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BOUNDED DOMAINS WHICH ARE ISOSPECTRAL
BUT NOT CONGRUENT

BY HAJIME URAKAWA

1. Introduction

The purpose of this paper is to give examples of bounded domains of R" of dimension not
less than four which are isospectral but not congruent.

Let 0 be a bounded domain in the ^-dimensional Euclidean space R" with the
appropriately regular boundary 50. For the Laplacian A()= -^o218x] on 1R", let us
consider the following problems:

Dirichlet Problem
f A o / = V in Q,
[ /=-0 on o^

Neumann Problem

Ao/=V in Q,
Qf
— =0 a. e. 30, i. e., where the exterior normal v of 90. is defined.
dv • •

It is well known that each problem has a discrete spectrum which consists of the eigenvalues
with finite multiplicites. We denote by Spec^O) (resp. SpecN (0)) the spectrum of the
Dirichlet problem (resp. the Neumann Problem) for the domain Q in IR".

One of the important problems of the spectra is to find how the spectra SpeCo(Q) or
Spec^Q) reflect the shape of 0. In his paper [K], M. Kac gave the following interesting
expression of this problem: thinking of Q as a drum and its eigenvalues as its fundamental
tones, is it possible, just by listening with a perfect ear, to hear the shape ofQ. ? (See also
[M.S.]).

Many mathematicians, e.g., Weyl [W], Carleman [C], Kac [K], McKean-Singer [M.S.]
and others challenged it, so that one can hear the several geometric quantities ofQ, that is, the
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442 H. URAKAWA

dimension of Q, the volume ofQ, the area of the boundary 50, etc. Moreover let us consider
the following final problem:

PROBLEM (cf. [K]).

For two bounded domains Q^, Q^ in ^"(^2), assume that Spec^Q^SpecD^) or
Spec^ (Qi) = SpecN (^2 )• Are tne domains Q^, Q^ congruen t in R" ? Here two domains Q^,
02 are congruent in R" if there exists an isometry 0 of R" such that ^>(^)=Q.^.

It is just the problem proposed by Kac (cf. [K], see also [Yau], problem No. 67). A partial
answer is known: in case of0i=adisc, due to the celebrated inequality of Faber-Krahn [F],
[Kr] (resp. that of Weinberger [Wr]) related to the first eigenvalue of the Dirichlet problem
(resp. the Neumann problem), Spec^Q^SpecD^Kresp. SpecN(Oi)=SpecN (02)) implies
that Q^ ls Ae disc with the same radius as Q^.

In this paper, we give an eventual answer of the problem of Kac:

THEOREM 4.4. - There exist two domains Q^, 0^ in 1R"(^4) such that

Specp (QI ) = Speco (Q^) and SpecN (Oi) = Spec^ (02).
but QI and ̂  are not congruent in R".

In case of dimension two or three, the problem is still open. By the way note that one can
formulate an analogous problem for compact Riemannian manifolds without boundary and
the answer is negative by virtue of examples of Milnpr [M], Ikeda [I] and Vigneras [V].

The proof of Theorem 4.4 is very simple. Our examples can be found among the
truncated cones D,(0<e<l) given by D,= {rco; e<r<l , weC\} where C^ are the
domains in the unit sphere S""1 in HT. The outlihe of the proof is as follows:

First, for a fixed e (0 < e < 1), we show by the separation of the variables, that Spec^ (DJ
(resp. SpecN(DJ) is completely determined by the number e and the spectrum SpeCp(Ci)
(resp. Spec^ (C^)) of the Dirichlet problem (resp. the Neumann problem) of the spherical
domain C^ for the Laplacian of the standard unit sphere S"~ l (cf. § 4). Then we have only
to answer the following problem:

(A) Find two domains C\, Ci in S""1 which satisfy SpecD(Ci)=SpecD(^i) and
SpecN(Ci)=SpecN(Ci), but are not congruent in S"~1.

Recently, Berard-Besson [B.B.] determined the spectra Spec^Ci), Spec^Ci) of the
spherical domains C^ which are the intersections of S"~1 with the chambers of the Weyl
groups W (i.e., the finite reflection groups). They showed that the spectra Spec^ (C^),
Spec^ (Ci) are completely determined by the set of the exponents of W. Hence due to their
results, the problem (A) for these domains C^ can be modified into the following:

(B) Find two finite reflection groups W, W acting on the same Euclidean space R" which
satisfy the conditions: (i) the sets of the exponents o/W, W coincide each other and(\\) the
intersections C^ C^ of their chambers with S""1 are not congruent in S"~1.

