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HITTING PROBABILITIES
OF KILLED BROWNIAN MOTION;

A STUDY ON GEOMETRIC REGULARITY

BY CHRISTER BORELL

1. Introduction

Consider a Brownian motion X in n-space with first hitting times
T A = T A ( X ) = i n f { t > 0 ; X ( O e A } and let ^((R") denote the class of all non-empty, open,
and convex subsets of R". Then, if XQ, x^e R" and A(), A^, Bo, B^e^(R") :

(1-1) PX^B^A,<+OO)

^ P^o C^^Ao < + oo) A P^ (TB^TAI < + oo), 0<?i< 1,

where ^=(l-X)^o+^i, ^=^ A, B, and B^ffTN^B, respectively (Borell [4]).
In this paper, the basic diffusion process is a Brownian motion Y in R" U { ( p }? which

starts in R" and behaves as an ordinary Brownian motion up till a certain random point
of time when it jumps to (p and remains there. More explicitly, conditioned on X, the

/ r \event Y(0effr , has the probability exp ( - \(X(s))ds j , where V:1R"->[0, +00] is
\ Jo /

such that V|'d^v ̂  concave and dom V = { V < + o o } e ̂  (HT). Under these assumptions
(1.1) still holds with T. ==T. (Y) (Theorem 3.1). In fact, the same result remains true if
R" is replaced by an arbitrary Banach space.

About half the paper deals with various interpretations of Theorem 3.1. Thus, we
discuss convexity properties of :

(i) V-harmonic measures (Section 6, Example 7.1);
(ii) V-Newtonian potentials (Theorem 7.1);

(iii) V-equilibrium measures (Example 7.2) and
(iv) logarithmic and Newtonian capacities (examples 7. 3-7. 5).
In the above list, perhaps the single most interesting point is the following: let

Be^UT), n^2, be bounded and suppose V:B^[0, +oo[ is - 1/2-concave, that is,
V-^B-^O, +00] is concave. Moreover, let g denote the Green function of
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452 CH. BORELL

— l / 2 A + V i n B with the Dirichlet boundary condition zero. Then g is quasi-concave
if n=2, and if n^3 the function ^-l/("-2) is convex. Theorem 7.1 expresses these facts
as a Brunn-Minkowski inequality of appropriate potentials of g. For comparison, we
here only mention that the 3-dimensional potential g n, p, being the uniform distribution
of a line segment, turns out to have convex equipotential surfaces. The same thing is
known to be true for a point mass if V=0 (Gabriel [15], [16]). Needless to say, the
beautiful works of Gabriel have played a decisive role for this and some other closely
related papers of the author ([4], [5]).

Finally, in this section, let us make some remarks on the potential V above.
Again, consider a Y-process in R" now with a convex potential V. Moreover, suppose

domVe^(IR") is bounded. Then, by Brascamp and Lieb ([9], [10]), the transition densi-
ties pt, t>0, of Y are log-concave for each fixed t>0. From this we expect nice
geometrical properties of the corresponding Green function:

g= p,dt.
J o

In fact, our fruitless attempts to understand this puzzling problem have finally led us
to —1/2-concave potentials. The reader should note that a —1/2-concave function is
convex. (The log-concavity of the p^ for convex V turns out to be an algebraic conse-
quence of (1.1) but that is another uniformity!) Below we will also see that —1/2-
concave potentials enter quite naturally in the hyperbolic potential theory of plane convex
domains (Example 3.1).

2. Definitions

Throughout, E denotes a separable Banach space and ^([^ +°°[) is the standard
Frechet space of all continuous maps of [0, + oo[ into E. A centered Gaussian random
vector X in Ce([0, +oo[) is called a Brownian motion in E or an E-valued Brownian
motion if X possesses stochastically independent increments and if, for every t>0, the
law of X,=[X( . )](0 equals the law of t^X^ (see Gross [18] (potential theory) and
Chow [12] (noise theory)).

Example 2 . 1 . — Suppose S is a compact metric space and let G=(G(s), seS) be a
real-valued, centered Gaussian stochastic process with continuous paths. Then there
exists an unique real-valued centered Gaussian process X with time set Sx[0, +oo[
and co variance [E(G(5)G(s /))]((At /). Moreover, a version of X=(X(s, t\
(s, t)eS x [0, +oo[) has continuous paths with probability one and, accordingly, induces
a Brownian motion in ^(S) (for details, see Carmona [11]). D

The above example brings out the most general form of a Banach space-valued
Brownian motion.

