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ANALYTICITY OF RELATIVE FUNDAMENTAL
SOLUTIONS AND PROJECTIONS

FOR LEFT INVARIANT
OPERATORS ON THE HEISENBERG GROUP

BY LINDA PREISS ROTHSCHILD (1)
and DAVID S. TARTAKOFF (2)

1. Introduction

We show that for certain classes of unsolvable, non-hypoelliptic differential operators
on the Heisenberg group there exist left (respectively right) inverses modulo the orthogonal
projection onto the L2 nullspace of the operator (resp. the adjoint of the operator). We
also show that these relative inverses and the projections preserve analyticity locally.

Let G be the Heisenberg group and let Xi, Xz, ..., X^, T be a basis for the Lie algebra
^=^1+^2 of G with Xi, X2, ..., X2n a basis of ^i, ^2 spanned by (T) and
[^i, ^i]=^2=the center of^. A left invariant differential operator L on G is said to
be homogeneous of degree d if there is a homogeneous non-commutative polynomial p
such that L=/?(XI, X^, . . . , X^J. L is elliptic in the generating directions if
p (8/8x1, 8/8x2, ..., 8/8x2n) is elliptic on R2".

Our main result is the following.

(1.1) THEOREM. — Let L be a homogeneous, left invariant differential operator on the
Heisenberg group G elliptic in the generating directions. Then there are distributions ki and
k-i such that:

(1-2) Lf^k,=f-H,f

(1.3) L(/^k2)=/-Il2/

forfe Cg° (G), where Hi and H^ are orthogonal projections onto the L2 nullspaces ofL and
L* respectively, and ^ denotes group convolution. Furthermore, the operators f->f^ ki and
f-^ n^/, i=l, 2, all preserve analyticity locally.

(1) The first author was partially supported under NSF Grant No. MCS 78-07647
(2) The second author under MCS 79-03147.
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420 L. P. ROTHSCHILD AND D. S. TARTAKOFF

COROLLARY. - Ifu,feCS>(G) and:

(1.4) Lu=f in U,

U open, then u^ ==(! —n^) u is analytic in every open subset of U where f is, and u^ is again
a solution of(l .4).

Proof. — VKv=v^k^ then:

(I-IIi)M=K/+K(LM-/).

By Theorem 1.1, the right hand side is analytic in U.
Theorem 1.1 was proved by Greiner, Kohn and Stein [4] for the case where L= D&, the

boundary Laplace operator. The analyticity of the projections II i and Il2 was proved
by Geller[2], who also proved the existence of distributions fei, kz satisfying (1.2) and
(1.3) and preserving local smoothness. The general result was conjectured by
Stein [2]. For the general case, Metivier, by the methods in [II], obtained a proof
(unpublished). However, our method is a direct reduction to the hypoelliptic case.

A differential operator D is called C00 hypoelliptic (resp. analytic hypoelliptic} in U if
DM=/in U with/smooth (resp. analytic) in any open subset V c= U implies u is smooth
in V (resp. u is analytic in V if u is smooth in V). Tartakoff [16], [17] and Treves [18] have
shown that for homogeneous left invariant differential operators on the Heisenberg group,
analytic hypoellipticity is implied by C°° hypoellipticity. For C00 hypoellipticity, necessary
and sufficient conditions for operators of the above type on groups with dilations have
been given by Rockland [14] and Helffer and Nourrigat [6].

2. The self adjoint case

One can easily reduce the proof of Theorem 1.1 to the case where L is self adjoint and
of large homogeneous degree d, with d / l even. Indeed, suppose the result is known for
(L* L)" = Li and (LL*)" = L^ Then there exists kz such that:

(2.1) L2(/^fe2)=/-IW,

since ker L^ = ker L*. Since for any left invariant vector field X we have X(f^k)=f^Xk,
from (2.1):

L(/^L*(LL i lr- lfc2)=/-^2/,

so that (1.3) follows with ^^L^LL*)""^. Furthermore, if convolution with k\
preserves local analyticity, so does convolution with ^2. (1.2) is obtained similarly
from Li.

Theorem 1.1 is then a consequence of the following, which is partly based on an idea
of Beals and Greiner [1].
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RELATIVE FUNDAMENTAL SOLUTIONS 421

(2. 2) THEOREM. — Let Lbea self adjoint operator satisfying the hypotheses of Theorem 1. 1
and of sufficiently high degree divisible by 4. Then there is a closed contour F around 0 in
C such that L^=L—a{—irT)dl2 is hypoelliptic for all ocer. There exist distributions A\
satisfying Lafca=8, with Qi-^\\D^(f^k^)\\^^ bounded on F for all multi-indices and any
fe Cy (G). Hence define:

K, s: cy (G) -> c00 (G)

by:

K / = 1 fcx-V^fe^cx,
Z7t I ]Jp

S/=-1- [(-fT)^^.2m^

Then:

(2.3) LKf= K* L/=/- S/, fe C? (G),

and S=II, the orthogonal projection onto the L2 kernel ofL. Furthermore, K and n
preserve local analyticity.

The proof of Theorem 2.2 will proceed as follows. First, one must construct
the ky,. For this we use the construction given by Metivier [11] for a single operator and
check that the fea vary well with a. The first equality in (2. 3) is an immediate consequence
of the self adjointness of L and n, while the second is easily obtained by writing
L=L^-}-ai(—iT)d/2. The proof that S=n will be obtained by applying the irreducible
unitary representations of G to both operators and then using the Plancherel theorem
forG.