Notice that the condition (ii) is equivalent to that the Coxeter graphs of W, W are not
isomorphic (cf. § 3). Thus we have only to consider the following:

(C) Does the set of the exponents of the finite reflection group W acting on R" determine the
Coxeter graph ofW uniquely ?
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BOUNDED DOMAINS WHICH ARE ISOSPECTRAL 443

In case of ̂ 4, the answer of the problem (C) is NO, i.e., there exist examples of finite
reflection groups with the same set of the exponents and the different Coxeter graphs (cf.
§ 3). Thus we obtain Theorem 4.4 and the following:

THEOREM 3 . 8 . — There exist two domains C^, C^ in the unit sphere S" ~1 in W (n ̂  4) such
that

Speco (Ci) = Speci, (Ci) and Spec^ (C,) = Spec,, (Ci),

but C\, GI are not congruent in S""1.
Remark. — The boundaries of our examples are not smooth, but polygons. The

boundary value problems in non-smooth domains have been treated by Agmon [A], Grisvard
[Gd], Brownell [B], Kac [K], p. 19 and others. But the original version of the problem of
Kac was proposed for domains of smooth boundaries. In this sense, the problem of Kac is still
open for every dimension n ̂  2.

We express our gratitude to Messrs. Shigetoshi Bando and Hideo Muto who gave us
helpful advice during the preparation of this paper.

2. Preliminaries

In this section, we will review reflection groups following Bourbaki [B.N.].
Let (E, ( , )) be a finite dimensional real vector space with an inner product ( , ). Put

n = dim (E). Let t) be a finite set consisting of hyperplanes of E. In this paper, we deal only
finite reflection groups, so we always assume that each hyperplane belonging to t) passes
through the origin o of E. Let 0 (E) be the orthogonal group of E with respect to the inner
product ( , ) . For H e 1), let s^ e 0 (E) be the reflection relative to H, i. e.,

s (x}-x 2^) ..E
H( )" ~(a^a)~ ' ?

where a is a vector orthogonal to the hyperplane H. The subgroup W of 0 (E) generated by
{ 5-H; H e I)} is called a reflection group on E (cf. [B.N], p. 72) if it satisfies the conditions (Dl),
(D2):

(Dl) I fu;eWandHel) , thenw(H)et) .
(D2) W is finite, so W acts properly discontinuously on E.
A connected component C of E\u { H; Het)} is called a chamber of W in E and a

hyperplane H oft) is called a wall of the chamber C if the intersection of the closure CofC with
H includes a non-empty open subset of H. Then it is known that (1) W acts simply
transitively on the set of all chambers, (2) the set of all hyperplanes H such that ^H^W
coincides with t) and (3)for every chamber C, its closure C is a fundamental domain of W in E
(cf. [B.N], p. 74, 75).

Let Wf (0 ̂ ; ̂  s) be reflection groups on the Euclidean spaces (E^, ( , )), t)^ the sets of their
hyperplanes in Ei(l^i^s) and W o = = { i d } . Let E=E() xE^ x . . . xE, be their direct
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444 H. URAKAWA

product of which inner product ( , ) is given by (x, y)= ^ x,y, for X=(XQ, . . . , x,),
1=0

y=(yQ, . . . , .Vs)eE. The direct product W = W o X . . . x W ^ acts on E by
w(x)=(xo, Wi(x i ) , . . . , wjjcj)foru;=(id, w^, . . . , u^)eW. Then W is a reflection group
on (E, ( , ) ) generated by reflections relative to the hyperplanes all of which are of the form:

(2.1) H = E o x E i x . .. xE ,_ i xH.xE .+ i x . . . xE,,

where H^ belong to ^, i= 1, . . . , s. Each chamber of (W, E) is of the form:

(2.2) C=EoxCi x . . . xC,,

where C^ are chambers of(W^, E^), ;= 1, . . . , s. Each reflection group W on the Euclidean
space (E, ( , )) is decomposed as the direct product of reflection groups W^, ;=0, 1, . . . , s,
Wo = { id }, in such a way that the Euclidean space (E, ( , )) is decomposed as the direct
product of the Euclidean spaces (E,, ( , )), f=0, 1, . . . , s and W, act irreducibly on E, as
subgroups ofO(E,.), i=1, . . . , s (cf. [B.N], p. 82). The subgroup W ' = W i X . . . x W , o f W
is called the essential part of W. Put E' = E^ x . . . x E^ and /= dim (E'). For an arbitrary
fixed chamber C' of W in E', let m be the set of all walls of C'. For Hem, let e^ be the unit
vector in E' which is orthogonal to H and belongs to the one of two connected components of
E'\H containing C'. Then {e^\ H e m } is a basis of E' (cf. [B.N.], p. 85). So we may put
m={Hj^ . Let {coj^i be the dual basis of {^.}^, i.e., (co,, ^)=§^.. Then the
chamber C' of W in E' is an open simplex cone in E' with the vertex a given by

(2.3) C={^x,(o ,eE ' ;^>00-=l , . . . , / )} (c/, [B.N.], p. 85).

For a chamber C' of W and the set { Hj \ = ̂  of all the walls of C', an element c = s^ . . . s^
ofW is called a Coxeter transformation ofW. Each Coxeter transformation ofW has the
same order h = h (W), which is called the Coxeter number of W and the same characteristic
polynomial P(T)=det(T id-c) which can be written of the form:

P(T)= [] (T-exp(27^,/::Tm,//0) (cf. [B.N.]. 116).
j = i

Here m^.(/=l, . . . , / . ) are integers which can be arranged by
0 ̂  m^ ̂  m^ ̂  . . . ̂  m^ < h. These / non-negative integers m .̂ are called the exponents of W
(cf. [B.N.], p. 118).