An E-valued Brownian motion is said to be non-degenerated if supp ^f(Xi)=E. If
F is a separable Banach space and A: E -> F is a bounded linear map, then each E-valued
Brownian motion X defines an F-valued Brownian motion by the rule [AX]^=AX(.
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HITTING PROBABILITIES OF BROWNIAN MOTION 453

In what follows, X is supposed to be a fixed non-degenerated Brownian motion in E

and, as usual, we let IF\=J^(x+X) and E^= ( )dP^.

Below ^<(E) denotes the class of all non-empty, open, and convex subsets of
E. Moreover, <t (E) = { A; A e ̂  (E) }, ̂  (E) = { A e ̂  (E); A bounded }, and
^oo (E) } = { A; A e ̂  (E) }, respectively. If Ao, A i g E, and 0 < 'k < 1, we write
A^=( I—^)A( )+^AI . The same convention will be used for vectors in E. Given
AfG^(E), concave functions y;:Af^[0, +oo], i=0,l, and Xe[0, I], the so-called
X-supremum convolution :

/o|^|/i: A,^[0, +oo],

of /o and /i is defined by:

(/o|Al/l)(XO=SUP{( l-^/o^o)+Vl^l);^oeAo,XleAl}.

Here 0. (+ oo) = 0. Of course, /o |_^[ /i is concave and by simple means one verifies:

(2. i) /o |ej /i = (/o 1^1 /i) lAl (/o |ej /i), 9o, e, E [o, i].

Next suppose a e IR\ { 0 }. Using the conventions 0° = + oo and (+ oo)" = 0, if a < 0, a
function /: A->[(), +oo] (A ^ E) is said to be a-convex (a-concave) if /a is convex
(concave). For this reason, a quasi-concave (log-concave) function is sometimes called
—oo-convex (0-convex or 0-concave). The same terminology is used for set functions
on vector spaces. For future reference, recall that a Gaussian Radon measure on a
locally convex Hausdorff vector space is log-concave (Borell[6]).

3. The main result

Consider the Feynman-Kac semi-group:

S,/=E//(X(0)exp(- rV(X(s))^)V ^>0,
\ \ Jo / /

where the potential V: E -> [0, -h oo] is Borel measurable. If, in addition, V is convex,
the log-concavity of Gaussian measures may be used to show that each S^ preserves
log-concavity. Indeed, this property has many nice consequences (Brascamp,
Lieb [9], [10], Lions [20]). The reader should note that if B=domVe^(E), then:

S</=E.f/(X(r))exp^- [^(X^ATBC^), r>0.
\ \ Jo / /
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454 CH. BORELL

THEOREM 3.1. - For f=0 , l , suppose A,, B,e^(E), ^eB^, anri to Vf:Bf-^[0, +oo[
be - 1/2-concave. Set V, = (Vo 1/2 |_^ |Vr1/2) - 2 an^;

M W = E ( exp f - f^ V, (X (5)) d.
\ \ Jo

s))ris j ; TBC^TA^<+00 j, 0<X<1,

respectively. Then M fs quasi-concave.

Interestingly enough, there are several relations between Theorem 3.1 and the Brunn-
Minkowski theory of convex bodies but the interplay is not yet fully understood. In
particular, one may ask if the log-concavity of Gaussian measures (on all measurable
sets!) and Theorem 3.1 have a common source.

For some other geometrical estimates on Feynman-Kac semi-groups, see Borell [7] and
Ehrhard [14].

Before giving the proof of Theorem 3.1, which is rather lengthy, we should like to
discuss an example where — 1/2-concave potentials arise in a natural way.

First, however, recall that if X is the usual Brownian motion in R", then the expectation:

(x)=E,fexpf - f%(X(s))^);TBc^<+ooV
\ \ Jo /

U {X =1 xeB,

solves the V-equilibrium potential equation:

- A M - V M = O in B,
2

u= 1 on A,
M = O on ^B,

where, for example, A, Be^(R"), A ^ B, and V:B-»[0, +oo[ is continuous (see e. g.
Dynkin [13], Chap. 13). (Here and elsewhere ^=81|8xi+ . . . ^82/9x^)

Example 3 . 1 . — Consider a Be^(C), B^C, equiped with the hyperbolic metric:

ds= f^z)
Im/(z) 1 ^ 1 .

