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LOCAL HOMOLOGY OF GROUPS
OF VOLUME PRESERVING DIFFEOMORPHISMS, I

BY DUSA McDUFF (*)

ABSTRACT. — In this paper we prove the volume preserving analogue of the Mather-Thurston theorem, which
relates the group of compactly supported C^-diffeomorphisms of R" to the /!-fold loop space of Haefliger's
classifying space for codimensionn foliations ([7], [15]). The proof is based on a study of the behaviour of monoids
of self-embeddings of manifolds much as in [8] and [9], where a proof is given of the original Mather-Thurston
theorem. However, because every volume preserving self-embedding of a compact manifold is a diffeomorphism,
we must extend our techniques to non-compact W.

1. Statement of main results

Let r^ be the groupoid of germs ofC^-diffeomorphisms ofR" which preserve the volume
form co=^Xi A . . . A dx^ with the sheaf topology. See [3] and [10]. Its classifying space
Br^ is the Haefliger classifying space for transversely oriented smooth codimension n
foliations with transverse volume form. The homomorphism r^j -> y^(n, R), which takes
a germ / at x to its differential df^ at x, induces a map:

v : BF^ -> B y^(n, R) where y^(n, R)

is the classical special linear group. We will denote the homotopy fibre o fvbyB F^j. This
space classifies foliations with transverse volume form and trivialized normal
bundle. Haefliger showed in [3] that 71, (B F^) = 0, l^i<n, and that n^ (B F^) -^ 0. In fact,
n^ (B r^) ̂  R. See [10], Corollary to Theorem 2.

In [10] and [11] we studied the relation between the groupoid F^j and the discrete group
Diff^ R" of all o-preserving diffeomorphisms of R". Our main result was that there is a
natural map B Diff^ R" -> B F^ which induces an isomorphism on integer homology, except
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610 GROUPS OF VOLUME PRESERVING DIFFEOMORPHISMS, I

possibly if n=2. This map essentially comes from taking a diffeomorphism to its germ at
0. See [10], § 2. It is not hard to construct a commutative diagram:

BDiff^R"-^Br^

\ \-
B^^R"-^B^J^,R)

where ^iff^R" is the same group as Diff^R" but taken with the compact-open C°°-
topology. It follows that the associated map of homotopy fibres B 2iff^ R" -> B F^ also
induces an isomorphism on integer homology.

In the present paper this result will be extended to the group Qijf^ W of all co-preserving
diffeomorphisms of a non-compact oriented smooth manifold W with a smooth nowhere-
zero /2-form co. We will assume that W is connected and without boundary, and that each of
its ends is trivial (i. e., a product) and has infinite co-volume. We give Q)iff^ W the compact-
open C^-topology, and denote its identity component by 2iff^ W. Since the group of
orientation-preserving diffeomorphisms of W acts transitively on the set of volume forms
which satisfy the above conditions [2], the isomorphism class of the topological group Q)iff^ W
is independent of the choice of co. There is a homomorphism 0, called the flux, which takes
Qiff^Q W to H"~1 (W; R) and is defined as follows: if z is an (n - l)-cycle in W, then:

0(/)z= co,
Jc

where c is an /i-chain in W with boundary /^(z)--z. By [10], Lemma 2, our hypotheses
on W and co imply that d> is surjective. We will denote the kernel of 0 by
@^^W; and the contractible abelian group H^^^W; R) by V. Then the sequence
^iff^o w -> ̂ ff coo w -> v g^ rise to a ^bration:

B ^ y / ^ W ^ B ^ y . o W ^ B K

(Given a topological group ^, the notation B ̂  stands for the homotopy fibre of the map
BG -> B^, where G is ^ considered with the discrete topology. According to [17], this
space B ̂  depends only on the germ of^ at the identity, and its homology H^(B ^) is called
the local homology of ^.)

We will relate B Qiff^o W to B F^ by the following construction. Let E -^ B Q)iff^ W be
the canonical fibration with fibre W. Its pull-back to B Diff,,,o W has discrete structural
group, and so may be considered to be foliated. When pulled back further to B ^iff^Q W,
the fibration becomes trivial. Therefore, there is a canonical foliation of the product
(B Q)iff^ W) x W which is transverse to the fibres y x W. It has a transverse volume form
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D. MCDUFF 611

which restricts to (B on each fibre. Clearly, its normal bundle is the product with B Qiff^o W
of the-tangent bundle TW to W. Therefore, this foliation is classified by the diagram:

(B^oW)xW-^Br^
\ V
W——^B^^,R)

where T classifies TW. We will assume that v has been made into a Hurewicz fibration so
that this diagram commutes exactly. Then, corresponding to each point y in B Qiff^ W,
there is a lifting F | (y x W) of T to B F^. Equivalently, we may consider this lifting to be a
section of the pull-back by T of the fibration BF^ -^ B ̂ ^ (n, R). We will define S^ (W) to be
the space of all such sections, or liftings, with the compact-open topology. Then this
construction defines a map:

/w: B^oW^5JW).

Since B F^ is (n—1 ̂ connected, 5^(W) is connected. In general it will not be simply
connected. In fact, because 7T^(Br^)^R, obstruction theory shows that
K! (^(o (W)) ̂  H"~1 (W; R) = V. Therefore, there is a fibration sequence:

^(W)^JW)^B^,

where S^ is the universal cover of 5 .̂ We will show in Lemma 6.1 below that there is a
commutative diagram:

B^o W-^B^.o W-^B^
|7w |/w I -

5. (W) -——5, (W)——^B^

Our first main result is:

THEOREM 1.1. — If n = dim W 7^ 2, then:

/w: B^/^oW^JW),

induces an isomorphism on integer homology. Equivalently, f^ is a homology equivalence.
(A map / : X -> Y is called a homology equivalence if it induces an isomorphism

H^(X, /*A) -> H^(Y, A) for all coefficient systems A of abelian groups on Y. See [4],
where such maps are called acyclic.)

When n = 1 these maps f^ and f^ are both homotopy equivalences. For in this case
W = R, and it is easy to check that both B^ijff^ R and S^ (R) ̂  B F^ are K (jr, 1 )'s where n is
the discrete group of additive reals. However when n > 1 the maps / do not induce an
isomorphism on n^ and so are not homotopy equivalences.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



612 GROUPS OF VOLUME PRESERVING DIFFEOMORPHISMS, I

It is not clear whether Theorem 1.1 is true when n = 2. However a slightly weaker version
does hold: see Theorem 7.3 below.

Our second main result concerns the group Q)iff ^o W of compactly supported co-preserving
diffeomorphisms of W, taken with the usual direct limit topology. Notice that the canonical
foliation of (B Qiff c^ W) x W is the trivial (product) foliation near infinity in W. One can
therefore choose the classifying map F so that each section f^ (y) equals a given base section
SQ outside a compact subset ofW. See [8], § 2 and [9], Appendix. We will denote the space
of such compactly supported sections by S^ (W), and will give it the direct limit topology as in
[8]. Then /w induces a map BQiffc^ W -> S^ (W). Since n^ (B F^) ̂  0, the space S^ (W) is
not connected, and we write 5^o (W) for the connected component which contains the base
point SQ. It is not hard to check that the homotopy type of the space S^ (W) does not depend
on the choice of base section SQ. Further, all the components of S^(W) have the same
homotopy type. This means for example that when W is parallelizable we may identify
Sy, (W) with the space of maps W -> B F^ and may take SQ to be the constant map. Thus
^(R") is the space of maps from S"=R" u oo to B F^ which take a neighbourhood of oo to
the base point in B F^, and so it is homotopy equivalent to the n-io\d loop space Q" B r^j.

THEOREM 1 . 2 . — The map:

/ w : B^,oW-^5,o(W),

is a homology equivalence.
Thus there is a homology equivalence B Q)iff ^o R" -> (Q" B F^)o. Using Thurston and

Banyaga's computation of H^(B Qiff^oR", Z), this yields:

COROLLARY 1.3. - 7t^i(Br^)=0/or^^3, andn^(Br^)^R.
Obstruction theory now shows that n^ (S^ (W)) is abelian and isomorphic to H^~ 1 (W; R)

when n ̂  3. Therefore in this case Theorem 1.2 is equivalent to the statement that the map:

7w: B@^oW-5,o(W),

is a homology equivalence, where S^Q is the universal cover of S^ and Qsiff^o W is the
kernel of the flux homomorphism. When n=2 it follows from Rousseau [12], that
K! 'S'S)o(W) ls nilpotent but in general not abelian. See Theorem 7.7.

The proof of Theorem 1.1 is based on a study of the behaviour of monoids of self-
embeddings of manifolds as in [8] and [9]. Because every volume preserving self-embedding
of a manifold W is a diffeomorphism unless W is non-compact, we will deal exclusively with
non-compact manifolds. This introduces certain complications into the argument. For
example, one cannot induct over an ordinary handle decomposition of W since this involves
compact pieces. One must use "handles with spikes". Also, when X has non-empty
boundary, one cannot work simply with the monoid of all self-embeddings of X since this may
not have good properties.
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D. MCDUFF 613

In § 2 we formulate the properties which our monoids are required to have, and then show
by an inductive argument that, if such monoids exist, the map /^ in Theorem 1.1 is a
Z-homology equivalence. As we will see in §6, Theorems 1.1 and 1.2 for n ̂ 3 follow fairly
easily from this. The hard work lies in establishing that monoids with the required
properties do in fact exist. This occupies § 3-§ 5. The most difficult step is to show that the
monoids can be "localized", for instance that the group Qiiff^W can be replaced by the
monoid ^^(W, X) which, roughly speaking, consists of all diffeomorphisms of W which
take the submanifold X into itself. The arguments of [9], § 4, which show that
B ^j(f(W, X) ̂  B Qiiff W, fail when X is non-compact since one cannot then find a suitable
open subset % of Qiff W. However, they may be elaborated to prove Proposition 4.5
below, which is half the localization lemma. The other half uses some results of [10] and [11]
which are not valid when n = 2. The case n = 2 is discussed separately in § 7. The proof of
Theorem 1.2 for R2 is written up on its own as Theorem 7.2. This is the shortest complete
proof in the whole paper, since there is no need for an induction here. Once the basic
notation is understood, it should be possible to read it, especially if one accepts (7.2) (i)
temporarily.

Perhaps it is worth remarking that almost everything in this paper is valid for the group
^TW of all diffeomorphisms of W. The only exceptions are the results which involve the
flux homomorphism. Also, there are corresponding results for the group of volume
preserving diffeomorphisms of a compact manifold. This will be the subject of a later paper.

Finally, a word about notation. We will use the language and notations of [9] wherever
practicable. In particular, we will work in Vogt's category HG (1). (All this means for us is
that the topology put on a product may not be the usual product topology.) A map will be
called a Z-homology equivalence if it induces an isomorphism on untwisted integer homology,
and a homology equivalence if it induces an isomorphism on homology for all local
coefficients. Thus /: X -> Y is a homology equivalence if and only if the induced map
/:/*Y->Y is a Z-homology equivalence, where Y is the universal cover of Y. In
particular, these concepts are the same when the target space is simply connected. We will
call a sequence F -> E —> B a homology (resp. homotopy) fibration sequence if there is an
associated map of F into the homotopy fibre of E -> B which is a Z-homology (resp.
homotopy) equivalence. If in addition n^ (B) acts trivially on H^ (F; Z), the sequence will
be said to be simple. Finally, a space is called acyclic it its reduced integer homology
vanishes.

(1) The statement made in [9], p. 107 that one can consider a group of germs such as Top^ to be a space in the
category HG is false, since these groups are not quasi-topological spaces in the sense of Vogt. In fact, the set of
continuous maps from a compact space X to Top^ (which is described by Haefliger in [3] for instance) does not inject
into the set of set-theoretical maps from X to Top^. Hence in the proof given on p. 107 of [9] that B Smb R" ̂  B r^
where ^mb consists ofC°-embeddings, one must either think of the spaces as quasi-topological spaces in Haefliger's
sense or use the semi-simplicial models of § 3 below. This problem does not arise when considering CV-embeddings
for r^l .