Then the number of all the hyperplanes of W (or W) is given by

(2-4) #t)=1 E^=i>,z 1=1 i= i
where /,. = dim (E,) and h, is the Coxeter number ofW,,; =1, . . . , s. In fact, since a chamber
C' ofW is given by C^ x . . . x C, where C, is a chamber ofW,, a Coxeter transformation c of
W relative to C' is given as a product c=c^.. .c, of the ones of the irreducible reflection
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BOUNDED DOMAINS WHICH ARE ISOSPECTRAL 445

groups W, relative to C; Since the number of all the hyperplanes of W, is 2~1 /; h, which
coincides with the sum of all the exponents of W, (cf. [B.N.], p. 119,118), we have (2.4).

Moreover the order of the group W (or W) coincides with (m^ +1). . . (m^+ 1) (c/. [B.N.],
p. 122).

For a chamber C' of the essential part W of a reflection group W, let { H^ }\= ̂  be the set of
all the walls of C'. Let {^H.} I -=I be the unit vectors in E' defined as above. Let m^., f,
7= 1, . . . , / , be the order of the element of ^.^H m W- Then we have:

LEMMA 2.1. — The positive integers m^ satisfy the following conditions:

(1) (^H., ^H,)= -cos(7r/m^.),
(2) m^2 if ^y,i.e., (^, ^H,)^O,

where m^.=2 implies (e^, e^ )=0.

(3) m^.=m^, ;,7==1, . . . , / , and ma=l, ; = 1 , . . . , / .

Proof. - See [B.N.], p. 77.
Due to this lemma, for a reflection group W, we give a graph F consisting of / vertices

{ 1, . . . , / } and the numbers m^. Two vertices ij of F (i ̂ j) are joined by an edge if m^ ̂  3
and the edge is labelled with the number m^ if m^>3. Such a graph is called a Coxeter
graph (cf. [B.N.], p. 20). Two vertices a, b of the graph Y are connected if there exist vertices
{ Xj} ̂  = o of r such that a = XQ , b = x^ and each Xj is joined to Xj +1 by an edge. A maximal set
of connected vertices and edges of F is called a connected component of F. For a reflection
group W, let W = Wi x . . . x W, be the decomposition of the essential part W ofW. Then
the Coxeter graph F corresponding to W consists ofs connected components { F j ̂  i such
that each graph F^ is the Coxeter graph of the irreducible subgroup W\ of W (cf. [B.N.],
p. 22). Note that two reflection groups are isomorphic if and only if their Coxeter graphs
coincide. Furthermore the classification of irreducible reflection groups is as follows:

LEMMA 2 . 2 . — The irreducible reflection group is the one of which Coxeter graph is some of
the following table.
Here h, # I) and "order" in the table are the Coxeter number, the number of all the hyperplanes
in t) and the order of the corresponding reflection group, respectively.

Proof. - See [B.N.], p. 193, 200-221 and 231, exercices 11), 12).
A reflection group corresponding the graph A^G^ is called a crystallographic group

which is given as a Weyl group of a root system.

3. Case of spherical domains

3.1. Let (E, ( , )) be the ^-dimensional Euclidean space. Let (x^, . . . ,xJ be the
coordinate of E with respect to a fixed orthonormal basis {e,} ̂  i of E. We identify E with
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Coxeter graph

A^l)
Bi(l^2)

D,(/^4)

Ee
£7
ES

19,23.29
F4

2

3

4

l2(^)(^=5 OTp^l)

1, 3

1, 3

1
1, 5,

1,

1,5,9
1, 11, 19, 29

1,^-1

Exponents

1,2, . . . , /
,5, ...,21-3,

21-1
,5, . . . ,2 / -3 ,

/-I
4,5, 7, 8, 11
7, 9, 11, 13, 17
7, 11, 13, 17,

1,5,7, 11
1, 5

h

/+!
21

21-2

12
18
30

12
6
10
30
P

^

/(/+1)/2
/2

/(/-I)

36
63
120

24
6
15
60
P

Order

(/+!).'
2 1 - / !

^-1^,

27.34•5
210.34.5.7
214.3^52.7

27.32

12
120

26.32.52

2p

^ by the mapping E B X = ^ x,e^(x,, . . . , xJeR". For x= ^ ^.eE, put
/ . M/2 f= l

|x|=(^ x)1^ ^ ^ . Let S-^xeE; |x|=l}, the unit sphere in E For
\ i= i /

-veE-(O), let (r, co) be the polar coordinate of x defined by

r=\x\ and co^/l.xleS""1.
n

Then the LaplacianAo=-^ 52/^ of the Euclidean space (E,( , )) is expressed relative to
the polar coordinate (r, o) as:

(3.1) _ 82 (n-l) 8 1
Ao~~8r2~~^~8r+72^

where the operator A is the Laplacian of the standard unit sphere (S" -1, gy) whose metric go
is induced from the inner product ( , ) of E.