/ being an arbitrary one-to-one conformal map onto the upper half plane in C. Note
that:

1| //^) =lim^(z,0/|z-(; | ,
2 | Im/(z) | e - z

where d(z, Q= | (/ (z) -/ (Q)/ (/ (z) -7(0) |. z, i;eB, is a strictly increasing function of
the hyperbolic distance in B(see e. g. Ahlfors [I], [2]).
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455HITTING PROBABILITIES OF BROWNIAN MOTION

The following discussion is based on the fact that the Green function g(z, Q of —1/2 A
in B with the Dirichlet boundary condition zero is quasi-concave in (z, Q (this may be
known; for safety's sake the result is proved in Theorem 7.1). Equivalently, if B(z; r)
denotes the open rf-ball with center zeB and radius r>0, then:

( l-?i)B(zo;r)+?iB(zi ;r)gB(z, ;r) , 0<?i<l.

Accordingly, for reals t^O close to zero:

/(z,+th^-/(z,) /(zo+tho)-/(zo) /(z,+th,)-/(zQ
/(z,+th,)-f(z,) /(zo+tho)-/(zo) /(zi+th,)-/(z0

and in the limit as t -> 0:

/'(^ /'(^o v r(zi)h,
Im/(z,)

By choosing:

h.=

Im/(zo)

Im/(z,)

Im/(z0

/^v)
v=0,l,

the resulting inequality states that the function [ (Im f(z))/f (z) [ is concave.
Now recall that the Laplace-Beitrami operator Ag in the hyperbolic B equals:

A _ I WOO |2AB= A./'oo
Consequently, if Ae^^(C) and A i= B, Theorem 3.1 applies to the 1-equilibrium poten-
tial equation:

( \u-u=0 in B\A,

( M |A=I .

and we conclude that u is quasi-concave. Moreover, if u^ denotes the 1-equilibrium
potential of B (z; r), then the map (z, Q ̂  u^ (Q is quasi-concave too. D

4. Reduction of Theorem 3 . 1 to finite dimension

To begin with, we list a series of Lemmas, which are all well-known and easy to prove.

LEMMA 4.1. — Suppose ?„, ne^J, are closed and F^J^F. Then
^(^.l^l^F'-UF^

Here F^ { P.(TF=O)=I } is the set of all regular points for F. Recall that
^.^=0) vanishes on (F^y by BlumenthaFs zero-one law (see e. g. Port and Stone [22]).

LEMMA 4.2.- If Ae^(E), then A^A^A. In addition, TA=TA a. s. P..

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



456 CH. BORELL

The reader should note that the last part of Lemma 4. 2 depends on the strong Markov
property of X. The next Lemma is a consequence of continuity of paths only.

LEMMA 4.3. - Let F,,, neN, be closed and F^F. //B^e^(E), neN, and B^B,
then:

{ T B ^ T ^ < + O O } I { T B C ^ T F < + O O } , a.s. P.(( ) n { T B c < + o o } ) ,

on F' U F'.
Here ^(E) denotes the Borel field in E.

LEMMA 4 . 4 . — Suppose 0<^< 1:
(a) //AQ, Aie^(E) anrf A^ fs contained in an open affine half-space H, then there

exist open affine half-spaces Ho, H^, satisfying H ^ H,,, Ho ^ AQ, an^ Hi ^ A^.
(^) L^r B^e^ (E) and suppose f, : B; -> [0, + oo[, f=0,1, ar^ concave. IfC, is a conti-

nuous affine function on E and ^|B^/o|Al ^i» ^n ^lere exist continuous affine functions
^o, ^i on E satisfying ̂ ^ 1̂ 1 ̂ r ^o | Bo^/o. an^ ^i | BI ̂ /r

LEMMA 4.5:
(a) AO+AI g Ao+Ai, Ao, AI g E;
(fc) J/A^Ae^(E), net^l, anriA^A, r^nA^A.

