
ANNALES SCIENTIFIQUES DE L’É.N.S.

ERIC M. FRIEDLANDER

BRIAN J. PARSHALL
Rational actions associated to the adjoint representation

Annales scientifiques de l’É.N.S. 4e série, tome 20, no 2 (1987), p. 215-226
<http://www.numdam.org/item?id=ASENS_1987_4_20_2_215_0>

© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1987, tous droits réservés.

L’accès aux archives de la revue « Annales scientifiques de l’É.N.S. » (http://www.
elsevier.com/locate/ansens) implique l’accord avec les conditions générales d’utilisation
(http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systé-
matique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi-
chier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ASENS_1987_4_20_2_215_0
http://www.elsevier.com/locate/ansens
http://www.elsevier.com/locate/ansens
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Ann. scient. EC. Norm. Sup.,
46 serie, t. 20, 1987, p. 215 a 226.

RATIONAL ACTIONS ASSOCIATED TO THE ADJOINT
REPRESENTATION

BY ERIC M. FRIEDLANDER (1), (2) AND BRIAN J. PARSHALL (1)

In this paper we investigate the G-module structure of the universal enveloping algebra
U(^) of the Lie algebra ^ of a simple algebraic group G, by relating its structure to
that of the symmetric algebra S(^) on ^. We provide a similar analysis for the
hyperalgebra hy(G) of G in positive characteristic. In each of these cases, the algebras
involved are regarded as rational G-algebras by extending the adjoint action of G on ^
in the natural way.

We prove the existence of a G-equivariant isomorphism of coalgebras U(^) ->S(^)
in Section 1. (Our proof requires some restriction on the characteristic p of the base
field fe.) This theorem, inspired by the very suggestive paper of Mil'ner [12], can be
viewed as a G-equivariant Poincare-Birkhoff-Witt theorem. As a noteworthy conse-
quence, this implies each short exact sequence 0->\J"~1 -)-U" -> S"(^) ->0 of rational
G-modules is split. Then in Section 2, we provide an analogous identification (in positive
characteristic) of the-hyperalgebras-of-Gand its infinitesimal kernels Gy in terms of
divided power algebras on ^.
_Motivated-by-the^main result of Section 1, we study in Sections 3 and 4 the invariants
of S(^) [and of U(^)] under the actions of the infinitesimal kernels G,. c: G. For r= 1,
Veldkamp [14] studied the invariants in U(^), regarded as the center of U(^). We
adopt his methods and extend his results. We achieve this by considering the field of
fractions of the G^-invariants of S(^) in Section 3. Our identification of S^)01- and
\J(^)°r given in Section 4 has a form quite analogous to Veldkamp's description of the
center of U(^). As we show in (4.5), this portrayal illustrates an interesting phenomenon
concerning "good filtrations" (in the sense of Donkin [6]) of rational G-modules.

The present paper has its origins in the authors' unsuccessful attempts to understand
the proof of Mil'ner's main theorem in [12], which asserts the existence of a (filtration
preserving) isomorphism U(^)-»S(^) of ^-modules for an arbitrary restricted Lie
algebra ^. We are most grateful to Robert L. Wilson for providing us with the example
following (1.4) below, which gives a counterexample to the key step in Mil'ner's argument
([12], Proposition 5).

(1) Research supported in part by N.S.F.
(2) The first author gratefully acknowledges the support of the Institute for Advanced Study.
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216 E. M. FRIEDLANDER AND B. J. PARSHALL

1. A G-invariant form of the P-B-W-theorem

Let ^ be a Lie algebra over a field fe with universal enveloping algebra U(^). Recall
that U(^) has a natural (increasing) filtration {U"}, where U" denotes the subspace of
U(^) spanned by all products of at most n elements of ^. Also, U(^) carries the
structure of a cocommutative Hopf algebra in which the elements of ^ are primitive for
the comultiplication A: U (^) -^ U (^) 00 U (^). Note that each U" is actually a subcoalge-
bra of U(^). The adjoint representation of ^ extends to an action of ^ on U(^) by
derivations. If ^ is the Lie algebra of a linear algebraic group G, then the adjoint action
of G on ^ defines in an evident way a rational action of G on U (^) by Hopf algebra
automorphisms.