Now let W be a finite reflection group of(E, ( , )) defined by a finite set f) ofhyperplanes of
E passing through the origin o. Let C be a chamber ofWin E. Then C is given as En x C'
where W = { i d } x W, E = Eo x E', W is the essential part of W and C' is a chamber of E',
which is an open simplex cone in E'.

DEFINITION 3.1. - Let Ci be the intersection of the chamber C with the unit sphere S"-'
which is an open simplex of S"-1. For 0<e< 1, let D, be the domain - truncated cone- in E
given by

(3.2)

Then we have:

D ^ = { r co; e< r< l , (BE Ci}.

LEMMA 3.2. - (1) The boundary 8C^ ofC^ in S"-* is given by

5Cl=^CnS'•-l=u{HnS'•-l; Hem},
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where 9C is the boundary ofC in E andm is the set of all the walls of the chamber C ofW in E.
(2) The boundary <9Dg ofD^ in E is given by

5Dg=Ci usCi u {r(o;o)e3Ci, £ < r < l },

where C\ is the closure ofC, in S""1.
(3) The closure C, is the fundamental domain in S"~1 relative to the isometry actions qfW in

(S"-1,^).
Proof. — (1) and (2) follow from the fact that C = EQ x C' and C' is an open simplex cone in

E'. (3) follows from that C is the fundamental domain of W in E.
Let us consider the following boundary value problems for the domains C, and Dg.
Case 1. — The spherical domain C, ofS"'1:

(SOP) J^=^ inc^(S•D•P•) {/=,o on 9C,.

i A/=V in C,,(S.N.P.) _ ^
) — =.0 a. e. 3Ci, where the exterior normal v of 9C. is defined.\ 9v

Case 2. - The Euclidean domain D,(0<£<1) ofE:

( E D P ) ^o^V inD-
' ' [ /=0 on 9D,.

i Ao/=^/ in D,
(E.N.P.) { Qf

-^- =0 a. e. ^Dg, where the exterior normal v of rDg is defined.

In this section, we treat with Case 1. Case 2 will be dealt in section 4.

3.2. In this subsection, we review the works of Berard-Besson [B.B.] who determined the
spectrum Spec^ (Ci) (resp. SpecN (C,)) of(S.D.P.) (resp. (S.N.P.)). Their results are valid in
case of the reflection groups (cf. [B2]).

First for the above domain C, of S""l corresponding to the reflection group W, we define
the inner product ( , ) on C°° (C^) by

l,/2)=f A
JC,

(/i,/2)= A(x)f^x)d^(x\ /,,/2eC°°(C,),
Jc,

where rfco is the volume element of the standard unit sphere (S""1, go). Let L2 (CJ be the
completion of C00 (C^) with respect to the inner product ( , ).

Now consider a C00 functionf on S""1 satisfying the conditions

(3.3) A/=V in S"-1
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and

(3.4) w/=e(w)/, weW,

where (w.f)(x)=f(w~l(x)) for weW and xeS""1 and s(w)(weW) is given by

(3.5) £(w)=l for every weW,
or
(3.6) e(w)=det(w) for every weW.
Then the restriction of/ to C\ satisfies (S.D.P.) (resp. (S.N.P.)) if s satisfies (3.6) resp.
(3.5)). Furthermore the set of all restrictions of C00 eigenfunctions of A on S"~1 with the
condition (3.4) is dense in L^CJ (cf. [B.B.], p. 239). Thus, to determine Spec^Ci) and
Spec^Ci), we have only to consider the set of all C°° eigenfunctions of A on S""1 satisfying
the condition (3.4). Of course, every solution/i of (S.D.P.) or (S.N.P.) can be extended to a
function / on S"~1 by

fW=fi(^ xeC,
and

w./(x)=s(w)/i(x), xeS"-1, weW.

Then it is well defined on S"~1 due to Lemma 3.2, moreover, it can be proved by the same
manner as Lemma 8 in [Bl] that / is C°° on S""1.

Now we set:

Hfe(E); =the set of all harmonic (i. e. A() P=0) polynomials P in E of degree k,
H^(E); = { P e H ^ ( E ) ; P (w~l(x))=det(w)P(x) for a\\weW sind x e E } ,
H^(E); = { P e H J E ) ; P (^ (x ) )=P(x ) fo ra l lweWandxeE} ,
^(E); =dim(H^(E)) and ^(E); =dim(H^(E)).

Then the inclusion ; : S""1 -> E induces a linear mapping ;'* of CGC(E) into C^S""1) by
oo

P -> Po/ . The mapping /* is injective and its image of the space ^ HJE) is dense in
k=0

C00 (S"~1). Furthermore the image of H^ (E) by f* coincides with the eigenspace of A on
S" ~1 with the eigenvalue k (k + n - 2), k = 0, 1, 2, . . .