Proo/ o/ Theorem 3.1, dimE < + oo=> Theorem 3.1. In view of (2.1) it is enough
to establish the following inequality:

M(X)^M(0) A M(l),

where 0<X,< 1 is fixed. Furthermore, we may assume Bo, B^ e^^ (E).
Let 7=0,1, or ^ and set /^V^172. By monotone convergence, there is no loss of

generality if we only treat the case when the fj are finite-valued. Suppose:

fj= inf^iB,
nef^J

and ^n^oJ.^Kin» where the ̂  are finite infimums of continuous affine functions on
E. This construction is possible due to Lemma 4.4. By the same Lemma here exist
open polyedrons C^, ne^, C=A, B, satisfying:

C^[Cj as n-> +00
andC,^(l-^)Co^+^C^.

We now introduce:

f,= inf ^,B,«n{^o>0,...,^>0}
O^k^r

and:

M^y)=E,Y exp ( - {rAjnf^(X(s))ds}; ̂ c ̂  < +00 ) .
\ \ Jo / J" /
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HITTING PROBABILITIES OF BROWNIAN MOTION 457

Granted the validity of Theorem 3.1 in the finite-dimensional case, we have:

M,(X)^M^O)AM^(I)

and (4.1) follows from Lemmas 4.1-4.4 and monotone convergence. D

5. Proof of Theorem 3.1, dim E < + oo

In the following lemma, the V .̂, 7=0,1, or ^, are as in Theorem 3.1.

LEMMA 5. 1. — J/J(r)=r, r>0, then:

J3 (x)V^(J3 ®Vo) |̂ | (J3 ®Vi), 0<K<1.

Proof. - By the Holder inequality the function (J® I ) 3 / ( I (x)J)2 is convex and the
result follows at once. D

LEMMA 5.2.- Suppose A, B e ̂  (1R") and 0 e A g B. L^r /: B -^ ] 0, oo[ be <^00 an^
concave and set V=/~2. T^en r^^ solution of the Dirichlet problem:

AM-VM=O m B\A,

u = 1 on ^A

M=O on 3B, Me^(B),

has a non-vanishing gradient in B\A.
Proof. - The solution u is ^°° (5^ e. g. Gilbarg and Trudinger [17], Theorem 6.17).
We first prove that the function v(x)=x; VM(x), xeB\A, is non-positive.
To see this, let a> 1 satisfy a A ^ B and note that:

AKx/a^-a-^x/^MOc/a)^ in B\aA.

Moreover, as:

/(x/oO^a-V^HO-a-1)/^) in B,

we have a / (x/a) ̂ / (x), xeB, and hence:

A[M(x/a)]-V(x)M(x/a)=0 in B\aA.
Thus:

A[M(x)-u(x/a)]-V(x)[M(x)-M(x/a)]^0 in B\A

and as (u—u(. /a)) | a(B\aA)^0, the maximum principle ([17], cor. 3. 2) gives

(M-M(./a)) ,B^A^O.

But then v^O.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



458 CH. BORELL

In the next step we show that v is strictly negative.
A computation yields:

Ai;=x;V(AM)+2Au=x;V(VM)+2Vu=(x; VV)M+V(x; Vu)+2VM,

that is:

Au-Vu=(2V+x; VV)M.

But:

2V+x.VV= ,|(/-x; V/)^ -^/(0)>0

and so A u — V u > 0 . Since u^O, the strong maximum principle ([17], Th. 35) gives i;<0
and accordingly v ̂ 0 in B\A. D

The main points in the proof which follows are due to Gabriel ([15], [16]). The
Brunn-Minkowski aspect was added for the first time in [4]. The Gabriel differential
method also applies to certain time-dependent [5] and non-linear (Lewis [19]) problems.

Proof of Theorem 3.1, dim E< + oo. — There is no loss of generality in assuming:
(i) X 15 the usual Brownian motion in U", n ̂  1;

(ii) OeAonAi.Bo.B.e^UR");
(iii) the functions fi=\i~112 have concave <^00 extensions ^: B^ + B (0; 8) -> ]0, -l-oo[,

f=0,l (8 >0 fixed) and from (iii) and Lemma 4.3;
(iv) A,^B, , f=0 , l .
Next let 0 < ̂  < 1 be fixed. Moreover, suppose:
^: B^ -> ]0, + oo[ is - 1/2-concave and ^°° and V^V,,.
Set:

i^(x)=E, ( exp ( - f^1 V,(X(s)) ds\ T^T^. ) , xeB,, f=0,l,
\ \ Jo / l /

and:

M, (x) = E, ( exp ( - [TAX V, (X (s)) ds \; ̂  ̂ Y xe B,.
\ \ Jo / /

(x)=lh,| exp I - V,(X(s))ds |;
Jo

It now only remains to prove that:

u^ (x^) ̂  UQ (xo) A Mi (xi), XQ e Bo, Xi e BI.