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



614 GROUPS OF VOLUME PRESERVING DIFFEOMORPHISMS, I

2. Sketch of the proof of Theorem I . I '

The inductive argument which proves Theorem 1.1 is very like that of [8], § 3. However,
because we can only deal with spaces which are well-behaved at infinity and which have no
compact pieces, it is important to describe carefully the admissible pairs over which we
induct. We will assume from now on that W is as in § 1. Then W is the interior of a
compact manifold whose boundary will be denoted by W. We will choose, once and for all,
a product structure W x [0, oo) in a neighbourhood of infinity in W. Further, we will put a
Riemannian metric on W which is a product in W x [0, oo), and will assume that oo is the
corresponding volume form. If A is a closed subset of W, we will write Ag for its closed
8-neighbourhood.

A (possibly empty) closed subset A of W will be called nice if it is a product at
infinity. (This means that An(W x[0, oo))=A x[0, oo) for some A in W.) Further, a
submanifold X of W will be called admissible if it is a nice top dimensional submanifold of W
whose boundary contains no compact components. Thus both X and W — X have finitely
many components, none of which are compact. In distinction to [8] we do not allow X to
have corners. Note also that if 8>0 is sufficiently small, Xg will be an admissible
submanifold of W which is diffeomorphic to X. Finally, a pair (X, A) consisting of an
admissible submanifold X of W together with a nice subset AofW will be called admissible if
no component of W — A or of 3X — A has compact closure. It follows that no component of
X — A will have compact closure either. Examples of such pairs are (W, X) and (X, ^X),
where X is an admissible submanifold of W. As will soon become clear, these non-
compactness assumptions are needed so that we do not run up against volume
obstructions. Note also that an admissible pair is determined by its intersection with the
compact manifold W — W x ( 0 , oo).

Let Q)iff^ (W, rel A) be the direct limit over all s > 0 of the groups { g e 2iff^ W; g = id on
A g } , where these are given the compact-open C00-topology. The identity component of this
group is denoted by Qiff^W, rel A). Recall that B^iff^(W, rel A)^B @^(W, rel A)
by [9], Lemma 3.5. Further, let SJW, rel A) be the direct limit over all s>0 of the
subspaces [seS^(W) : S=SQ on Ag}. By [8], §2 and [9], Appendix, f^ maps
B^&o(W, rel A) into 5JW, rel A). We will prove:

THEOREM 2.1. — For every admissible pair (W, A) with dim W^3, the natural map:

/w : B@^o(W, rel A) ̂  5JW, rel A),

is a Z-homology equivalence.

COROLLARY 2.2. — If X is an admissible submanifold ofW where dim W^3, then:

/x : B@^o(X, rel SX) -^ 5JX, rel ^X),

is a Z-homology equivalence.

In order to prove this we must investigate how the functors B Q)iff^ and S^ behave under
restriction. The following lemma is elementary.

4° SERIE - TOME 15 - 1982 - N° 4



D. MCDUFF 615

LEMMA 2.3.- Suppose that (X, A) and (Y, A) are admissible pairs with Y c: Int X. Then:

5JX, rel Y u A) ̂  5JX, rel A) ̂  5JY, rel Y n A),

^ a simple homotopy fibration sequence.

Proof. — The fact that this is a fibration sequence may be proved as in [8],
Lemma 3. However, because B F^ is {n — 1 ̂ connected rather than ^-connected, the
argument of that lemma does not suffice to show that the action of n^ (base) is trivial. To
prove this, let /p O^^l, be a loop in 5^(Y, rel Y n A ) and choose T|>O so that
Y^-Y^Y x[0, T|] is contained in IntX. Because A is a product near infinity, we may
replace A by a slightly larger set with the property that A n Y^ - Y = (5Y n A) x [0, T|]. It is
easy to see that /; may be extended to a path T( in ̂  (X, rel A) with ?o = id and with support in
Yg, for any given 8, O<£<T|. In particular, we may suppose that /^ has support in
Ye-(YuA)^(BY-A)x(0, s). Also, one can check that the action of ^ on H^(5^(X,
rel Y u A ) ) is induced by the map s^->sll7^ of 5^(X, rel Y g U A ) into 5^(X, relYuA),
where U denotes the "addition" of sections with disjoint supports. However, this map is
homotopic to the identity, since the space 5^(Yg, rel A u ^ Y g U Y ) which contains 7^ is
connected because 3Y — A contains no compact components. D

Before we can discuss the behaviour of the functor B Qiff^ under restriction we must extend
this functor to manifolds with boundary. In [8] and [9] we did this by considering the space
B 8mbo X, where 8mb'o X is the identity component of the monoid of all self-embeddings of
X. Further we defined 8mbQ (X, Y) to be the identity component of the submonoid of
8mbo X consisting of all embeddings which take Y into itself, and looked at the restriction
map B <^mbo (X, Y) -> B Smbo Y. Unfortunately, when X and Y are non-compact, one
cannot prove anything useful about these spaces and maps. Moreover, the definitions
which do work are rather complicated. Therefore, we will postpone their details until § 3
and here will simply state their properties.

Let X, Y and A satisfy the hypotheses of Lemma 2.3. Then we will define spaces
B E o ( X , Y , r e l A ) a n d m a p s :

BEo(X, Y, rel A) ^ BEo(X, rel A) ̂  5JX, rel A),

which depend only on X, Y and A n X and not on the ambient manifold W, and which have
the following properties.

(2.4) (Normalization). - B Eo (W, rel A) ̂  B Qiff^ (W, rel A), andf^ is the map of (2.1).
(2.5) (Normalization). - If D is a closed (n-l)-disc and n^3, then:

/D: BEo(DxR)^SJDxR)^Br^ ,

is a homology equivalence.

(2.6) (Behaviour with respect to A) :

(i) BEo(X, Y, rel A)=BEo(X, Y, rel An X);

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



616 • GROUPS OF VOLUME PRESERVING DIFFEOMORPHISMS, I

(ii) if AcA', then BEo(X, Y, rel A)=)BEo(X, Y, rel A');

(iii) z /A^A^. . . WA=nA,, then BEo.(X, Y, rel A)=limBEo(X, Y, rel A,).
(2.7) (Triviality). — IfZ is a compact connected manifold then:

(i) 13 Eo (8Z x [0, 1] x R, rel 8Z x 0 x R) is contractible, and
(ii) if either dim Z^2 or BZ^O, then

BEo(Zx[0, oo),reiaZx[0, o o ) n Z x O )

is acyclic.
(2.8) (Localization) J/dim X^3, then:

?x : B E o ( X , Y , r e l A ) c , B E o ( X , r e l A ) ,

is a Z-homolo^gy equivalence.
(2.9) (Fibration). - There is a simple homology fibration sequence:

BEo(X, rel Y u A) -^ BEo (X, Y, rel A) -^ BEo(Y, rel Y n A).

Moreover, this sequence maps by f^ to the sequence of section spaces in Lemma 2.3.
It is worth remarking now that the non-compactness conditions in the definition of

admissible pair are essential in the proof of (2.8). For example, if:

X = S 2 x R , Y = S 2 x [ 0 , o o ) and A=S2 x(-oo,-I],

then any co-preserving diffeomorphism ofX which is the identity on A and which takes Y into
itself must in fact take ̂  onto itself. This implies that B Eo (X, Y,relA)ishomotopictoB ̂ ,
where ^ is the subgroup of ^^(X, rel A) consisting of diffeomorphisms which take Y
onto Y. Now B Eo (X, rel A) is acyclic by (2.7), However, it is not at all clear that B ̂  is
acyclic.

The remainder of this section is devoted to a proof of the following theorem.

THEOREM 2.10. — For every admissible pair (X, A) with dim X^3:

^: BE,(X,relA)^5JX,relA),

is a Z-homology equivalence.
By (2.4), Theorem 2.1 is the special case X = W. Observe also that (2.10) holds in the

situations considered in (2.7). Theorem 2.10 is significantly easier to prove when (X, A) is
a product of the form (X x R, A x R) since one can then argue by induction over a handle
decomposition of the pair (X, A). In the general case, one must use "handles with spikes" in
order to satisfy the non-compactness assumptions. Note also that because we have no
results on n^ (B E^ (X, rel A)) which are comparable to [9], Lemmas 5.3 and 5.4, we do not
claim that^x is ever a homotopy equivalence.
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D. MCDUFF 617

The proof of (2.10) is based on the following easy lemma.

LEMMA 2.11. — Suppose that (X, A) and (Y, A) are admissible pairs with YdntX and
dimX^3. Then:

(a) Ij (2.10) holds jor any two of (X, Y u A), (X, A) and{\, Y n A), then it holds for the third
also, and

(b) if (2.10) holds'Jor(X, \)and(X, K} and j or either {X, Y u A)or(X, Y n A), then it holds
jor all jour pairs.

Proof. — Part {a) follows immediately from (2.8), (2.9) and the spectral sequence
comparison theorem. To prove (b) one compares the diagram:

BEo(X, rel Y u A)-^BEo(X, Y, rel A)-^BEo(Y, rel A)

^ _ ^ _ ^ =

B Eo (X, rel Y)->-B Eo (X, Y, rel Y n A)-^B Eo (Y, rel Y n A)

with the corresponding diagram for S and uses (2.6), (2.8), (2.9) and part (a)
above. See [8], Prop. 4.

LEMMA 2.12. - Theorem 2.10 holds Jor (D"-1 xR, W-1 xR), n^3.
Proof. - Consider the pairs (D""1 xR, S^ xR),k== -1, 0, .. ., n-1, where D"-1 is the

unit (^z-l)-disc in R"~1 and S^ is the image in D""1 of the sphere of radius 1/2 in
R^cR" 1. Then (2.10) holds for (D^xR, S-1 xR)=(D"-1 xR, 0) by (2.5). By
(2.7) (i), (2.10) also holds for (D""1 xR, D 'xR) where D' is an (n-1) disc in
IntD""1. Hence, an application of (2.11) (b) shows that (2.10) holds for (D"~1 xR,
(D^ u DJ xR) where D^ and D^ are disjoint (n- l)-discs in D"~1. Therefore, by (2.6),
(2.10) holds for the pair (D""1 x R, S° x R). Continuing in this way, one easily sees that
(2.10) holds for (D"-1 x R, S^ x R), k= 1, . . . , n-1. At each stage one should thicken
(D"~1 xR.S^ x R (slightly so that it has the form (D"~1 xR, Y u A), where Y and A are nice
manifolds in Int (D"~1 x R), which are both diffeomorphic to D' x R and whose intersection
Y nA retracts onto S""1 xR. One can then apply (2.11) (b). Finally, using (2.7) (i),
(2.11) {a) and the fact that (2.10) holds for (D""1 xR, S"~2 xR), one proves that (2.10)
holds for (D""' xR, W-1 xR). D

COROLLARY 2.13. - Theorem 2.10 holds jor (S""' xR, 0), ij n^3.
Proof. - This follows from (2.12) using (2.5) and (2.11) (a). D
In fact, Corollary (2.13) is the only case of Theorem 2.10 which is needed in the proof of

Corollary 1.3, and the reader who is interested primarily in that may skip to §6, taking
V^S^xRn^^).

LEMMA 2.14. — Theorem 2.10 holds jor admissible pairs (W, A) of dimension ̂  3 where A is
an admissible submanijold of W which intersects every end of W.

Proof. - Let W° = W - (W x (0, oo)), and let:

A n W°=X^c=X^c= ... c=X^=W°,

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



618 GROUPS OF VOLUME PRESERVING DIFFEOMORPHISMS, I

be a handle decomposition of the pair (W°, A n W°) in which the index of the handles is non-
decreasing and <n. The hypotheses on A imply that every component of ^X°, O^i^p,
meets ^W°. Now let Z be a nice submanifold ofW such that W° u A is contained in Int Z as
a deformation retract. We will alter the above handle decomposition of(W°, A n W°) to a
decomposition:

A=X,c=X,<=...<=X,=Z,

of the pair (Z, A) by "handles with spikes" in the following way.

