n)=G (n, m)
by use of Serre duality. (A few routine but onerous details need to be checked for
this.) We would then have G (m, n)=Sy whenever H (m, n)=Sy or H(n, m)=Sy. Since
H (2, n)=Sy for all n, but H(m, 2)=A\ for infinitely many certain m, we would then
have an infinite sequence of examples (in addition to some others provided by the
asymmetry of the Table) where the Eisenbud-Harris group H (m, n) would be known to
fall short of the actual monodromy group.

Most or all algebraic geometers would expect that the monodromy group G (m, n) is
always the entire symmetric group. In Section 6 we show that the strong tendency for
H(m, n) to be the alternating group can be viewed as an expected byproduct of the
nature of the actions defined by Eisenbud and Harris. Theorem 1 reduces the original
problem to showing that there is always at least one odd permutation in the monodromy
group. It is probably quite difficult to determine whether a geometrically constructed
permutation is odd or even. The most obvious odd permutations are the transpositions.
But these are probably the hardest to construct, since one must pointwise fix N—2
objects. Determining which H (m, n) for m, n=3 are equal to Sy seems irrelevant to
solving the original monodromy problem in general. Hence we believe that this paper
brings things to a high state of completion until some completely new ideas are introduced.

We now describe the combinatorial context of the problem. Let

L(m, n)= {(ap,ay - ..,a,):n2a,20,2...2a,20,a,eZ},

and consider the set of all paths of mn steps from (0,0, ...,0) to (n,n,...,n) which
stay within L (m, n). Let N=N(m, n) be the cardinality of this set. The monodromy
actions of Eisenbud and Harris permute the N paths, We describe these actions in terms
of standard Young tableaux in Section 2. In the special case n=2, after interchanging the
roles of m and n above, the paths at hand are just the “Catalan paths” in the plane.

Here
N=C, = 1 <2m>
m+1\ m

is the m-th Catalan number. The Catalan paths which have a corner at a point lying on
the line x+y=2k can be grouped into pairs in an obvious way. The following result,
which is closely related to Theorem 2, is a combinatorial consequence of our algebraic
methods.

THEOREM 4. — There are an even number of pairs of Catalan paths from (0,0) to (m, m)
with corners on the line x+y=2k, 0 <k <m, unless m=2¢; then there are an odd number
of such pairs.

The result from the theory of permutation groups which we use is Theorem 15.1
of [4].
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244 R. D. BERCOV AND R. A. PROCTOR

ProrosiTioN 1 (Bochert, 1889). — Let H be a 2-transitive permutation group acting on
N objects. If there is some non-identity element of H which moves fewer than (1/3) N—(2/3)
\/N objects, then H is either the alternating group Ay or the symmetric group Sy,.

This proposition is used to obtain Theorem 1: We show that H (m, n) is 2-transitive in
Section 3 and then exhibit elements satisfying the degree bound in Section 4. In Sections 5
and 6 the computations which determine the parity of the Eisenbud-Harris generators
are described, thereby proving Theorem 2, 3, and 4. In Section 6 we also explain the
rarity of symmetric groups in the Table. This numerological phenomenon is closely
related to the numerological fact that representations of the symmetric group are rarely
odd dimensional.

2. Definitions and actions

The set L (m, n) of n-tuples can be made into a partially ordered set by componentwise
comparison. Then the paths described in Section 1 become maximal chains. This poset
has been studied by Richard Stanley and others for purely combinatorial reasons. Here
it occurs as the poset of Schubert subvarieties of the Grassmannian G,,_; ,+,—; of P”s
in P74*2r [or m-dimensional subspaces of an (m + n)-dimensional vector space]. The
maximal chains of Schubert cycles occuring in [1] can be indexed by standard Young
tableaux of m x n rectangular shape as follows. In the notation of [1] (which is inessential
here), if we are given a chain

C0.0,...02+.- 20" 10D0,0>D ... D0, , w

let T;=c if a?=af"" for all k such that 0Sk<m—1=r except for k=i—1, where

j=a@=af"Y4+1. Doing this for the mn values of ¢ from 1 to mn yields a standard

Young tableaux T, viz.
{Tij, 1<ism, lé]én} = { 1,2,3,.. "mn}’

with T, ;<T,,, ; and T, ;<T, ;»;. Let X(m, n) be the set of all such rectangular

tableaux and let N=N (m, n)= | X (m, n)|.

