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170 J. LEPOWSKY

1. Introduction

In this paper, we extend certain aspects of semisimple Lie theory to Kac-Moody Lie
algebras, obtaining connections with topology and T| -function identities. These possibly
infinite-dimensional Lie algebras, also called GCM (generalized Cartan matrix) Lie algebras,
were introduced and studied by Kac [15],.(a)-(d) and Moody [22], (a)-(c).

Let 9 be a complex simple Lie algebra. One of the most important Kac-Moody Lie
algebras is the infinite-dimensional complex Lie algebra 9 = 9®c C [^, t~1], where C [t, t~1] is
the commutative algebra of Laurent polynomials in the indeterminate t. (Strictly speaking,
g is the quotient of a certain Kac-Moody Lie algebra by a one-dimensional center.) Let
u^g^CI^]'^, where C^^ denotes the space of polynomials in t without constant
term. The cohomology of the Lie algebra u is determined by Garland in [10], and is used to
"explain" certain MacDonald identities [21], cf. also [11], (a). (Fundamental to the present
paper and to [II], (a) are Kac's [15], (c) and Moody's [22], (c) interpretation of
MacDonald's identities by means of Euclidean Kac-Moody Lie algebras.)

Now the subalgebra g==g(x)l of 9 acts naturally on H*(u). For all 7^0, let Mj be the
number of irreducible g-module components in H^u). Garland observes "empirically"
in [10] that for all 7^0,

(1) Mj=dimH2j(Q.(G), C),

where Q (G) is the loop space of the compact simply connected Lie group G with Lie algebra a
compact real form of 9. (Bott [3], (a) had used Morse theory to compute H* (Q (G), C) and
to show that Q (G) has the homotopy type of a countable CW-complex with only even-
dimensional cells.)

The present paper was motivated by a desire to "understand" Garland's equality (1). We
do this by determining the relative Lie algebra cohomology H*(cj, 9) as a graded vector
space, and by showing that

(2) M,=dimH^(9,9)

(Theorem 9.1). In particular, we find that

(3) H*(9,9)^H*(Q(G),C)

(Theorem 10.4). The plausibility of (3) is explained in paragraph 10.
Formula (2) is a special case of Corollary 6.16, which at the same time generalizes work of

Kostant [16], (c). Specifically, let R be the centralizer of a torus in G, so that G/R is a
typical generalized flag manifold. Let r be the complexified Lie algebra of R, and n a
nilpotent subalgebra of 9 such that r©n is a parabolic subalgebra of 9. For a finite-
dimensional irreducible 9-module V and j^O, let Ny be the number of irreducible r-module
components in H^n, V). Kostant determines the r-module structure of H^n, V) [16], (b)
and proves algebraically [16], (c) that

(4) N^dimH2^,!:).
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GENERALIZED VERMA MODULES 171

Of course, there is a classical isomorphism

H*(g,r)^H*(G/R,C).

For the case in which R is a Cartan subgroup of G, (4) is Bott's "strange equality" [3], (b),
p. 247, which motivated Kostant's papers [16], (b), (c).

Corollary 6.16 is a common generalization of (2) and (4) to all Kac-Moody Lie
algebras. (The GCM of a Kac-Moody Lie algebra is assumed symmetrizable.) In
particular, Garland's equality (1) and Bott's "strange equality" become special cases of the
same phenomenon. The present paper may be viewed as a sequel to [II], (a) in which
Garland's result on the g-module structure of H* (u) and Kostant's result on the r-module
structure of H* (n, V) are simultaneously generalized to all Kac-Moody Lie algebras. This
result from [II], (a) is stated as Theorem 5.5 below. The modules generalizing V are the
standard modules, introduced by Kac.

In [II], (a), a resolution of a standard module in terms of generalized Verma modules is
established (see Theorem 5.1 below), generalizing a weak form of the Bernstein-Gelfand-
Gelfand resolution [2] for finite-dimensional semisimple Lie algebras. This generalized
Verma module resolution is central to the present paper. In Part I below, we set up some
relative homological algebra (cf. also [14]), which enables us to derive from our resolution
both Theorem 5.5 and our generalizations of (2) and (4) {see Corollary 6.16 and the other
results in paragraph 6). For finite-dimensional semisimple Lie algebras, our method
recovers Kostant's result (4), and Bott's "strange equality" in particular, in a new
natural way.

A surprising by-product of our relative-homological approach is a new proof of the
Theorem in [23] on "minimal K-types" for finite-dimensional irreducible representations of
complex semisimple Lie groups regarded as real (see § 7). This homological idea is further
used in [17], (a), (b) to obtain new results and to illuminate some known results in the
representation theory of real semisimple Lie algebras.