Put X^=A and suppose that H ^ = X ^ — X ^ is a handle of index k<n. Thus
H, ̂  D^ x D"~ Ms attached to XS along W^xD^. Let y(^,0^^1, be an embedded arc
in QX^ with its first endpomt y (0) on the boundary of H^ n X^ and the other on ^W°. (See
figure. Note that such y exists by our hypotheses on the X°.) We may suppose
that y(t)e8X^—H^ for t>0. Extend y to an infinite arc y : [0, CO)->XQ by setting
y(^)=y(l) x ( ^ — l ) in W x(0, oo)for t>l. Then we will call a suitably smoothed set of the
form Hi u {b-nbhd of y) a handle with one spike. We will require that the handle
H i = X i — X o have exactly two spikes. Also each component of (3Hi)—Xo should have

non-compact closure. Therefore, if k = n — 1 we will attach one spike to each component of
the boundary of H^ n XQ. This should be done in such a way that X^ =XQ u H[ is an
admissible submanifold of W which contains Xg u H^ as a deformation retract. We now
repeat this construction to get X^, . . . , Xp. Notice that, because X; n W° retracts onto X^,
we may suppose at each stage that the handle H^+1 is attached to the boundary of X^ rather
than to X°. Finally note that Xp will be a deformation retract of Z. Therefore, we may
redefine Z, setting it equal to Xp.

We now prove that Theorem 2.10 holds for the pairs (W, XJ where ; goes down from p
to 0. Observe that it holds when i=p by (2.7) (ii). So suppose inductively that it holds for
the pair (W, X^. ^) . We will show that it holds for the pair (W, XJ by the argument of [9],

Lemma 2.8. Thus, let C be the core Dkx-Dn~k of H^i. Further, let

Y=W-IntH^. We aim to apply (2.11)(^) with this Y, and with the set A equal to
B =X^ u C. We should slightly alter Y along Y n 8X^ in order to make it smooth. Then
the pairs (W, B) and (Y, B) are admissible. (Note in particular that ^Y — B has no compact
components.) Therefore, we can apply (2.11)(b). Observe that (2.10) holds for the
pair(W, B) because it holds for (W, X^.J by hypothesis, and because X^ , retracts onto
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B = X^ u C. [The details may be filled in using (2.6).] Therefore, if we show that (2.10)
holds for both (W, Y) and (W, Y u B), it will follow from (2.11) (b) that it holds for the pair:

(W, Y n B) = (W, Y n (X, u C)) =(W, XJ,

as well. This will complete the inductive step.
First consider the pair (W, Y). Because 2iff^ (W, rel Y) is isomorphic Qiff^ (D"-1 x R,

rel 3D"-1 x R), Theorem 2.10 holds for (W, Y) by (2.4) and Lemma 2.12. Similarly, if
H,+1 has index k, B EQ (W, rel Y u X, u C) isjustBEo (K^ ̂  rel ^n-fe). where K^. is a nice
submanifold of W which is diffeomorphic to (D""^1 xSj~l)u(iwo spikes).

Note that K^ is the disjoint union of two copies of D" u (one spike). Therefore, (2.10)
holds for (K,, ^KJ by (2.7) (ii). One now shows that (2.10) holds for the other K^ by
induction on y, as in [9], Lemma 2.7. In fact, Lemma 2.11 {b) implies that if (P, Q) is an
admissible pair of submanifolds of W, then (2.10) holds for (P u Q, Q (P u Q)) provided that
it hold for (P, BP), (Q, BQ) and (P n Q, 0 (P n Q)). Therefore, it suffices to check that K,
may be written as the union P u Q, where P and Q both have the form D" u (two
spikes) ̂  D" ~ 1 x R, and where P n Q = K^ _ , . To do this, think of K^ as a thickening of the
set S-7"L u (two spikes), where the spikes are attached to the equatorial sphere S^^. Then
take P and Q to be suitable neighbourhoods of the upper and lower hemispheres, which
intersect in a neighbourhood of S^"^ u (two spikes). See figure. D

(2.15) PROOF OF THEOREM 2. 10 FOR GENERAL (X, A).

Put W =X u (8X x [0, oo)). We may suppose that co | X is the restriction of a volume
form on W which is a product near the ends of W. Then, it follows from (2.7) that
Theorem 2.10 holds for the pair (W, X). Hence, by (2. ll)(a), Theorem 2.10 will hold
for(X, A) provided that it holds for (W\ A). By (2.6) we may suppose that A is either
empty or is a top dimensional submanifold of W. Then it is easy to find sets A' and A" in
W whose intersection is A and which are such that Lemma 2.14 applies to the three pairs
(W, A'), (W, A") and (W, A'uA"). Since one can also arrange for (A', A) to be an
admissible pair, the conclusion follows by applying (2.11)(Z?). D
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3. The monoids E^ (X, Y, rel A)

These are essentially the same as the monoids 8mb^ (X, Y, rel A) of [9], §5. However,
there is no isotopy extension theorem for non-compact manifolds. For example, any
embedding of the x^-axis into R5 which is the identity on the negative x^-axis and which
knots up the positive x^-axis is isotopic to the identity in the compact-open topology. But
no such embedding can be extended to the whole of R3. Since the proof of the fibration
lemma in [9] depends heavily on the isotopy extension theorem, we will build into the
definition of E^ the fact that isotopies can be extended. Thus these monoids will be rather
artificial. However, the localization theorem (2.8) together with the normalization
conditions (2.4) and (2.5) tell us that the restrictions imposed do not really matter.

First, here are some general notational conventions. We will use bold face letters
E, Diff, . . . to denote semi-simplicial Kan monoids, and will write E^, Diff^, . . . for their
identity components. Then the thin realization | E | of E is a topological monoid both in
Vogt's category ^f^ and its more familiar subcategory of compactly generated
spaces. Corresponding to |E| is the discrete monoid E formed by the zero-simplices
of E. The inclusion E q: \ E | induces a map BE c; B | E | whose homotopy fibre will be
called "BE. For example, we will define E(W) to be the total singular complex of
^W^' ThenE(W) is the discrete group Diff^W and 13E(W)^B^^W. It will
sometimes be convenient to write Diff^W instead ofE(W).

DEFINITION 3.1.- Let (X, A) be an admissible pair, and suppose first that A is a product
near c?X. (This means that for some q >0 :

An(BX)^==(AnBX)x[-n, T|],

where 6X x [ - T|, T[\ is the product structure on (<9X)^ induced by the metric on W. Also, if
8<0 we will write X^ for X-BXx(5, 0].) Then E(W, X, relA) is defined to be the
submonoid of E(W) which consists of all singular 7?-simplices a : A^-^^/^W) which
satisfy the following conditions for some s with 0 < 8 < T| :

(i) For each te^ and all 5, -c^S^s, a(t) takes X^ into itself and equals the
identity on Ag.

(ii) There is a ̂ -simplex S in E(W) such that S(t) equals a(t) on Xg and has support in
X^-A^ for all t. Moreover, if a(u)=id for some vertex ve^, one can assume that
a(u)=id as well.

Note that if these conditions are satisfied by one e, they are satisfied for any s' < 8. One
can also check that TI may be replaced by any T|' < r|. In fact, because every component ot
ax-A has non-compact closure, each component of(^X-A)x[0, T|] has infinite volume
and one can change the support of a to X^-Ag- by conjugation. Therefore the precise
values of e and T| do not matter here.

N ote further that if A ̂ = 2 A ^ 3 . . . is a nested family of nice subsets of W with A =n A,, then
for all 8>0 there is i such that A^IntA,. It follows that E (W, X, rel A)=lim E (W, X,
rel Ai) whenever both sides are defined. Therefore, if A as an arbitrary nice subset of W
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we may define E (W, X, relA) to be lim E (W, X, rel A,), where the A, tend to A as above
and are products near 8X.

As mentioned above, we will denote the identity component of E(W, X, rel A) by
EQ (W, X, rel A). It follows easily from the second part of condition (ii) above that if a is in
EQ (W, X, rel A) one can choose a to be in E() (W, X, rel A) also. Recall from [9], § 3 that
BE (W, relA)^BEo (W, rel A) because E(W, rel A) is a group.

If Y is an admissible submanifold in W which is contained in Int X, we define E() (W, X, Y,
rel A) to be the identity component of E()(W, X, reiA)nEo (W, Y, rel A). Further, we
define EQ (X, Y, rel A) to be the quotient of EQ (W, X, Y, rel A) by the relation — , where a—a'
if and only if there is 8 > 0 such that a {t) = a' (t) on Xg for all t. Thus Eo (X, Y, rel A) is a
semi-simplicial Kan monoid of germs of self-embeddings of X whose simplices have
representatives defined on the unitorm neighbourhood Xy lor some 6>0. The detinilion
has been designed so that the restriction map E^ (X, Y, rel A) -> E^ (Y, rel A) is well-behaved:
see Lemma 3.4. Notice, in particular, that because E^(Y) consists of germs of self-
embeddings of Y taken along some Y^ rather than along an arbitrary neighbourhood of Y,
the kernel of the restriction E^ (X, Y) -> E^ (Y) consists ofembeddings which are the identity
on Y^ for some 5 > 0 and so is a submonoid of E (X, rel Y). This gives us plenty of room to
work in: see for example the proof of (2.7) in (3.3) below.

There is an obvious inclusion i^ of B E^ (X, Y, rel A) into B E^ (X, rel A). Also we will
define the map^x to be the composite:

BEJX, re lA)^>B Smb^ (X, relA)^SJX, relo A) ̂  SJX, rel A),

wherey^ is induced by the natural map | E^ | -> 8mb^ and wherey^ and/^ are constructed in
[9], Appendix and [8] §2. Then in the situation of (2.9) there is a strictly commutative
diagram:

BEo(X,rel YuA)-»-BEo(X, Y, rel A) -^BEo(Y, rel Y n A )
\ \ \

S^ (X, relo Y u A) -> S^ (X, relo A) -^ S^ (Y, rel^ Y n A )

^ ^ !-
5JX, rel Y u A) -^ S^(X, rel A) -^ SJY, rel Y n A).

Hence one can compare the spectral sequences of the rows as in (2.11).

(3.2) VERIFICATION OF PROPERTIES (2.4)-(2.9).
(2.4) and (2.6) follow immediately from the construction. The proofs of (2.7) and (2.9)

are relatively easy and are given in this section. We will prove the localization property
(2.8) in §4. The proof of (2.5) uses (2.8), and so is postponed until §5.

(3.3) PROOF OF (2 .7)
The semi-simplicial monoid:

M, = EJ^Z x [0, 1] x R, rel 8Z x 0 x R)

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



622 GROUPS OF VOLUME PRESERVING DIFFEOMORPHISMS, I

and group:
M^=Eo(Zx[0 , oo),rel(9Zx[0, o o ) u Z x O )

are contractible, and so it will suffice to show that BM^ is contractible and that BM^ is
acyclic, where M^ and M^ are the corresponding discrete objects. The first statement is
true by the argument of [8], Lemma 4. One has to check that for any m^, m^ in M ̂  there is an
element m in M^ such that m^m=m^m=m. For then the category C(Mi\^*) will be
filtering and so contractible. But because both m^ and m^ are the identity on 9Z x [0, c] x R
for some s>0, it suffices to choose m so that it maps ^ Z x [ 0 , l ] x R into
8Z x [0, e] x R. (This argument would not work if we knew only that m^ and m^ were the
identity on some arbitrary neighbourhood U o f 3 Z x O x R, since there might not be enough
room to fit BZ x [0, 1] x R into U.)

When 3Z^O, one shows that BM^ is acyclic by applying [10], Proposition 1.3. To do
this, one has to check that M^ is the direct limit of groups which are isomorphic to the group
H which occurs there. This may be done by considering "fat" neighbourhoods of QZ x R as
in [10], Proposition 1.2. When 3Z=0 and dimZ^2, the desired result is exactly
Theorem 1 of [10] and [11]. D

The first step in the proof of the fibration property is the following lemma.

LEMMA 3.4. — 7/'YdntX, there is a Kan fibration:

K-> EJX, Y, relA)-^ E^Y, relY n A),

where K=E (X, rel Y u A) n E^ (X, Y, relA) is the kernel of p.