Here we replace the notation x, , of [1] with &, , where 2<b<mn—1and 1<c<n—1.
Then in the language of tableaux the monodromy actions of Eisenbud and Harris act
from the right on the set X (m, n) as follows: If Tn, .=U, then U is obtained from T by
interchanging the entries b and b+1 if and only if they were in different rows and
columns in T and they were exactly ¢ columns apart. In symbols: If T;;=b, T,;=b+1,
i#k, and |I—j| =c, then U;=b+1, U,=b, and U, =T, elsewhere. If i=k or |I—j| #c
then U=T.

Let Sy be the symmetric group on X (m, n), and let H(m, n) be the subgroup of Sy
generated by the n, .. Then the problem posed by Eisenbud and Harris is:

Problem. — Does H (m, n)=Sy?

4¢ SERIE — TOME 20 — 1987 — N°2



A COMBINATORIALLY FORMULATED MONODROMY PROBLEM 245
3. Two-transitivity

Order the elements of X (m, n) by reading the entries of a tableau down the columns
from left to right, and then ordering the resulting mn-tuples lexicographically. Then A
is the minimum element of X (m, n), where A;;=(i—1)m+i; and Z is the maximum
element, where Z;;=(i—1)n+j. Suppose T;;=b and Tj;=b+1 with j—I=c>0 and i#k.
Then U=Tm, . precedes T in the order, viz. U<T. The tableau A is the only tableau
for which no b lies to the right of b+1; all other tableaux can be moved toward A with
some m, .. So H(m, n) acts transitively on X (m, n). (This was known to Eisenbud and
Harris.)

LEMMA 1. — The action of H (m, n) on X (m, n) is 2-transitive.

Proof. — Given any T such that A<T<Z we will move the ordered pair (T, Z) to
(T, Z) with T'<T. This implies 2-transitivity since the action is transitive. Note that
the only =, . which move Z are those with c=n—1 and b=0 mod n).

Let k be the largest i for which T; ; =i. Consider two cases.

(1)k=m. The first column of T is minimal. The first entry of T which differs from
that for A will be an entry b+ 1 for which b occurs ¢ columns to the right in T where
c<n—1. Then Tn, ,.=T'<T and Z~n, ,=Z.

(2) k<m. Let Ty, ;=r. Define p and g by T, ,=r—1. In each case below we
define ceH(m, n) and T'=To such that Zo=Z, T;,, ;<T,;,; 4, and T; ; =T, ;=i
for 15iZk.

If r—1#0(mod n) or if g#n, then let o=n,_, ,_;. So T;,, ;=r—1. Otherwise
r—1=0(mod n) and g=n, i.e. T, ,=r—1. Note that p must be <k. Consider three
cases.

(@ T, 41-i=r—ifornzizl.

Note that p<k implies T, ; =p which implies that T, ,=p+n—1 which is impossible
unless p=1 since T is a standard Young tableau. Then T, ,=2 implies T, ; #2 which
implies k=1 and T, ;=n+1. If m=2, then T=Z contrary to assumption. So assume
m=3. Now T and Z have identical first rows, so we can use induction on m to assume
T3 (=n+2. Nowseto=m, ,_ 1 Mysy p—1 Ny ,—y- Then T, ;=n<T, ;=n+1.

®) T, ,+1-i=r—iforn—12zi21and T, ;#r—n.

If T,_, ,=r—n then proceed as in (c) below. Otherwise T, ; =r—n with u>p. But
then p=1 as in (a) above. Since all of the numbers from 1 to r occur in the first
column or first row and T, ,=r—1, there are two possible locations for r+1 in T.
If T,y, ;=r+1, then set o=m_, ,_ % ,_ ;T _; ,—1 If T,,=r+1, set
=M, M_q 1M, 1 N,_y, ¢ if n=2, otherwise for n=3 set o=m, M, _; ,_ 27, ,—1 T, _y ¢
In all cases Ty, ;=r—1.

