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INFINITESIMAL BLASCHKE CONJECTURES
ON PROJECTIVE SPACES

By Cuiaki TSUKAMOTO

1. Let M be a closed smooth manifold. A Riemannian metric g on M is called a C;-metric
if all the geodesics on M are closed and have a common length /. Compact rank one
symmetric spaces are the examples of manifolds of C;-metrics. The standard C, -metric on
the sphere S” is non-trivially deformable (Zoll [11], Guillemin [6]). On the other hand, M.
Berger proved that there exists no C,-metric on the real projective space P"(R) (n=2) other
than the standard one (Besse [3], Appendix D). The purpose of this paper is to study a
deformation of the standard C,-metric on other projective spaces.

Let g,(te(—¢, €), go=g) be a smooth one-parameter family of C,-metrics on M. We set
h=40dg,/0t|,—,. Then for any closed geodesic y with respect to the metric g, we have:

(1.1) j:hw(s), 1(5))ds=0,

where we parametrized y by its arc-length s and denoted by y(s) its tangent vector at vy (s)
(Michel [9], Besse [3], 5.86). If the family g, is trivial, i.e., there exists a smooth one-
parameter family @, of diffcomorphisms satisfying g, = ¢} g, then h is a Lie derivative of the
metric g by some vector field X(h=L, g).

We give the following definition according to Besse [3].

DEerFiniTION 1. 1. — A symmetric covariant 2-tensor h on a manifold M with a C_-metric g is
called an infinitesimal C -deformation if the condition (1.1) holds for any geodesic y. We
say the infinitesimal Blaschke conjecture (I.B.C.) holds for (M, g) when every infinitesimal C -
deformation h is trivial, i.e., there exists some vector field X satisfying h=Ly g. .

Let (P",g,)(n=2) be one of the projective spaces P"(R), P"(C), P"(H) and P?(Ca)(n=2)
with the standard C,-metric. We denote by P! the projective line over the same field of P"
[for P?(Ca), P!=88]. R. Michel gave in [9] a sufficient condition for an infinitesimal C,-
deformation of (P”, g,) to be trivial.

THEOREM 1.2. — Let h be an infinitesimal C -deformation of (P",g,). Suppose that for any
totally geodesic imbedding 1 : P' — P" there exists a vector field X on P! satisfying:

(1.2) h=Ly1*g,.
Then there exists a vector field X on P" satisfying h=Lgg,.
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340 C. TSUKAMOTO

Especially, in case of P"(R)(n=2), the condition (1. 1) implys the existence of a vector field
X satisfying (1.2). Thus Michel proved:

THEOREM 1.3. — The I.B.C. holds for (P"(R), g,) (n=2).

See Besse [3] for another proof of Theorem 1.3.  We notice that K. Kiyohara gave in the
recent work [8] another sufficient condition. Hereplaced (1.2) by a conformality condition.

Now we state our main Theorem.

THEOREM 1.4. — The 1.B.C. holds for any (P", g,) (n=2).

N. Tanaka comments in [8] that the I.B.C. for (P", g,) implys the analytic non-
deformability of the C,-metric g,. See also Michel [9]. Therefore we have:

TueoreM 1.5. — Let g,[te(—¢, €)] be a one-parameter family of C -metric on P"(n=2)
around the standard C -metric which is analytic with respect to t. Then there exists a one-
parameter Sfamily o, of diffeomorphisms of P" satisfying g,= ¢ g,.

It seems that P"(C), P"(H)(1n=2) and P?(Ca) admit few C,-metrics. But the rigidity or
the smooth non-deformability of the standard C, -metric is still in question.

We can reduce Theorem 1.4 to the case P"=P?(C), using Theorém 1.2. Our program
is as follows: section 2 is devoted to the general theory on compact rank one symmetric
spaces. In section 3, we prove that the 1.B.C. holds for (P?(C), g,) and we give the proof of
Theorem 1.4 in the last section.

The auther would like to express his sincere thanks to Dr. K. Sugahara on his indication of
Calabi’s work and also to Mr. K. Kiyohara whose work stimulated his interest and was of
great help to this paper.

2. We always assume the smoothness of class C®. The spaces of functions, vector fields
and symmetric covariant 2-tensors on a manifold M are denoted by F (M), X (M) and S? (M),
respectively.

Let a Riemannian manifold (M, g) be a C,-manifold. Then the geodesic flow on the unit
tangent bundle UM is a free S'-action. Therefore Geod M, the set of oriented closed
geodesics on M, naturally has a manifold structure.

For a C_ -manifold (M, g) we define linear mappings: -

L: XM)>S$2(M) and A: S*(M)- F(Geod M)
by:
LX)=Lyg [XeXM)],

A(h)(Y)=(1/1t)r h(y(s), ¥(s))ds  [heS*(M), yeGeod M].
0

In general Im L is included in Ker A, and the I.B.C. holds for (M, g) if Im L=Ker A.
Further we define linear mappings:

i: S$M)>F(@UM) and P: F(UM)- F(Geod M)

4° SERIE — TOME 14 — 1981 — N° 3



INFINITESIMAL BLASCHKE CONJECTURES ON PROJECTIVE SPACES 341

i(h)(x)=h(x,x) [heS*(M), xe UM],

P(f)(v)=(1/n)ﬂf(‘¥(8))ds [f eF(UM), yeGeod M].

Then the mapping i is injective and wehave A=Poi. Thel.B.C.for (M, g)holdsifand only
ifIm(icL)=Imin Ker P. Notice that this relation is unchanged as we complexify all the
spaces and mappings. In the following we always assume that linear spaces and modules
are over the complex number field C and that mappings are C-linear. For example X (M)
denotes the space of complex valued vector fields. Ker L is the complexification of the space
of Killing vector fields with respect to the metric g.