If V is an arbitrary vector space over fe, the symmetric algebra S (V) on V carries a
Hopf algebra structure in which the elements of V are primitive under the comultiplication
A: S(V) -> S(V) (g) S(V). For n ̂  0, we denote by S^ "(V) the sum of the homogeneous
components S^V) of S(V) with i ̂  n. Note that {S^V)} is filtration of S(V) by
subcoalgebras.

In particular, we consider the Hopf algebra S(U(^)) based on the vector space
U(^). The following result gives our interpretation (and strengthening) of Mil'ner's
([12], Proposition 1).

(1.1) LEMMA. — There exists a coalgebra morphism

(p: U(^S(U(^))

in \vhich (p|^ identifies mth the natural inclusion of^ c= U(^) into S1 (U (^)) =\J W and
(p(Xi. . .xj = (p(xi). . .(p(x^) (modS^^OJ^))) for x^ . . ., x^e^. The morphism (p
is ^-equivariant for the adjoint action of ̂  on U (^) and its extension (by derivations) to
S(U(^)). Finally, (p 15 G-equivariant if<S=Lie(G) is the Lie algebra of a linear algebraic
group G over fe.

Proof, — If x={xi , . . . ,xJ is an ordered sequence of elements of ^, for
I={;\ < . . . < fj c: N={1, . . ., n} we set x^=x^ . . . x^eU(^). Consider the element

TO=I^...^eS(U(^)),

where the summation extends over all partitions I^ U . . . U Ijk of N into nonempty
disjoint ordered subsets. (Each 1̂  is an ordered subset of the ordered set N, whereas the
different orderings of I^, . . ., 1̂  are not distinguished.) On the right hand side of the
above expression, the product of the x^ is taken in S(U(^)). Thus, in S(U(^)), x^ has
homogeneous degree 1, so that x^. . . x^ has homogeneous degree fe. In particular, the
image of \|/(x) in S^ "(U(^))/S^ "^(U^)) is x^...x^. Suppose l^j<n and
x^ i Xj = Xj Xj+1 + ̂ , for ^ e ̂ . Set

y^{-^l» • • • ? •^j'-l? •^j+l? -^/'s •^j"+2» • • • ? -^nj

and

z={x^, . . ., Xj-i? s» -^j+z? • • • ? -^wj?
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ADJOINT REPRESENTATION 217

and let P be the set of partitions of N in which j and 7+1 occur in the same ordered
subset (which we index to be I^). Using the surjective order preserving map
N — ^ N — 1 = = { 1 , . . ., n — 1} sending j and 7+1 to j to identify P with the set of partitions
of N— 1, we conclude the equalities

\|/(y)-\|/(x)=^(^-x^)^. . .Xi,=^z^. . .z^=\|/(z).
p

It follows from the definition of U(^) as a quotient of the tensor algebra based on ^
that \|/ defines a linear map (p: U(^) -^S(U(^)) by setting (p(l)=l and
CP(XN) = (p(xi. . .x^)=\|/(x) for any x=(x^, . . ., ^). To see that cp is a coalgebra
morphism, we note that for a sequence x={xi , . . ., xj of elements in ^, we have

((p(g)(p)A(xi. . .^)=((p(x)(p)(^Xi(x)xN\i)=^x^. . .x^®x^. . .x^.

In this expression, I runs over all ordered subsets of the ordered set N, while the last
summation runs over all such I and all partitions I^, . . ., 1̂  (respectively, J^, . . ., J^) of
such I (resp., N\I). (By convention, we set x^ = 1.) This term clearly equals

A(p(xi. . .^)=A(^XK,. . .XK,).

whence it follows that (p defines a coalgebra morphism. It is immediate, from its
definition, that (p has the required equivariance properties. D

Making use of this result, we easily obtain the following theorem, inspired by the main
theorem of MiFner [12] [cf. remarks following (1.4) below].

(1.2) THEOREM. — Let ^ be a Lie algebra over a field k. There is a ^-equivariant,
filtration preserving isomorphism of coalgebras

P: U(^)-^S(^)

if and only if the natural inclusion ^ cz U(^) splits relative to the adjoint action of^ on
U(^). Furthermore, if^=Lie(G) is the Lie algebra of a linear algebraic group G, P can
be taken to be G-equivariant if and only if the inclusion ^ c= U(^) splits as rational G-
modules. When P exists, the associated graded map gr(P): gr(U(^)) -^gr(S(^)) ^ S(^)
15 an isomorphism of Hop f algebras.

