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ON SPREADING MODELS IN L1 (E)

PAR MICHEL TALAGRAND (*)

ABSTRACT. — We construct a Banach space E which has the Schur property (hence I1 is its only spreading
model) but such for each family (a,,,k), with a,, j^l, lima,,^== +00, there is a sequence (/„) in L^E) for which

H

[I ^ ±y,-||^a,^. In particular, L^E) has a spreading model isomorphic to CQ (N).
k^i^n

1. Introduction

Let E be a separable Banach space and (Q, S, n) a (standard) measure space. We
denote by L^E) the space of integrable functions Q-^E. It is known that if E does
not contain Co==Co(^), then L^E) does not contain Co [2]. The purpose of this work is
to show in an opposite direction that even when E is by no way close to CQ, L1 (E) can
contain sequences which somehow behave like the unit basis of CQ. Recall that a Banach
space has the Schur property if weak null sequences go to zero in norm.

We shall show the following.

THEOREM A. — There exists a separable Banach space E which has the Schur property,
such that for each family a^ of real f l^k^l , such that:

(1) Vfe, lima^=+oo,

there exists a sequence /^eL1 (E), such that:

(2) V(o, || ̂ (o) ||=1,

(3) V finite set I, mth card I = n and Inf I ̂  k one has, for (b^) e IR1:

Inf|fc,|^| |S^/J|^a,.,sup|fc,|.
I 6 I

(*) This paper was written while the author was visiting the Ohio State University.
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434 M. TALAGRAND

Since E has the Schur property it follows from RosenthaFs theorem [3] that each
sequence (X^) of E which does not converge in norm has a subsequence equivalent to
the basis of I1. However the sequence (/„) of L^E) has a behavior which is close to
the basis of CQ. Since it is possible to choose (a^j,) such that for each nlim(a^ ^) = 1, in

k

the language of spreading models, L1 (E) has CQ as a spreading model, while E has J1 as
unique spreading model.

The whole difficulty of the construction is that in E there should be "very few"
sequences equivalent to the basis of I1.

2. Setting of the construction

Let us set T ^ = = { 0 , 1}", T= UT^. For seT let \s\ be the unique n for which
seT^. For s, teT, |s| ==n, | ( [ ==m, n^m, s=(5i, . . ., &„), t=(t^ . . ., ^), we write
s < t if V i ̂  n, Si = ti. With this order, T is the usual dyadic tree. For t e T, n ̂  [ 11, we
write 11 n the unique 5 e U^ for which s < t.

Let us denote by (^eT ^e canonical basis of IR^. In the next paragraph, we shall
construct a family H of IR'^, and we shall define for x e R^:

(4) | | x | | = s u p { | < ^ , x > | , ^ e H } .

Let E be the completion of (R^, || . ||). It will be true that \\e,\\ =1. We denote
by e* the element of E* given by e* (e^) =1 if t = t ' and zero otherwise.

Let Q = Y[ T^, and let p, be the canonical measure on Q (i. e. the product measure
n

when each T^ is given the measure which puts weight 2 ' " at each point).
Let ^ :Q^T^ be the projection of rank n. Let h^ (©) = ̂  ̂ . The reader has

noticed that the setting of this construction is very similar to the setting of the
construction [4] of a space E with the Dunford-Pettis property such that ^([0, I], E)
fails the Dunford-Pettis property. However the idea of the construction of the norm is
rather different.

3. Construction of the norming functionals

We start with H()= [ef; teT}. We shall construct inductively subsets H^ of R(

Let X" be the set of subsets A = {t^ . . ., t p } of T with the following property:

(5) Vl^f^/?, K-l^n.

(6) 35eT^, s<r,, V;^.