Let (M, g) be a compact rank one symetric space. We can choose a compact connected
Lie group G acting transitively on M as isometries and also transitivelyon UM. We denote
the isotropy group at a point o€ M by K and the isotropy group at a point v,€ UM, by
H. The group G also acts transitively on Geod M. We denote the isotropy group at a
geodesic y,eGeodM that is tangent to v, by L. We get M=G/K, UM=G/H,
GeodM=G/L, LnK=H and L/Hxy,=S"

LemMA 2.1. — Let I(t) be a one-parameter subgroup of L such that the curve I(t). ohas a
tangent vector v, at t=0. Then we have y,(t)=I(t). 0, where t is the arc-length.
Proof. — Asacurve, I(t). o coincides with y,, and its tangent vector [(t), v, is a unit vector.
: QED.

The spaces X (M), S2 (M), F (UM) and F (Geod M) are G-modules in the usual way, and it
is easy to verify that the mappings L, A, i and P are G-homomorphisms. The G-modules
X (M) and S?(M) have natural G-invariant inner products induced by the Riemannian
metric g. We regard F(UM) and F(Geod M) as G-submodules of F(G) as follows:

F(UM)={feF(G);f(gh)=f(9), 9G, heH},
F(GeodM)={feF(G); f(gl)=/(g9), geG, leL}.

We define an inner product on F (G), using a normalized Haar measure dg on G, by:

<f1,f2>=Lf1(g)f2@dg Uf1. /,€F(G)],

which induces G-invariant inner products on F(UM) and F(Geod M). The following
Lemma is easy to verify in view of Lemma 2.1.

Lemma 2.2. — Using a normalized Haar measure dl on L, the G-homomorphism P is
expressed as follows:

P(f)(g)=£f(gl)dl [feF(UM), geGl.

ProposITION 2.3. — The G-homomorphism P is an orthogonal projection of F(UM) onto
F(GeodM). ’
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342 C. TSUKAMOTO

—Proof. — Itis easy to see that P2=P and Im P=F (Geod M). And P* =P is easily verified
from Lemma 2.2. B

QED.

We denote the pre-Hilbert spaces X (M), S?(M)and F (UM) by H,, H, and H;. We will
consider an irreducible decomposition of H; as a G-module (for i=1, 2, 3).
For an irreducible G-module (p, V,) we define a G-homomorphism

L. V,®Homg(V,, H;) - H,; (i=1,2,3)
by:

L, {(V®®)=d(v) [veV,, ®eHomg(V,, Hl

Then 1, ; is injective and Im 1, ;, denoted by I'
(p, V,). - ; ,
We denote by V; the complexification of TM,, the tangent space at o, considered as a K-
module, and also by V, the K-module S? V¥.
For a K-module (pg, Vi) we defiote by C* (G, K; Vi) the G-module of V-valued

functions f on G satisfying:
flgk)y=pc(k™') f(g) [keK, geGl.

Then the G-module H; is isomorphic to C* (G, K; V,) (i=1, 2). By Frobenius’ reciprocity
law Homg (V,, C* (G, K; V,)) is canonically isomorphic to Homy (Vp, V). In the same
way the G-module H; is isomorphic to C* (G, H; C), where C is considered as a trivial H-
module, and Homg (V,, C* (G, H; C)) is canonically isomorphic to Homy(V,, C). We
notice that Homy (V,, V;)(i=1, 2) and Homy (V,, C) are finite dimensional. Thus we get:

o is », i» depends only on the equivalence class of

PROPOSITION 2.4. — The G-module T, ;is finite dimensional (i=1, 2, 3),and T, , is a direct
sum of dim Homy (V, V,)-copies of V.. '

If two irreducible G-modules (p, V,) and (p’, V) are not isomorphic, I', ; and T, ; are
orthogonal. We denote by I the set of equivalence classes of irreducible G-modules.

ProposiTioN 2.5. — 3T, ;([pl€l;) is dense in H;(i=1, 2, 3).

Proof. — Take a G-invariant elliptic differential operator D; : H; - H;." We denote by
E, ; the eigenspace of D; with an eigenvalue A. Then ) E, ;i$ dense in H;. Since E, ;is
finite dimensional and G-invariant, E, ; is a direct sum of irreducible G-
submodules. Therefore ) E; ;,=)'T, ;.

QED.

We remark that we can take L*L as D,. For the detail and the proof of the following
Proposition we refer to Berger-Ebin [1].

" 'ProposiTiON 2.6. — Im L is closed in H,.

ProposiTioN 2.7. — Y L(T, ;) ([p]€ I;) is dense in Im L.

Proof. — We set S=)T, ,([plel;) and K=ImL. We denote by H, and K the
completions of (H;, ( , Y)and (K, < , >). We define an inner product (X , >> on K by
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INFINITESIMAL BLASCHKE CONJECTURES ON PROJECTIVE SPACES 343

K%,y >>=<(x, y>+{L*x, L*y) and denote by K’ the completion of (K, <{ , >>). K’
is included in K and L* can be extended to a mapping from K’ to f,.

It suffices to prove that L(S) is dense in (K’, (¢ , »>). Let L(S)* be the orthogonal
complement of L(S)in (K’, {{ , >»). Let xeL(S)*. We have forV yeS:

0=<{(x, Ly>>¥<x, Ly>+{L*x, L*Ly)=(L*x, y+L*Ly>.

Since S is the direct sum of eigenspaces of L* L, the set { y+L*Ly; y€eS} is also dense in
H,. Therefore L*x=0 and forV zeH,, we have:

{Lz,x>>={Lz,x)+{(L*Lz, L*¥*x>={z, L*x)>=0.
It means x L K, i.e., x=0. QED.
The next Lemma and Proposition are easily seen.
Lemma 2.8. — The mapping i is a homeomérphism (into).

ProrositioN 2.9. — (a) Im (ioL) is closed in Imi;
(b) Y. (ioL)(T, ;)([plels) is dense in Im(ioL);
() Yi(T, 1) ([plel;) is dense in Imi.