© T, p41-;=r—ifor szi=1 where n—22s521and T, ,,;_,_(#r—s—1. If s=2
then either T,_; ,=r—s—1 or T, ,=r—s—1 with u>p and 1<v<n+1-s. (If v=1
then r—s—1<r implies u<k implying that 1,2,...,r—s—1 are all used in the first
column, leaving no numbers for T, ,,...,TT, ,_.) Act with either n,_,_, ,_; or
M,_s—1,n+1-s—y tO T€place T with a new tableau T such that T, ,,,_ ., =r—s+1 but
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246 R. D. BERCOV AND R. A. PROCTOR

T, »+1-s#r—s. Repeat this until s has been decreased to 1, i. e. until T, ,_, #r—2.
Consider two cases.

() T,oy,,=7—2. Seto=m,_y , 1M _3 -1 Ty, ,-q ThenTi , ;=r—2

(i) T, ,=r—2 with u>p and v<n. If v=1 then T, ;=r—2=k and therefore we
must really be in case (b) above with n=2. If v>1 thenset o=mn,_, ,_,m,_; ,_;. Then
Tivg,1=r—1

This concludes case (2) and the proof of Lemma 1. W

4. Degree bound

Let A=(Aj,Ap...,A,) be a partition of t; ie A;=A,=...22,20 and
M +Ay,+...+A,=t. Consider the (Ferrers or Young) diagram for A, which has A;
boxes in the i-th row. The conjugate A’ of A is the partition of ¢ obtained by reading off
the column lengths A} =A52 ... 2A;>0, where g=A,. Let f, be the number of standard
Young tableaux on the diagram for A. Let h; ; be the “hook length” at the (i, j) square
in the diagram, viz. h; ;=\;+X;—i—j+1. Then (Ex. I.5.2 of [2])

In particular, if A is a perfect m x n rectangle then N (m, n)=f, ; explicitly

(mn)!

M #+i-1v,’

1<iz=m

N (m, n)=

where (a),=a(@a—1)(a—2)...(a—b+1). A

If m=1or n=1 then N=1 and H(m, n) is trivially S,. If m=2 or m=3 and n=2,
then =, ,_, or m; ; respectively are transpositions and we need not appeal to Proposi-
tion 1: Lemma 1 can be used to create any transposition. (This is how Eisenbud and
Harris handled the m=2 case.) If m=4 and n=2, then N=14 and (1/3) N—(2/3) \/ﬁ
is approximately 2. 17, forcing us to find a transposition. Random computer search
yielded the transposition 3434323434342 (where 3 denotes 75 4, etc.) of length 13 in the
Eisenbud-Harris generators. We believe this is the shortest length for a transposition in
H(4,2). .

If N>36 then (2/9)N may be used as the bound in Proposition 1. Clearly
N(@m, n)=42>36 when m=5 and n=2 or when m=3 and n=3 because
N(5,2)=N(3,3)=42.

LEMMA 2a. — If m=3 and n23, then the generator m, , moves fewer than (2/9) N
tableaux. )

Proof. — This generator affects only those tableaux T where the entries 4 and 5 are
two colums apart. This happens exactly when T; ;=4 and T; ; =5 or vice versa. Hence
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A COMBINATORIALLY FORMULATED MONODROMY PROBLEM 247

q=4 f, paths are moved by n, , where A is the m-tuple (n,n,...,n,n—1,n—1,n—3).
The hook lengths 3,4,5,6,...,(n+2)and 3,4,6,7, . ..,(m+2) (5 should not be included
twice) occur as hooks in the expression for N but not in f,, and conversely for the hooks
1,2,...,(n—3)and 1,2,...,(m—3). So then

g_=1 (n+2)s(m+2)s
N 5 (mn)s '

Then showing
(mn)s=(n+2)s(m+2)s
will imply ¢/N<1/5<2/9. But the inequality for (mn), is equivalent to
S5m2n*(m—n)®+20(m—n)®>+2m?n*>+8=24(m?—n*?+10mn,
which is easily verified for m, n=3. W

LEMMA 2b. — If m=35 and n=2, then [rs , ng ,]* moves fewer than (2/9)N tableaux.
Ifm=6 and n22, then [rn, 73 ,]° moves fewer than (2/9)N tableaux.