Finally, to prove that K and S preserve analyticity, it suffices to obtain local estimates
for derivatives o f / ^ f ea independent of a. For this we use the methods of the second
author [16], checking that the constants obtained in the L2 estimates can be chosen
independent of a.

3. Unitary representations and the Plancherel formula for G

We summarize some facts about the irreducible unitary representations of G which will
be used in the construction of kg, and in the proof that S=n. Let Xi, X^, i= 1, 2, ..., n,
T be a basis for ̂  with [Xf, X/] = 8^ T, all other commutators zero. For every X, e R — {0},
let n-^ be the irreducible unitary representation of G on L^tR") defined by:

(3 .1) K^(X\ x'\ t)f(u)=ei((sgnw{li2x''•u+^t+^x'x'l/2)f\u-\^\l/2xf).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



422 L. P. ROTHSCHILD AND D. S. TARTAKOFF

Here (x\ x'\ t) are the coordinates given by:

(x\ x'\ t) ̂  exp ( x ' . X' + x " . X" +1 T),

n

where x ' - X'= ^ x^Xi' and exp denotes the exponential map.
1=1

These induce the following on ^:

^(T)=0,

n^)=\^28

a^
7i,(X/)=fsgn^|^|1/2^.

If (peCy(G), let 71?, ((p) be the bounded operator on L2^") given by:

^ ((p) = 9 te) ̂  (^-1) rfu (g),

where du (g) = dx' dx" dt is a Haar measure onG. If LeU(^), the universal enveloping
algebra of ^, then:

(3.2) 7i,(L(p)=7i,(L)^((p),

where:

7^: ^-^End(L2(Rn))

is the corresponding representation of ^.

It will be useful to know the distribution kernel a<p^(u, v) of the operator 7i^((p). By
direct calculation, for/eL2^"):

r
^(<P) f(u)= (p(x', x", O^-1^-^^^^-"0/^-^)^^'^

•/

where x, = | ?i |1 /2 x ' and ̂  = (sgn 'k) \ ̂  \1/2 x". Since ̂ / dx" = (sgn ?i) | ̂  \ ~ n dx^ dy^

^((P)/^)-!^!"" f^(^^, r)^-1^——^/2^ /(u-xj^^^r

where:

(p?i(^,^, 0=<p(^, x", o.
4e SERIE - TOME 15 - 1982 - ?3



RELATIVE FUNDAMENTAL SOLUTIONS 423

Hence a simple change of variables shows that:

^ / u+v \(3.3) s^^-m""^) (u-v^-^-^v

where ? denotes the Euclidean Fourier transform of (p^ in the last two sets of
variables. The reader is referred to Metivier [11] for a more detailed account of the above
calculation for a more general class of groups.

We shall need two versions of the Plancherel theorem for G. The first is the following
equality for (peQ°(G):

(3.4) (P(0)=f tr(7i,((p))^(?i),
•^-{O}

where dp, (X) == c | ^ |" rfX, c constant, and tr denotes trace. The second version of the
Plancherel theorem states that n^ extends to a Hilbert space isomorphism:

7i,: L^G^L^R-W.H-S),

where L^R-^O}, H-S) is the space of all functions F from R-{0} to the space H-S
of all Hilbert-Schmidt operators on L^IR") satisfying:

f tT(FW¥W*)d'k«X).
^-{O}

The norm is:

||F(X)||£2^o,H-s)= f tr(F(X)F(X)*)^(?i),
^-{O}

where ^^ /(X)=c / \>k\^d'k, where c' is a constant. In particular, for/, geL^G);

(3.5) (/, g\^ [ tr(7c,(/)^ fe)*)^'^).
^-{0}

The reader is referred to Kirillov [8] or Pukanszky [13] for a complete account of the
Plancherel theorem for nilpotent groups.

4. Construction of the fundamental solutions ky of La

(4.1) LEMMA. — Let L be as in Theorem 2.2, and let La = L — a ( — i T)^2. Then i/e > 0 is
sufficiently small. La is hypoelliptic for all a, £ ^ | a | ̂  2 £.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



424 L. P. ROTHSCHILD AND D. S. TARTAKOFF

Proof. - By Rockland [14], L^ is hypoelliptic if and only if Tii(La) and 7i-i(L,) are
injective on the Schwartz space ^(W). Now:

^±i(La)=7i±i(L)±a.

By Grusin [5], the eigenvalues of 71 ±1 (L) are discrete, and so if:

[i= min | a |,
CT eigenvalue of n ̂  (L)

a^O

then any e < [i/2 will satisfy the lenima.

A family Oa of distributions on a manifold M will be called uniformly bounded if for every
compact set K c: M there exist C and M independent of a such that:

|aJcp)|^C sup ID^Oc)!
I P i ^ M

for all (peCy(K). Our proof of analyticity requires that the ky, be uniformly bounded.

(4. 2) PROPOSITION. — Let e > 0 be chosen as in Lemma 4.1. Ifd is sufficiently large and
d / 2 even, there is a uniformly bounded family of fundamental solutions k^ L,^=8, all aeC,
£ ^ | a | ̂  2 £, such that S,: C00 (G) -> C°° (G) defined by:

S.cp^-W2^ */:,),

extends to a bounded mapping ofL2(G) into itself satisfying the following:

(4.3) ||S,(p||^C||(p||^

C independent of a, and

(4.4) *.(S,<P)={ 7tl(LC•)-l^((p)' ^> 0 ," • V t t T / l / T \ — 1 / \ ^ /~\9[71-1 (La) '^((p), X < 0

/or almost all ^eR-{0}.