Let uf (xQ = sup { UQ (xo) A Mi (xi); Xo e Bo, Xi e BI }. If -1 (uf^ u^), then:

sup (u? - uQ = M? (xQ - u^ (xQ > 0,

for a suitable x^eB^. Suppose M?(x^)=Mo(xo) A Mi(xi), where x^=(l—^)xo+^Xi .
Certainly, (xo, Xi) e (Bo x Bi)\(Ao x A^). Also it is easy to see that the relation XQ i Ao,
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HITTING PROBABILITIES OF BROWNIAN MOTION 459

Xi eAi is contradictory. Indeed, arbitrarily close to XQ there are points where UQ exceeds
^oC^o)? by the maximum principle. Thus, by symmetry, (xo, Xi)e(Bo\Ao) x(Bi\Ai).

In the following, let f = 0 or 1 and j =0,1, or X.
Suppose heV and h,Vui(Xi)>Q (i fixed). Then, if s>0 is small, u^ (Jc,;+ sh) > u^ (x;)

and, hence, uf (x^ + s ̂  h) > uf (Jc^), where X; = (2 i — 1) ̂  +1 — i, so that
M^(x^+5^h)^^(jc^). Accordingly, /i; Vi^(x,J=0 and it follows that the non-zero vec-
tors VM((Xf) and Vu^(x^) are parallel. Let aj= |VM,(JC,)[ and v=VMy(jc,)/a,.

From now on we assume that M?(^)=Mo(^o)- ^e case uf(x^)=u^(x^) may be
treated in a similar way.

Let he V be such that K=h; v^O. For each 5 close to 0 there exists a unique r=r(s),
with | r | minimal, satisfying the equation :

UQ (XQ + sh/ao) - UQ (xo) = MI (xi + rfc/fli) - Mi (xO.

Writing:

x, (s) = (1 - ̂ ) (xo + sh/ao) + ̂  (JCi + r (s) /i/a0 = x, + [(1 - K) S/OQ + ̂  r (s)/flj fe,

we have:

Mo (xo + sh/flo) - ̂  (^ (s)) = M? (x^ (s)) - M^ (^ii (5)) = ̂ o (^o) - ^31 C^)
and, in particular:

f 0, f e = l
^("o(^o+sh/ao)-^(^(s)))|^o= ^ ^o, k=2.

Next suppose:
Uj (Xj + sh/aj) = Uj (xj) + K s -h ̂  s2 + o (s2) as s -> 0.

Then:
r(5)=s+K - l(&o-^l)s2+o(52) as s-^0

and introducing p=(\— X)/0o + ̂ 4 we have:

^/^=1,

l -^^^o+^^^i -^^O.
< ^i / ^i

Thus:

Z —ir ̂ p ̂ o (^o) + ̂  D,p ̂  (x0 - \ D,p M, (x,) | ̂  ftp = o
l^a.P^nL ^0 ^1 ^ J

and, accordingly:

-̂ 3- Vo (Xo) UQ (xo) + ̂  V, (x,) u, (x,) ̂ p3 V, (x,) ̂  (x,).
Oo fli
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460 CH. BORELL

Finally, noting that u^(x^)<Uo(xo) A u^ (x^) we get:

1^ Vo (xo) + ̂  V^ (x,) <^3 V, (x,),
^o ^i

which contradicts Lemma 5.1. Hence uf^u^. D

6. Quasi-concavity of V-harmonic measures
restricted to supporting hyperplanes

We first recall some known properties of quasi-concave measures on Banach
spaces. All the results may be found in the author's papers [6] and [8].

A non-negative finite Borel measure \i on E is quasi-concave if:

(6.1) H(A,)^(Ao)A^i(A,),

for all 0<^<1 and all Ao, Ai6^(E)=the Borel field in E. It turns out that a
non-negative finite Borel measure ^ on E is quasi-concave if (6.1) holds for all 0<^<1
and all Ao, Aie^(E).