Proof. — The tableaux (or paths) in the case n=2 are treated in detail in the next
section. In the language we will use there, by Lemma 3 we will see that [n5n]® and
[r,73)® consist of C,C, and C, C,,_, tanspositions respectively. Hence 2C,C,=8 and
2C,C,,_,=2C, _, paths are moved. But N=42 and N=C,, in the two cases. But
8<(2/9) N, and it is also easy to see that 2C,,_,<(2/9)C,, when m=6. R

Once the above proof has been understood by reading Section 5, then Proposition 1,
Lemmas 1, 2a, 2b, and the remarks preceding Lemma 2 a can be combined to provide a
proof of Theorem 1.

5. Parity of generators when n=2

When n=2 it is more convenient to use L(2, m) to represent the paths in X (m, 2)
than L(m, 2): Given an element (2,2,...,2,1,1,..,1,0,0,...,0) of L(m,?2), define a
corresponding element (x, y), m=2x=2y =0, of L(2, m) by letting x be the number of 2’s
and 1’s and y be the number of 2’s. Then X (m, 2) is represented by the set of “Catalan
paths” (never rising above the diagonal x=y) in the plane from (0,0) to (m,m). Since
n=2, we have m, , only for c=1. We will denote =, ; by m,. If a path has an East-
then-North corner at a point lying on the line x+y=»b and this corner does not have
coordinates (k + 1, k), then it is interchanged by m, with its sister path which has a North-
then-East corner _ /2 to the northwest. Any path not having such a corner corresponds
to a tableau with b and b+ 1 in the same row [when the corner is at (k, k +1)], or in the
same column [when the path passes straight through a point (x, b—x)]. Therefore =, is
a product of r(m, b) transpositions, where r (m, b) is the number of Catalan paths with
corners on the line x+y=> not of the form (k+1, k) when b=2k + 1.
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248 R. D. BERCOV AND R. A. PROCTOR

At this point it is essential for the reader to draw a picture. It is easy to see that &,
fixes all paths except those passing through (2,1). Also note that m,m,,, cycles the
three paths contained in any 2 x 1 rectangle lying between x+y=b—1 and x+y=b+2.
Furthermore m,m,,; fixes any paths which are straight through these levels. Thus
[r, 7, ,]° affects only paths near the x=y border. This element interchanges paths
passing through (b/2, (b/2)—1) and ((b/2)+1, (b/2)+1) when b is even and ((b—1)/2,
(b—1)/2) and ((b+1)/2+1, (b—1)/2+1) when b is odd. Let

C, = 1 <2n>,
n+l1\ n

the n-th Catalan number, which is the number of Catalan paths from (0, 0) to (n,n). We
have just proved.

LemMMA 3. — The generators n, and m, ,_, are products of C,_, transpositions. The
element [n,m, .13 is a product of C, C,,_,_, transpositions when b=2k or b=2k +1.

When n! is expressed as a product of powers of primes, the exponent of 2 is n—bin (n),
where bin(n) is the number of 1’s occurring in the binary expansion of n. Hence C,, is
odd exactly when m=2'—1 for some i=0.

THEOREM 2'. — The generators n, for H (m,2) are always even unless m=2'+2/—1 for
some i=j=0. If m=2'(i. e. j=0), then all m, are odd. If m=2'+2/—1 with j>0, then
only m, with b=2/*'—1 and b=2"*'—1 are odd.

Proof. — The quantity C,C,,_,_, is odd only when k=2'—1 and m—k—1=2/—1
for some i, j=0. Then m=2'+2/—1). If m#2'+2/—1, then m#2’, so C,,_, is even
and m, is even. Then C,C, _,_, being even implies that [r,m,,,]* is even for b=2.
Therefore all ©, are even. Suppose m=2'. Then =, is odd. Since C,C,,_,_, is odd
only for k=0 or m— 1, this means that [, 7, ] is even for 2<b<2m—2, and so all m,
are odd. If m=2'+2/—1 with j>1, then n, and n,,,_, are even. And [n,7,,,]® is odd
exactly when k=2'—1 or 2/—1, i. e. when pb=2i*1_2, 2i*1_] 2/*1_2 2i*1_1  This
forces m, to be odd when b=2'*'—1 or 2/*! —1 and even otherwise. W

The combinatorial version of Theorem 2’ is:

THEOREM 4" The number of pairs of Catalan paths from (0, 0) to (m, m) with corners
on the line x+y=b not of the form (k +1, k) is even unless m=2'+2/—1 for some i=j=0.
If m=2! (i. e. j=0), then there are always an odd number of pairs. If m=2'+2/—1 with
j>0, then there are an odd number of pairs exactly when b=2'*1—1or b=2/*1_1.