To prove Proposition 4.2 we shall follow a similar construction in Metivier [11] (where
one of the ideas is attributed to Lion [9]), keeping track of the dependence on a. We let
Be={aeC: £ ^ | a | ^2£}.

(4.5) LEMMA. - For aeB,, let Ix,a(M, v) be the distribution kernel of the operator
K ' k ( L ^ ~ l '• L2 (R") -> L2 ((R"). Then if d is sufficiently large ^ ^ is continuous and satisfies,
for n/l<k<d-n/l;

(4.6) I I^a^^ l^C^l+ lyD^-^^ l+ lu l ) " 7 2 - '

for some constant C independent o/aeBe, where ^^—l)^"^.

4e SERIE - TOME 15 - 1982 - ?3



425RELATIVE FUNDAMENTAL SOLUTIONS

Proof. — The estimate (4.6) is given in [11] for a fixed in Be. Let

H^/eL^ir^i^DZ/eL2, all |p|+|y|^}

with norm 11/ \2,= ^ 11 u^ D], f ||2,, and let H"^ be the dual space. ByGrusin[5],each
I P I + l Y l ^ L

Ti+i (L^)~1 is bounded from L2 to H^ i.e., there exists C' such that:

(4.7) ll/llH^C'll^itU/ll^

with CV dependent on a. An easy perturbation argument (see [15], for details) shows that
one can choose CV independent of a for a varying in Bg. From (4.7) one obtains for
each j

ll/llH^Coll^i^)-1/!!^

for alljeZ, as in [II], Lemma 12.
Now the proof is exactly as given in [11].
Proof of Proposition 4 . 2 . — We shall follow the construction given in [11] for a more

general class of groups. Put $ (g) = (p (g~1), (p e Q? (G). First

- - rtr(7^(LJ ^((p^ l^ J^ u)a^(M, v}dvdu,
J

for aeBg, where a^ ^(u, v) is the kernel of K^ ((p), which by (3. 3) is given by

(4.8) ^,(u, ̂ ^[-"((pO^-M, -(u+i;)/2, -X).

Putting

^J^^^p-^^.f^-^ -^-^)^
j \ /

we obtain

^(^(U-1^^))^!-" J,,«(M, ^(pl(^.^ -^dudv, -

where (p^ denotes the Fourier transform in the ^ variable. Finally, let M^l^l"1 7 2^,
u,=(sgn?i) l ^ l "^ 2 ^ 1^=1 ̂ M, ^^(sgn^lXl^uandput

K),,a(^, Ux)=J)L,a(M, y).

In view of (3.2) and (3.4) we want to estimate tr (7i^(LJ~17i^((p)). By the above we
have

- - r^(TiJLJ^TiJcp^ K^J^,^)cp(i^,i^, -l^du^dv^
•/

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



426 L. P. ROTHSCHILD AND D. S. TARTAKOFF

by the definition of (p^. It is easy to check that

K^^u,v)=\K\-^K^^u\^).

We shall need to show

(4.9) |K^OA^)|^C,

all aeBg, u, v. By definition

K^(u\ v^=J^(u\ ±^)= F^I^^-^^-^^.
J \ /

Hence by (4 . 6)
/ ^ \ n / 2 - d + k / ^^ n / 2 - d + k / ^ \\n/2-k

l+---^(4.10) |K„,(u^^) |^CoSUp(l+ |^ | ) n + l^+y-^ (1 +-^

for n/2 < fe < d—n/2. Choose k to be the smallest integer larger than (3 n/2)+1. Then
for d > 3 n+4, k is in the range n/2 < k < d—n/2. Now for any ae R

(4.11) (1+1^1) ^sup((l+|a-^|),(l +|-a-^|)).

Then (4.11), together with (4.10), proves (4.9).

Hence, if /(u, v, X) e^ (IR2^1), with ^(u, u, X) vanishing in X to order at least d/2—n
at ^-=0, the integral

JlK,|K,.a(M,r)| |x(u,p,?i)|dM^^

exists and is bounded, independent of aeBg.
To handle the singularity near X=0 we proceed as in [11]. Let v|/eCg°(IR) be chosen

with

^ _ f l for 1^1^1/2.
Y(")-) 0 for |X|^1.

Let a": y(R) -> y(R) be defined by

XfW=fW-^/W ^ ^f9^^^ / a ^t

t § (d/2)-B1.<M/7>- , K - V0^/

Then

SfW=fW for |X 1^1,

4' SERIE - TOME 15 - 1982 - ?3



RELATIVE FUNDAMENTAL SOLUTIONS 427

and
^fCk) vanishes to order d/2-n at ^=0.

Now define k^ i by:

fe.,i((p)=c K,,,(M, v, ?i)^qT (M, i;, -^Wdudvd^)=c K^,(M, u,

with c as in (3.4). Then ka, i is a uniformly bounded family of distributions for aeBg.

We will now construct a uniformly bounded family k^z of distributions such that
fc<x, i + fca, 2 is a fundamental solution for La, i. e.,

La(fea, i+fca,2)=8.

For this, let r^ be the distribution defined by

-ra=Lafea,i-8.

Clearly y-a is a uniformly bounded family, and we must find fea. 2 satisfying

Lo^<x,2=y<x.