Therefore the spectrum Spec^C^) (resp. Spec^Ci)) of the Dirichlet problem (resp. the
Neumann problem) of the domain C^ in S"~1 is determined as follows:

(1) The set of all the eigenvalues of the Dirichlet problem (S.D.P.) and the Neumann
problem (S.N.P.) is included in the set {k(k+n-1)\ k=0, 1, 2, . . . }

(2) If^(E)^.0(resp. /4(E)^0), k(k-^-n-2) is really the eigenvalues of (S.D.P.) (resp.
(S.N.P.)) with multiplicity /^(E) (resp. /4(E)).

Thus to determine Spec^Ci) and Spec^Ci), we have only to compute /^(E) and
h[(E)(k==0, 1, 2, . . . ) . For this purpose, consider the Poincare series:

(3.7) F^^ f; ^(E)^,
f c = 0
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BOUNDED DOMAINS WHICH ARE ISOSPECTRAL 449

(3.8) F-(T)= ^ h[(W,
k=0

where T is an indeterminate.
Berard-Besson [B.B.] computed the series (3.7), (3.8) making use of the Poincare series of

the subring of the polynomial ring consisting of invariant polynomials under the action of the
reflection group W as follows:

PROPOsmo^3.5(theNeumannproblem(S.N.P.)). — Let W be a reflection group of'(£,( , ))
(dim (E)=n) defined by a finite set ^ of hyper planes ofE passing through the origin o. Let
W = {id } x W, E = Eo x E' be the decomposition of(W, E) such that (W, E') is the essential
part of(W, E). Let C\ be the intersection of a chamber C of(W, E) with the unit sphere S""1

in (E, ( , )). Then the series (3.7) which determines the spectrum Spec^ (C\) of the Neumann
problem (S.N.P.) is given as follows:

¥i(rT)=
1-T2

na-T^1)
j = i

where {mj}^^ is the set consisting of 0, _ . . , 0 (dim(Eo)=/o) and the exponents of the
reflection group W\ /o

Proof. - See [B.B.], p. 241, Propositions 2 and 6.

PROPOSITION 3.6 (the Dirichlet problem (S.D.P.)). — Under the same assumptions of
Proposition 3.5, the Poincare series F° (T) which determines the spectrum Spec^ (C^) is given
by

FW-T^F^T),

where d is the number # 1) of all the elements in t), which is given by (2.4).
Proof. - See [B.B], p. 242, Proposition 4.

3.3. Due to Propositions 3.5, 3.6, we have:

THEOREM 3.7.- Let W (resp. W) be a finite reflection group defined by a finite set I) (resp. !))
of hyperplanes of the Euclidean space (E,( , )), dim(E)=w, passing through the
origin o. Let W^idJxW, E=EoxE ' (resp. W = { i d } xW, E = E o x E / ) be the
decomposition of'(W\ E)(resp. (W, E))such that(W\ ^E')(resp. (W\ E'))^ the essential part
o/(W,E) (resp. (W, E)). Let C = E o X C (resp. C=EoxG' ) be a chamber o/(W, E)
(resp. (W, E)), where C' (resp. G') is a chamber of the essential part (W\ E')
(resp. (W', E')). Put C, =C n S"-1 (resp. C, =C n S"-1) where S"-1 is the unit sphere of
the Euclidean space (E,( , )). Then we have:

(1) If the sets of the exponents ofW and W' coincide each other a^dim(Eo)=dim(Eo),
then.

SpecD(C\)=SpecD(Ci) and SpecN(Ci)=SpecN(Ci).
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(2) Let dim(Eo)=dim(Eo). Then the following conditions are equivalent:
(i) The domains C^ and C^ are congruent in the unit sphere (S"~1, go), i. e., there exist an

isometry ̂  of(Sn~l, go) such that ^(Ci)=Ci.
(ii) The chambers C and C are congruent in the Euclidean space (E,( , )).

(iii) The Coxeter graphs ofW and W' coincide.
Proof. — Propositions 3.5, 3.6 and (2.4) imply the assertion (1). (2) The chamber C'

(resp. G') is an open simplex cone in E' (resp. £'). Combining this with the definitions
of C\ and C^, we have the equivalence between (i) and (ii). The equivalence between (ii)
and (iii) follows from (2.3), Lemma 2.1 and the definition of the Coxeter graph.

O.E.D.
Notice that the set of the exponents does not determine the reflection group

uniquely. There exist many examples of pairs of the reflection groups of which have the
same set of the exponents but the different Coxeter graphs as in the table below.

Moreover, for such a pair of reflection groups (W, E'), and (W, E') and an arbitrary
dimensional Euclidean space (E(),( , )), define the direct products W = = { i d } x W ,
W = { id} x W' and E = Eo x E'. Then for these reflection groups (W, E) and (W, E), the
spectra of (S.D.P.) and (S.N.P.) for the intersections C^, C\ of their chambers with the unit
sphere coincide each other, but C^ and C^ are not congruent in the unit sphere by
Theorem 3.7. Therefore we have:

THEOREM 3 . 8 . — There exist two domains C^ and G^ in the unit sphere (S"~1, go) (^4)
such that

Spec;, (Ci) = SpecD (Gi) and Spec,, (C,) = Spec^ (Ci),

but Ci is not congruent to C\ in the unit sphere (S"~1, go).