Proof. — We may suppose that A is a product in c5Y x[—r | , T|], where Y^c: hit X. Then,
given a e E^ (Y, rel Y n A), condition (ii)of(3.1) implies that one can choose the extension a
of a | Y^, so that its restriction a to X^ is the identity near QX and on A^ and so is in E^ (X, Y,
rel A). Hence p is surjective. Also, if a' is any other lifting of a to E^ (X, Y, rel A), one has
a ' { t ) = a ( t ) { a ~ 1 ( t ) (j'^^forall t. Observe that ? h-^ a ̂ (y) a ' (^) is a simplex in K. It is
now easy to check that p is a Kan fibration with fibre K. D

(3.5) PROOF OF (2 .9 )
Let Jf'' -> M' -> ^ ' be the thin realization of the Kan fibration of Lemma 3.4, and let K,

M, N be the corresponding discrete monoids. Thus M = Eo (X, Y, rel A), and so on. By
arguing as in Lemma 3.4 above, one can easily check that the sequence K -> M -> N satisfies
the conditions of [9], Proposition 3.6 and 3.7. Hence, by [9], Proposition 3.8,
B JT' -> B M' -> B ^ V ' is an (integer) homology fibration sequence.

It remains to show that:

(a) B j r^Bj ro^KEc^X. re lYuA^and:
(h) 7Ti(BJO acts trivially on H^(Bjf ') .
The proof of {a) is almost identical to the corresponding proof in [9], Lemma 5.6 and will

not be repeated here. (Notice that, because the elements ofj^ now consist of germs of
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embeddings there is no difference between JTand JT in the present situation.) However, we
must rework the proof of (b) given in [9], Lemma 5.6, since we cannot now reduce to the case
when n^ (BN)=0. We will use the notation of that lemma without further comment.

Let U be the interior of (YuA), for some s>0, and put ^^^(Y^Y,
rel (3Yg) u A) |. ThenM^ and M^ = M n Jf0 are made from diffeomorphisms with support
in U. Since the elements of Ky and Jfy are the identity on U, they commute with the
elements of M" and ̂ u. Hence, there is a functor:

co^^.r^xc^M^.^) ^ C(M\^T),
given by multiplication. This induces a map:

(K^Jf^M^^) ^ M^^T.

Now notice that by Definition (3.1) (ii) any loop / in N^^' may be lifted to a path Tin
M11^^^. The argument of [9], Lemma 5.6 now shows that there is a homotopy
commutative diagram:

Ku\^u ^ F
mult. by I I action of/

K^JT C, F.

(Here one uses the fact that ifzeKy \^ Jfu, the products z. 7(t) are well-defined elements of
M\^'.) Since 1(1) is homotopic in (K ̂  JT) n (M11 ̂  ̂ u) to an element of
Jf' n M^ which is in the image of K n M^ it follows as before that right multiplication by
7(1) is homotopic to the inclusion map K^^Jfu ^ K^Jf'. The result now follows
because K^\ jf' is the direct limit of the spaces Ky^ jf\j. D

4. Localization

As we will see, property (2.8) is an easy consequence of the following special case.

THEOREM 4.1. — Suppose that ^z=dimW^3 and that (X, A) is an admissible pair
in W. Then the inclusion:

BE^W, X, rel A) q: BEJW, rel A),

is a Z^-homology equivalence.

In fact, it is easier to prove this in a slightly different form. Let V be the total singular
complex of the topological group H"~1 (W, A; R)^^! .̂ Then the tlux homomor-
phism 0 induces a homomorphism Ey(W, relA)-^V, whose kernel will be denoted by
D^ (W, rel A). Similarly, we write D^ (W, X, rel A) for the kernel D^ (W) n E^ (W, X, rel A)
of the restriction of 0 to EJW, X, rel A).
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LEMMA 4.2. — In order to prove Theorem 4.1, it suffices to show that the inclusion:

BDJW, X, relA) q: BDJW, relA),

is a Zi-homology equivalence.

Proof. - We will adapt the proof of [10], Lemma 2. One can find disjoint, oriented,
smooth and possibly non-compact 1-manifolds Li, . . . , Lp in W - A which are dual to a set
of generators for the vector space H^_^(W, A; R) and so which form a basis of
H^W-AiR^ir-^W.A;!^.

Moreover one can assume that the L^ do not meet OX. To see this, note first that one can
homotop the L, so that there are only finitely many intersections. Because each component
of (^X)-A is non-compact, one can at any intersection point x choose a path y^ in (<9X)-A
which goes to infinity. Then one can eliminate the intersection at x by separating L^ into

two strands L[, as indicated in the figure. After a finite number of such steps we will obtain a
manifold L= u L^ which we may assume to lie outside [8X u A)^. Now let U be a closed
neighbourhood of L which does not meet (8X u A)g and whose ends all have infinite
volume. Then it is easy to construct a continuous homomorphism:

s : ^Ip-^W, A; R)^^coo(U, relBU),

which is a right inverse to 0. For example, s{rc^) will be a diffeomorphism which pushes
forward by an amount proportional to reR in a neighbourhood of L^ and is the identity
elsewhere in U. Since the diffeomorphisms in the image ofs are the identity on (8X u A)^,
they belong to E^ (W, X, relA). Hence s gives rise to a splitting homomorphism:

V->E^(W, X, rel A)gEJW, relA).
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By [9], §3 this implies that the sequence:

(*) BDJW, X, rel A)-^BEJW, X, rel A) ->BV,

is a homotopy fibration sequence. Since:

B D o ( W , r e l A ) - ^ B E o ( W , r e l A ) - ^ B V ,

comes from an exact sequence of groups, it is also a homotopy fibration sequence. The
desired conclusion follows immediately. D

Before beginning the proof of Theorem 4.1 we introduce the following definitions.

DEFINITIONS 4.3. - Let W^, . . . , W\ be the connected components of the "boundary at
infinity" W of W {see §2), and for each subset S ^ J = { 1, . . . , k } , let W^ (J W^. Thus

jes .
WJ = W. Similarly, if X is an admissible submanifold of W which is the product X x [0, GO )
in W x [0, oo), we write Xs for X n W^ Then we define D (W, Xs) to be the submonoid of
D (W) which consists of all ̂ -simplices a which satisfy the following conditions for some r\, e
and X, where O<£<T|:

(i) For all te^ and all 5, -£^5^e, a ( t ) takes X^x^i, oo) into X^.
(ii) There is aeD(W) such that each a(t) equals a(/) on Xs, x[k, oo) and equals the

identity on (W -Xs) x [k, oo). Moreover, if a {v) = id for some vertex v e A^, one can choose
a so that in addition a(v)=id.

As usual, Do(W, Xs) is the identity component of D(W, Xs). Note that, just as in
Definition 3.1, the precise values ofri.s and X- do not matter here. Also, if a is in D^ (W, Xs),
one can choose the extension a in (ii) so that it also belongs to Do(W, Xs).

Further, we will denote by D^(W, X) the monoid of germs at XVs of the elements of
Do(W, Xs). Thus there is a quotient map q : Do(W, Xs)-^(W, X), whose kernel
consists of simplices which are the identity in some neighbourhood XVs x (X, GO ) of W^ We
denote the identity component of Ker q by D()(W, rel W^. We will also write D()(W, X,
rel W^ for the identity component of Do (W, X) n Do (W, rel W^, and Do (W, X^ rel W^
for the identity component of Do (W, X1) n Do (W, rel W^.

The proof of Theorem 4.1 is based on the following lemmas. Observe that the first two
hold for all dimensions n.

LEMMA 4.4. — For any S ^ J = { 1 , . . ., k} :

BDo(W, X\ rel W^B^W, X^BD^W, X),

is a simple {homotopy) fibration sequence.

PROPOSITION 4.5. — // X^ is not empty for any component X, ofX, then:

B D o ( W , X, rel W5) c^ BDJW, X\ rel W5),

is a homotopy equivalence.
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(Note that if X^8 is empty then Do(W, X, rel W8) is a group and the result is false.)

PROPOSITION 4 . 6 . — L^ Z be a compact connected manifold without boundary, and suppose
that V is a top dimensional compact submanifold of Z. If either dim Z^2 or V^0, ^^
B Do (Z x R, V x R, rel (Z x R) -) ^ acyclic.

Here (Z x R)~ is the end Z x ( — oo) o f Z x R .
The proofs of Lemma 4.4 and Proposition 4.6 are fairly straightforward. However

Proposition 4.5 requires more work. It is based on [9], § 4 where we showed how to localize
over a compact manifold (in the non-volume preserving case). The ideas of that proof work
here because we are extending the localization over a compact piece, that is from XJ to X, but
they must be adapted to cope with the fact that Do (W, X3, rel W8) is not a group. Before
going into the details of this, we will prove the simplest case of Theorem 4.1.

(4.7) PROOF OF THEOREM 4.1 WHEN A = 0. - By (4.2) and (4.5), Theorem 4.1 will follow
if we prove that the inclusion ;\ : B Do(W, Xs) c, B Do(W) is a Z-homology
equivalence. To do this, consider the diagram:

BDo(W, rel W^BDotW, X^BD^W, X)

\- _ \ 1 1 _ \12

B Do (W, rel W^ ̂  B Do (W) ̂  B Do (W).

We may apply Lemma 4.4 to both rows. Therefore, it suffices to show that the inclusion at
infinity ^ is a Z-homology equivalence. To do this, observe that the group D-^W) is
isomorphic to the group D^ (W x R) of germs at the end (W x R)"^ = W x oo of the product
manifold W x R. Similarly, D^ (W, X) ̂  Do (W x R, X x R). Now consider the diagram:

B D o ( W x R , r e l ( W x R ) ± ) - ^ B D o ( W x R , ( X x R ) + , r e l ( W x R ) - ) ^ B D o ( W x R , X x R )

\- _ \13 _ \12

B Do (W x R, rel (W x R)1^) -^ B Do (W x R, rel (W x R)-) -> B Do (W x R)

Applying Lemma 4.4 again, we see that it suffices to prove that ^3 is a Z-homology
equivalence. However Propositions 4.5 and 4.6 imply that both:

B D o ( W x R , r e l ( W x R ) - ) and B D o ( W x R , ( X x R ) + , r e l ( W x R ) - )

are acyclic. D

(4.8) PROOF OF (4.4). - We first show that for any ^-simplex a in Do (W, X) and any
X- > 0, there is a simplex s (a) e q~1 (a) with support in W8 x (^, oo). To see this, note that it
suffices to consider a such that a{v)=id for some vertex VE A^. Choose \JL so that
a(^)(WS x[a, oo))^WS x(^, oo) for all te^. Then use Krygin's isotopy extension
theorem [5] to extend the isotopy r^a^lW 5 x[a, oo) to be the identity outside
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W^^., oo). No volume obstructions arise because a is in the kernel of the flux
homomorphism 0. Using this fact, one can now repeat the proof of (2.8) given in (3.4) and
(3.5) above. In order to see that one has a fibration sequence rather than a homology
fibration sequence it suffices to check that the sequence:

BDo(W, X\ rel W^ -> BDo(W, Xs) ̂  BD^W, X),

is a fibration sequence. This follows by [9] Proposition 3.6. For, as mentioned above,
given n e Do (W, X) we may choose s {n) e q~1 {n) to have support in W5 x [X, GO ). Then the
endomorphism c^ of K = Do (W, X-1, rel W8) is given by k ̂  s {n) ~1 ks {n), and so is in fact an
isomorphism. Hence c^ acts by homotopy equivalences on BK, as required. D

(4.9) PROOF OF (4.6)
Because Do(ZxR, V x R , rel(ZxR)") is contractible, and because Do(ZxR, V x R ,

rel (Z x R)~) is the direct limit of the groups Do (Z x R, V x R, rel Z x (- oo, - /^]), it suffices to
show that BDo(Z xR, V xR, rel Z x(- oo, 0]) is acyclic. If V=0 this is Theorem 1 of
[10]. (Note that Do (Z x R, rel Z x (- oo, 0]) is the full group Diff^ (Z x [0, oo), rel Z x 0)
because the flux homomorphism vanishes here.) The general case may be deduced as
follows.

LEMMA 4.10. - J/V^0, then B D ^ f Z x R , V x R , rel Z x ( - o o , 0]) is acyclic.
Proof. — For simplicity, let us write Q(Z, V) for the discrete monoid Do(ZxR,

V xR, rel Z x ( — oo, 0]) and so on. Consider the sequence:

BQ(Z, rel V) ̂  BQ(Z, V) -^ BQ(V).