As in [11] we note that since rTsra=0 for s ̂  d/2—n we may write r, in the form:

r.= E r,,,̂ ,̂
Ij'l ^df2-n

where r^ j(x\ x " ) is a uniformly bounded family of distributions on R2". Let L°
be the constant coefficient differential operator elliptic in R2", corresponding to the
principal symbol at 0 (in the classical sense) of L^ [i. e.,
L°=p(8/8x\, .. . , 8 / 8 x ' ^ 8 / 8 x [ \ .. . , 8 / 8 x ' ^ ) . See the definition of "elliptic in the generating
directions" on the first page. Note that L° is independent of a, since the parameter
occurs as a coefficient of a term of lower degree.] Now we may seek to find fca, 2 m the
form

fca.2= E W .̂OC',̂ .
j ^ d l l - n

The WQ(, j may be found by downward recursion by writing

L=L°+ E L,,̂  •
0 < j ^ d

and solving recursively for Wa, j satisfying

(4.12) L^W^^, x^ E L«.fc ̂ ^W,,^^^,.
k > j J '

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



428 L. P. ROTHSCHILD AND D. S. TARTAKOFF

with the convention that Wo^+fc=0 for j+k > d/2—n. We must still show that (4.12)
can be solved with Wa,j a uniformly bounded family. For this we use the following
modification of [7], Theorem 3.6.4.

(4.13) LEMMA. — Suppose that {/a} is a uniformly bounded family of distributions on an
open set Q c= R^ "which is strongly convex for the constant coefficient differential operator
P(D). Then there exists a uniformly bounded family Uy, on Q such that

P(D)^=/,

The proof of Lemma 4.13 is an easy modification of [7], Theorem 3.6.4, where the
result is proved for fixed a.

Now we may complete the proof of Proposition 4.2 by verifying (4.3) and (4.4). For
this, note that since T is bi-invariant, ( — i T)^2 ((p ^ k^) = ( (— i T)^2 (p) ^ ky,. One easily sees
by the definition of k^ ^ that ((- / T)^2 (p) * A^ 2 = °- Hence

S^^-iT^cp^i).

Now

^(S.(p)=^((-^T)d/2(p*^J=TC,(LJ-17I,(-^T)d/2^((p)

=^2 |^| -^'^(LJ-17iJ(p)=^(LJ-17iJ(p), since d / 2 is even,

which proves (4.4).
To prove (4.3) it suffices, by (4.4) and the Plancherel Theorem (3.5), to show that

llTleJL^-^.C^IlH.^CII^^IlH-s,

where H — S denotes the Hilbert Schmidt norm. This follows immediately since
^±1 (La)"1 is bounded on L2. This completes the proof of Proposition 4.2.

5. Proof that S=IL

(5.1) PROPOSITION. — Let kg, be defined as in Proposition 4.2. Then the operator:

S/=(27i0-1 f (-^^(/^Ax, /eQ°(G)
Jp

extends to a bounded operator on L2 and S = II, the orthogonal projection onto the nullspace
ofL.

The proof of Proposition 5.1 requires some preliminaries.

(5.2) LEMMA. - For almost all Xc=[R-{0}, for all feC§>(G),

7C,(IV)=P^CO

\vhere Pg^ 15 the orthogonal projection onto the nullspace o/7ie^(L).

4e SERIE - TOME 15 - 1982 - ?3



RELATIVE FUNDAMENTAL SOLUTIONS 429

Proof. — This is very similar to Goodman [3]. First, it is clear that

Im7c,(n/) c= ker7i,(L)=ker7^(L).

Furthermore, if h e ker L, then Im n^ (h) c= ker TI, (L) and hence n^ (h) = P^TI, (h). Hence it
suffices to show that if g 1 kerL, then lmn^(g) c: (ker 71, (L))1.

Now if g -L ker L, then by the Plancherel formula (3.5),

(5.3) ftr(7i,(/)7i,fe)*)^(?i)=0

for all /e ker L. Let {(p^.} be an orthonormal basis of L2 (HT) such that (p i, cp^, • . . , <PN is a
basis ofker7c+i(L)(whichisoffmite dimension by Grusin[5]),and (p^+ i , (pN+2 . • • • isabasis
of (ker 7i+i(L)) . Then

(5.4) tr(7ij/)7i,te)*)= ̂  (7iJ/)(p, 7r,te)(p,)
1 = 1

for any feL2(G). Let the indices i and j be fixed with l ^ j ^ N and let
c(K) eL1 (R1 -{0}, ^(^)) be arbitrary with support in R^ Then by the second version
of the Plancherel formula define fe^-eL^G) by

fc(?i)8^, l^^N,
^ î 0, f > N .

Then

tr(7lJ/Z,,)7lJg*))=^(7lJ/Z^)(pfe, 7l^)(pfe)=c(^)((p,., 7T,(g)(p,).

By (5.3), since fc^ekerL

c(k)(^K^g)^)du(X)=0.

Since c (^) is arbitrary with support in R+, ((p^, TI^ (^) (pi) === 0 for almost all ^ > 0, all i. The
proof for ^ < 0 is the same, obtained by using a basis adapted to the decomposition
ker 7i -1 (L) + (ker TC -1 (L))1. Hence n^ (g) (pi 1 ker n^ (L) as claimed.

From now on, F will denote a fixed simple contour in C lying in Be.

Q \ r
(5.5) LEMMA. - 71̂  Sa fd^ j = n^(S^f)dai for almost all K e R - {0}.