Remark 3.9. — There exist many examples other than the above table. For example,

Exponents #t) Order

Z^/ l ^ l l - l

/(/-1)+2/ 2 ( - l • /^2/

36+2 2 7 •3 4 .5•2 2

24+5+9 2 7 • 3 2 • 2 2 • 5 . 9

10) B,xL,(/)(/^4)

D,xLs(2/)

11) E(, x A j x A i

P ^ x } ^ ( 5 ) x \ ^ 9 )

1,3,5, . . . ,2 / -3 ,
2/-1, 1,/-1

1,3,5, . . . ,2 / -3 ,
/-I, 1, 2/-1

1,4, 5, 7, 8, 11, 1. 1

1, 5, 7, 11, 1,4, 1, 8

Examples 3.10. — The simplest cases in the above table are:
(1) A 3 x A i and I^xl^),
(2) B 3 x A i and L^xL^),

where 12 (3)= A^, 1^(4) =B^ and 1^(6) =G^. The chambers of these reflection groups are
given as follows:
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l)

l 2 ( 3 ) x l 2 ( 4 ) x . . . xL,( /+l)

2)

l 2 ( 4 ) x l 2 ( 6 ) x . . . x l 2 ( 2 / )
i=2

3)

l 2 ( 4 ) x l 2 ( 6 ) x . . . x l 2 ( 2 / - 2 ) x l 2 ( / ) , , , , , , ,
1,/-1

4)

I, (5} x I, (6} x I, f8) x I. f9^ x I, n 2^
5)

6)

l2 (8^ x I, f 12^x1^14^x1, (18^ 1. 7. 1. 11. 1. 13. 1. 17.

7)

8)

9)

Pairs of Coxeter graphs

A,xAi x . . . xAi( /^3)
1-2

B;xAi x . . . xAi( /^3)
/-2

D,xAi x . . . xAi( /^4)

1-2

Eg x AI x . . . x AI
4

E7 x AI x . . . xAi
5

l2 (6 )x l2 (8)x l2 (10)
xL,(12)xl2(14)xl2(18)

Eg x A i x . . . x A i
6

xl2(20)xl2(24)xl2(30)
F4 xAi xAi

l2(6)xl2(8)xl2(12)
Hs x AI

G2X l2(10)

H4 x AI x AI
l2(12)xl2(20)xl2(30)

E?

1,2, ..

1,2, 1

1, 3, 5, . . .

1,3, 1,5

1, 3, 5, .
1, . . . , 1

1. 3. 1. 5

1 4
1

1,4, 1,5,
1,5,7,

1

1 5 1
1,

1, 7 11
29,

1, 19,
1,5,
1, 5,

1
1,5, 1,9

1, 11,
1, 11,

cponents

. , / , 1 , . . . , 1
1-2

,3, . . . , ! , /

,2/-1, 1, . . . . 1
1-2

>, . . . , 1,2/-1

.. ,2/-3,/-1,

1-2

. . . . . 1.2/-3.

5, 7, 8, 11,
, . . . , 1

4

1,7, 1,8, 1, 11
9, 11, 13, 17,
, . . . . 1

5

7 1 9, 1,11,
13, 1, 17
13, 17, 19,23,
1, . . . . 1

6

1,23, 1,29
7, 11, 1, 1
1, 7, 1, 11

,5 ,9 , 1

19,29, 1, 1
1, 19, 1,29

#1)

/(/+1)/2+(/-2)

3 + 4 + . . . +(/-H)

^-K^)

4 + 6 + . . . + 2 /

/(/-1)+(/+2)

4 + 6 + . . . + f 2 / - 2 ) + /

36+4

5+6+8+9+12
63+5

6+8+10+12+14+18

120+6

8+12+14+18
+20+24+30 X20-24-30

24+2
6+8+12

15+1
6+10
60+2

12+20+30

Order

( /+1)/ .2 ' - 2

1-1n 2o-+2)
1=1

2 ( . / / •2 ( - 2

(n 2(20
2'- i . / / .21-2

(-1
n 2(20 x 2 /
i=2

27.34•5.24

25 .5.6.8.9.12
21 0 .34•5•7•25

26.6.8.10.12

2i4.35.52.7.26

2 7 -8-12 •14-18

27.32.22

23•6•8 '12
120.2

22•6.10
26.32.52.22

23-12-20-30

f 4 1(1) A chamber C^ of A^ x A ^ is given by ^ ^ x^co^; x^>0, z= l , . . . , 4 > as a cone in the
0=i J