Proof. — If the isomorphism P exists, it maps ^ c U(^) isomorphically to ^=S1^)
since ̂  is the space of primitive elements contained in S^ 1 (^). It follows that ^ c: U(^)
splits for ^ (or G if applicable). Conversely, assume that the inclusion ^ c U(^) splits
for the action of ^ on U(^). Thus, there exists an equivariant projection p : U(^) -> ̂
of ^-modules, which induces an equivariant morphism S(p): S(U(^)) -^S(^) of Hopf
algebras. It follows that if (p is as in (1.1), then P=S(/?)°(p: U(^) ->S(^) is an
equivariant, filtration preserving morphism of coalgebras. By (1.1), P induces an isomor-
phism gr (P): IT/IT ~1 -> S ̂  n (^)/S ̂  n ~1 (^), so that P itself is necessarily an isomorphism.
This establishes the first part of the theorem, while the second is obtained similarly,
using (1.1). The final assertion follows from the property (p(Xi. . . xj = (p(xi). . . (p(xj
(modS^-^U^Q^forcpasin^.l). Q
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218 E. M. FRIEDLANDER AND B. J. PARSHALL

We proceed to investigate circumstances under which an isomorphism |3 in (1.2) exists.
If k has characteristic 0, the mapping T| : S(^) -> U(^) defined by

T|(XI. . .^)=l/n!^x,(i). . .x,^ (xi, . . ., x^e^)

(where T runs over permutations of {1, . . ., n}) is clearly equivariant. By [2] (Ch. II,
§ 1, No. 5, Proposition 9), T| is an isomorphism of coalgebras, and we can therefore put
p=^-1.

For the rest of this paper \ve assume therefore that k is an algebraically closed field of
positive characteristic p.

If ^ is a restricted Lie algebra over k with ^-operator x -> x1^, we denote its restricted
enveloping algebra by V(^). Thus, V(^) is a finite dimensional Hopf algebra which is
obtained from U(^) by factoring out the ideal generated by elements of the form x^—x^,
xe^. The adjoint action of ^ defines an action by derivations of ^ on V(^). Also, if ^
is the Lie algebra of a linear algebraic group G, the adjoint action of G on ^ extends to
a rational action of G on V(^) by Hopf algebra automorphisms.

Recall that the bad primes p for a simple, simply connected algebraic group G defined
and split over k are as follows:

none if G is of type A^;
p = 2 if G is of type B^, Cj, or D^;
p =2 or 3 if G is of type G^, F4, E^, or E7;
p = 2, 3, or 5 if G is of type Eg.

If a prime p is not bad for G, it is called good. Then we have the following result.

(1.3) LEMMA. —Suppose G=GL^ or that G is a simple, simply connected algebraic
group defined over an algebraically closed field k of positive characteristic p which is good
for G. If G = SL^, assume also that p does not divide n. Then the natural inclusion
^ c V(^) of rational G-modules is split.

Proof. — Let I be the ideal of functions in the coordinate ring k [G] of G which vanish
at the identity 1. Then ^ identifies with the linear dual (I/I2)*. It follows from [1]
(4.4, p. 505) that, under the hypotheses of the lemma, we may assume that the quotient
map 7i: k [G] -> ̂ * ̂  k [G]/(I2 © k) admits a G-equivariant sections. Let G^ be the
infinitesimal subgroup of G of height ^ 1 with Lie(Gi)=^ ([5], II, §7, No. 4.3). If
a:fe[G]-^fe[GJ is the restriction map on coordinate rings, the quotient map
Tii: fc[GJ ->^* admits a°s as a G-equivariant section. Moreover, in the identification
of the dual Hopf algebra k[G^ with V(^) ([5], II, §7, No. 4.2), the dual mapping Ttf
identifies with the natural inclusion ^ <= V(^). This establishes the lemma. D

We use this result in proving the following G-equivariant P-B-W theorem.

(1.4) THEOREM. — Assume that G is a linear algebraic group over k of one of the
following types: (i) G ̂  GL^; (ii) G is a simple, simply connected algebraic group not of
type A.i and p is good for G; (iii) G 15 of type A^ and p does not divide (+1. Then there is
a G-equivariant, filtration preserving isomorphism

P: U(^)-^S(^)
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ADJOINT REPRESENTATION 219

of coalgebras, whose induced morphism gr(P) is an isomorphism of G-H op f algebras.
Proof. - By (1.3), the natural inclusion ^ c V(^) splits for the action of G on V(^).