"r
Proof. - Suppose ^eL^G). Then by the Plancherel Theorem (3.5)

( f S« / d^ g\ = f tr (rrx ( f S, / da^f 71, fe)*) d\i W.
^"r / ^-{O} v ^Jr / /

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



430 L. P. ROTHSCHILD AND D. S. TARTAKOFF

Now let {n>j} be an orthonormal basis for L2^). Then

(5.6) ftr(f7iJS,/)^7i,(^*)^^)=f^ff7tJSj)ria(7i,^^^
J \Jr / J i \Jr /

Now since the infinite sum in the right hand side of (5.6) converges absolutely, by the
dominated convergence theorem:

(5.7) ftrf f n^f)d^(gr}d[iW
j \ jp /

=fftr(7i,(S,/)7i,fe)*)dadn(?i)

= f f tr(^(S,/)7c,fe)^lc)ri^i(X)rfa= f (S,/, g)da
^r^iR-w ^r

= ( [ s j d ^ g ] = (tr(nJ(s^fd^\n,(gr\d^).
\Jr / J \ \J / /

Since g is arbitrary, (3.5) implies

(n^f)d^=nj[sjdai)
Jr \Jr /

for almost all ^ by the Plancherel Theorem. This proves Lemma 5.5.
We may now prove Proposition 5.1. By Lemma 5.2, it suffices to show that

(5.8) ^(S/)=Ps^(/) for (peC?(G).

By Lemma 5.5 and (4.4)

(5.9) TI,(S/)= [ 7iJS,/)^c= [ TC, (LJ-^J/)^.
Jr Jr

Suppose ?i>0. Then from (5.9)

71,(S/)=(271Z)-1 fT^L^Tl^rfa^TiO-1 ('(^(L)-^-1^/)^.

Since zero is an isolated point of the spectrum of 711 (L) by [5],

(2ni)~1 [(^(L^-ar^o^Pi.

A similar argument holds for ^<0. Hence (5.8) is proved.

4" SERIE - TOME 15 - 1982 - ?3



RELATIVE FUNDAMENTAL SOLUTIONS 431

6. Analyticity

In this part we complete the proof of Theorem 1.1 by proving.

(6.1) THEOREM. — The operators K and S constructed above preserve local analyticity.

(6.2) LEMMA. — Let Ma=Ka/, /eCo°(G). Suppose that for any bounded open set Uo in
which f is real analytic and any Vo with compact closure in Uo there exists a constant C such
that

(6.3) ^ sup\DJu^x)\^C^+l\y\\
^ceVo

for all multi-indices y and all | a| =£. Then K and H preserve local analyticity.
Proof. — Suppose/is analytic in Uo. Then since LaKa/=La(/^ ^a)=/,

sup\D^KJ)(x)\^C^+l\y\\
xeV,

and hence

supID7 a-1^/^]^ lal^suplD^K./^I^C'C^-^lyl !
xe^o Jr Jr jceVo

Hence K/is analytic in Vo. The proof for n is the same.
We shall now prove (6.3). For this we shall need the maximal estimate

(6.4) ||X,,X^...X^||^^C(||L^||^+||i;||^)

for all v e Cc° (Uo), some constant C, which may be chosen independent of a, | a | = e. For
each fixed a, | a| small but nonzero, the estimate (6.4) follows from the hypoellipticity [6]
of La and is clearly preserved under sufficiently small changes in a on the circle
| a | =e. Hence (6.4) follows by compactness for some C independent of a.

7. Proof of the uniform estimates on high derivatives

To demonstrate local bounds of the form:

ID^OOI^C1^1?! V P , x e V o

it is sufficient to obtain analogous L2 bounds:

IIDPuJ^^C^^IPI! with VocrcV,
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and, as Nelson has shown, we may use the vector fields X» and T instead of ordinary
partial derivatives. Thus we write X, =X^ X^. . . X,^ (or X' ' ' , abusively, for short) and
shall show the bounds

1|XIT^J^^C2I!+6+1(|I|+^)!

for all I and b, uniformly in a for | a [ ==£. Equivalently, we show:

(7.1) IIXiT^JI^^^C^^^N'1!^

uniformly in a, |a|=e, N, I and b subject to |I |+^ ^ N, since Stirling's formula yields

N^C^N!

What follows is an extension of [16], but we feel much easier to read, to d ^ 2 with
attention given to the dependence of all estimates on a.

Clearly [see the a priori estimate (6.4)], estimating T derivatives is harder than
estimating X derivatives, though one cannot, it appears, do one without the other. To
use (6.4) effectively, we should at each stage try to retain at least d X's in our expressions,
and yet this is no limitation, since high, pure T derivatives can yield the required X's by
use of the commutation relations between the X's (d/2 times) and it is easy to see that if
one has the desired bounds for 111 ^ d, one also has them (with a different constant) for
all smaller I.

To localize high T derivatives is not simple, for [Xj, (p T^] exhibits insufficient gain in
p (at most a gain of 1/2 power, while a whole derivative lands on the localizing
function). One could repeatedly replace X derivatives consumed in this fashion, but to
do so would eventually transfer the/? T-derivatives into derivatives of order I p on (p, and
this will not yield analyticity.

To overcome this obstacle, we introduce a rather complicated (looking) localization of
T1', i. e., a differential operator of order/?, equal to T^ in any open set where (p= 1 and zero
outside the support of (p. First, however, we must pick a new basis for ^i. An analytic
change of coordinates allows us to pick the basis:

X,=X;.=a/^,, ^n,

Xj+^X^o/By^XjS/St, j ^ n,

T=5/Br,

where the Xj still generate ^i, and T generates ^2.