We notice that L(I", )<=, ,, (ieL)(T, )<i(T, ;)=l, 3 and i([, ,)=IminT, ;.
Proposition 2.10. — Zi(l“p, ») N Ker P([plel;) is dense in Im i n Ker P.

Proof. — i(I', ,)is finite dimensional and hence we can define an orthogonal projection P,
ofImiontoi(’, ,). Since feIm iis approximated by a sum of P, f; it suffices to show that
if feIlminKerP, then P, feKer P. But since P is continuous and P(T", ;)=T, 5 for

V [plels, PP, fand P(f—P, f) are orthogonal. " QED.

ProrosiTION 2. 11. — The 1.B.C. holds for a compact rank one symmetric space (M, g), if and
only if for every [p]€l; we have (ioL)(T', ;)=i(T', ;) nKer P(<T, 3).

Proof. — Both Im (ioL) and Im i n Ker P are closed in Im i. If the above condition
holds, then they include a dense subspace in common and hence they coincide.

A  G-submodule W of TI,; can be written as a direct sum of
Im ®(®eHomg(V,, H;)). When mindependent elements of Homg (V,, H;) are needed to
express W, we say the G-module W has a multiplicity m. Thus we can verify the 1.B.C. by
computing the multiplicities of (ioL)(I', ;) and i(I', ,) » Ker P. Since Ker L is a finite
dimensional G-submodule of H;, we have Ker L_=Z KerLnT, ,([plels), and we can
compute the multiplicity of (io L)(I', ;) from Proposition2.4. To compute the multiplicity
of i(l, ;)nKerP we will characterize the elements ®eHomg(V,,H;) for which
Im®ci(l, ,)nKerP. ,

We fix a G-invariant inner product on V. Then Hom,, (V,, C) is isomorphic to V}, the
space of H-invariant vectors in V, by:

Visw—¥,eHomy(V,, C); ¥,0)=<v,w) [veV,].

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



344 C. TSUKAMOTO

As we have mentioned, Homg (V,, H;) is canonically isomorphic to Homy (V,, C),s0is to
V. We have explicitly:

» Visw®,eHomg (V,, Hy);
®,)(@g)=", (@ Ho)=<{plg Ho,wd>=<Cv, p(g)w)> [veV,, geGl].

First we seek the condition for Im ®,<i(T, ,)(we V).

DerFiniTiON 2. 12. — A function on a standard sphere S"= { xeR"* 1 | x| =1} is called of
degree 2 if and only if it is expressed as the restriction of a homogeneous polynomial of degree
2. A function f on UM is called of degree 2 at xe M if and only if f|y_is of degree 2.

Obviously feF(UM) is contained in Im i if and only if f is of degree 2 at V xeM.

The “‘of degree 2 property has an intrinsic meaning. Let A be the Laplacian on a
standard sphere. Then feF (S")is of degree 2 if and only if f is contained in the sum of
eigenspaces of A with the eigenvalues 0 and 2n+2.

For the standard sphere UM,,, we have a group theoretical characterization, too. Since
UM, is a homogeneous Riemannian manifold K /H, eigenspaces of A are K-modules and so
is the space of functions of degree 2. As we have done for F(UM)=F(G/H), a finite
dimensional K-submodule of F (K /H) can be written as a direct sum of Im ¢ (¢ € Homy (U,,
F(K/H)),[(c,U,)]ely). Thus there exist irreducible K-modules (c;, U;)(1<i<p)and H-
invariant vectors w; ;(#0)in U, (1 £ j<v,) by which the space of functions of degree 2 can be
written as P, (U ), where @, is an element of Homg (U;, F(K/H)) determmed by w;
and some fixed invariant inner product on U;:

@y, ,W(k)=<u, o;(k)w; ;>  [ueU; keK].

ProPOSITION 2.13. — Assume that an irreducible G-module V, has a K-irreducible
t

orthogonal decomposition V,= Y U, where U, is a K-module isomorphic to some U; for

a=1
1<a<s and not isomorphic to any U, for s+1<a=<t. When U, is isomorphic to U,, we
denote by w, ;(1= j<v,) the H-invariant vector in U,, identified with w; ;inU;. ThenIm®,,
(wer,‘) is included in Im i, if and only if w is a linear combination of w,, ;

Proof. — If Im ®,<1Im i, then @, (v) is of degree 2 at 0 =[K] for V veV,. On the other
hand, since g € G induces an isometry between UM, and UM, ,, ®,, (v) is of degree 2 atg.oif
andonlyifg™!.®,(v)=®,(p(g"!)v)is of degree 2 at 0. Thus Im®,<Imiif and only if
®, (v) is of degree 2 at o for Yve V.

Let w, be the orthogonal projection of w on U,. ForueU, and keK we have:
@, W) (k)=<pk™Nu, wy=pk™u, w,> =0, u)k).

Therefore the restriction of @, (u) on UM, isequal to @,, (v). When w,and u do not vanish,
@, (u) is of degree 2 if and only if U, is isomorphic to some U; and w, is a linear combination
of w

a,J

Q.ED.
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We denote by V], the subspace of V} spanned by w,, j-
Next we compute how P acts to @,,(v) (weVy, veV,):

PO, (0)(g)= L%(v)(yl)dhL<v,p(gnw>d1=<v, p(g).ﬁp(l)wdw.

Weset pw= J p(Hwdl. Let V‘,; be the space of L-invariant vectorsin V.  The next Lemma
L

is easily verified.

LEMMA 2.14. — The mapping p is an br’thogonal projection of V& onto V(<= VH).
Since p(9~')v(9€G) span V, for v#0, P®,,(v) vanishes if and only if we Ker p. Thus
Im @, is included in Ker P if and only if w is contained in Ker p.

ProposiTION 2.15. — The multiplicity of i(I", ,) n Ker P is equal to dim (V'p m.I‘(e‘r D).