This is a homology fibration sequence by [9], Proposition 3.6. Also BQ (Z, rel V) is acyclic
by the second half of (2.7). To see that BQ(V) is acyclic, look at the sequence:

BQ (V,, rel V u B (V,)) ̂  BQ (V,, V, rel B (V,)) ̂  BQ (V),

where c>0. This is a homology fibration sequence in the usual way. Also both:

BQ (V,, rel V u 8 (V,)) and BQ (V,, rel B (VJ)

are acyclic by (2.7). Hence it suffices to prove that the inclusion:

BQ(V,, V, rel 3(V,)) ̂  BQ(V,, rel 0 (VJ),
is a equivalence. We do this by applying the "easy localization lemma":

LEMMA 4.11. — Let MQ be a submonoidofM. with the property that for each finite subset T
ofM. there is an invertible element sofM. such that s T c MQ. Then the inclusion BMo <^ BM
is a homotopy equivalence.

proof. — Every finite subcomplex of M / / MQ contains only a finite set T of vertices, and
hence lies in .y^Mo/^Mo for some s. But ^Mo^Mo is contractible. Hence
M^Mo is contractible. For more details see [13], Proposition 2.5 or [9], § 3. D
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In our case, given a finite subset T of M = Q (Vg, rel 8 (VJ), choose a, 0 < a < s, so that each
element of T has support in Vg_^ x [a, oo). Then let ^ be any element of Mg which takes
Vg _ ^ + ^ x [a, oo) into V^ x [0, oo) whenever 1 5 1 < a. It is easy to check that the elements of
s T take V^ x [0, oo) into itself for these §. They also satisfy the extension condition (3.1) (ii)
since they are the identity near ^(Vg) x[0, 00). Hence ^TeMp. Finally note that s is
invertible in M, since M is a group. Thus:

BQ(V, V, rel B(VJ) c, BQ(V, rel B(V,))

is an equivalence. This completes the proof of (4.10) and hence of (4.6). D
It remains to prove (4.5). For simplicity, let us first consider the case when S = 0. Then

we must show:

PROPOSITION 4.12. — The inclusion:

BD.^W.X^B^W.Xa

is a homotopy equivalence.
The proof of (4.12) is rather long, and occupies (4.13)-(4.24). We will use the notation of

PL § 4 without further comment. Also we will write X instead of X\ and will call a
homotopy equivalence simply an equivalence. To begin, here is a sketch of the proof.

Let N=Do(W, X) and V[=Do(W, X). Then N=Do(W, X) is a union of discrete
monoids N,, c>0, where neN, if it satisfies Definition 4.3 for this 8. Thus:

5Do(W,X)=limN^|M|.

Similarly:

BDo(W,X)=limM,\JN|.

Therefore, it will suffice to show that M,\JVl| ^ N.^IN] for small c>0. We will
do this in the following way.

First, we will enlarge Mg to a monoid Mg which has a simpler relation to Ng. This monoid
Mg is the identity component of the submonoid:

{ ^ e N , :n(X,)^X,} of N,.

(By definition, the identity component of a submonoid Q of N consists of all q for which there
is a 1-simplex t ^—> q^ in | N | with q^ = id, q^ = q and q^ e Q for all t.) Next, we will enlarge the
subcomplex | M | of | N | to a connected open subset ̂  of | N |. This set ̂  is the component
of:

{ ( a , ^ ) . - a ( 0 ( X ) < = I n t X , } ,

which contains the base point. It is open because every simplex of | N | takes X — (cpct) into
Int Xg. Note that it is not a subcomplex of | N |. However, it does contain | M | as a
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deformation retract. Further, both Mg and M^ act on ̂  by multiplication on the left, and
we will see that:

LEMMA 4.13. - M,\JM | ^ M,\^ ^ M,\^//.
Now let N^ be the group ofinvertible elements in N,, and put M* = M, n N*. Then an

element ^eNg belongs to N^ if its germ at infinity takes X^ wz^ itself for -£^8^8. In
particular, we will have:

X^x^.oo) =3 ^(X,,x[X,x)) =3 X ,x [ v , x )

for some ^i<^<v. Note also that N^ and M^ need not be connected. We now consider
the following diagram:

M*\ ^ ^ N*\ , IN |

M^// ^ N,\JN|.

We will prove:

LEMMA 4.14. — / is an equivalence.

LEMMA 4.15. — The homotopy fibres of i and j are equivalent.
Clearly, these results imply thaty is an equivalence, and hence, by (4.13), that Proposition

4.12 holds.

(4.16) PROOF OF (4.13)
We first show that M^ is the identity component M^ of the monoid:

{neN,:n(X,)^X^ -e^B^e}.

This is not quite obvious, because the extension condition (4.3) (ii) which is satisfied by the
elements of Mg' is not the same as condition (3.1) (ii), which is satisfied by Mg. Therefore,
we must show that for each n e M,' and each T| > 8 there is m e N which equals n on Xg and has
support in X^. This may be seen as follows. Since Mg' is connected, there is a 1-simplex
t h^ n, in N with n^ = id, ̂  = n and n, e M^ for all /. By (4.3) (ii), one can find a 1-simplex
t^n^ with ^o=id. and such that for some X>0, ^=^ on X, x [^, oo) and ^=id. on
(W-X^) x[?i, oo). Now choose ^>^ so that ^(W x(^i, oo)) is disjoint from ^(X,n W^)
and W^-X^, where W^ is W- W x(?i, oo). By [5], there is a 1-simplex t^m,, such that
m^=n^ on Xg, m^=^ on Wx(^i , oo) and m(=id outside X^. Thus we may take
m == m1. [Note that the trick here, as elsewhere, is to use (4.3) (ii) to extend isotopies over
noncompact regions and then to use [5] to adjust the result on a compact set.]

The next step is to show that the inclusion BMg = BMg' c; BMg is an equivalence. This
follows by the easy localization lemma 4.11. The details are straightforward, and will be
left to the reader.
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Finally consider the diagram:

^-^M^^-.BM,

" ^ {
^->Mf%<^-^BM,.

Since Mg and Mg are connected, these monoids act on ̂  by homotopy equivalences. Hence
the rows are fibration sequences by [9], Lemma 3.1 and the result follows. D

The next lemma contains most of the technical part of the proofs of (4.14) and (4.15). If
j : N c^ | N | is the canonical inclusion, we will write U for/"1 (^). Thus U consists of those
elements g of N which take X into Int Xg and are isotopic to the identity through such
elements. Also, recall that W^ = W - W x (k, oo).

LEMMA4.17. — (a)ForeveryneNand^>Q there is <?eN* such thatg=non W\g~1 ne\J
and :

^(X)^g(X)^(X)u(IntX,x[X, oo)).

(b) Ifn e N^ takes X^ x [k, oo) into X, there is g e N* such that g = n on W\ g ~ 1 n e U and:

n(XJ^(X^(X,)u(IntX,x^, oo)).

(c) We may assume in (a) and (b) that g ~ 1 n is isotopic to the identity by an isotopy in U
which equals the identity on W\

(4.18) PROOF OF (4.14).
Set ^= | N , G= N^, ̂  =^ and M = M^ in the proof of [9], Lemma 4.1. Clearly (4.14)

will hold if we show that these ,̂ G, ̂  and M have all the properties needed for the proof to
go through. First note that the subsets g ̂ , g e N*, of | N | are open because ̂  is open and
because the elements of N* are invertible. Moreover, Lemma 4.17 (a) implies that the sets
g ̂ , ge N*, cover [ N . Next, note that g^ ^ ̂  if and only ifg takes X^ into itself and is
isotopic to the identity through such elements. Since the elements of M^ are isotopic to the
identity in M^, it follows thatg^g^ if and onlyifgeM*. Therefore, it remains to check
that condition (iii) ot [9], Lemma 4.2 holds. Thus, given (a, / ) e^ i ^ r\g^ Y/, we must find
/eN* such that (a, t)e f^ and ̂ -1 fe M* for /=1 , 2.

Let n = a ( t ) . Then (cr, t) ef ̂ ifand only if/ -1 n e U. Note that in order for an element
h to be in U two conditions must be satisfied: we need /z(X)^IntXg and we need h to be
isotopic to the identity through such elements. On the other hand, we did not specify that
M^ be connected. Therefore an element h of N^ will be in M^ if h (Xg) ̂  Xg. We will find
the desired /eN^ in the following way. First choose X so that:

XsXpi, oo)^^),

for/= 1,2 and all 5, -8^5^£. By Lemma 4.17 (a) there is/eN* such that/"1 neV and:

n(X)^f(X)^n(X)u(lniX,x[k, oo)).
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Since / / e^ , U we have / / ( X ) g ^ , ( I n t X J . Therefore our choice of X implies that:

(*) ^(X)^/(X)^(IntX,).

We must now alter / so that g^ fe M^. For this we need g^1 /(X,) ̂  X,, or equivalently
/(Xg)g=^.(XJ. Since / and the g, are in N*. there is a compact subset K of W such that
./'(X, ,.-K)^,(X,). Therefore (*) implies that:

/(X,nW^)u/(X,x[^ oo))^(XJ,

for some a > 0, p, and both L Now put 7=.A, where k e N^ is the identity on X and takes Xg
in to(X^nW^)u(X,x[H, oo)). Then^"1 /eM*. Also because/-1 w(X)^Xby(*),i t is
easy to see that/ ~ln=k~lf~ln will be in U, as long as k is isotopic to the identity through
elements which are the identity on X. D

(4.19) PROOF OF (4.15)

Factor / as

M?\,^ ^ M^|N| ^ N^INI

and./as M,^^ \ M;\^|N| ^ N^INI. Then the homotopy fibres of ̂  and7\
are equivalent. In fact, if P is any submonoid of Mg the homotopy fibre of the map
P \^ ̂  -> P \^ | N | is the same as the fibre of the map ̂  -> \ N | as may be seen by looking at
the diagram:

^-> P\^ -> BP
^ i I I

|N|^ P\JN| -.BP.

Now consider ^ and j^ A similar argument shows that i^ (resp. j\) has the same
homotopy fibre as the map BM^ -> BN^ (resp. BMg -^ BNJ. Since N* is a group, left
multiplication by geN^ induces an equivalence N^^M? -> N^^M*. Hence, by [9],
Lemma 3.3, the fibre of BM? -^ BN? is N,* ̂  M?. Similarly, the fibre of BM, -> BN, will
be Ng/^Mg, provided that left multiplication by ^eNg induces an equivalence on
^,,// M^. Therefore (4.16) will follow if we prove:

(4.20) N* ̂ M? ^ N, ^M;. and:

(4.21) Left multiplication by ne^^ induces an equivalence

N,^M;.->N,^M,
(4.22) PROOF OF (4.20)
Order the elements of Ng by setting n ̂  n' if and only if n = n' m for some m e Mg. (This is

not quite a partial order since the conditions n^n' and ̂ / ̂  n do not imply that n=n'.) Then
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the space N,^M, has simphces (no, n^ . . . , n^) where n^n^... ̂ . Similarly,
because M* =N* n Mg, the space N^^M^ is the subcomplex with simphces (n^ . . . , n^)
where each A?,e N*. We must show that any finite subcomplex of Ng/^ M," retracts into
^ // M^. Let C be the subcomplex oi Ng/^Mg spanned by the vertices n^ . . . , ^p. It
will suffice to show that there are n'^ . . . , ^Zp'eNg and ^i, . . . , g ^ e N* such that:

(a) n\'^n, for all ;, and n'^n^ whenever n^n^ and:
(b) n ' / ^ g i for all /, and gi^gj whenever n^n^.

For (a) implies that C is homotopic to the subcomplex C" spanned by the vertices n ' ^ . . . , n",
and (b) implies that C" is homotopic to the subcomplex of N^ // M^ with vertices g ^ , . . . ,
g p . Further, we may suppose that ^ is a partial order on the set n^ . . . , rip since any C
retracts onto such a subcomplex.