(7) If |rJ = c,, for 1 ̂  i <j ̂ p one has tj \ c; = ^- + 1 1 c^
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SPREADING MODELS 435

The element s will be called the stem of A and be denoted by s (A). Let
H?= {1/4 ^ (?*; AeX"}. For geH'[, we call s(A) the stem of g, also denoted by

t e A

s(g). WesetHi=UH"i.
n

For geR^\ let V(g)=sup{ | r | ; <g, ^> ^0}. Let n>0. Consider a sequence
fc (1) = n < k (2) < . . . < k (p) and a sequence ^ (f) e H\(l) such that:

(8) Vl^i^, V(g(0)<fe0+l).
(9) 3seT^, Vf , s<s(g(i)).
(10) V i </ ̂ , s (g (i +1)) | V (g (0) = s (g 0')) | V (g (0).

[The reader should make a picture of the supports of the g(i).] We define H^ as the
set of sums 1/4 ̂  ^(f) of the above type, and H^ as U H^.

i^p n^ l

The construction continues in the same way. Notice that each ^eH,, is of the type
4-n E e* Moreover, as is seen by induction, if Be A, ^=4"" ̂  e* still belongs to H^.

( e A t e B

Let H' be the set of finite sums ^ g,, where g, e H^. Let H = Ho U Hi U H'.
i^2

4. E has the Schur property

By standard arguments of approximation, it is enough to show that if a sequence
(/„) e E such that /„ = ^ x? ̂  for A^ disjoint sets, || /„ || = 1 it cannot go to zero weakly.

te An

1st case. — The following holds:

(11) Vm, l imsup{ |<g, / , ,> | ;^eH,}==0.

For each n, there is ̂ eH with | <^, /„ > | ̂  1/2. From (11) it follows that ^eH' for
n large enough. Then we can write g^== ^ g'n where ^eH^. By taking a subse-

2^i^k(n)

quence one can assume from (11) that:

If:

I z ^ a) i ^1/4.
i^k(n-l)

^n=: Zj Sw
k(n-l)<i^k(n)

one has |^(/n) | ̂  1/4. Let g\ obtained from g\ by restricting its support to A,,. Then
^eH, Let:

o n .Zj on"
k(n-l)<i^k(n)
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436 M. TALAGRAND

Then \g\(f^\^l/4. Moreover, g\(fp)=Q for p^n. Let h,= ^ g\. Then
p^n

b^eW. Indeed, ^= ^ fc1 where h^gp for the unique p such that
f<k(n)

fc(/?—l)<i^k(/?) . We have |/in(/p)| >1/4 for p<n. Hence if fe is a weak* cluster
point of (h^), we have [ h(fp) \ ̂  1/4 V/?, which finishes the proof in this case.

2nd case. — There is m, a>0 and a sequence /€„ such that
S UP{ I<^?/k,,) h 8e^m} >aVn. One can suppose k^=n. One can also suppose that
m is the smallest integer for which the above is true, i. e.:

(12) lim sup{ |<^>| ;^GH,_,}=0.
n ->• oo

For convenience of notation suppose now on that m^ 1. (The same argument works
for m=0.)

Let gnCH^ with |<gn , /^> | >a. One can suppose that g^ is supported by A^. It
follows from the definition of H^ that for each k one can write gn=g^ + • • • +^+^n
where ^eH^_i for i^n, and ^eH^. It follows, by taking a subsequence, that one
can assume g^ e H^ and [ < ̂ , /„ > | ̂  a/2. Another extraction of subsequence will give
g^ e H^^ where k (n) > V (^n -1). Let s^ = s (g^) e T^ („). By taking a subsequence, one can
assume that for each/?, the sequence s^\p is eventually constant. A further subsequence
will satisfy &„ | V (gp) = Sp + J V (gp) forn^^+1.

It follows from the definition of H^+i that for each n, h^= 1/4 ^ g^eH^+i
p^n

. Moreover, for /?^n v/e have | h^ (fp) \ > a/8. Let h be a weak* cluster point of
(h^). Then | fc (/p) [ ^ a/8 for each p, which finishes the proof.

