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ON SPREADING MODELS IN L!(E)

Par MicueL TALAGRAND (%)

ABSTRACT. — We construct a Banach space E which has the Schur property (hence [' is its only spreading
model) but such for each family (g, ,), with a, ,=1, lima, ,= + oo, there is a sequence (f,) in L' (E) for which
n

I ¥ +f|<a,, In particular, L'(E) has a spreading model isomorphic to ¢, (N).
ksSisn

1. Introduction

Let E be a separable Banach space and (Q, Z, p) a (standard) measure space. We
denote by L!(E) the space of integrable functions Q — E. It is known that if-E does
not contain ¢, =c, (N), then L* (E) does not contain ¢, [2]. The purpose of this work is
to show in an opposite direction that even when E is by no way close to c,, L' (E) can
contain sequences which somehow behave like the unit basis of ¢,. Recall that a Banach
space has the Schur property if weak null sequences go to zero in norm.

We shall show the following.

THEOREM A. — There exists a separable Banach space E which has the Schur property,
such that for each family a, , of real a, 21, such that:

1) Vk, lima, .=+ o0,

there exists a sequence f,e L' (E), such that:

() Vo, | fi@] =1

(3) V finite set 1, with card1=n and Inf 1>k one has, for (b)) e R"
| Inf|b;| < I|§lbif,-|| <a, sup|b;|.

(*) This paper was written while the author was visiting the Ohio State University.
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434 M. TALAGRAND

Since E has the Schur property it follows from Rosenthal’s theorem [3] that each
sequence (X,) of E which does not converge in norm has a subsequence equivalent to
the basis of I'. However the sequence (f,) of L!(E) has a behavior which is close to
the basis of ¢,. Since it is possible to choose (a, ;) such that for each nlim(a, ;) =1, in

k

the language of spreading models, L! (E) has c, as a spreading model, while E has I! as
unique spreading model.

The whole difficulty of the construction is that in E there should be “very few”
sequences equivalent to the basis of .

2. Setting of the construction

Let us set T,={0,1}", T=UT, For seT let |s| be the unique n for which
seT, For s, teT, |s|=n, [t|=m, nSm, s=(sy, ..., s,), t=(ty, ..., L,), we write
s<tif Vi<n, s;=t. With this order, T is the usual dyadic tree. For teT, n<|t|, we
write ¢ | n the unique se U, for which s<t.

Let us denote by (e,),.r the canonical basis of R™. In the next paragraph, we shall
construct a family H of R, and we shall define for x e R™:

(4) | x|| =sup{|<sg, x>|, geH}.

Let E be the completion of (R™, ||.]|). It will be true that |le||=1. We denote
by e} the element of E* given by e (e,)=1 if t=¢" and zero otherwise.

Let Q=]]T, and let p be the canonical measure on Q (i.e. the product measure

n
when each T, is given the measure which puts weight 27" at each point).

Let p,: Q- T, be the projection of rank n. Let h,(0)=e, ) The reader has
noticed that the setting of this construction is very similar to the setting of the
construction [4] of a space E with the Dunford-Pettis property such that € ([0, 1], E)
fails the Dunford-Pettis property. However the idea of the construction of the norm is
rather different.

3. Construction of the norming functionals

We start with Hy= {e*; teT}. We shall construct inductively subsets H, of R™.
Let X" be the set of subsets A= {¢,, .. ., t,} of T with the following property:

) Vigisp,  [u|zn
(6) IseT,, s<t, Visp.

(7) If|t;| =c;, for 1<i<j<p one has t;|¢;=t;,,]c;
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SPREADING MODELS 435

The element s will be called the stem of A and be denoted by s(A). Let
H}={1/4) e} AeX"}. For geH], we call s(A) the stem of g, also denoted by

teA

s(g). Weset H = UH].

For geR™, let V(g)=sup{|t|; <g e > #0}. Let n>0. Consider a sequence
k()=n<k(2)<...<k(p) and a sequence g (i)e H\® such that:

(® Visisp, V(g@))<k(+1).
&) dseT,, Vi, s<s(g(@@)).
(10) Vi<j<p, s@EG+1)|V(Ee@d)=sEM|V Q).

[The reader should make a picture of the supports of the g(i).] We define H as the
set of sums 1/4 Y g (i) of the above type, and H, as U Hj.
isp nz1
The construction continues in the same way. Notice that each geH, is of the type
47" Y e¥. Moreover, as is seen by induction, if B A, g'=4"" Y. e* still belongs to H,,.
teA teB

Let H' be the set of finite sums ) g, where g;eH;. Let H=H, UH, UH"

iz22

4. E has the Schur property

By standard arguments of approximation, it is enough to show that if a sequence
(f,) €E such that f,= Y xTe, for A, disjoint sets, || f,|| =1 it cannot go to zero weakly.

teA,

1st case. — The following holds:

(11) VYm, lim sup{|<g, f,>|; geH, } =0.
For each n, there is g,e H with |(g,, f,>| 21/2. From (11) it follows that g,e H’ for
n large enough. Then we can write g,= ) g where gieH, By taking a subse-
2<i<k()

quence one can assume from (11) that:

DY ACAIES Y

isk(n—1)

If:

&= > &

k(n—1)<i<k(n)
one has |g; ( f,,)| >1/4. Let g obtained from g’ by restricting its support to A,. Then
gieH, Let

&= > &

k(n—1)<i<k(n)
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436 M. TALAGRAND

Then

g.(f)| z1/4. Moreover, g”,(f,)=0 for p#n Let h,=Y g, Then

psn

h,eH’. Indeed, h,= ) K where h'=g, for the unique p such that

i<k (n)
k(p—1)<i<k(p). We have |h,(f,)| >1/4 for p<n. Hence if h is a weak* cluster
point of (h,), we have |h(f,)| 21/4V p, which finishes the proof in this case.