Composing a G-equivariant projection V(^)-^ with the natural quotient morphism
U(^) -^V(^), we obtain that the inclusion ^ c= U(^) also splits for the action of G.
Thus, the theorem follows from (1.2). D

Robert Wilson has kindly given us the following example which shows that the
conclusion of Lemma 1.3 is false for a general restricted Lie algebra. Let ^ be the central
extension of sl^ with basis e, h,f, z satisfying [e, j]=h, [h, e]==2e, [h, f}= —2f, [ ,̂ z]=0.
We make ^ into a restricted Lie algebra by defining ^=z, h^^h, /^=0, ^=0.
Assume that/? > 3, and put \v=ep~3h^ e\(^). Then w^ and (8ide)3\v= -48z. Since
(side)3 ̂ ==0, if Wi is the projection of w into any subspace of V(^) which is a complement
to ^ in V(^), we obtain that (ade)3 w^ =(ad^)3 w is a nonzero element in ^. Thus, the
inclusion ^ c: V(^) does not split for the action of ^ as claimed by MiFner ([12],
Proposition 5). For p=l and ^=sl^, a similar example can be given replacing w by ef
and (a.de)3 by (ad/) (ade). Note in this case that the monomials eahbfc of degree > 1
in U(^) span an ad (^-invariant subspace, providing an isomorphism U(^) ->S(^) of
coalgebras which is equi variant relative to the adjoint action of ^.

2. A G-equivariant P-B-W theorem for hyperalgebras

In this section we obtain results analogous to those of Section 1 for the hyperalgebras
of certain algebraic groups. The reader is referred to [3] for a more detailed discussion
concerning the theory of hyperalgebras which we require.

Let k be an algebraically closed field of positive characteristic p, and let G be a
connected, linear algebraic group defined over the prime field ¥p. For r ^ 1, Gy
denotes the group-scheme theoretic kernel of the r-th power of the Frobenius morphism
CT : G -> G. The coordinate ring k [GJ of Gy is a finite dimensional commutative Hopf
algebra. By definition, the hyperalgebra hy (Gy) of Gy is the Hopf algebra dual of k [GJ.
The natural inclusions Gy. c G^+i provide Hopf algebra embeddings hy(G^) c hy(G^+^),
and the hyperalgebra of G is realized as the limit

hy(G)=limhy(G,).

As such, hy(G) is a cocommutative, infinite dimensional (if G ̂  e) Hopf algebra. The
conjugation action of G on itself induces a natural (rational) G-action on each hy(G^)
and hence on hy(G) by Hopf algebra automorphisms.

For example, suppose G is the d-dimensional vector group V^G^. If x^, . . ., x^ is
a basis for V(Fp), hy(V) has a k-basis on symbols x^. . .x^, m^, . . ., m^ ^ 0. Since

hy(V) is commutative, the rules x^xf^l jx^^ specify its multiplication. Also,
\ a )

the comultiplication is given by A (x^) = ^ xf° (g) x^\ Thus, the ^w) behave like the
b+c=a

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPER1EURE



220 E. M. FRIEDLANDER AND B. J. PARSHALL

divided powers x^/m! [and Ky(V) identifies with the graded dual SfV*)*^ of the symmetric
algebra S(V*)]. Note that hy(V) is naturally graded by setting hy^V) equal to the
linear span of all monomials x^. . .x^ satisfying m = m i + . . . +m^. This defines an
increasing filtration {hy^ "(V)} on hy(V) by subcoalgebras in which the associated graded
Hopf algebra gr(hy(V)) identifies with hy(V). For r ^ 1, the hyperalgebra hy(V,) of
the infinitesimal subgroup scheme V,. corresponds to the subspace of hy(V) spanned by
those monomials above satisfying m, <p\ 1 ̂  i ̂  d. Finally, GL^ acts naturally on
hy(V) by Hopf algebra automorphisms, preserving the grading, etc.