Next suppose 0<^<1 is fixed and suppose Ho, ^, ^ are quasi-concave measures on
E. If:

(6-2) ^(A^)^Ho(Ao) A MAi),

for all Ao, AI e^(E), then (6.2) is true for all Ao, A^ e^(E). Moreover, if E=nn and
d[ij=fjdx, 7=0, 1, ^, where the/^:E-^[0, +00] are semi-continuous from below, then
(6.2) holds for all Borel sets Ao, Ai in R" if and only if:

yrl/n (xj = (i - ̂ ) yo l /n (^o) + vr ̂ i), x^ x, e r.
The above makes it possible to pass from convex bodies to Borel sets in a very special

but still interesting case of Theorem 3.1.

THEOREM 6.1. — Let Be^(E) and suppose F is a supporting hyperplane (OeF) of
B. J/V:B-^[0, + oo [ is — 1/2-concave, then the V-harmonic measure:

K,(A)=E,fexpf- p8 V(X(s))^);X(TBc)eAVAe^(BC),
\ \ Jo / /

at x e B satisfies:
K^(A^)^K^(Ao) AK^(AO, 0<?i<l, Ao,Aie^(F).

In particular, K^ j gg ̂ ) l s quasi-concave.
Proof. — First note that for any closed A ^ B°:

K,(A) =E, ( exp ( - ( r A V(X(s))ds}; ̂ c^< + oo V
\ \ Jo / /
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HITTING PROBABILITIES OF BROWNIAN MOTION 461

because xeB is non-regular for W. Hence the inequality we shall prove is true for all
AQ, AI e4^(F) and Theorem 6.1 follows from what we said above. D

Example 6 . 1 . — Let G be a Borel measurable additive subgroup of F, where we abide
by the various assumptions in Theorem 6.1. Then K^(G) or K^(F\G)=O from the
zero-one law of quasi-concave measures [6]. A direct proof of this fact is rather simple
but we do not know any proof independent of the zero-one law of quasi-concave
measures. D

Example 6.2. — Let E=Rn but otherwise assume the same conditions as in
Theorem 6.1.

If B Pi F =C is (n— l)-dimensional, then an appropriate version of the restricted Poisson
kernel (^/rfo^) (jO, (^, ^)eB x C, is - l/(n- l)-convex. Q

Example 6.3. - If Co, C^e^^tR"), then the original Brunn-Minkowski inequality
states that:

(6.3) ICo+C.I^ICol^+ICil^

To deduce this estimate from ( 1 . 1 ) we let Bo=Bi= { ^ + i > 0 } g HT"'1,
x=xo=xi=(a, . . .,a, 1), and get:

l^i f ^ >|a|^f f dy A f dy V O < ^ < L' i Jcjix-^r-1" 1 Ucoii^-^r'1 Jcoii^-^r'^
As | a | ->+ oo, we obtain | C^ | ̂  | Co | A | Cj or, due to homogeneity, (6. 3). In fact,

already Minkowki's ideas entail (6.3) for arbitrary Borel sets but the Gabriel differential
method seems to collapse beyond star-shaped bodies. D

7. Quasi-concavity of V-Newtonian potentials
of very thin bodies

Consider, for dimE^3, the Newtonian potential of Ae^(E):

v.(A)=E.f f00 l^(X(t))dtY
\ Jo /

that is, the expected amount of time the Brownian motion spends in A. If xeE is fixed,
the measure v^ is not quasi-concave, although, by ([8], Th. 5.1):

Vxo+Xl(AO+Al)^^o(Ao) A vx^l\

or, stated otherwise:

v^(Ai/2)^ ,[v^(Ao) A v^(Ai)],
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for all XQ, ^i e E and all Ao, A i e ̂  (E). The convexity behaviour of v. (A), with A e ̂  (E)
fixed, is unknown to us.

The main questions we focus on in this section have no direct meaning without
restriction on dimE. We therefore assume throughout that E=Rn , n^2.

Now suppose Be<^(Rn) and that V:B-^[0, +oo[ is — 1/2-concave. Moreover, we
suppose B ̂  {R2 if n = 2 and V = 0 so that B becomes a Greenian domain for the operator
—1/2A+V with the Dirichlet boundary condition zero. Let:

v,(A)=E,f [TB UX(())expf- !\(X(s))ds}dt}= f g ( x , y ) d y , xeB,
\ J \ Jo / / JA

be the V-Newtonian potential of Ae^(B), g being the corresponding Green
function. The reader should note that g: B x B -> [0, + oo] is continuous (see e. g. [13],
Chap. 13). In particular, given a fc-dimensional affine manifold F in R" possessing
Lebesgue measure wF(w{<3)=5„), the V-Newtonian potential of any A e^(F 0 B), viz:

v^(A)= f g(x,y)dmF(y\ xeB,
JA

becomes well-defined.