(7.2) DEFINITION. - Let the Xj, T be defined as above. Then let:

(T^=T$= ^ ^^ (X^X^q^X^X^T^-l^l.
'•=IP+yl^ P -^ •
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(7.3) LEMMA. — With T$ defined as above, then modulo C^ terms of the form
(p^DX^/ply! w/u?r6?|P+y|=^

[X;,T$]=0,
[X/.T^CP-^X/.

Proo/. — From (7.2) and the obvious commutation relations [Xj, X/^]=^j terms, each
X'^'^T, where ej is the multi-index of length one whose only non-zero entry is a 1 in the
7'th position,

(7.4)
f_nm

[X;-, T$]= ^ -——— (X;.X'PX"y(p)X /YX"PTP-lp+yl
r - I P + y l ^ p p ' y *

r-ni'i
+ ^ Q , i p^X^X^q^X^X^-^-1'3-^'.

/•=|p+y|^ P - y •

Note that in the second sum, r ^ 1, since for r=0, all Pj=0. But each term in the first
sum, except those with r=p, is cancelled by a term in the second; a term in the first with
P=Po, y=yo is cancelled by a term in the second when P=po+^j, y=Yo unless
| PQ+YQ|=^. Only terms from the first sum with r=p remain, and there are fewer than
(2 nY of them.

For the second part of the Lemma, a similar cancellation takes place (with a shift of the
y index this time), the change of sign coming not from the power of — 1, as it did with a
shift of P, but from the observation that [X/, X'VX^F] consists of jj terms each
X / Y ~^X / / p [Xy, X}] and [Xy, X}]=-T. The more significant difference, however, is
that in the first term in (7.4) the extra X} sits beside the other X' derivatives on (p, with
X}' it will be on the extreme left, while the others will sit beside (p. Thus what was
literal cancellation for the first part of the Lemma will be a commutator here. To be
precise:

f _ n l P l
[X^T^ Z L^L^xyx'PX'^X^X^T0

I P + Y l - P p" y '

f-niPi
+ Z R t t (XyX^X^q^X^X'PT^-lP^l

r=|P+Y|^-l P • Y •

r-n'Pi
- Z y/ ^ / , (X^X^q^X^-^X^T^-l^-^/ •= ip+Y i^p p - y •

The last term may be rewritten, replacing y—ej by y, noting that this term is missing when
r=0 (since then all jj are zero):

f_nl3l
^ v / (X^X^q^X^X^T^lP^l

r=|(3+y|^-l P - V •
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so that we have:
f-nlPI[xy, T$] = ^ —— (xy X'P x^ cp) x^ X-P

I P + Y l = P p!^

+ ^ ^^'([xy, X^X'^X^X^T^'^I
r= |p+y |^p- l P.'?!

The first term above is the same type of error term as was discussed in proving the first
part of the Lemma,. . The second term above may be written as:

(_.niPl
E o , , p^x^-^x^T^x^x^-^-'^p^i^oxy

r=| P+y|=p- l
f _ l ) I P I

Z -—4-(x/px/ /yT(p)x /yx / /PTP- l- lp+Y l oxy
r=|p+7|^-l P • Y •

(replacing p-^ by P). But this last is nothing but (T^"1)^ ° X/.
Let N be fixed for now. We nest [[log2 NH open sets:

Vi=Wo c: c Wi c c ... c c W([IO^N]]=UO

(where [[log2 N]] denotes the integral part of logz N), and choose functions \|/,, (p -̂, and ^
in Cgo(WJ+l) with \|/;=1 near W -̂, (pj=l near supp v|/y, and /j=l near suppcp^- with
specified bounds on their derivatives up to order 2N; where

N,=N/2-7.

Namely, we choose the Wy in such a way that if ^=dist(Vi, US01""), then
^=dist(W,, Wjrlp)=^/2J+l. Then the \(/,, (p, and ^ may be chosen (cf. [16]) so that

l^^^orx,)!^^^-1)'^^' if |Y|^2N,

with K independent of N (but depending on Vi and Uo). These families of cut-off
functions are just dilations of those introduced by Ehrenpreis and used by Hormander,
Andersson, and others.

Since \|/o = 1 in Vi (= Wo), for a + b less than No but a > d, we estimate

I I X01^"!^) ^ HX^oX^T^I^
and use the a priori estimate (6.4) on this. On the right there will be fewer X's:

(7.5) PROPOSITION. — There exists a constant C depending on f but independent o/a, | a | = e
and N so that if a-\-b ̂  No,

l|XflTb^||^^/N§+^CN°?l)NO(l+ supremum IIX '̂uJ^^ /N '̂).
d'+b'^^

d'^d
b'-b^(a-d')/2
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Proof. — Using (6.4) we have

(7.6) HX^oX^T^J^ ^CaiL^oX0-^^ +||v|/oXf l-dTbuJ|^)

^Cdlvl/oX^-^T^LaMj^+llvl/oX^-^T^all^

+ E (ci+criaDHtX^vl/oX-^T^JI^).
| I | = d

Here we have written (non-uniquely)

(7.7) L,= ^ (ciXi+craXi)

with constants c\ and Ci". Next

[X', vl/oX'-^p^, vMX^+vMX', X0-^

consists of terms of the form X^vl/oX0"1"1 (i < d, one for eachi) arising from the first term
on the right above and at most d times a—d terms vj/oX0"2 T from the second. To avoid
constantly commuting X's to the left, we note that for i < d:

d-l

||X lvl/oXf l- lTftu«||^^||Xdv|/oXa-dTfcuJ|^+ ^ IIX^oX^-1^!^.
j=o

Thus we may generalize (7.6) to:

(7.8) ^ IIX^oX—T^JI^ ^ Cdlvl/oX-^T^/l^
i ^ d

+ ^ IIX^X^-^T^II^+^a-^ ^ IIX'vl/oX0-1-2^^^!^)
i < d i ^ d

with a new constant C (depending on d, but uniform in |a|=e), and now X6 may denbte
any Xi with 111 ^ e.