Thanks to Kac's classification of the automorphisms of finite order of complex semisimple
Lie algebras [15], (b), we can place formulas (2) and (3) in a context involving much more
general path spaces than Q(G). Part III is devoted to this. Kac shows that the
automorphisms of finite order are described in a certain way by means of the Euclidean Lie
algebras (introduced and studied by Kac [15], (a)-(d) and Moody [22], (a)-(c), which are a
little more general than the Lie algebras 9; see paragraph 8 for an exposition of these results
of Kac. Each such automorphism 6 gives rise to a path space in G which turns out to be
homeomorphic to a quotient Ee(G) of a certain equivariant loop space defined
by 9 (§10). The loop space Q(G) is just Ee(G) for the special case 6=1. Around 1960,
Bott [unpublished] studied these path spaces using Morse theory, showing in particular that
they have only even-dimensional cells. In paragraphs 9-11, we specialize Corollary 6.16 to
Euclidean Lie algebras and note connections, partly conjectural, between relative Lie algebra
cohomology and the spaces Ee(G). In particular, we point out that these spaces are good
analogues for Euclidean Lie algebras of generalized flag manifolds. The fact that Q(G)
behaves like a generalized flag manifold has already been shown by Garland-
Raghunathan [12].

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



172 J. LEPOWSKY

Before I became aware of Bott's unpublished result, H. Samelson and M. Shahshahani
used Morse theory to study intensively the spaces EQ (G) in the situation in which 6 is an
involution. In this case, Ee(G) is a path space attached canonically to the most general
compact simply connected symmetric space. Knowledge of Botfs result then provided the
stimulus to allow 9 to be any automorphism of finite order and to use Kac's paper [15], (b).

Kac's classification of these automorphisms in [15], (fc), fundamental results ofMacDonald
in [21], and Kac's [15], (c) and Moody's [22], (c) Lie algebraic interpretation of
MacDonald's identities lead in another interesting direction: To every automorphism 9 of
finite order of 9 is associated naturally a one-variable specialization of a multivariable
MacDonald identity (§13), in such a way that the formulas ofDyson [27] and MacDonald
for T( (^)dlm9 [ri (q) being Dedekind's eta-function] come from 9 = 1 (§ 14). Many interesting
new identities are produced. Conjectural connections between Ee(G) and the identity
corresponding to 9 are made in Conjecture 10.6 and the subsequent Remark. These
connections are suggested partly by the work of Garland-Raghunathan [12] and
Kostant [16], (c).

By choosing 9 to be Kostant's "principal" automorphism [16], (a), (d) of order equal to the
Coxeter number h of 9, we get new identities for arbitrary positive powers
^^(^(S^). We call the corresponding specialization principal specialization. For
example, principal specialization for 9=sl(n, C) gives a formula for T| (^)"/T| (q"), and
principal specialization for g = 5 o ( 2 n — l , C) gives a formula for T| (^)"/T| (q2). By
choosing 9 to be a certain interesting automorphism of order h +1, we get a formula for
^yankg^^ Outside the case 9=sl(2, C), the identities in paragraphs 16 and 17 all
seem to be new. In particular, we get several new formulas, different from Dy son's [27], for
the generating function T| (q)24' of Ramanujan's T-function. Incidentally, an amusing new
pattern involving what we call "polygonal numbers" emerges when we apply our systematic
specialization procedure to MacDonald's identity for sl(2, C) (which is Jacobi's classical
"9-function identity"). This is explained in paragraph 15, which motivates paragraphs 16
and 17. While the Dyson-MacDonald identities for T| (^)dlm9 are the natural generalizations
of Jacobi's identity forr|(^)3, the identities in paragraphs 16 and 17 are the natural
generalizations ofEuler's formula for T| (q) and Gauss' formula for T| (q)2 /T| (q2), respectively.

In obtaining their formulas for T| (g)'11"19, Dyson and MacDonald invoke the Freudenthal-
de Vries "strange formula" (p, p)=(dimg)/24, where p is half the sum of the positive roots
of g a n d ( . , . ) is the canonical inner product (see [21], p. 95). Analogously, in
paragraphs 16 and 17, we are led to conjecture and prove (by case-checking, unfortunately)
two new, even stranger, formulas in the same spirit as the Freudenthal-de Vries
formula. One of them involves (rank cQ/24 and the other involves the exponents of 9;
seeTh. 16.6 and 17.5.

At several stages in the preparation of this paper, I have profited considerably from
enlightening and stimulating discussions with many people. I would particularly like
to thank R. Bott, W. Dwyer, H. Garland, J. Millson, J. Milnor, H. Samelson,
M. Shahshahani, J. Tits and P. Trauber for their time and interest.

After this work was completed, it came to my attention that the specialization that I use to
prove Theorem 16.5 (which together with the new "strange formula" Theorem 16.6 yields
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GENERALIZED VERMA MODULES 173

the formula for ^(qf^2) had already been used for a different purpose by MacDonald
in [21Lp. 125.