3. In this section we prove that the I.B.C. holds for (P*(C), g,) by means given in
section 2. Let G=U(n+1) be the group of (n+1)x (n+1) unitary matrices, which acts
on C"*! as linear mappings and on (P"(C), g,) transitively as isometries. The isotropy
groupKat o=[1:0:...:0lisU(1)xU(n). Weset H=A(U(1)xU(1))xU(n—1)and
L=TxU(n—1), where A(U(1)xU(1)) is the diagonal subgroup of U(1)xU(1) and
TcU(2) is a total group given by:

in t
T={[SC,OSt s ];seU(l),teR}.
ssin t scost

Then we have U(P"(C))~G/H and Geod (P" (C)) G/L We take a max1ma1 abellan
subalgebra A of u(n+ 1), the Lie algebra of U(n+1), as follows:

A={diag(uo, 1, ... )i e/~ IR}

We define A;eA*(i=0, 1, ..., n) by A;(diag(po, Ry» - - -5 H,))=H; and take Ay—2A,,
Ai—=Xy ooy Ay —A, as the simple roots of U(n+1) (*). . The highest weight of an

‘

irreducible U (n+1)-module is written as ) fiA,, where f; are integers satisfying
i=0

fozfiz...2f, Thus we can identify Ly, with {(f)eZ"*"; fo=fiZ...2f,}. The

Lie algebra of U(l) x U (n) also includes A as its maximal abelian subalgebra. We take

A=A, ..o, —A, as the simple roots of U(l)xU(n) The highest weight of an

irreducible U (1) x U(n)-module is written as Z g;\;, where g; are integers satlsfymg
i=0

912 ...24, We can identify Iy,).yq With {(g)eZ"*!; g, .. gg,,}.’ We cite the
followinig branching law- from Boerner [4]. : '

(*) We do not include the center part in simple roots.
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346 C. TSUKAMOTO

PropoOSITION 3.1. — An irreducible U(n+ 1)-module with the highest weight Y f;\;
i=0

includes an ir:reducible U (1) x U (n)-submodule with the highest weight Y g, A, if and only if
i=0

n

Y fi= Y giandfi_, 29,2 f;(15i<n). The irreducible U(1)x U (n)-submodule with the
i=o i

=0
highest weight Y g, \; is unique, if it exists.
i=0
Using this Proposition, we can compute dim Homy (V,, V,) in case of P"(C). The K-
module V, is a sum of two irreducible U (1) x U (n)-module with the highest weight A, —2,
and —Ao+X;. By Schur’s Lemma dim Homy (V,, V,)is equal to how many times either of

these irreducible K-module appears in the K-irreducible decomposition of a G-module
V,. We denote the highest weight of an irreducible G-module V, by H. W. (V).

ProposiTiON 3.2. — Homy (V,, V) has the following dimension.

HW. (V,) ‘ dim Homg (V,, V)

hXo—hX,,  h21
hho+A,—(h+1)A,, h=1
(h+1)Ag—X,—1—hA,, h=1
Otherwise

S = =N

The space of Killing vectors on (P"(C), g,) is isbmorphic to su(n+ 1), the semisimple part
of u(n+1), and Ker L is isomorphic to its complexification sl/(n+ 1, C), which is an
irreducible U (n+1)-module with the highest weight 1, —A,,.

ProposiTiON 3.3. — (ieL)(I', ;) has the following multiplicity.

HW. (V,) Multiplicity
h=>2 2
hXo—hA,, =
0 ns h=1 . 1
hio+A;—(h+1)A,, h>1 1
(h+1DAo—A,_1—hA,, h=>1 1
Otherwise 0

‘Next we investigate the subspace VI‘, and the operator p. We identify the hermitian
vector space TM, with C'={z=(z,, ..., z,); z;€C}, where we assume that the

hermitian inner product on C" is given by { a, b >= Y a; b; (a, beC"). Then

i=1
UM, =K/L=U(1)x U(n)/A(U(1)xU(1))xU(n—1) is identified with $2"~1={zeC";
Y lz;|*=1}. We notice that K acts unitarily on C" and therefore isometically on S27~
i=1 :
by: - _ _

€/ Uy).z=eV"9U,z [/, Uy)eU(l)x U(n), zeC.
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INFINITESIMAL BLASCHKE CONJECTURES ON PROJECTIVE SPACES 347

The space of homogeneous polynomials of degree 2 on C" is a K-module, which consists of
four irreducible K-modules U; (i=1, 2,3,4)

U1={a Z |Zi|2;aec},
U2={ Y. a;zzj;a;€C, ) aﬁ=0},
i, i=1

j=

U3={
u.={ ;
i J

Their highest weights are 0, A, — A, 2Ao—2A, and —2Ay+ 24, respectively. We notice
that U,>U}¥, U, =2 U¥, U2 U¥ and U,=U}% as K-modules.

Since each U, has a unique A(U (1) x U(1)) x U(n— 1)-invariant vector up to a constant
factor (, which can be verified using Proposition 3.1 again), the submodule of C* (82" 1
isomorphic to some U; consists only of functions of degree 2. Using Proposition 3.1, we
can determine the irreducible U (n+1)-module V, for which V] #{0}.

-

ijei“js

a;:2;2 3 aeCa.-a}

1

1= T.'M=

a”zlz ;> a;;€C, aij=aﬁ}.
1

ProposiTION 3.4. — An irreducible U(n+1)-module V, (n22) which includes a
U (1) x U (n)-submodule isomorphic to some U; has the following highest weight.

HW.(V,) U, included ~ dim V|,
h=0 U, 1
hhg—hA,, h=1 U, U, 2
h=2 U, U, U, U, 4
h=1 U, 1
(et Dho—hpy=hh,, 7 u,. 0, s
h=1 U, 1
hhog+A;—(h+1)A,, h2 Uz; U, )
(h+2)ho—2A,_,—hA,  h22 U, 1
hho+2h —(R+2)A,,  h22 U, 1

And if n=23, we have further the following.

hhg+Ay—Ay_;—hAX, k21 U, 1

The [B.C. holds for (P*(C), go) if and only if dim (V‘pr\ Ker p) is equal to
mult.((ieL)(I, ;)), the multiplicity of (ioL)(I', ), for every [pl€ly,.i. But,
since  dim (VLmKer p)zmult.(ioL)(T', ,)), it is enough to show that
dim (p (V’p))gdim V",—mult.((ioL) (T',.1))- We will check this for n=2. We will freely
use the representation theory, especially, the theorems on the structure of irreducible
modules.  Consult, for example, Humphreys [7].