If G is a simple, simply connected algebraic group defined and split over F , hy(G)
has a basis consisting of monomials

x^/a,' • • • ̂ M (^ ) • • • (^) xc^ • • • ̂ W

(usual notation, cf. [3; 5.1]). Observe that hy(G) is graded by setting hy"(G) to be the
linear span of those monomials of total degree ^^+^^+^Cfc=n, and we obtain an
increasing filtration {hy^ "(G)} of hy(G) by subcoalgebras, stable under the action of G
on hy(G). We do not go into further details here, but refer instead to [3] (§5), [2]
(Ch. 8, §12, No. 3).

We now prove the following companion theorem to Theorem 1.4. In the statement of
this result, hy(^) denotes the hyperalgebra of ^ regarded as a vector group defined over
¥p. For simplicity we omit the case of GL^; the interested reader should have no trouble
supplying the modifications to handle this group.

(2.1) THEOREM. — Let G be a simple, simply connected algebraic group defined and split
over ¥p. Assume that p is good for G and that if G is of type A^ then p does not divide
/+ 1. Then there exists a G-equivariant, filtration preserving isomorphism ofcoalgebras

P: hy(G)^hy(^)

with the property that the induced map gr(P): gr(hy(G)) -^hy(^) 15 a G-isomorphism of
Hopf algebras. Moreover, for each r ^ 1, P restricts to a G-equivariant, filtration preserving
isomorphism ofcoalgebras

P,: hy(G,)^hy(^)

for which gr(P^) is a G-equivariant isomorphism of Hopf algebras.

Proof. — As noted in the proof of (1.3), the natural quotient map k [G] -> ̂ * admits a
G-equivariant section ^* -> k [G]. Composing this map with the restriction homo-
morphism k [G] -^ k [G,] provides a G-equivariant section 5,: ^* -> k [G,] to the quotient
map fe[GJ-^*. Since fe[GJ identifies with a truncated polynomial algebra
MTi, . . ., TJ/(Tf, . . ., Tf), d=dimG, by [3] (§9.1), [5] (III, §3, No. 6.4), it follows
that 5, identifies k [G,] G-equivariantly with S(^*)/^*^ as commutative algebras. Taking
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ADJOINT REPRESENTATION 221

duals, we obtain the desired G-equivariant isomorphism P^: hy(G^) -^hy(^) of coalge-
bras. Because the s^ are by construction compatible, it follows that the ?,. define a G-
equivariant isomorphism P: hy(G) -> hy(^) of coalgebras. Furthermore, using the usual
basis of hy(G) we easily see that gr(P) is an isomorphism of Hopf algebras. D

Further information concerning the G-module structure of hy(G) will be given in
paragraph 4 below.

3. Fraction fields and their invariants

Let G be a linear algebraic group defined over Fp, as in Section 2 above. In this
section, we investigate the invariants of the field of fractions of S (^) under the action of
the infinitesimal subgroups Gy. (Recall that a rational module V for an affine fe-group
H is, by definition, a comodule for the coordinate ring k [H] of H. If Ay: V -> k [H] ® V
is the corresponding comodule map, then the subspace of invariants is defined by
yH=[ve\: Ay(v)=l ( S ) v } ([3], 1.1). From an equivalent functorial point of view ([5],
II, §2, No. 1), V" consists of those u e V such that u ® l e V ® R is H(R)-fixed for all
commutative fe-algebras R.)

Let p:G-^GL(V) be a finite dimensional rational Fp-representation. Let A=S(V)
and set K equal to the field of fractions of A. In general, K is not a rational G-module
since it need not be locally finite for the action of G. However, it is interesting to note
that each infinitesimal subgroup Gy does act rationally on K. To see this, first observe
that relative to a fixed basis for V(F^), any xeG^(R) (R a commutative fe-algebra) is
represented on V (X) R by a matrix of the form I + D, where the matrix entries in D
have ^-power equal to 0. Thus, for v e V, the element

p ( ; c ) (y®l ) -y®l=D( i ;® l ) eV®R c: S(V) ® R^S(V® R),

satisfies the relation [p(x)(u® l ) — y ® l]pr=0. Hence, given any/eS(v) and .xeG(R),
we have (p(x) (/® l))pr=fpr ® 1. This shows that K ® R is isomorphic to the localization
of A ® R relative to the multiplicative subset generated by p(G^(R)) (A x ® 1), and hence
K ® R is a R-G,(R)-module, functorial in R. By [5] (II, §2.1), K is a rational G^-
module. Of course, when r=l , this merely amounts to the familiar procedure of
extending an action of the Lie algebra ^ on A by derivations to an action (by derivations)
on the fraction field K by the quotient rule of calculus.