4-dimensional Euclidean space ((R4, ( , )), where the vector 0)4 is orthogonal to each co,,
i= 1, 2, 3 which are given such as in the Figure 1. That is, let e^,e^ e^ be the orthonormal
basis of the 3-dimensional subspace of (R4, ( , )) orthogonal 100)4. Then w^==e^,
^2=el~e2~^e3 2in^ ^3=el~^e2^~e3•

f 4 ~ )AchamberG(i)Ofl2(3)xl2(4)isgivenby^ ^ ^^c0p^,>0, f = l , . . . , 4 ^ as a cone in the
11=1 ^ ^ J

4-dimensional Euclidean space (tR4, ( , )), where both vectors Oi and ©2 are orthogonal to
both vectors 0)3 and 0)4 and the angle between ©i and £3 (resp. ©3 and ©4) is 71/3
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(resp. Tc/4). On the other hand, since the angle between c0i and ©2 is arc-tan (21/2), it is
impossible that C^ and C^ are congruent in the 4-dimensional Euclidean spacer

r 4 ^
(2) A chamber C^ of 83 xA^ is given by ^ ^ X,T|,; Xf>0, ;==1, . . . , 4 ^ where

0=i j
r|i=o)i =^3,^2 =0)3 =^1-^2 +^3^3 =^1+^3 and ^4=0)4 in the example (1). A chamber

r 4 i
ofC^) of 1̂  (4) x 13(6) is given by ^ ^ ^^; ̂ >0, /=1, . . . , 4 ^ where both vectors ̂

u=i ^ ^ J
and T|̂  are orthogonal to both vectors ^3 and 114, and the angle between rli and T^
(resp. T^ and ^4) is 71/4 (resp. 71/6).

Chambers of A3 and 83.

4. Case of Euclidean domains

In this section, we consider the boundary value problems (E.D.P.), (E.N.P.) (Case 2) for
the domains D,(0<£<1) (3.2) of the Euclidean space (E,( , )) of dimensions as
in 3.1. We preserve the situations in 3.1. Recall that, for 0 < e < 1,
D,={rco; e<r<l , coeCi}, where Ci=CnS"-1 , C is a chamber of a finite reflection
group W in E.

Firstly, note that the volume element dx=dx^.. .dx^ can be expressed on E-(o) by the
polar coordinate (r, co) as

^x=r"~1 drdw,
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where (AO is the volume element of the standard unit sphere (S"~ ̂  go). Let L2 (Dg, rfx) be
the space of all square integrable functions on Dg with respect to the measure dx, and
L2^, l )xCi , drdw) the space of all square integrable functions on the product space
(£ , l )xCi of the open interval (e, 1) and C^ with respect to the product
measure drdw. Since fi < s " ' 1 <rn~l <1 onthe interval (s, 1), L^Dg, dx) can be identified
with L2^, l )xCi , drdw) by the mapping Dg9ro)h^(r, co)6(e, 1) xCi.

Now let { ^i ̂  ̂ 2 ̂  . . . } be the setof all the eigenvalues (counted repeatedly as many as
their multiplicities) of the Dirichlet problem (S.D.P.)(resp. the Neumann problem (S.N.P.))
of the Laplacian A of (S"~1, go) for the domain C^ in S"~1. Let { ̂  }^ i be a complete
basis of L2 (Ci, Ao) such that

(4.1) A^=VF, in Ci,

and

( ^\p
(4.2) ^^.O on aCi resp. —l =.0 a. e. 8C^i. e., where the exterior

normal v of 8C^ is defined ).

For each eigenvalue ^ of A, recalling (3.1), define a differential operator L^ on the open
interval (e, 1) by

, . /,. M n—L U A,

(4-3) L.=-^2--.-^+.2•

d2 n-1 d ^
rfr2 r dr r2

Let L2 (c, 1), L2 (c, 1) be the spaces of all square integrable functions on the interval (s, 1)
with respect to the measure dr,rn~ldr, respectively. Note that a C°° function 0 on (c, 1) is
an eigenfunction of L^ with an eigenvalue p,:

L^=^i(D,

if and only if <S> satisfies the following equation of Sturm-Liouville type on (e, I):

(4.4) ^fr"-1^-^-3^^-1^)^.
dr \ dr )

LEMMA 4.1. — Let us consider the boundary value problem of (4.4) with the boundary
condition:

(4.5) (D(8)==<D(1)=0 fresp. rf <l)(c)= ^-(l) (!)=.()).
^ dr dr j

Let {[i^j} ̂  i he the set of all eigenvalues of the boundary value problem (4.4) and(4.5), and let
<I^(y= 1,2, . . . ) be the eigenfunction with the eigenvalue ^. Then [ ̂  } °^ ^ is a complete
basis of Li(£, 1).
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Proof. - See [P], p. 508 or [Y], p. 109, Theorem 1.
Now, for the eigenvalues ^(/=1,2, . . . ) of the boundary value problem (S.D.P.)

(resp. (S.N.P.)) for the domainC\, consider C00 functions <^1 (y=l ,2 , . . . ) on the
interval (e, 1). For a C00 function 0, (resp. x?) on the interval (e, 1) (resp. C^), we define a
C00 function <D®^ on D,(or (s, 1) x C^) by:

0®^ (r co) =0)^)^(0)), r(oeDJor(e, l )xCJ.