The linear mapping p is an orthogonal projection of Vl'f onto Vﬁ . We first study the T-
invariant vectors in an irreducible U (2)-module (V, p). We choose the following elements
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in gl(2, C), the complexification of u(2):

ol i e

Then we - have [X, Y]=H, [diag(Xg, A1), X]=(Ao—A;) X and

[diag(Ag, A1), YI=—(Ao—X,)Y. We denote the action of the Lie algebras u(2) and
gl(2, C) on V by p, too. '

A maximal vector v, in (V, p) is a non-zero vector satisfying p(X)v,=0. When the

- highest weight of V is hy Ao +h, A, the vectors v;=p(Y) v, (0<i< hy—h,) form a basis of V

and p(Y)Y* "*'y, vanishes. Each v, is a vector of weight (ho—i) Ao+ (h, +i)L,. Since

p(diag (X, A))v;=(hy+h,) Lo, for each i, we have p(diag(X, A))v=(ho+h;) v for V veV.

ProrosiTioN 3.5. — An irreducible U (2)-module (V, p) contains a non-zero T-invariant
vector if and only if the highest weight of V is of the form h(Ly—A,)(h=0). The T-invariant
vector is unique up to a constant factor and is a linear combination of vectors of weight
h—2k)(Ag—A,) (k=0, 1, ..., h) with non-zero coefficients.

Proof. — A vector ve \ is T-invariant if and only if p(diag(A, A))v and p(X—-Y)v
vanish. For a non-zero vector v,p (diag (A, A)) v vanishes if and only if the highest weight of

V is of the form h(A,—A;)(h=0). Now assume that V has the highest weight
2h

Ch(ho—X,;). Wesetv= y a,v;, where {v;0=<i<2h} is a basis of V given ahead. From
i=0
the formula:

pPX)oi=pX)p(Y)viey=p(Y)p(X)t; | +p(X. YDr;
=p(Y)p(X)vi—y +2(h—i+1)v;_y,
one can easily deduce:
pX)v;=iRh—i+1)v;_4 :
pX-=Y)v= 22{: a; {iQh—i+1)v,_;—v;q}
e 2h—-1
=2ha, vy + iZ1 {(i+1)(2h_i)ai+l—ai—1}vi—aZh—IUZh'

Thus pX=Y)v vanishes if and only if a,=a,,_,=0 and
a;_1=({+1)Q2h—i)a;,;(1Zi<2h—1), where the coefficients of a;,, do not vanish.
. QED.
We shall describe the structure of an irreducible U (3)-module (V ,, p). We choose in
gl(3, C) elements X;, Y; and H;(i=1, 2, 3), as follows:

010 000 0 o 1
X,=[00 0|, X,=1[00 1], X;=1[00 0],
00 0] 00 0 000

Y, =X, (i=1,2,3) (the transpose),
H,=[X,Y] (i=1,2,3).
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We denote the action of the Lie algebra g/(3, C) and the universal enveloping algebra

U (gl(3, C)) on V, by p, too. We conventionally set U°=1 and U'=0 (1<0) for
Uegl(3, C).

We denote the highest weight of V by A and fix a maximal vector v, , which is a non-zero
vector satisfying p(X;)v,=0(i=1, 2, 3). When A(H,)=r and A(H,)=s, p(Y;*!)v, and
p(Yi* "Jv, vanish. We set v; ; ,=p(YiY{Y%)v,, which is a vector of wieght

—i(ho—Ay)—j(As —A;y)—k (Ao —2,)if it does not vanish. The module V , is spanned by
the vectors v; ; , for non-negative integers i, j and k.

Lemma 3.6. — [Y,, Yi]=Y5, [Yy, Ya]=[Y,, Y5]=0.

Lemma 3.7. — Y3YP=Y ,Cim!/(m—n+i)! YT "" Y5 Y57}, where the summation is
taken over the integers i for which YT~ "*'Y, Y3~ does not vanish.

Proof. — We first prove [Y,, YTl=m YT 'Y, by induction:
[V, YPH ) =[Y,, YPY, +YP[Y,, Y, =m YT Y, Y, + YT Y =(m+1) Y] Ys.

Therefore we have Y, Yr=mY7 ' Y;+Y7Y,. We prove the Lemma by induction on n:

m!
n+lvym__ T  yym-—n+i n—i
YirlYr=vY,.5,C:. = n+)'Y Yiy?
!
=Z C W_r':l+_l)'{(m n+l)Y'" n+i— IY +Ym n+tY2}YzYm i
m!
— C Ym n+i—1vwi n— l+l
L nmnri—1)] YaYs
+ Z C m! Ym n+iYi+1 Yn—i
0=<i (m n+l)' 2 3
m!

=Z C.. (n+l)+1Yz Y(n+1) i

1$n" a (m (n+1)+l)'

m!

+ nCi— Y (n+1)+zY1 Y(n+1) i
é,- Ym—(n+1)+i)!
=Z +1 ;- m' Y (n+1)+zY Y(n+1) l

(m—(n+1)+i)!