2nd  case. — There is m,a>0 and a sequence k, such that
sup{l(g, f,‘">|; geH, } >aVn One can suppose k,=n. One can also suppose that
m is the smallest integer for which the above is true, i.e.:

(12) lim sup {|<g, f,>|; geHp_,} =0.

n — oo

For convenience of notation suppose now on that m>1. (The same argument works
for m=0.)

Let g,eH,, with |{(g, f,>|>a One can suppose that g, is supported by A, It
follows from the definition of H,, that for each k one can write g,=g} +... +gk+g,
where gieH,,_, for i<n, and g,eH%. It follows, by taking a subsequence, that one
can assume g,€ HJ, and |<g,,, f,,>| >a/2. Another extraction of subsequence will give
g,€HE™ where k (n)>V (g,_,). Lets,=s(g,)eT, By taking a subsequence, one can
assume that for each p, the sequence s, | p is eventually constant. A further subsequence
will satisfy s,|V(g,)=s,+,|V(g,) for n=p+1.

It follows from the definition of H,,, that for each n, h,=1/4 ) g,€H, 1,
pP=n

Moreover, for p<n we have Ih,, ( fp)| >a/8. Let h be a weak* cluster point of
(h,). Then |h(f,)| Zo/8 for each p, which finishes the proof.

5. Construction of (f,)

In fact, (f,) will be a subsequence of h,.

LEMMA. — Let (u;) be a sequence of independent random variables uniformly distributed
in {1,...,8}. Let P(q, n)=Prob(3i, j<n, u;=u;. Then lim P(q, n)=0.

q— ©
Moreover, P(q, n) is increasing in n and decreasing in q.
Proof. — P(g, m=q~* (n(n—1))/2.
Let (a, ;) be the sequence of theorem A. One can suppose that a, ,<a,,,, and
a, 2a,,+; for each n, k. Let n(k) be the smallest integer such that

4,4.x2k+1. From the lemma, there exists an increasing sequence q (k) such that for
each k21 one has the following conditions :

1
(13) n(k)P(271%, "(k))éio
(14) For each integer n such that a, , <2, nP(277®, n)<aq, ,—1.
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SPREADING MODELS 437

We shall prove that the sequence f,=h,, satisfies the theorem. Let I be a finite set
of integers, with k=InfI and cardI=n. Let | the greatest integer such that
I+1=<a,, (Itis possible that I=0) Letm=k+I+1.

We have:
A m=a,  <I+25=M =0y () so n=n(m).
Hence:
1
(15) nP(2791M )< 5

Let us define g;(0) by f;(0)=e, ) Let:

Z={we®; 3i, jel, i, jzm, i#j, a,(@)|q(m)=a;(@)|q(m)}.

Since the maps o — ag;(®) are independent and a; (®) | q (m) takes for value each element
of T, with equal probability, one has p(Z)<P(27* ™ n). For weZ, we have the
trivial estimate || ¥ f;(0)| <n.

iel )

We show by induction over p that for ®¢Z and ge H,, we have:

(16) <& ¥ fil@)>|=277(+1).

iel

The result is obvious for p=0. Assume it has been proved for p. LetgeH,.;. Then
we have a decomposition g=1/4 ). g(r) which satisfy (8) to (10). Let j be the largest

isr=n

integer j<n for which V(g (j))<m.

Letg’'=1/4 Y g(r). Theng'=4"7"'Y e* wheresup{|t|; teA} <m. Since there
are at most | i':crij;(es i for which |a; ()| <t;zA we have |<g, Y fi(@))| <4771
iel
If j=p, the proof is finished. Otherwise |{g(j+1), . fi(w)>|<27?(I+1) by induc-
tion hypothesis. If j+1=p, the proof is finished. gtlllerwise let g’= Y g@). It
follows from condition (10) that there is seT,, such that for each te T one ;1;;+s1< t. But
since there is at most one i €I for which s < a; (»), we have | g Y | <47P"!  Adding
iel

these three estimates gives (16). It follows that for ge H one has:

iel

Kg T fi@)] gsup(l, “’7‘)
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and hence || Y, fi(®)|| Ssup(1, (I+1)/2). So we have:

iel

X L2 | 12 fi@)] dn(@+ f | Y fi(@)] dn (o).
z Q Z

iel iel iel

énu(Z)+sup<1,l—;—1>,

<nP(272m), n)+sup<1, l—-;—1>

If 1=0, we have a, <2, so nP(277™, n)<a, ,—1 from (14) and since q(m)=q k),
so the right hand side is <a, ,. If =1, we have nP(277™, n)<(1/2) from (14), so the
right hand side is less than [/2+1=<I4+1=a, , which concludes the proof of the theorem.

REFERENCES

[1] J. HAGLER, A Counterexample to Several Questions About Banach Spaces (Studia Math., Vol. 60, 1977,
pp- 289-308).

[2] S. KwAPIEN, On Banach Spaces Containing c, (Studia Math., Vol. 22, 1974, pp. 188-189).

[3] H. P. ROSENTHAL, A Characterization of Banach Spaces Containing I' (Proc. Nat. Acad. Sc. U.S.A., Vol. 71,
1974, pp. 2411-2413).

[4] M. TALAGRAND, Sur la propriété de Dunford-Pettis dans € ([0, 1], E) et L' (E), Israel, J. of Math. 44, 1983,
pp. 317-321.

(Manuscrit regu le 18 février 1983.)
Michel TALAGRAND,
Equipe d’Analyse, Tour 46,
Université Paris-VI,
4 place Jussieu,
75230 Paris Cedex 05.