THEOREM 7.1.- J/dimF=n-2, then:

v^CA^v^Ao) A v^A,), 0<^<1,

\vhere A,e^((Ci+F) 0 B), c^eR", and ^eB, f=0, 1, an? arbitrary.
Before presenting the proof of Theorem 7.1, we recall some basic facts from potential

theory.
Suppose Ae^(IR") and A s= B. Then there exists a unique non-negative measure

^ m A, called the V-equilibrium measure of A, such that:

[ § ( x , y)d^(y)=^. ( exp ( - \ V(X(s))ds ) ; ̂ c^< + 0 0 ) , xeB.
J \ \ Jo / /

The total mass [I^(A)=^(A) is termed the V-capacity of A and, moreover, writing
^H=(n(g(x, . ) ) )^gB i^ ^ ls a non-negative measure in B:

^(A)=sup{u(B); s u p p n g A . ^ n ^ l }

(see e. g. Blumental, Getoor [3], Chap. 6.4).

Proof of Theorem 7 . 1 . — We shall prove that g is —l/(n—2)-convex. By eventually
diminishing V and using the Dini theorem, there is no loss of generality in assuming
supV=^< + oo.

In the following, we sometimes write gBfy, ^Bfy, [i^^ instead of g, V, and n^
respectively, and asume, as we may, that X is the standard Brownian motion.
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Case n^3. - Letting <^IR" (B(0:r))=Cnr"~2, we claim that:

p.l) li..*'"""̂ ., ,.B.
r -0+ ^

To see this, let ^ e B be fixed and write B, = B ( y ; r) for brevity. Then, if B, ̂  BR ^ B,
certainly:

c^r" - 2 ̂ B> v (B,) ̂  ̂  4 (B,).

We next integrate:
^O^B^^O^

with respect to ^BR1 ° ® ^B?' 4? arriving at:
^BR. <r (B^ ̂  <^BR, o (g^ _p ̂ ^ R^

where ^=Vol B(0; 1). Moreover, by integrating:

g^Oc, y=gR"•o(x, O-E,^°(X(TB^, ̂

with respect to [^R> ° (dx) 00 ̂  ° (d^), we get:

^o(]^)=c^rn~2(\-(r|R)n~2)~l.

Finally, by choosing R^1"17" in the above estimates (7.1) follows at once.
Writing g=gB^ as above we have for all y-o, r^ >0, 0<^< 1, and £>0:

^""(^BO^er,)) (^^^""[(^^(yo; e ro) (^o) A fe^yi; en)) ( l̂)L

by Theorem 3.1, and in the limit as £ -> O^

§(^ y^r^-^-^g^Xo, yo)^-2 A g(x^ y^r\~2.

Thus, choosing r,=(^(Xi, ^i))"1701"^, if ^f^^i, i=0,l, the resulting inequality becomes:

^-1/<"-2)(X„ ^)^(1 -^^-^-^(Xo, J^^"1^"2^!. ̂ l).

and it follows at once that g is — l/(n—2)-convex.
Case n=2. - If Theorem 7.1 is true in IR"^1, n^l, then we may use the theory of

a-convex measures to prove Theorem 7.1 in R"0. Indeed, set V(x, ^)=V(x),
(x, ^) e B x [R and note that:

g(^y)-= r ^^(x, O,^,TI)^.
J — 00

If ^"^'^ is -l/(no-l)-convex it follows from ([8], Th.3.1) that g is
— l/(no — 2)-convex. D
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In the following two examples we suppose in addition to the above assumptions that
SB is <^00 and that V has a ̂  extension to a neighbourhood of B.