QED.
LemMa 3.8. — We have the following identities:

[X,, Y?]={nH, +n(n—1)}Y’1"1,
X1, Y31=0,

X1, Y3l=—nY, Y571,

Xz, Yi1=0,

Xz Y3l={nH, +n(n—1)} Y3,
X5, Yil=nY, Y5 .
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Proof. — Use the induction on n.
LemMma 3.9. — We have the following identities:
PpX)v; j=i(AMH)+j—k—i+ l)vi—l,j;k_kvi,j+l,k—1,
p(X) vy x=i(AMH)—j+1)v; ;o1 ko tkvivy j a1

Proof. — Using Lemma 3.8 and the fact p(X,)v,=0, we get:

p(Xy)v;, I p(X1) p(YiY3 Yg)”/\
=p([Xy, YiIIY:Y5) o+ p(Y{[X;, Y1 Y5) 0,
+p(Y1Y[X,, YaDua+p (YL Y{YE) p (X)) 0,
=iP(H1)”i—1,j, k+i(i_1)vi—l,j, k_kvi,j+1,k—1'
Since v;_ ;4 is a vector of weight A—({i—1)(Ag—2Ay)—j(A s —Ay)—k(ho—2A;) (f v;_ ¢ ;&
does mnot vanish), we have p(H;)v;_, ; ,={AM,)—2G—1)+j—k}v,_y ;, Thus
follows the first identity; the second one can be shown similarly.
A maximal vector of an irreducible U(2)x U(1)-submodule [resp. U(1)x U(2)-
submodule] of V,, is a non-zero vector v which satisfies p(X;)v=0 [resp. p(X;)v=0].
When the highest weight of the submoduleis A, p(Y%) v [resp. p(Y}) v]is a vector of weight
A—i(hg—Ay)[resp. A—i(A; —X,)1(E=0, 1, ..., A(H,)[resp. A(H,)]) and they form a basis of
the irreducible U (2) x U (1)-module [resp. U (1) x U (2)-module].
We now study V‘p and p when the highest weight of V is hAg—hA,, (h+1)Ag—A; —hA,
and (h+2)A,—2A; —h\,, separately.
The case A=h\y—h\, (h=0). — We have A(H,)=A(H,)=h. Since p(Y:*!)v,
vanishes, v; ; , vanishes for j=h+1.

LemMma 3.10. — For non-negative integers i, j and k satisfying i+ k <h and j<h, the vectors
v;, j x are linearly independent.

Proof. — If wv;;, does not vanish, it is a vector of weight
(h—i—k)Ao+(@—j)A +(j+k—h)A,. Thesum of weight spaces of weight pAy+gA; +7h,
satisfying p>0, which we denote by V,, is spanned by v, ;, satisfying i+k=<h and
j=<h. The highest weight of U(1)x U(2)-submodules appearing in the U(1)x U(2)-
irreducible decomposition of V are (t,—t;) Ao+t Ay — 12X, (0=1y, 1, <h) (Lemma 3.1),
and the dimension of each irreducible U (1) x U (2)-submodule is ¢, + ¢, + 1. Therefore the
dimension of V is Y (it +)=(h+ 1)2(h+2)/2, which agrees with the number of

0<t;st,<h

sets of non-negative integers (i, j, k) satisfying i+k<h and j<h.
QED.
In order to determine V5 (L=TxU(1)), it is enough to know maximal vectors of
irreducible U (2) x U(1)-submodules with the highest weights tA,—t A, (¢=0), in view of

Proposition 3.5. From Lemma 3.10, the vectors v; ;,, ,—;—,(0Si<h—t)form a basis of
the weight space of weight t A, —t A, (t20).
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LemMa 3.11. — Let w be a maximal vector in the irreducible U (2) x U (1)-submodule of V ,
with the highest weight tAy—t\, (t=0). Then w is written as:

h—t
w= z AiViite, h—i—t>
i=0
where ay#0 and:
‘ (h—t—i+1) .
= ——q;_ I1<ish-—1t).
=Gty wor (d=ishen
h—t
Proof. — Write down the condition that p(X;). Y a;v; ;4+, 4,—;—, vanishes, using

i=0
Lemma 3.9, and we have the Lemma.
LemMa 3.12. — A maximal vector w in the irreducible U (2) x U (1)-submodule of V , with
the highest weight t Ly —t A, (t =0) is perpendicular to the subspace spanned by v; ;. y_;,
(1=i<h—t) with respect to the invariant inner product on V.

Proof. — A vector in the above subspace is written as p (Y, ) v’, where v’ is a vector of weight
(t+1)Ao—(t+1)A,. Since an irreducible U(2)x U(1)-module with the highest weight
t Ao —t A, does not have the weight space of weight (t + 1) A, — (¢ + V) A, v is perpendicular to
the irreducible U (2) x U (1)-submodule containing w, and so is p(Y,)v'.

QED.

The irreducible U (1) x U(2)-module Uy is included in V for every h (20). Uy is one-
dimensional and each vector in U, is U(1)xU(2)-invariant and therefore
A(U@)xU(1))xU(1)-invariant. A vector u, is contained in U, if and only if u, is
contained in the weight space of weight 0 and p(X,)u, vanishes.

LemMaA 3.13. — A vector uye Uy is written as:

(=1

il

"
Y biv, ;p-;  where b= by (0<Zi<h).
i=0 ‘

“The irreducible U (2)x U(1)-submodule W, of V, with the highest weight O is one-
dimensional and each vector in W, is U(2)x U(1)-invariant and therefore T x U (1)-
invariant.

ProrosiTioN 3.14. — Let u, be a non-zero vector in U, and w, a non-zero vector in
W,. Then {ugy, wy » does not vanish.

Proof. — We have w,=cuy+ a linear combination of v; ; ,_; (1Zi=h), ¢#0, by
Lemmas 3.11 and 3.13. Thus the proposition follows from Lemma 3.12.

The irreducible U (1) x U(2)-module U, isincludedin V for h=2. A maximal vector u,
in Uy, is a vector of weight 24, —2 1, in V which satisfies p(X,)u;=0. We notice that the
vectors v; ; ,-;—, (0Si<h—2) form a basis of the weight space of weight 21, —224,.

LEmMA 3.15. — A maximal vector uye Uy is written as:

ho —1)i(h—i)(h—i—1
‘_Zob,-v,-,i’,,_i_z where bi=( )i(!h(}l:)il)l )bo and by #0.
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A non-zero A(U(1)xU(1))xU(1)-invariant vector in U, is a vector of weight
2ho =2k =2X;—2X;—2(A; —A,) in Us, which is given by p(Y2)u,.