We will choose the n\' so that for some v > 0 we have n\' (Xg x (v, oo)) ̂  X. This may be
done by setting n\' =kn, for all i, where k e Mg takes Xg x [0, oo) into X. We now construct
the g, by repeated applications of Lemma 4.17 (b}. Observe that when geN^ the
conditions ^(XJ^^(Xg) and g~lne\J are equivalent to n^g. We may suppose
inductively that suitable gj have been found for ally 7^ ;o sucn tnat nj ̂  ̂  • Choose ?i ̂  v so
that Xg x [^, oo) g ̂  (Xg) for all such/ Then it is not hard to check that one may take g, to
be the element ge^ which satisfies the conditions of Lemma 4.11 (b) with n=nf/. D

(4.23) PROOF OF (4.21)
Since each g e N^ acts by equivalences on N^ ̂  M^ Ng / / M,, it suffices to prove that if

C is the finite subcomplex of N^^M^ with vertices g^ . . . , g p and if ^eNg, there are
elements n' e N, and ̂  e N^ such that rig, ̂  ̂ / g, and ̂  ̂  ̂ / ̂ , for all i. For, as above, this
will imply that nC^n'C^gC, and hence that multiplication by n is an equivalence
N^M^N^M,

As above, we will take n' =kn where k e Ng takes Xg x [0, oo) into X. Next, choose ̂  so
that:

^(X)gW^uX, ^(X,x[?i, oo))^X
and:

XeX(^,oo)^(X,)gW^uX,

By Lemma 4.17 (b) one can find geN^ such that g=nf on W^:

^-^'eU and ^(X,)^(XJ.

Hence ^ / ^^ (XJ^^^ (XJ for all /. Using (c) one can easily check that g ^ ~ 1 ̂ ~1 n' g, e U for
all L Thus / ^ / g i ^ g g i as required. D

(4.24) PROOF OF (4.17)
We will first prove (a). Since N is connected, there is a 1-simplex t ^-> n^ in N with rio = id

and n^ = n. By Definition 4.3 (ii), one can find a 1-simplex t ^-> n^ in N with HQ = id and such
tha t^=^onXx[Hi , oo) and ^=id on (W-XJ x[ui, oo)for some ̂ >^ a<c and all
t. Choose U2 > Oi so that W^2 contains ̂ ~x ^, (W^)for all t. It follows from [5] that there is
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a 1-simplex t^h^ in N such that h^=n^ n^ on W^ u X and /^=id on W x [ji^, ^o). Let
gi=n^h^. Then ̂ 1=^1 =^2 on W^ uX, and^i=idon(W—XJ x[^, oo). Also, one can
easily check that g^neU. Therefore, all we need do is alter g^ on XgX[X, oo) to a
diffeomorphism g which is the identity on ( X g — X _ g ) x(^', oo) for some ^/>^. This will
imply that ^eN?.

Care is required in order to ensure that n(X)<^g(X).
Here are the details of this construction. Choose ^3>H2 so ̂ ^
(a) ^(X)c:WK 'uXx(^3, oo).

Next, choose [i^>^>[i^ so that:
(b) gi(X5x(|^, oo))^X8x(^5, oo) when a^5^£.

This is possible since g^ =id on ( W — X ^ ) x [^, oo). Now, choose k^ eDiff^ W so that, for
some P, y with a < P < y < s .

{c) s u p p ^ ^ X y X ( H 3 , oo).
W X^^(X).

(^) >^x[H4,oo)^i(Xx[^4, 3o) )^XpX[H3, oo); and:
(/) MX-eX[^ ^))^X,X[H4, 00).

Finally, choose k^eDiff^ W so that:
(^) supp/r^^e^l^ 00);
(/?) Xc:A-,(Xp);and:

( j )^2=^r 1 on (xy-xa)x[^ l6. Jo). forsome^>1^5-
There are no volume obstructions to finding k^ because both components of the complement
of ^(Xp) u(X^-X^) x[p^, oo) in Xg x(p,5, oo) have infinite volume.

Now,let^=^2^l / :l• Then^= idon(XY -x-e)x[^ l7» oo) tor some ̂ >^by(c),(/)
and (/'). Also:

^(X)nW^=A'^ iA' i (X)nW^=^iA- i (X)nW^^^i(X)nW^^/7(X)nW^ by (^), (,/).

Further:

^(X)nWx[^, oo)=/;^i^i(X)nWx[H5, oo)

^^iM^x^ ^o))^Wx[^5, oo)

^^2^l(xpx[^ oo))nWx [^5, oo)by(^)

^^^(Xpxl^. ^))nWx[u5, oo)by(^)

^Xx^, oo) byfe) and (h)

^(X)nWx[H5, oo)by(a).

Therefore ^(X)^^^)- Further, if we choose k^ and k^ so that they are isotopic to the
identity by isotopies with supports in X^ x (^3, oo) and Xg x (^5, oo) respectively, it is easy to
check that g^ ̂  is isotopic to the identity by an isotopy with support in Xg x^, oo).
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The final step is to alter g^ outside X to an element g which is the identity on
(Xe—X_e)x (^ , 00) rather than just on (X^-X.Jx^, oo). Clearly this may be done so
that g satisfies all the conditions required by (a) and (c).

Now consider (b). By arguing as in (a) with X replaced by Xg, we can find g e N^ such that
g=n on W\ ^"^eU and:

^x^(x,)^(x,)u(x^x(r, x)).
Here \' can he arbi t rar i ly large. In fact, by hypothesis on // we can choose ^3>^ so that:

^(XJ^W^U(XxOl3, ^)).

Then g may be chosen so that g = n on Xg n W^3 and g (X,) s ̂  (Xg) u (X^ x (1^3, oo)). It now
suffices to alter^ on (X3g-X)xOi3, oo), so as to make g(Xe)^(Xg)u(X, xQ^, oo)). D

This completes the proof of Proposition 4.12. The proof of Proposition 4.5 when S ̂  0
is almost exactly the same and will be left to the reader. Thus the case A = 0 of Theorem 4.1
is finally proved. In order to prove the general case of Theorem 4.1, it suffices to consider
the case when A is a top dimensional submanifold of W which is a product both near infinity
and near 8X. The reader may check that the proof goes through in this generality without
essential change.

(4.25) PROOF OF (2.8)
Consider the diagram:

BEo(W, X, rel AuY) -^BEo(W, X, Y, rel A)->BEo(Y, rel A)

^ _ \ 1 1 _ 11
B Eo(W, rel A u Y) -^ B Eo(W, Y, rel A) -^ B Eo(Y, rel A).

Here the rows are simple homology fibration sequences by (2.9). [Because Y^IntX,
the proof of (2.9) goes through for the top row.] Theorem 4.1 implies that ^ is a
Z-homology equivalence. Thus ^ is also. Hence, by composing ^ with the Z-homology
equivalence B Eo (W, Y, rel A) c, B Eo (W, rel A), one sees that the inclusion B E() (W, X, Y,
rel A) <^ B EQ (W, rel A) is a Z-homology equivalence. Now consider the diagram:

BEo(W, rel AuX) ->BEo(W, X, Y, rel A)-^BEo(X, Y, rel A)

II _ ^ _ \1-
B Eo (W, rel A u X) -^ B Eo (W, X, rel A) -^ B Eo (X, rel A)

Here, ̂  is a Z-homology equivalence because its composite with the inclusion B Eo (W, X,
rel A) c; B Eo (W, rel A) is. Therefore, 4 must also be a Z-homology equivalence. D

Remark. — Because YclntX one could also show that the inclusion:

BEo(W, X, Y, r e l A ) c , B E o (W, rel A),

is a Z-homology equivalence by repeating the proof of Theorem 4.1.
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5* Normalization

In this section we verify the last of the properties in §2, showing that when n^3,

f^: ^(D^xR^BF^,

is a homology equivalence. Our starting point is Lemma 2.4 of [10] which says that the
homotopy fibre of the map:

( 3 : BEmbLD"->BR8 ,

is weakly (homotopy) equivalent to B I"^. Here Emb^ D" denotes the discrete monoid
formed by the germs at D" ofself-embeddings of the pair (R", D") which preserve the volume
form co up to a constant factor. Also, R5 is the discrete group of additive reals, and P is
induced by the homomorphism P : Emb^D^-^R5 given by (3(m)=log (m^co/co). It
follows easily from this that B F^ is weakly equivalent to the homotopy fibre F of the map
B Smb9^ o D" -> B R. (One can see this by arguing as in the proof of Theorem 1.1 given at
the end of §2 in [9].) . We will show that there is an isomorphism between H^(F) and
H^ (B Eo (D"~1 x R)) which is induced by a sequence of inclusion and restriction maps each
of which gives rise to an isomorphism on H^. Since the equivalence F -> B F^ is induced by
the usual map/it will follow that there is a commutative diagram:

H^F)^H^(Br^)

-\/l/D)*

H^BEo(D"- lxR)).

Hence/D is a Z-homology equivalence. This proves (2.5), since B F^ is simply connected.
In order to relate F to E() (D" ~1 x R) we introduce the following monoids. Let H ̂  R" be

the half space { x e R " :Xi^O}. Then H is a nice submanifold of R", and one can define the
monoid:

E(R", H+)cDiff,Rn=E(Rn) ,

as in Definition 4.3, where + denotes the single end of R". We will write E^ (R", H + ) for
the analogous submonoid of the total singular complex Diff^R" of the group of all
diffeomorphisms of R" which preserve co up to a constant. Also, E^^ o (R", H^ D") is
defined to be the (connected) monoid:

E^.od^mnE^R^D").
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Consider the diagram:

Pi /\ _
(5.1) F ^————————— P i — — — — — ^ B E o l R ^ H - ' )

BEmb^oD" ^— BE^o^H^D^BE^o^H^

Here V is the total singular complex of the contractible group R. Also, F^ is defined to be
the homotopy fibre of P, and p and i are the obvious restriction and inclusion. Observe that
the right hand column is a fibration sequence since E^ o (R", H'^) is the semi-direct product
of Eo(R", H+) with V. It follows easily from Lemma 4.11 that i is an
equivalence. Moreover, p is a homology equivalence, because:

BEo(R", H^ rel D")-BE^o(R". H^ D")-BEmbL,o^

is a homology fibration sequence whose fibre is acyclic by (4.5) and (4.6). Thus both pi and
?\ are Z-homology equivalences.

Now consider the monoid Eo (H) of germs at H^ of the elements of Eo (R", H4^). It is
easy to check that E^ (H) is isomorphic to the monoid Eo (D"~1 x R) of germs at the end
D"~1 x oo of the elements of Eo(D"~1 xR). Therefore, there are maps:

q,: BEo(R^H + )^BEo + (H) ,
and:

q^ : ^(D^xR^BEo^D^xR^BEo^H).

Clearly it will suffice to show that both q^ and q^ are Z-homology equivalences. This is
easily seen for q^ since its homology fibre is the space B Eo (R", rel H +), which is acyclic by
(2.7). However the proof for q^ involves some diagram chasing, because the usual fibration
lemma does not apply to q^. (The trouble is that we are not restricting to a submanifold in
the in terior of D"-1 x R.) We therefore consider the following diagrams, where D = D" ~ 1 is
embedded in S=S"~1.

B E ( , ( S X R , rel D x R ) ———————, B E o ( S x R , D xR)——. B Eo(D x R )

a _ o _ i- (A)
B E o ( S x R , ( D x R ) - , r e l ( D x R ) + ) ^ B E o ( S x R , ( D x R ) ± ) - ^ B E ^ ( D x R )

BEo(SxR, rel D x R ) - ^ B E o ( S x R , DxR, rel(D xR)^ -^BEo(D xR, reUDxP)^)

^^-^ I73 (B)
B^SxR.tDxRF.reKDxR)^
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B E o ( S x R , r e l D x R u ( S x R ) + ) - ^ B E o ( S x R , D x R , r e l ( S x R ) + )

-.BEo(DxR,re\(DxR)+)(C).

Using suitable variants of (2.9), one can easily check that all the rows are simple homology
fibrations. Moreover^ and 73 are Z-homology equivalences by (4.5) and the proof of
(4.2). In diagram (C) both:

BEo(SxR, re lDxR^SxR)-") and B E o ( S x R , D x R , reKSxR)^

are acyclic by (2.7) and (4.6). Hence B Eo (D x R, rel (D x R)+) is acyclic. Therefore, in
diagram (B)j^ is a Z-homology equivalence, and soy\ =73 oj\ is too. Finally, by looking at
(A) one sees that q^ is also a Z-homology equivalence. This completes the proof
of (2.5). D

6, Proof of Theorems 1.1 and 1.2 when n ̂  3

Theorem 1.1 would follow immediately from Theorem 2.1 if the fibration:

B^y:o W -^ BQiff^ W -> Br,

were simple. However Rousseau's calculations in [12] show that n i Bracts non-trivially
on H ^ ( B ^ijf^oi^) when W=T 2 —/^, and so there is no reason to suppose that this is
so.