Example 7 . 1 . — For each ^e3B, let ni(y)==nB(y) denote the inner unit normal of B
at y and set:

p(x,y)= lim ^(x,.y+£n,(.v))/2£.
^o+

If Mi (^0)=^ (^i)? tnen ni(y))=ni(yo\ 0<^<1, and the —l/(n—2)-convexity of g gives:

P-l/(n~l)(^A)^(l-^-l/("-l)(^o^o)+^-l/("-l)(^^

employing the same type of argument as in the proof of Theorem 7.1. Noting that
p (x, y) d<Jff^ ( y ) is the V-harmonic measure at x (use ([17], Th. 6.14) and the Green
formula) we have thus complemented Example 6.2. Q

Example 7.2. — Let Ae^([R"), A ^ B, and assume (9Ae^00. Moreover, suppose
F is a supporting hyperplane of A such that A 0 F=C is (n— l)-dimensional. Then:

^Alp^/^O

where / is — 1-concave.
To see this, we apply the Green formula once more to get:

-. -^d^^d^-l^dm,
2 on^

where m is Lebesgue measure, u^=g[i^ and n^= —n^. However, as u^ is quasi-concave
—8u^/9n^ is —1-concave on C. D

In the planar case, we shall complement Theorem 7.1 in the following way.

THEOREM 7.2. — Let for Ae4?^(C), g^Q be the Green function o/A in C\A with
pole at oo and mth the Dirichlet boundary condition zero. Then:

g^O^^^o) A ^Ai(^l). 0<?1<1.

Proof. — Assuming OeA, g==g^ possesses the following characteristic properties:

(i) g is harmonic in C\A;
(ii) g is continuous in C and ^[^=0,

(iii) g ( z ) = l n l - l n — — — + ^ ( l ) as |z | -^+oo.
|z| ^(A) \ |z| /

The constant ^(^ is the logarithmic capacity of A [1]. If B(0; R) ^ A and ^(0; R)

denotes the equilibrium potential of A relative to B (0; R) we thus have:

R / 1 \
(^^(z)--!)!^——— -g^)=(9[ - as R-. +00

^(A) \ R /
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and, consequently:

g^(z)= lim (u^o•'R\z)-l)\nR-
R ^ + o o ^2 (A)

From this representation formula Theorem 7. 2 follows at once using Theorem 3.1. D
Example 7. 3. — ^2 ls concave on 4^(C):

(7.2) ^(Ao+Ai)^(Ao)+^2(Ai),Ao,Aie^(C).

Indeed, as:

ln^(A)= lim (^)+1 n|^ | ) .
I z I -»• + oo

Theorem 7. 2 gives:

^2<:A,)^(Ao)A^(Ai),

and (7.2) follows by homogeneity. D
The next example is mainly a preparation for Example 7. 5.
Example 7.4. — By an excercise in Polya and Szego [21], Aufg. [124] :

(7. 3) ^ (A) ̂  -]- length BA, A e ̂  (C).
271

A possible solution reads as follows.
Let HA be the support function of A:

H^(y=sup<x ,^> , ^eC,
x e A

and remember that:

(7.4) f n HA (6?1 e y ^9/27i = -lr^ length M, ^e C.
Jo 27C

We next approximate the average in the left-hand side by:
p
^ H^16^)^ (0<^<1,^+. . .+^=1) ,

f c = i

p
that is, by the support function of ^ ^"'^A. However,

f c = i

^f S ^^-^^^^(A)
\ f c = i /

from Example 7.3 and as the right-hand side of (7.4) is the support function of a ball
of radius 1/2 n length 3A, we have (7.3). D
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Example 7.5.- Consider an A€^(IR3) with principal radius R.i and R2 and mean
curvature:

1 ! f^±^(A)=|f (^+-)dc^•
z J8A \ K! K2 /2 J a A \ R i Ra

Then by a Theorem of Szego [23], Satz III;

(7.5) ^(^^-^^(A),
471

where ^3 is the Newtonian capacity normalized so that ^3 (B(0; 1)) =1. A very impor-
tant ingredient in Szego's proof is the following inequality for mixed volumes due to
Minkowski:

^2(A)^4n area 8A.

Noting that ^3 is concave on 4?oo(IR3) [4] due to (1.1) we, alternatively, obtain (7.5)
as in the previous example. The n-dimensional counterpart of (7. 5) is now obvious: if
^ denotes the Newtonian capacity in I^Qi^S, <(B(0; !))=!) and if Z^ is a uniformly
distributed random vector on S"~1, then:

ElUZ^^-^A), Ae€,(r).

Certainly, the Szego line of reasoning leads to the same estimate. D
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