5. Construction of (/„)

In fact, (/„) will be a subsequence of /!„.

LEMMA. — Let (Hi) be a sequence of independent random variables uniformly distributed
in {1, . . ., g } . Let P(q, n) = Prob (3 i, j ̂  n, u, = Uj). Then lim P(q, n) = 0.

q -*• oo

Moreover, P(q, n) is increasing in n and decreasing in q.
Proof. - P(q,n)^2(n(n-\))/2.
Let (a^ ^ be the sequence of theorem A. One can suppose that a^k^^+i^ an<^

a^k^^k+i ^or eac^ n? ^- Let n(k) be the smallest integer such that
a^^) .k^^+1- From the lemma, there exists an increasing sequence q(k) such that for
each k ̂  1 one has the following conditions :

(13) n(k)P(2-q(k\ n(fe))^1

(14) For each integer n such that ̂ ^2, nP(2-f l (k), n)^a^-1.
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We shall prove that the sequence /„ = hq ̂  satisfies the theorem. Let I be a finite set
of integers, with k=lnfl and cardl=n. Let I the greatest integer such that
; +1 ̂  a^fc. (It is possible that / = 0.) Let m = k +1 +1.

We have:

^m^^,k<<+2^m^fl^^^ so n^n(m).

Hence:

(15) nP(2~q(m\n)^]-.

Let us define a, (co) by f^ (co) = e^ ̂ y Let:

Z={coeQ; 3f , jel , ij^m, i^j, af((o)|^(w)=^.(co)|^(w)}.

Since the maps co -> a^ (co) are independent and a^ (co) | q (m) takes for value each element
of T^) with equal probability, one has ^(Z)^P(2-4(W), n). For coeZ, we have the
trivial estimate || ̂  ./i((o)|| ^n.

I 6 I

We show by induction over/? that for o^Z and geHp, we have:

(16) \<g, ^y,((o)> | ̂ 2-^(1+1).
i el

The result is obvious for p = 0. A ssume it has been proved for p. Let g e Hp +1. Then
we have a decomposition g= 1/4 ^ g(r) which satisfy (8) to (10). Let./ be the largest

i^r^n

integer j ̂  n for which V (g (/)) < m.

Let ^=1/4 ^ ^(r). Then ^'==4 -p- l ^ ^* where sup { [ t [ ; r eA} <m. Since there
i ^ r ^ j t e A

are at most (indexes i for which | a, (co) | < m we have | < g\ ^ /»(co) > | ̂  4~p-1 f.
f e l

If j=p, the proof is finished. Otherwise |<g(/+l) , ^ y;.((o)> | ̂ 2 -p(;+l) by induc-
i e I

tion hypothesis. Ifj+l=;?, the proof is finished. Otherwise let g"= ^ ^(r). It
r > j + l

follows from condition (10) that there is seT^ such that for each reT one has s<t. But
since there is at most one i e I for which s < a; (co), we have | < g'\ ^ fi > | ̂  4~p~1. Adding

f e l

these three estimates gives (16). It follows that for geH one has:

\<8, E^Wl^sup f l ^ )
I 6 I \ 2 /

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



438 M. TALAGRAND

and hence || ̂  y;.(o) || ^sup(l, (/+ 1)/2). So we have:
i e I

II Z fi\\i^ f II E /,(<») || 4i(<»)+ f || Z /.((») ||̂ ((o).
1 6 1 Jz » e l Jn Z ie !

^nH(Z)+sup( 1, ——

^p(2-<^ n)+sup('l, ̂ y

If ;=0, we have a^^2, so nP(2-4(w), n)^^^-! from (14) and since q(m)^q(k\
so the right hand side is ^a^. If 1^1, we have nP(2~q(m\ n)^(l/2) from (14), so the
right hand side is less than ?/2+ 1 ^?+1 ̂ a^j, which concludes the proof of the theorem.
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