We iterate this process (with a replaced by a— 1, \|/o by v|/o, or with a by a— 2 and & by
&4-1) on each term which still has at least d+1 X's, [except the first term, of course, since
once a term contains / (x), there is no need to iterate further]. One type of term, after
a iterations, will be (bounded by)

Ca(a-d)k ^ IIX'vl/PX^-^T^Mall^i
i ^ d

for some fc, r with a — r — 2 k ^ d , and there will be at most (Id-h'l)0 such terms.
The other terms will all contain/. These, again at most (2d)a of them, will be of the

form

C^a-^llvl/yx0-'-^-"^^/!^.
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In view of the bounds on derivatives of \|/o, and the real analyticity o f / inUo, then,
(7.8) yields:

S ll Y1 ilr Y0" l T^ 1 1 II|| A \|/()A 1 MJ|^2
^

(7.9) ^C- supremum ak{K^lY^\\Xd•^l'+ku^\
0^a-2k-r=d '^d pp T o /

+C asupremum^(K^- l) rN^K}- r- / c-d + & + l(a-r-^-^+^?)!
Ik+r-^a-d

(The value of C, it should be clear by now, will change from estimate to estimate, but
remain uniform in oc, |oc| =e and independent of a, b and N as well as /:) This leads
quickly to (7.5) since in the first term on the right in (7.9) we may observe that
a^NoNo^ ^ No^-0-' ̂  No^-^ if ^=a-r-2<and for the second term on the
right in (7.9) we use ak^ro(a-r-k-d-^b)! No0"^ ̂ +r+a-r-d+b-a-b ̂  ^ ^^
strings of constants that build up, C^K/ for the first term in (7.9) and
CaYJ}^~r~k~d+b+l for the second, are both bounded by C^° for a suitable new constant
uniform in a, | a | = c, a, fc, and N.

For d ' < d, further iterations of this type will be useless in proving analyticity, since
effective use of (6.4) requires essentially the presence of at least d X's. Using (7.2),
however, we may continue profitably. For we have:

(7-1 0) ll^'^^llL^supp.^llX^Ta^ll^

since (po= 1 near supp\|/o, so (T^^T^ in supp v|/o.

(7.11) PROPOSITION. — There exists a constant C depending on f but not on a, | a | = £ or N
so that ifa+b ̂  No:

supremum || X^' T6' ̂  ||̂  J^'
d ' ^ d

6'+^No
0 ^ b ' - b ^ ( a - d ' ) / 2

^CN"(^o l)NO(l+ supremum H X 0 " ^ ] ! . /N^")
a"^b+d+(a-d'),: L(supp(pJ

Proof. - Since X^= -X^, integration by parts allows us to improve (6.4) by including
terms with fewer X derivations on the left:

(^ Z ||X^||^C(||L,F||^+ IMI^), FeCo-(Uo).
d'-^d

If we apply this to v=(rTb')^u^ we obtain, uniformly in a,

(7.12) ^ l|X^(T^uJ|,^C(||L,(T^uJ|^+||(Ta^JI,J
d^d

^C(||(T('^/||^+||[L„(Ti'')J«J|^+||(Ti••^«J|^).
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The commutator may be expanded using Lemma (7.3) and (7.7):

[L,, (T^J = ^ (d + c,' a) [Xi, (T^, ]

and an application of Lemma (7.3) gives:

[XI,(Tb')J=[X^X^...X^(Tb'),J

(7.13) = E X , ^ . . . X,[X,,^ (HJX^... X,,
j=0

=-A ^ X^...X^.(T^- l)^X^,...X^+C fc 'terms ^ V ̂ ^Xd-^-^bl I b ' \
j=0 0 j = o

where A may be 0 or 1, depending on whether X».^ is an X' or an X". We shall assume
that A = 1 below; when it is zero, that term just doesn't appear. Now to continue to use
(6.4) or (6.4)' on the right hand side above we would have to commute all X's to the left
of (T^ ~ ^T^o. This would introduce more terms of the same type, with X's on both
sides. So we choose to estimate generally all divisions of the X's; i. e., we choose to
estimate ^ ||X l(T^/)<pQXd ' - i^J|L2. In doing so, we first attempt to bring all X's to

i ^ d ' ^ d

the left [and then use (7.12)] —the above expansion of the bracket will yield an error which
can be estimated by such a sum (over i ̂  d ' ) but with smaller b\ together with terms free
of T altogether and then of course the right hand side of (7.12) followed by another use
of (7.13). This gives:

(7.14) S IIX^T^X^-^II^C^ S IIX1^-1)^^-1^
i ̂  d ' - ^ d i ̂  d ' ^ d

+ 11(T^/||^+ IKT^JI^+C^' Z \\Xj^b'+l)^d~j~l+b'u^/b'[
j ^ d

We want to iterate this to reduce V still further. But first we must handle the third
term on the right. By the definition;

(T^^'-^T+C^ terms ((p^X^/fo'!)