We can now state the following result concerning invariants.

(3.1) PROPOSITION.—Let G be a linear algebraic group defined over ¥p and let
p:G->GL(V) be a finite dimensional rational F^-representation. Let K denote the field
of fractions of A = S (V) and let K^ denote the field of fractions of the algebra of invariants
A01: Then Ky equals K01- for any r>0, -where K is given the structure of a rational G^-
module described above.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



222 E. M. FRIEDLANDER AND B. J. PARSHALL

Proof. - Clearly, K, c: K^. Conversely, if 'k=x/seK0'- with x, seA, then s^eA^
and^xs^^/s^eK,. D

Now fix a simple, simply connected algebraic group G defined and split over Fp.
Assume that p does not divide the order of the Weyl group W of G. In particular, this
implies that the Killing form on ^ is non-degenerate, and we thereby identify ^^^* as
rational G-modules. Let Jf = Lie (T) c ̂  = Lie (G) be the Lie algebra of a maximal split
torus T of G. Then S^)0^^)^ [13] is isomorphic to a polynomial ring J on
homogeneous generators T^, . . ., T^ (J=rank G) of degrees m^ + 1, . . ., m^+ 1 where the
m, are the exponents of the root system of T in G [4]. Let K be the field of fractions of
S(^). Extending arguments of Veldkamp [14] for r=l , we identify K^K^ using this
polynomial algebra J. We first require the following result.

(3.2) LEMMA.—Fix an ordered basis { X ^ , . . . , X ^ } of ^ and let C be the nxn
K-matrix ( .̂), \vhere a^ = [X,, X .̂] e K. Then rank (C) ̂  dim G/T = n -1.

Proof. — Let <D be the root system of T in ^, and for ae0, let e^ be a nonzero root
vector of weight a. Since the rank of C is independent of the choice of basis for ^, we
may assume that {^ojaeo ls P^1 °^ our basis {X^}. It is therefore enough to show that
the submatrix B=([^,^p]) of C is nonsingular. Let T: S(^) -> S(Jf) be the algebra
homomorphism defined by r(^)=0 for all aeO and ^(h)=h for all he^f. Since G is
simply connected, each [^,e_J, aeO, is a nonzero element of Jf. Hence, r(B) has
exactly one nonzero entry in each row and column, and so is nonsingular. Hence, B is
nonsingular. D

(3.3) THEOREM. —Let G be a simple, simply connected algebraic group defined and
split over ¥p of dimension n and rank! mth the property that p is prime to the order of the
Weyl group W of G. For each positive integer r, the natural G-map S^^) ®j(r) J ->
S^)01" is an injection and induces an isomorphism on associated fields of fractions

^(S^)®^);)^,.
\

Here S (^^(respectively, J^) is the subalgebra of S(^) (resp., J) generated by the pr-th
powers of the homogeneous generators ofS(^) (resp., J) and J=S(^)°.

Proof. - We first assert that the monomials T^i. . .T?', O^a^p', in S(^) are linearly
independent over S^). Fix a basis { X j of ^. We recall from [14] (7.1) that the
Jacobian matrix (ST^/SX^) has rank I at (pe^*^^ if and only if (p is regular. Since the
regular elements of ^ form an open dense subset, (STJSXj) has rank I. As argued in
[14] this establishes our assertion when r=l . The general case then follows by an easy
inductive argument on r.

Thus, the natural map S^^) OOj(r)J ->• S^)^ is injective, and we let K^ be the field of
fractions of the image domain. Since J is a free J^-module of rank p"1, we conclude
that Ky is a subfield of K,. which is an extension of degree p^ over K^. Hence,
[K•.Ky]=pr(n~l). To prove the inclusion Ky <= Ky is actually an equality, it suffices to
prove that [K: K,] ̂ p1'(n ~l). We proceed to prove that [K,: K, + J ̂ p" ~l for each s, 0 ̂  s < r
(withKo=K).
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ADJOINT REPRESENTATION 223