Then, by (3.1), the C00 functions (^•OO^O',^!, 2, . . . ) on D, satisfy the equation

(4.6) Ao(^®^=-('^+^ ̂ W+^O^A^

=(4.0^)®XP,=^?)i^•(x)lF, in D,,

and the boundary condition

(4.7) (^®^=0 on <9D,,

(resp. ^/(^(O^®1^)^ a.e. 3Dg, where the exterior normal of^Dg is defined), since 0 '̂
satisfies (4.1) and (4.2) and ^, satisfies (4.4) and (4.5). In fact, ^/Bv^®1?,)^)
coincides with -(rf/^O^c)^/^), ( d / d r ) 0^(1)^(00), or ^•(r)^/^)1?,^)
a. e. <9Dg. Here (8/8v) ̂  is the derivation of ̂  with respect to the exterior normal of 8C^
(cf. Lemma 3.2 (2)).
Furthermore we have the following lemma.

LEMMA 4.2. - {(D^®^; ;,7=T, 2, . . . } is a complete basis ^L^Dg, dx).
Proof. — It can be proved by the similar manner as Theorem 2.1 in [E]. Consider the

following boundary value problem on the interval (e, I):

d2
--^u=fku on (e, 1),

z,(g)=t,(l)=,0^resp.^(£)=^(l)=oy

Let {i^}^! be a complete basis ofL^(c, 1) such that u^ is the eigenfunction of the above
problem with the eigenvalue o^ (/= 1, 2, . . . ) . Let [| . \\^^ ̂ , || . \\^^-^ ̂  I I • llLj(e, i) be the
L^norms of L2(D„ dx), L2(Sn~l, rfco), Lj(c, 1), respectively. Since {^i}50=l, for each
^(;=1, 2, . . . ) , is a complete basis ofLj(£, l ) , for each ^f ( /= l , 2, . . . ) and /=!, 2, . . . ,
there exist a^e R (k=1, 2, . . . ) such that

j»
lim M,- ^ ^:k^' =0.

p- oo f c = l Lj(e, 1)
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On the other hand, we have

u^i- f a}:,^®^,
IL^D,,^)

^- E ̂ ^OW
IL^D,,^)

p
^i- S a^^k

k=l |Lj(e,l)
illL^S"-1^

Thus we obtain

lim ^0^,- E ^j^W =0.
IL^D,,^)p -> oo

On the other hand, {^OO^}^! is a complete basis of L2 ((&,!) xC^, rfrAo), due to the
Stone-Weierstrass theorem (cf. [B.G.M.], p. 144). As L^Dg, dx) can be identified with
L2^, 1) xCi, drdw), {O^®^.; ;,7=1, 2, . . . } is a complete basis ofL^D,, rfx).

Q.E.D.

Therefore the spectrum Spec^ (Dg) (resp. Spec^DJ) of the Dirichlet problem (E.D.P.)
(resp. the Neumann problem (E.N.P.)) for the domain Dg in E is given by

{ ^ ; U = 1 , 2 , . . . } ,

where {^}r=i ls ^e spectrum SpecD(Ci)(resp. SpecN(Ci))for the domain C^ in the unit
sphere S""1. Since ^' depend on ^ but not on ^F^, we obtain the following theorem.

THEOREM 4 . 3 . — For two reflection groups W, W on the same Euclidean space (E, ( , )), let
C, C be their chambers and C^ =C n S""1, C^ =C n S"~1, where S""1 ^ ̂  um'^ sphere in
(E,( , )). For each 0<£<1, define the domains Dg={rco; e<r< l , coeCi},
Dg=={rco; £<r<l , coeCi} respectively. Let Spec^D^), Spec^Dg) (resp. Spec^D,;),
SpecN(Dg)) be the spectra of the Dirichlet problems (E.D.P.) (resp. the Neumann problems
(E.N.P.)) for the domains Dg, Dg in E. Let Spec^Ci), Spec^Ci) (resp. Spec^Ci),
SpecN(Ci)) be the spectra of the Dirichlet problems (S.D.P.) (resp. the Neumann problems
(S.N.P.))for the domains C^ Ci in S""^ Then we have:

J/SpecD(Ci)=SpecD(Ci) (resp. SpecN(Ci)=SpecN(Gi)), then SpecD(D,)=SpecD(D,)
(resp. SpecN (D,) = SpecN {Q^)for each Q < £ <1.

We note that, ifC\ is not congruent to C\ in the unit sphere S"~1, then Dg is not congruent
to Og in the Euclidean space (E, ( , )) for eachO < e < 1. Therefore by Theorems 3.8,4.3,
we have:

THEOREM 4 . 4 . — There exist domains Dg, Dg (0 < s <1) in the n-dimensional Euclidean space
R"(^4) such that

Speco (D,) = SpecD (D,) and Spec^ (D,) = SpecN (D,),

but these domains Dg, Dg(0<8< 1) are not congruent each other in the Euclidean space W1.
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