LeEmMMA 3.16:

h—2 2(_1)1
2 =
p(Yz)u;= i;) iTh(h—1) bo vy 142, n—i-2-

ProrosiTioN 3.17. — Let w; be a non-zero T x U (1)-invariant vector in the irreducible
U (2) x U(1)-submodule of V ,with the highest weight 2,y —2\y. Then { p(Y3)us, w; ) does
not vanish and { p(Y3)us, w, » vanishes.

Proof. — We have wy=c p(Y3)u; +a linear combination of v; ;45 p_;-» (1<i<h—2)+a
linear combination of vectors of weight other than 21, —2A,,c#0. Hence{ p(Y3)us, w; >
(=c) does not vanish. Since p(Y3)u; and w, are vectors of weights 214, —2A, and 0,
respectively, { p(Y3)u,, w, > vanishes.

ProrosiTION 3.18. — For anirreducible U (3)-module V , with the highest weight h’Ao—h L,
we have:

zl’ h=0’ 1,
>2, hz2.

dim(P(VIp)){

The case A=(h+1)Ay—A; —hA\, (h=2). — Since A(H,)=h—1, p(Y%)v, vanishes and
therefore v; ; , vanishes for j=h. When v; ; , does not vanish, it is a vector of weight
(h—i—k+D)Ag+G—j—DA +(+k—h)N,. '

LemMMA 3.19. — For non-negative integers i, j and k satisfyingi+k=<h+2and j<h—1, the
vectors v; ;  are linearly independent.

In fact, they form a basis of the sum of weight spaces of weight p Ay + g A, +71 A, satisfying
p= —1. Inparticular, the weight space of weight t A, — t A, (¢ = 1) has as its basis the vectors
Vi ivi-1,n-i—e+1 OSISh—1).

LemMa 3.20. — Let w be a maximal vector in the irreducible U (2) x U (1)-submodule of V ,
with the highest weight thy—tA, (t=1). Then w is written as:

h—t

w= Z AV itt—1, h—i—t+1>
i=0

where: .
b
4= 619

a;_, (I1Zigh—t) and ay#0,

and w is perpendicular to the subspace spanned by v; ;. ,_ p—i—;+1 1SiZh—1t).
LemMa 3.21. — A maximal vector us in the irreducible U (1) x U (2)-submodule U; of 'V, is
written as:
h-2
U= Z bivisy,in-iz2

i=0
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where: :

_(=1)ith—i=1)
bi_ __lT(h_——TbO and bO;éO

LemMa 3.22. — A non-zero A(U (1) x U(1)) x U (1)-invariant vector in U, is a vector of
weight 2hq—2 X, in U,, that is:

h—2 2(_ 1)1
p(Y3)u;= i;)i!(—h_T)bovi, i+1,h—i-1-

ProrositioN 3.23. — Let w, be a non-zero T x U (1)-invariant vector in the irreducible
U (2) x U (1)-submodule of V ,with the highest weight 2Ao—2X,. Then{ p(Y3)us, w; » does
not vanish.

ProrosiTioN 3.24. — For an irreducible U(3)-module V, with the highest weight
(h+1)Ao—A; —h), (h22), we have dim(p(V}))=1.

The case A=(h+2)Ay—2%, —hX, (h=2). — Since A(H,)=h—2, p(Y4~')v, vanishes
and therefore v; ; , vanishes for j=h—1. When v; ; , does not vanish, it is a vector of
weight (h—i—k+2)Xg+({(—j—2)A +(j+k—h)A,.

LeMMA 3.25. — For non-negative integers i, j and k satisfying i+k<h+4 and j<h—2, the
vectors v; ;  are linearly independent.

In fact, they form a basis of the sum of weight spaces of weight p A, +q A, +r A, satisfying
p= —2. Inparticular, the weight space of weight t A, — t A, (t =2) has as its basis the vectors
Viive-2,n—i—1+2 (OSiSh—t).

LEMMA 3.26. — Let w be a maximal vector in the irreducible U (2) x U (1)-submodule of V ,
with the highest weight t.y—t A, (t=2). Then w is written as:

h—t

w= Z AV jv1—2, h—i—t+2
i=0

where:
g h—i+1
=i s) it

(I1Zigh—1t) and ay,#0,

and w is perpendicular to the subspace spanned by the vectors v; ;4,—3 p—i—+2 (1SiSh—1t).

LemMA 3.27. — A maximal vector u in the irreducible U (1) x U (2)-submodule U; of V  is
written as: ’
h=2 1y
Uz = Z biviis i n-i-2 where biz( )
i=0

0 b, and by#0.
A non-zero A(U (1) x U (1)) x U (1)-invariant vector in Uy is a vector of weight 2\o—2 1, in
U,, that is: :

h—2 2 -1 i
p(YDus= ) %bovi, i h—i

i=0
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ProrosiTioN 3.28. — Let wy be a non-zero T x U (1)-invariant vector in the irreducible
U (2) x U (1)-submodule of V ,with the highest weight 2h,—2X,. Then{ p(Y3)us, w3 ) does
not vanish.

ProposiTioN 3.29. — For an irreducible U(3)-module V, with the highest weight
(h+2)ho—2A; —h A, (h22), we have dim(p(V}))=1.