=2 terms (T^-^X^C^' terms ((p^^X^/h'!).

If we (abusively) now write (po for T (po, X (po, or (po itself, this expansion of(T^)^ allows the
third term in (7.14) to be absorbed by the first and fourth terms (with a new constant):

(7.15) ^ IIXW^X^J^C^ S IIX1^'-1)^'-^!!^
i^d'^d i ^ d ' ^ d

+ll(T^/||,+C^||X^cp^+l)Xd-^- l+fc 'uJ|^/^!)
w

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



438 L. P. ROTHSCHILD AND D. S. TARTAKOFF

Now we may iterate (7.15) by subjecting the first term on the right to (7.15) again, with
b' reduced by one and (po replaced by cpo. After at most V iterations, we obtain C^
terms, each either

(7.16) C^IKT^)^/!!^ or C^C^ \\X3^^ X^-^'-^JI^-k) !
J^d

for some k ^ b ' .
For the first type [in (7.16)] we have ^see Definition (7.2) where we have

|P+y|=r^=y-fe]:

^bl~k}^f=cb'~k terms- each (P(ok+r)XrT6'-^//p !

for some multi-index p with | p|=r, r ^ b ' - k . Since X derivatives of/have the same
type of bounds as ordinary partial-derivations,

| X I T b o / | ^ K 5 0 + I I I + l ( f c o + | I | ) !

in a compact set (despite the coefficients in the X's) we have:

Ck\\{^b~k)^f\\^^Cb' sup (K^o^^N^K^-^-^l/r! ^(CKK.doT^NS
k+r^b'

[recall that r^rk^b' so that (b1-k) \ / r I^C^N^'-^-' for ^^NJ.
Thus we obtain, from (7.16) and the above.

(7.17) ^ IIX^T^^^II^^^KK^o1)^1^
</' ̂  (/

^O'sup ^ ̂ ^'^X^-^'^u^^/^-k) \
k^b' j^d

To bring this last terni into a clearer form we commute ^ ' + l ) to the left and bring it
out of the norm. Since [X7, <'+1)] = a terms, each (p^7 +1 +jt) X '̂', . / ^ j we have:

C^IIX^^^^X^7-1^'-^,!^/^-^!

^C^^sup^rfoT^^Nr1^ IIX^'-^^-^.lboupp^^-fe)!
j ' ^ j

^CNo(K^l)NON&o/+d^|Xd-^-l+b'-tuJ|L2^pp^)/Ndo^

since ^Q+l+j'^i-Jl-l+bf-k/^+d(b/-k)\^eNO i fy+d '^No.
Together with (7.10) and (7.17), this proves Proposition (7.11), since

y-b ̂  ( a - d ' ) / 2 implies d^-V (-f-l-k) ̂  ^ + & + (a - rf')/2.
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Next, we once more reduce X derivatives. Actually, this could all have been done at
once, as in [16], but breaking it down into three stages should render the proof more
readable; this third stage is needed to reduce the total order by half. An application of
(7.5) to the right hand side of(7. l 1 ^ gives:

(7.18) PROPOSITION. — There exists a consTant C depending on f but not on a, | a | =£ or N
so that if a + b ̂  No:

supremum IIX^'uJI^^/N^
d'-^d

b'+d^o
6'-^-^2 ^ C^ (^-' )2NO /I + supremum || X^' T6" u, ||̂ ^ .^/N^^

[ d ' ^ d ° }\ b"={b+d+(a-3d')/2)/2 /

Combining (7.18) with (7.5) gives, for OQ + bo ̂  2 No

(7.19) ||XaoT6o^||^^/N'o+ 'O^CN"? l)3NO(l+ supremum HX-T^J /N^Q
0 a^+bi^d+{cio+bo)/2

Actually, one calculates a^ -h^ ^(2^o+flo+3^)/4, but ^+(flo+^o)/2 will suffice.
(7.20) PROPOSITION. — There exists a constant C, depending on f but not on a, | a | =e or N
such that for j^[[\og^ N]] and for a^ + bj^ 2 N^.:

II^^M^w/^

^^N,(^-i)3N,(i+ supremum IIX^-T^.uJI /N":^-).
a,^+b^^d+(a,+b,)/2 L v • • ' + • )

Proq/: — Exactly the same proof as the proof of (7.19) applies, everything starting with
aj, bj, Wj, N^ dj, etc. instead of ao, bo. Wo, No, do, etc.

If we now start with ao+fco ^ N and apply (7.20) repeatedly, we obtain:

supremumllX^T^MjiL^w^/N^o^'^C^^o^^^l+C^^^^^l+C^^ ..
G O + ^ O ^ N O

+(l+C2(((d(ilo^^])3["^Nl]sup^emum||XaT!'MJ|^(u„))...)
a+b<2d+l

^ (2 C)^ n (d] 1 )3NY1 + supremum || X- T" u, ||^(u.)\,
I a+b^2d+l f
\ |a|=e /

since (. . . ((((ao + fco)/2 + d ) / 2 + d)/2 + d ) . . . )/2 + d ̂  2 rf +1 after [[log2 NoB iterations.
Only in this last line does a supremum over a, [ a | = e enter. Now S N^ 2 N and we

also have the bound:

n^1)3^^
since n (2-7) { / 2 J ^ C. The supremum over | a | = £ and a -h b ̂  2 ri of || X° T^ Ma||L2 (u ) is easily
seen to be finite in view of the uniform boundedness of the fe, (see the definition following
Lemma 4.1), and this finishes the proof of (7.1).
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