6. Parity of generators when n=>3

The generator w, . interchanges the entries b and b+1 in all tableaux wherein these
entries are in different rows and ¢=1 columns apart. Given such locations for b and
b+1, let A and p be the regions occupied by the entries 1,2,3,...,b—1 and b+2,
b+3,...,mn respectively. Here A=(Ay, A, . .,A,) and p=(p,, .. ., H,) are partitions of
b—1 and mn—b—1 respectively, where p; is the number of entries in the (m—i+ 1)th
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A COMBINATORIALLY FORMULATED MONODROMY PROBLEM 249

row which are larger than b+ 1. Let b and b+1 be in the i-th and j-th rows, and let f;
and f, be the numbers of standard Young tableaux on the diagrams A and p. Then f, f,
is the number of pairs of paths passing through the points A and
M=y, ..o+, A+1, ..., ),). Thus m,  is the product of

X Ak

A,

disjoint transpositions, where the sum runs over all partitions A of b and choices of two
squares just outside A which lie in different rows and ¢ columns apart. Computing this
quantity (mod 2) for all m, . for each H (m, n) yielded the Table.

The prevalence of the alternating group in the Table is not at all surprising when one
considers the question of when the number of transpositions in m, . is odd. In order for
this to happen, there must be an odd number of terms in the above sum where f, and f,
are simultaneously odd. We will see that it is rare for just one f, to be odd. Furthermore,
one of A or p must have t squares, where t = (mn—2)/2.

Let A be a partition of ¢ with p parts, viz. t=A;+A,+... +A
Example I.1.1 of [2],

» According to

t1T] (8;—8))
i<j

fx=‘—p‘———,
[T@®)!
i=1

where 0,=\;+p—i. Then f, is odd only when

<’2’> +bin()= ¥ two(8,—8)+ Y. bin(8,),
=1

i<j i

where bin (1) is as in Section 5, and two (k) is the exponent of 2 in the prime factorization
of k. This condition seems to be especially hard to satisfy when the number of parts p
is not small, say p=5, and when the partition is “fat”. By this we mean t>pq/2—1, .
where g=X,;. Of the 891,042 partitions A with p, g=5 and 11<t<63 and t=pq/2—1,
only 108 have odd f,. (And all of these had t <pq/2+ 3, supporting the belief that a fat
partition is very unlikely to have odd f,.) With only 2 exceptions which can be treated
by hand, every pair of partitions A, p which arises in the transposition count calculation
for m, n=8 has at least A or p satisfying p, g=5 and t=(pq—1)/2. Therefore only on
the basis of the preliminary data above concerning the parity of f, for A meeting such
conditions, we would expect to find few odd Eisenbud-Harris generators after the full
X f, f, computations are made for cases with m, n=8. This is because any A with f;
odd must be paired with a p with f, odd in order to have any effect, and such a pairing
is very unlikely. These considerations lead us to believe that the rarity of Sy in the
middle region of the Table is a byproduct of the particular construction of Eisenbud
and Harris, and that this rarity does not reflect any geometric phenomenon.

We note in passing that f, is the dimension of the A-th irreducible representation of
the symmetric group S,, where |X| =t. John McKay and Ian Macdonald [3] have shown
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250 R. D. BERCOV AND R. A. PROCTOR

that the number of partitions A of t for which £, is odd is 2¥1%2* - - if ¢=2k1 4 2%k2 4 |
with k;<k,... This can be compared with the Hardy-Ramanujan estimate
(4 \/3 )~ e"v? / for the number of all partitions of t to see how rare odd f, are for a
given value of t.

We wish to thank David Eisenbud, Phil Hanlon, Joe Harris, and Rob Lazarsfeld for
some helpful conversations.
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