We now study the remaining cases. For an irreducible U (3)-module V ,, the dual vector
space V;; becomes canonically an irreducible U (3)-module and an invariant hermitian inner
product on V, gives an anti-linear isomorphism Ic between V,and V¥. When V  includes
some U (1)x U (2)-module U; listed before, Ic maps U, to a U(1) x U(2)-submodule U#,
which is again isomorphic to some U;. Since Ic(V})=(V¥)" and Ic(V})=(V¥)", we have
Ic(V,)=(V#*)' and dim(p(V}))=dim(p((V¥)')). When V, is an irreducible U (3)-module
with the highest weight pA,+g X, +71,, V¥ is an irreducible U (3)-module with the highest
weight —rAy—gA;—pX,. Thus we have:

ProrosiTion 3.30. — For an irreducible U (3)-module with the highest weight
hhg+Ay—(h+1)A, (h22) or hhg+2A, —(h+2)A, (h22), we have dim (p(V}))=1.
Comparing Proposition 3.4 with Propositions 3.18, 3.24, 3.29 and 3.30, we get:

THEOREM 3.31. — The I.B.C. holds for (P*(C), g,).

4. We now prove Theorem 1.4. It suffices to show:

Tueorem 4.1. — For (P"(C), g,), (P"(H), g,) and (P*(Ca), g,) the 1.B.C. holds.
We start with a preparatory Lemma.

LemMa 4.2. — Let (M, g) and (N, g') be Riemannian manifolds and 1: N — M be a totally
geodesic immersion. If there exists Xe X (M) for he S*>(M) such that Ly g=h, then there
exists X' € X(N) such that Ly. g’ =1*h.

Proof. — The pull back 1* TM have an inner product defined by g and includes TN as a
subbundle. Let X be a section of 1* TM defined by the restriction of X and let X’ be a section
of TN given by the orthogonal projection of X to TN. Since 1 is a totally geodesic
immersion, X’ satisfies the required condition of the Lemma.

QED.

By this Lemma and Theorem 1.2, we can prove that the I.B.C. holds for (P"(C), g,)(n=3)
from Theorem 3.31. Let 1:P!(C)->P"(C) (n=3) be any totally geodesic
imbedding. Then there exist totally geodesic imbeddings 1, :P!(C)— P*(C) and
1,:P?(C) » P"(C) satisfying 1=1,01,. (There exists a projective plane including a given
projective line.)

When heS2(P"(C)) is an infinitesimal C,-deformation of (P*(C), g,), 1¥h is an
infinitesimal C_-deformation of (P*(C), g,), for 1, is totally geodesic. Because the I.B.C.
holds for (P%(C), g,), there exists X e X (P?(C)) such that 1Jh=Lyg,. By Lemma 4.2,
there exists X’ € X (P! (C)) such that Ly, g, =1*¥(1%h)=1*h. Thus from Theorem 1.2, there
exists X e X (P"(C)) such that h=14g,, which implys that the I.B.C. holds. We get:
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ProrositioN 4.3. — The 1.B.C. holds for (P"(C), g,) (n=2).

For (P"(H), go) (n=2) and (P?(Ca), g,) we need a further consideration, which was
indicated by K. Sugahara. We first quote a result known in the projective geometry.

ProposITION 4.4. — Let P" be (P"(H), g,) (n=2) or (P?(Ca), gb):

(a) let1y,1,:S* — P" be totally geodesic imbeddings. Then there exists an isometry & of
P" satisfying 1,=co1,;

(b) there exists a totally geodesic imbedding 1:P?(C) — P";

(¢) for a totally geodesic imbedding 1:S* — P", there exist totally geodesic imbeddings
1,:S? - P%(C) and 1, : P?(C) - P" satisfying 1=1, o1,.

Proof. — For (a) and (b), see Wolf [10]. There exist some totally geodesic imbeddings
1,:82=P!(C)— P%(C)and1,:P?(C)— P"by(b). For a given totally geodesic imbedding ’
1:S? — P, there exists an isometry o satisfying1=co(1,01;). Settingi,=co1,and 1, =1,,
we get the imbeddings needed in (c).

QED.

Next we quote an integrability condition of the equation Ly g =h on a space form obtained
by E. Calabi. Let (X, g) be a space of constant curvature K. For heS?(X) we define a 4-
tensor r, by:

(%, ¥, 2, w)=(V, V. h)(y, w)=(V, V. h) (x, w) =(ViV, h) (y, 2)+(V, V, h) (x, 2)

FK (g% 2)h(y, w)—g (v, 2)h(x, 0) =g (x, w)h(y, 2)+9 (0, W)h(x, 2)},

[x, y, z, we TX,].

One can verify:

LemMMA 4.5. — The tensor ry is curvature-like:

rh(x’ Y, 2, MJ)= _rh(y’ X, Z, lU)= _rh(x, y, w, Z),

rh(x’ y, 2, w)+rh(y, z, X, w)+rh(z, X, Vs w)=0

The next Theorem is stated in Calabi [5], but for a strict proof, see Bérard Bergery-
Bourguignon-Lafontaine [2].

THEOREM 4.6. — Let (S, g,) be a sphere of constant curvature. For heS?(S"), there
exists Xe X (S") satisfying Ly g,=Hh, if and only if r, vanishes on S".

Proof of Theorem4.1. — Let (P", g,,) be any of (P"(H), g,) (n=2) and (P?(Ca), g,). Let
heS?(P") be any infinitesimal C,-deformation of (P", g,) and let 1: P* — P" be any totally
geodesic imbedding of a projective line. If we can prove that 1* h is trivial on P!, we have
done in view of Theorem 1.2. We will prove r.., vanishes on P! (=a sphere of constant
curvature). Since r,., is a curvature-like tensor, r.., vanishes if and only if r., (x, y, X, )
vanishes for any pe P! and x, ye TP,. Let1’:S?> — P! be a totally geodesic imbedding of a
sphere of constant curvature such that the image is tangent to x and yatp.  Since1’is totally
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geodesic, 1"*r,.,, coincides with r,...,, a 4-tensor on S? constructed from (1o1')*h. For the
totally geodesic imbedding 101':S?— P", there exist totally geodesic imbeddings
1,:82 > P?(C) and 1,:P?(C) > P" satisfying 101'=1,01,. By the same reasoning of
Proposition 4.2, (1, 01,)* h=(10V')* h is trivial on S%>. From Theorem 4.6, r ., vanishes
on S? and r,(x, y, X, y) vanishes.

Q.ED.
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