By Proposition 3.1, K^^Kf^i^. Identifying G,+i/G, with G^ and the G,_n/G,-
module K^ with the corresponding "untwisted" G^-module K^-s)[3](3. 3), we obtain that
K^i^K^^^K^)^ Thus, the Jacobson-Bourbaki theorem ([10], Theorem 19,
p. 186) implies that [K,: K.+J^1^1^1 where ̂  denotes the K^-span of the image
of ^ in the derivation algebra Der (K^). For X, Ye^, the derivation of K^ defined
by X maps (Y^-^eK^ to ([X.Y]^-^. Thus, [^^F^] equals at least the rank of
the matrix C of (3.2). Thus, by (3.2), [K,: K,+ J ̂ //l-l as required. D

In the course of the above proof we have also established the following result which
may be of independent interest.

(3.4) COROLLARY. —Let G be as in (3.3). Then the matrix C of (3.2) has rank
exactly equal to dim G/T. Furthermore, if K ̂  is the K-span of the image of ̂  in the
derivation algebra Der(K), then K^ has dimension equal to dim G/T over K. D

We also obtain the following corollary from (the proof of) Theorem 3. 3.

(3. 5) COROLLARY. — Let G be as in (3. 3). Then K is purely inseparable of dimension
pr(n-i) Q^^, }^y=KG^ \vhereas Ky is purely inseparable of dimension p1'1 over
fracS^^Ky. D

It is amusing to observe that the extension analogous to K^/K^ in the context of U(^)
is separable. Namely, the field of fractions of the center of U(^) [which we may view
as U^)01 to preserve the analogy with S(^)] is separable over the field of fractions of
the central subalgebra ^P^S^^) [II], Lemma 4.2) (see also Proposition 4.5 below).

4. Infinitesimally invariant subalgebras

In Theorem 4.1 below we identify for a simple, simply connected algebraic group G
defined and split over ¥p the G.-invariants of S(^) in terms of S^^S^)^ and the
polynomial subalgebra J=S(^)0 c= S(^). We then use this result to provide a correspon-
ding identification of the G^-invariants of U(^), thereby extending Veldkamp's determina-
tion of the center of U(^) [14]. Our proofs are modifications of Veldkamp's original
arguments. In Proposition 4.5, we interpret the information given by Theorem 4.1 in
the light of the existence of a "good filtration" on S(^).

(4.1) THEOREM. —Let G be a simple algebraic group defined and split over ¥p of
dimension n and rank I mth the property that p does not divide the order of the Weyl
group W of G. For each positive integer r, there is a natural isomorphism

SOTg^Dj^S^)^

of rational G-algebras.
Proof. - For notational convenience, let A^S^^) ®j(r)J and let A^S^)^. By

Theorem 3.3, the natural map A^ -> A^ is an inclusion which induces an isomorphism
on the corresponding fields of fractions. Since A^ -> A^ is clearly a finite map, itisuffices
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to prove that Ay is integrally closed. We explicitly write the extension J -> Ay as

k [T,, . . ., TJ -^ k [T,, . . ., TJ [<, . . ., <]/(Tf-r,«, . . ., <), 1 ̂ i^l).

The Jacobian matrix (3^/&Cy) has rank ^ at an element (p of ^* (naturally homeomorphic
to the maximal ideal space of Ay) if and only if (pe^* (^^ via the Killing form) is
regular. Hence, Ay is regular in codimension 2. As presented above, Ay is clearly a
complete intersection of hypersurfaces in affine n-\-l space. Hence, Serre's normality
criterion ([9], 5.8.6) implies that Ay is normal as required. D

Identifying ^ with ^* via the Killing form, we can restate Theorem 4.1 in geometric
language as follows.

(4.2) COROLLARY. — For G as in (4.1), there is a natural isomorphism ofG-schemes

^/Gy^^X^r^/G.

Because the isomorphism U(^)^S(^) of Section 1 is not multiplicative, a description
of U^)^ analogous to that of S(^)0'- in Theorem 4.1 requires a little effort. We recall
the central G-subalgebra (9 c= U(^) given as the (isomorphic) image of the G-algebra
map S^) -> U(^) sending X e^ to X^-X^eU^). We define ^ to be

Oy = S (span {<, (^ - ̂ r-'; a e 0, P e H }).