We begin with an elementary proof (not using Theorem 2.1) that/^ does induce a map
from B Qiff^ W to SJW).

LEMMA 6 . 1 . — // (W, A) is an admissible pair, there is a commutative diagram:

•B@^o(W,relA)^B^
^w J

SJW, rel A)-^ B-T

where 6 induces an isomorphism on n^ andi^^W1 (W, A; R^R^.

Proof. — Since B ̂ is a K (TC, 1), the map 9 is determined by the induced map 9^ on
Tii. We will begin by giving an explicit description of 9^. Let ueH" (B r^; R) be the
"universal transverse volume form". Thus, if J is a foliation on M with transverse volume
form a, and if^M-^BF^ classifies J, then g* u = [a]. We showed in [10], Lemma 2 that a
map g : S" -> B r^ is null-homotopic if and only if:

g* ;* (u) = 0, where i : B F^ -^ B F^

is the inclusion.
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Consider the commutative diagram:
BG,

^ \-
M-—B^J^,R)

where v is a Hurevicz fibration. Obstruction theory implies that, if M has the homotopy
type of an ^-dimensional complex, then h is fibrewise homotopic to g if and only if
/?* u =^* u. Because the elements of5^ (W) may be considered to be liftings of the classifying
map T of the tangent bundle to W, an element 'k of n^ (S^(W, relA)) is represented by a
commutative diagram:

where s, is the composite W x S1 -> W -> BF^, and where h^=s^ over
(A x S1) u (W x Xo). [Recall that SQ is the base point of S^ (W).] The above remarks imply
that X, is trivial if and only if:

h^u=s^u in H ^ W x S ^ A x S ^ R ) .

But s, *^=0, and 7ii(B^)^^H" x (W, A; R)^H"(W xS\ A xS1; R) Therefore, up
to the choice of isomorphism V^H" (W x S1, A x S1; R), we have 9^ (^}=h^ *M.

We have to check that the two homomorphisms from n^ (B Qiff^ (W, rel A)) to V given by
0 and 9^ of^ differ at most by an isomorphism of V. Now n^ (B 2iff^ (W, rel A)) is just the
universal cover of Siff^o (W, rel A), but considered with the discrete topology. Therefore,
its elements are pairs (g, [^J), where g e ̂ iff^o (W, rel A) and [^j is the homotopy class of the
path gt relative to its end points go =id and g^ ==g. It is easy to check that:

^ fe, kj))= ̂  (§) = k* Q - 0] in V,

where Q is any (n— l)-form on W such that ^0=co.
The element (g, [gj) also gives rise to a codimension n foliation J^of the bundle

W x S1 -> S1 in the obvious way: ifWxS^s identified with W x [0, 1] /(x, 0) = (x, 1), then the
leaf through (x, t) will contain the points ( g , g ^ ~ 1 (x), s) for O^s^1. (In order to makej^
smooth near ^=0 one can assume that the path g^ is constant near its endpoints.) Notice
thatJ^has a transverse volume form a which restricts to co on eachfibre W x t. Intact, if^ (x)
is the vector field on W which is tangent to the path s\->g,g^~1 (x) at t, then one can check
that a = co — dt A (^ J co).

Now consider the image ̂  of(g, [gj) under/^. The definition of/w implies that the map
h^ : W x S1 -> BF^ which represents ?i as above is exactly the classifying map of the pair
CX a). In particular, /^*(^)=[a]. By integration along the fibre S1, one finds that
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[ajeH" (WxS1 , AxS 1 : R) corresponds to [g*Q-Q]eH"~1 (W, A; R). The result
follows. D

It follows that there is a commutative diagram:

BDo(W, rel A) -^ BEo(W, rel A) ^ B V
^ ^ ^ J

§JW, rel A) -. 5JW, rel A) -> BV

(This notation is defined in (3.1) and the beginning of § 4.)

THEOREM 6.2.- J/(W, A) is an admissible pair and dim W ̂  3, then the map f^ in the above
diagram is a homology equivalence.

Proof. - Let L be a 1-manifold which represents a basis for H"~1 (W, A : R) as in
Lemma 4.2. Clearly L can be chosen so that each of its components is non-compact
and so that X = Lg is a nice submanifold of W which does not meet A. Then
H"-1 (W, X u A; R)^H"~1 (W, A; R)^V, and there is a fibration sequence:

BDo(W, relX u A) -> BEo(W, relX u A) -> BV.

Moreover this sequence is simple because, by choice of X=Lg, every element of V may be
lifted to a diffeomorphism of W which has support in Xg, for some 5>0. [See (3.5)
above.] Similarly:

5JW, relX u A) -. 5JW, relX u A) -. BV,

is a simple homotopy fibration sequence. Hence (2.1) implies that:

7w : BDo(W,relXuA)- .5JW,relXuA),

is a homology equivalence.
Now observe that the elements ofEo (X) lift to elements ofEo (W, X, rel A) which have zero

flux and have support in Xg, for any given § >0. Also, obstruction theory shows that the
groups:

^i(5JW, rel X u A ) ) and 7ii(^(W, rel A)),

are isomorphic.
It follows that there is a commutative diagram:

BDo (W, rel X u A) -> BDo (W, X, rel A) -. BEo (X)

^ ^ ^
§JW, rel X u A) -^ §JW, rel A) -> SJX)

in which the rows are simple homology fibration sequences. But we proved above that f^ is
a homology equivalence, and/is also, by Theorem 2.10. [Observe that 5JX) is simply
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connected.] Hence/^ is a homology equivalence, and the result follows by (4.1)
and (4.2). D

Finally, we prove the following generalization of Theorem 1.2.

THEOREM 6.3. — i/(W, A) is an admissible pair with dimW^3, the map:

/w : BEo(W, rel A) ̂  5,o (W, relA),

is a homology equivalence.
Here Eo (W, rel A) is of course the total singular complex of the group Qiff ,o (W, rel A) :

see the beginning of §3.
Proof. — We may assume that A is a top dimensional submanifold of W whose non-

compact components are products at infinity. Then Eo(W, rel A) equals Eo(Z, rel^Z)
where Z = W — Int A. Clearly it suffices to consider the case when Z is connected. Let J be
the set of ends ofZ. Pick out one end Z4" and put S = J — { + }. Then consider the
commutative diagram:

BECo{Z,rd9Z)-.BEo(Z,rd9ZuZS)->BEo (Z,re\ 9ZuZ^)

^ ^ \f+

S^ (Z, rel 9Z) -> S^ (Z, rel 9Z u Z8) -^ S^ (Z, rel 9Z)
/

where S^ (Z, rel 9Z) is the direct limit of the spaces:

SJZ-^ x[X, oo), ve\9Z+ x[k, oo)) as ?i-^ oo.

The groups:

Eo (Z, rel 9Z u Z^ and Eo (Z, rel 9Z u Z5)

are as in (4.3). In particular, Eg consists of germs of diffeomorphisms at Z +. Our first aim
is to show that/c induces a Z-homology equivalence from B Eo (Z, rel 9Z) to the connected
component S^o(Z, rel 9Z).

First note that the top row is a fibration sequence because it comes from an exact sequence
of groups. Moreover, because Z^ is connected, the elements ofEo (Z, rel 9Z u 7?) all have
zero flux, and so may be lifted to elements of Eo (Z, rel 9Z u Z8) which have support in
Z+ x [?i, oo), for any given 'k. This implies that the top row is simple.

We next show that both/1+ and q lift to the universal cover S^ (Z, rel<9Z) of S^
(Z, rel 9Z). This follows easily for q since the map:

K, (S, (Z, rel 9Z u Z5)) ̂  n, (5: (Z, rel 9Z)),

corresponds to the map:

H^^Z, BZuZ^R^H^-^Z^aZ^R),
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which is zero. To see it for /+, note that Eo" (Z, rel SZ u Z5) is isomorphic to D(^ (Z+ x R,
rel ̂ + xR). It follows from (2.7) (ii) that the quotient map:

BDo(Z+ xR,re\8Z+ xR)-^BBo(Z+ xR.rel^xR)

is a Z-homology equivalence. Therefore, by applying Theorem 6.2 to the pair
{Z^ xR, 8Z~^ xR), one sees that/^ lifts to a homology equivalence:

/+ : BEo- (Z, rel 8Z u 7s) -. S^ (Z, rel 8Z).
Thus, we have a commutative diagram:

BE^Z, rel BZ) -^ BEo(Z, relBZ u Z8) -^ BEo- (Z, rel BZ u Z8)
\f- \t \r

5,o (Z, rel 8Z) -^ SJZ, rel BZ u Z8) ̂  §, (Z, rel BZ)

We have already seen that the top row is a simple homology fibration, and that/^ is a
homology equivalence. It is easy to check that the bottom row is also a simple homology
fibration. Moreover/is a Z-homology equivalence by Theorem 2.1. Hence/0 is a Z-
homology equivalence.

Before proceeding with the proof of Theorem 6.3 we will give the proof of Corollary 1.3
since this result will be needed.

PROOF THAT Ti,.+1 (BF^)=0 whenn^ 3.
Observe that:

^^(Br^^H.ftQ^Br^o^H^B^^^R-^H^BD^D/CD,^

where D is the universal cover of the group ^iff^R", but considered with the discrete
topology. Therefore Kn+i (Br^)=0 because D is perfect. [Unfortunately Thurston's
proof [16] that D is perfect has remained unpublished. However his results were later
generalized by Banyaga to the symplectic case, and one can (with some difficulty) reconstruct
Thurston's argument from [1].] D

The proof that/0 induces an isomorphism on homology for all (twisted) coefficients has
two further steps. First consider the subgroup Do (Z, rel 8Z u Z8) of EQ (Z, rel 8Z u Z8),
which consists ot all elements of zero flux, and let DQ be the intersection EQ (Z,
rel^Z) n Do (Z, rel 8Z u Z8). Then there is a commutative diagram of fibrations:

BDo ̂  BDo (Z, rel 8Z u Z^ -. BEo (Z, rel 8Z u Z8)
\r \f - \r
S ' -^ S^ (Z, rel 8Z u Z5) -^ S^ (Z, rel BZ),

where S ' is the pull-back to S^o (Z, rel 8Z} of the covering 5JZ, relSZuZ^ of S^ (Z,
rel 8Z u Z8). It follows as before that/' is a Z-homology equivalence.
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Note secondly that, because 7^+1 BF^=0, obstruction theory implies that
Tii S^ (Z, re!BZ)'is isomorphic to H^"1 (Z, BZ; R) and so is abelian. Therefore n^ S ' is
also abelian. Hence, because H^ B Do (Z, rel 9Z) = 0 [16], there is a commutative diagram:

BDo(Z,relBZ)^ B D o ^ B V
P V J
§———-5'—-BV:

where § is the universal cover of S ' and V == n^ S ' . Both rows here are fibrations. Clearly it
will suffice to show that they are both simple.

This is true for the top row because V is the flux in Eg (Z, rel 3Z) which comes from the
end Z+. More precisely, let B=Z+ x(X, oo). Then one can check that Eo (B, rel^B) is is
contained in Dp (Z, rel^Z) and maps onto V. It follows easily that the top row is
simple. A similar argument works for the bottom row. D

7. The case n = 2

The above proof of Theorem 1.1 no longer works when n = 2 since the results of [10] are not
valid. In particular, it is not known whether B ^TJR2, rel D2) is acyclic. However,
because the monoids behave much as before once they have been given a preliminary
localization at infinity, our previous results on groups of compactly supported
diffeomorphisms still hold.

We will begin with the easiest case, proving Theorem 1.2 for R2. This proof is almost
elementary, in that it uses the hard localization lemma (4.5) only once: see the proof of
Proposition 7.1 (i) below. The notation we will use is explained in Definitions 3.1 and 4.3
and in § 5. Further, we will denote the end X x { oo } ofX x R by « + ». Thus, S^ (I x R),
for example, is the direct limit lim 5JI x [^, oo)). Also, S^ is the universal cover of S ^ .

^>

PROPOSITION 7.1. — Ifl is the interval [0, I], then:
(i) /+ : BEo (I x R) ̂  5; (I x R)^Br 2 / ,
(ii) /+ : B Do (I x R, rel BI x R) -^ §„ (I x R, rel 91 x R), and
( in) / : B E o ( I x R , rel 91 xR) -^ 5JI xR , rel Sl xR),

are Z-homology equivalences.

Proof. - Part (i) is proved in § 5, since the whole discussion of diagram (5.1) and the proof
that q^ is a Z-homology equivalence go through when ^==2.

Now consider (ii). Let K be the interval [1/2, 1]. We first claim that the inclusion:

B^ (I xR, K xR, rel 0 xR) q: B^ (I xR, rel 0 xR),
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is a (homotopy) equivalence. To see this, note first that the inclusion on the level BEJ^ is an
equivalence by the easy localization lemma 4.11. For one can take s to be the restriction to
(I x R)4^ of a diffeomorphism of I x R which takes [c, 1] x R onto K x Rfor some e > 0, where e
is chosen so that the elements ofT all equal the identity on ([0, s] x R)'^. A similar argument
shows that the inclusion of the simplicial monoids Eo is also an equivalence. Thus
B EJ^ (I x R, K x R, rel 0 x R) is equivalent to B Ej^ (I x R, rel 0 x R), as claimed. Since the
latter space is contractible as in (3.3), the former is also.

Now consider the diagram:

B E o ( I x R , T e l ( O u K ) x R ) - ^ B E o ( I x R , K x R , rel 0 xR)-> BEo (K xR)
\. \. \r

S^( IxR, rel(0 u K) xR) -> S^ (I xR, rel 0 xR) -^ S^ (K xR).

Here both rows are simple homology fibration sequences. See (2.3) and (3.5). The map
/ + is a Z-homology equivalence by (7.1) (i). Moreover, f^ is a homotopy equivalence since
it is a map between contractible spaces. Therefore /i is a Z-homology equivalence. Now
observe that the fibration sequence:

BDo (I x R, rel 81 x R) -. BE^ (I x R, rel BI x R) -> BV,

which is induced by the flux homomorphism, is simple, [compare (6.2).] Since the
corresponding result for S^ also holds, (ii) follows. Finally note that the homology fibre of
the quotient map:

BEo (I x R, rel 81 x R) -. BE^ (I x R, rel 81 x R)

is B Eo (I x R, rel 81 x R u (I x R)"^), which is acyclic by Mather's trick [6]. [See also (3.3).]
Hence (iii) holds. D

THEOREM 7.2. — The map:

/c: B^^,oR2^^o(R2)^(02B^^)o,

is a homology equivalence.

Proof. — We first show that /c is a Z-homology equivalence. Consider the commutative
diagram:

BE^R^BEt^R2, rel H^-. BEo-(R2 , rel H^
^ V ' \-

SW) -^ 5,.(R2, rel H^ ̂  S: (R2, rel H^

where H is the half-plane { x e R2 : x^ ̂  0} as in § 5 and E' (R2) = E^ (R2) is the total singular
complex of Qiff c^ R2. Since Eo (R2, rel H +) ̂  Do (I x R, rel 81 x R), the map/ + lifts to the
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universal cover 5; (R2, rel H+) of 5;(R2, rel H^). Further, SJR^relH^ is
contractible. Therefore, there is an induced diagram:

BE^R^-^BEc^R2, rel H-^BE^R2, rel H+)
\r \f p

S,o(R2) ̂  5JR2, rel H^ -^ §: (R2, rel H^.

Since the top row comes from an exact sequence of groups, it is a fibration
sequence. Moreover, because the elements of E^ (R2, rel H^) may be lifted to elements of
Eg (R2, rel H + ) which are the identity on any given compact set, one can easily check that this
sequence is simple. Now observe that the spaces S^(R2 , rel H 4 ) and | Eo(R2, rel H 4 ) | are
contractible. Further, BEo (R2, rel H 4 ^) is acyclic by Mather's trick [6]. Therefore/is a Z-
homology equivalence. But /+ is a Z-homology equivalence by Proposition 7.1
(ii). Therefore /c is one too.

Recall trom [I], 11.4.3 that there is a surjective homomorphism:

p : Diff^R'-R6,

with kernel DifT^R 2 , say. Consider the associated fibration sequence:

B Wff c^ R2 -̂  B Wff ̂  R2 -̂  Br,

where Y= R. It is simple, because the elements of ^may be lifted to diffeomorphisms which
are the identity on any given compact set. Moreover H^B^f^R2)^ because
Diff ;^R2 is perfect by [1] and Siff^R2 is contractible. (In fact, ^iff^R2 has the same
homotopy type as 2iff R2 by [5], and this is contractible by [14].) It follows that there is a
commutative diagram:

B ^Tofo R2 -̂  B ̂ o R2 ̂  B-T

__LL I71 J(^Br^o^^Br^o-^Br.

Since the bottom row is a simple fibration sequence, /c is a homology equivalence. This
completes the proof of Theorem 7.2 and of the case n = 2 of Corollary 1.3. D

Our next aim is to prove the following version of Theorem 2.1.

THEOREM 7.3. — Let (W, A) be an admissible pair of dimension 2, and let X be a nice
submanifoldofW which is disjoint from A and is such that every end of W is intersected either by
A or by X. Then the map:

f: B^W.X^relA^^JW.relA),

is a homology equivalence.

Here J is the set of ends of W as in § 4. The proof will use the following localization
lemma.
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PROPOSITION 7.4. — Let W, X and A be as in Theorem 7.3 and suppose that Y is a nice
submanifold ofW which is disjoint from X u A. Then the inclusion:

;Y : BEo (W, X\ Y, rel A) q: BEo (W, Xs, rel A),

is a Z-homology equivalence.

Proof. — First observe that it suffices to prove that the inclusion:

BDo(W, X3, Y, rel A) c, BDo(W, XJ, rel A),

is a Z-homology equivalence. To see this one modifies the proof of (4.2). Here one cannot
now assume that the L, are disjoint. However, one can ensure that they do not meet
A u 8X u ^Y, and this is enough to show that (*) is a homotopy fibration sequence.

Next, by arguing as in (4.7), one sees that it suffices to show that the inclusion at infinity:

i{ : BD^W, X, Y, rel A) c; BD^W, X, rel A),

is a Z-homology equivalence. Without loss of generality, we may assume that Y has one
end. Consider the commutative diagram:

BD^W, Y, rel A u X) -^ BD^W, X, Y, rel A) -> BD^X, rel A)
P1 _ K _ ||

B D^ (W, rel A u X) -^ B D^ (W, X, rel A) -> B Do (X, rel A).

Here both rows are simple homology fibration sequences in the usual way. Therefore ̂  will
be a Z-homology equivalence provided that ̂  is. But, because A u X intersects each end of
W and because Y has only one end, this amounts to proving that the inclusion:

B D o ( I x R , K x R , r e l ^ I x R ) - ^ B ^ D o ( I x R , rel BI x R),

is a Z-homology equivalence, where K is an interval in Int I. As in Proposition 7.1, this
may be done using Lemma 4.11. D

(7.5) PROOF OF THEOREM 7.3
First, we use the method of § 2 to show that / is a Z-homology equivalence.

The following lemma replaces Lemma 2.11 (b). It is an immediate consequence of
Proposition 7.4.

LEMMA 7 . 6 . — Let (W, Y) and{\. A) be admissible pairs, and let X be a nice submanifold of
W which is disjoint from A u Y and is such that X u (A_n Y) intersects every end o/'W. Then
if the map f of("1.3) is a Z-homology equivalence for B Eo(W, X\ rel B) when B is Y, A and
either Y u A or Y n A, then it is one for all four choices ofB.

Note that this lemma is identical to (2.11) (b) if A n Y intersects every end of W since then
we may take X to be empty. One can now check that the proof of Lemma 2.14 goes through
for pairs (W, A) which have a handle decomposition:

An W°==X^cX?c=. . . cX^=W°,
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with the property that each component of the 8X° intersects 5W°. This condition on the
pair (W, A) is stronger than requiring A to intersect each end of W. However, one can
always satisfy it by adding spikes to A. Notice that the procedure for altering this handle
decomposition into the decomposition:

A = X o C : X i < = . . . c X ^ = Z ,

works just as before. See figure. Thus :

Eo (W, rel Y) ̂  Eo (I x R, rel 81 x R), and Eo (W, rel Y u B),

is the product of two copies of Eo(I x[0, oo), rel I xOuSI x[0, 00)). Therefore, / is a
Z-homology equivalence for the pairs (W, Y) and (W, Y u B) by Proposition 7.1 (iii) and
by (2.7) (ii), and so the inductive argument of (2.14) goes through. One now shows that/is
a Z-homology equivalence for arbitrary (W, A) and appropriate X as in (2.15).

The proof that / is a homology equivalence may be completed by the argument
of (6.2). D

spike

Hi C H.

spike

Xi

Finally, we prove the following generalization of Theorem 1.2.

THEOREM 7.7. — 7/'(W, A) is an admissible pair of dimension 2, then the map:

/c : BE^(W, rel A) -^ S,o(W, rel A),

is a homology equivalence. Further TCi(^o(W, rel A)) is nilpotent.

Proof. — We use the method of (6.3). Observe that we may assume that A intersects
every end of W. For, if A' is a half infinite arc in W disjoint from A, the groups:

Eo (W, rel A u A') and Eo (W, rel A)

are isomorphic because there is an co-preserving diffeomorphism of W-(AuA' ) onto
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W — A . Therefore, in (6.3), we may assume that every end of Z has non-empty
boundary. It follows that:

/+ : BEo (Z, rel BZ u Z5) -> 5^ (Z, rel BZ)

is a homology equivalence by Proposition 7.2 (ii). This assumption also implies that the
map / is a Z-homology equivalence by Theorem 7.3. Thus the proof that /c is a Z-
homology equivalence goes through without change.

To proceed further, we must analyse the fundamental groups of BEo(Z) and
5,o (Z). (Here Z denotes the interior Z—SZ ofZ.) Now the group Eo(Z) is contractible
(see 7.2). Therefore 7ii(BEo(Z))^Eo(Z). Let:

0: E^Z^H^R)

be the flux homomorphism. Its kernel Do (Z) surjects onto R by a homomorphism p, whose
kernel D^ (Z) is simple by [1]. Rousseau shows in [12] that the quotient EQ (Z)/D^ (Z) is a
central extension of H^ (Z; R) by R. Moreover this extension is trivial if and only if all
products a.b of a, be H,1 (Z; R) vanish in H^ (Z; R).

As in (6.1), one can show that there is a commutative diagram:

B E o ( Z ) ^ B V
P-JI

5,o(Z)^BV

where V is the simplicial group corresponding to H^ (Z; R). The map 9 need not induce an
isomorphism on 711. To see this, let Z be a compact manifold with boundary which is a
deformation retract ofZ, and choose a cell decomposition ofZ with one vertex and one 2-cell
D. Then Hi(Z\, BZ)^Hi(Z, ^Z), where Z^ is the 1-skeleton ofZ. There is afibration
sequence:

5,o (D, relBD) ̂  5,o(Z, rel BZ) ^S^\Z^

where r restricts the sections of S^o (^ rel Q Z) to Z\. Since 5^o (Z, rel BZ) ̂  S^o (Z), this
gives rise to an exact sequence:

TC, (S,o (D, rel D))^JC, 5,o (Z)^ 711(5,01 ZJ.

But 71:1 (5,01 Zi)^H1 (Zi, BZ; R)^H,1 (Z; R) by obstruction theory. Also it is easy to see
that r^=6^. It follows that ker 9^ is an image of:

7ii(5,o(D,reiaD))^7i3Br^R

and so is abelian.
Let 5" be the covering of 5,o(Z) corresponding to ker 6^. Then /c induces a map

/" : BDo(Z)-^5". As in (6.3) this is a Z-homology equivalence. Therefore, because
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Tii 5"=ker 6 ̂  is abelian,/" induces an isomorphism from Hi(B Do (Z); Z^D^/D^Z)
to Tii 5"'. It follows that 7ii(S^o(Z)) is isomorphic to the nilpotent group E^ZVD^Z).

To complete the proof, we must show that /" is a homology equivalence. Consider the
commutative diagram:

BDo^Z^BDotZ^BV

\r \r II
S————-5"——-BV

where V is the simplicial group of R. The rows are fibration sequences, and it suffices to
check that they are simple. But this holds because the loops in n^ B V may be lifted to
elements whose support is disjoint from any given compact subset of Z. D
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