Here 0 denotes the root system of G, H is a set of simple roots, and {e^ ftp; a e 0, P e II}
is a standard (Chevalley) basis for ^. The following corollary is a generalization to r> 1
of Veldkamp's description of the center U^)0! of U(^) [14; 3.1].

(4.3) COROLLARY. — For G as in (4.1) an^ r^l , U^)0*- fs isomorphic as a rational
G-module to a direct sum ofp^ copies of (9y. More precisely, ifS^ . . ., S^ are G-invariant
elements of\J(^) whose representatives in gr(U(^)) ̂ S(^) are the homogeneous generators
Ti, . . . ,T^ ofS(^)°, then the natural map

^[si,...,sJ^U(^, s^S,

restricts to an isomorphism from the submodule (9y[s^ . . .,Sj; //] of polynomials of degree
<;/ in each of the s^ onto U^)^.

Proof. — Because (9y c= U (^) has the property that its associated graded group (with
respect to the filtration {U"} on U(^)) is S^) c S(^), we conclude using Theorem
4.1 that the associated graded group of the image of (9y[s^ . . ..Sj;^] -^U^)0^ is
S(^)^c= S(^). Hence, (9y[s^ . . .,5,;^] -. U(^)^ is surjective. On the other hand, the
associated graded group of (9y{s^ . . .,s^; //] maps injectively to S^)0'-, so that
(Py[s^ . . ., s^;//] -^ U(^)Gr must be injective as well. D

We conclude by investigating one aspect of the G-extensions occuring in S(^). Let G
be as in (4.1), and let T be a maximal split torus contained in a fixed Borel subgroup
B <= G. For any dominant weight ^, denote by I(X) the rational G-module obtained by
inducing to G the one-dimensional rational B-module defined by the character Wo(X).
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An increasing filtration by rational G-modules of a given rational G-module M is said
to be good if its sections are of the form I(^,), cf. [6]. Then we have the following result.

(4.4) PROPOSITION. — Let G be a simple, simply connected algebraic group defined and
split over ¥p as above. Assume that p does not divide the order of the Weyl group of G.
Then:

(a) S(^) has a good filtration;
(b) U (^) has a good filtration; and
(c) hy(G) does not have a good filtration.

In particular, U (^) is not isomorphic to hy (G) as a rational G-module.
Proof. - (a) follows from [1] (4.4) (improving the bounds in [8]), and (b) is clear

from Theorem 1.4. To prove (c) it is enough by Theorem 2.1 to prove that hy(^)
does not have a good filtration. We assert that the component hy^^) does not admit a
good filtration. First, observe that if v is the maximal root in the root system 0 of G,
then pv is the maximal dominant weight in hy^), so that if hy^) admits a good
filtration, there exists a surjective G-module homomorphism hy^^) -> l(pv) [6]. On the
other hand, the subspace V of hy^^) spanned by those monomials x^. . .x^ with
Q^a,<p is clearly G-stable and hy^^/V^^. It follows from universal mapping that
if there exists a surjective G-module homomorphism hy^^) -> l(pv\ then this map must
factor through ^(1). This is not possible since ^+\(p\) identifies with the socle of
I(^v). D

The following question (originally asked by S. Donkin) is of considerable interest. If
M is a rational G-module with a good filtration and r> 1, then does (M0^"^ also have
a good filtration ? An easy universal mapping property argument gives a positive answer
to this question in the very special case of a rational G-module with a split good
filtration: I^^)0^!^)^, whereas 1(^)^=0 if [i^p'"k for some dominant weight ^.
Our next result gives additional examples for which the answer to Donkin's question is
positive.

(4. 5) PROPOSITION. — Let G be a simple algebraic group defined and split over ¥p and
assume that p does not divide the order of the Weyl group of G. Then (S^)0*"^"^ has a
good filtration for any r>0. On the other hand, let v be the maximal root. For any n<p
for \vhich the induced module I(nv) is not self-dual, the good filtration on S"(^) does not
split.

Proof. - By Theorem 4.1, (S^)0^'^ is isomorphic as a G-module to a direct sum
of copies of S(^) and thus also has a good filtration by (4.4 a). If the good filtration of
S"(^) splits, one and only one summand is isomorphic to I(nv) since nv occurs with
multiplicity one in S"(^). For n<p, S"(^) is self dual so that a splitting of the good
filtration for S^^S"^))* would imply that I(nv) is likewise self-dual. D
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