This work was announced in [17], (c). Since the time the preprint of this paper was
circulated in 1977, several uses have been made of the ideas introduced here: The idea of
principal specialization (§ 17) proved to be unexpectedly effective in "unlocking" the
standard modules and in relating them to combinatorics ([19], [9], [17], (d)). These ideas
were used in [15], (d). Principal specialization was further exploited in [20] and its
generalization [28], where the (2, 1, . . . , ^-specialization (§ 16) also turned out to play a key
role. The idea that one can obtain new T|-function identities from Dyson's and
MacDonald's multivariable identities by specializing the exponentials of minus the simple
roots of the corresponding Euclidean Lie algebra to powers of q (Part IV) was also used
in [15], (d). The two new "strange formulas" (Th. 16.6 and 17.5) suggested to me that a
similar "strange formula" might hold more generally whenever the automorphism of finite
order ofgis such that the product side of the associated specialized identity can be written in
the form II,(p (g01) II,(p (^)-1, where (p^)= Tl^i (1-^)- Such "strange formulas"
generalizing 16.6 and 17.5 were in fact obtained by Kac, using ideas of Deligne and
Kazhdan [15], (d), and independently by MacDonald. Using these formulas, Kac [15],
(d) and MacDonald independently generalized Theorems 16.7 and 17.6. The choice of
the exponentials of minus the simple roots of the Euclidean Lie algebra as power series
variables in Dyson's and MacDonald's identities (Part IV), and material in Part IV on
non-principal specializations, were used in [19], pp. 27, 40, 41, 48, 49, to formulate multi-
variable vector partition theorems. The reader is also referred to [17], (e).

PART I
SOME RELATIVE HOMOLOGICAL ALGEBRA

2. Relative homology and cohomology

Part I, which is largely expository (cf. [14]), consists of general material needed in Part II,
as noted in the Introduction.

We shall begin by recalling the resolutions V(b, a, N) discussed in [II], (a), § 1.
Let b be a Lie algebra over a field k, and let a be a subalgebra of b. Let ̂  and ^ be the

universal enveloping algebras of b and a, respectively, and regard ^ as a subalgebra
of ^. We shall identify Lie algebra modules with the corresponding universal enveloping
algebra modules.

For each7'eZ+ (the set of nonnegative integers), thej-th exterior power A^b/a) is an
a-module in a natural way, and we may form the corresponding induced b-module
Dj=^(S^Aj(1b/a). Let V(b, a) be the sequence of b-modules and b-module maps

^2 ^1 GO

. ..-^DI-^DO-^-^O

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



174 . J. LEPOWSKY

constructed in [2], §9. To define dj: Dj -. D,-i O'>0), let ;q, . . . , x,.eb/a, and choose
representatives y ^ , . . . , yjeb. Also, let xe^. Then

j
dj(x®X^ A . . . A Xj)= ̂  (-l)14'1^)®^! A . . . A Xi A . . . A Xj

i= 1

+ ^ (- ly^X®^,, ^] A Xi A . . . A X, A . . . A JC, A . . . A X , ,
^r<s^j

where n:b->b/ais the natural map, and ^ signifies the omission of a symbol. It is easily
checked that dj is independent of the choice of representatives y ^ , . . . , y? and that d- is a
b-module map. The map Co: Do -> k is defined by the condition that £o(fc®l) (be^) be
the constant term of b. Theorem 9.1 of [2] states:

PROPOSITION 2.1. — V (b, a) is an exact sequence.
Remarks. - (1) The complex V (b, 0) is the standard ^-free resolution of the trivial

b-module k.
(2) If 3 is a subalgebra of a and of the center ofb, then clearly V (b/3, 0/3) may be regarded

as a b-module complex which is naturally isomorphic to V(b, a).
Let N be a b-module. Denote by V(b, a, N) the sequence (exact by Proposition 2.1) of

tensor product b-modules and b-module maps
^2®1 ^101 EO®!

. . . — — — — ^ D I ® N — — — — ^ D O ® N — — — — ^ N - ^ O .

Let V'(b,a,N) be the b-module complex obtained by deleting the segment eo—>^
from V(b, a, N).

Let U^ (b, a, N) be the complex obtained from V (b, a, N) by applying the functor fc®^.,
where k is regarded as the trivial right b-module. That is, U^(b, a, N) is the complex

1(8)^201) l(g)((fi®l)

. . . ———^fe®^(Di®N)———^®^(DO®N)-^O.

Let U*(b, a, N) be the complex dual to U^(b, a, N), i.e., the complex

Hom(d2®l,l) Hom(^i®l,l)
...<—————Honit,(Di®N, k)<————Hom^(Do®N, fe)^-0.

Let T: 8S -> 36 be the transpose map of^, i. e., the unique anti-automorphism which is -1
on b. Denote by 1ST the right b-module whose space is N and on which ^ acts by the
formula n. b = T (b). n for all n e N and b e ̂ . The following is clear:

PROPOSITION 2.2. — U^(b, a, N) is naturally isomorphic to the complex
1(8)^2 l®^

. . . —^N^Di —^N^Do -^ 0

and U*(b, a, N) is naturally isomorphic to the dual complex

Hom(^, 1) Hom(di, 1)
. . . <———Hom^Di, N*)<———Horn, (Do, N*) <- 0,

where N* is the b-module contragredient to N.

4e SERIE - TOME 12 - 1979 - N° 2



GENERALIZED VERMA MODULES 175

DEFINITIONS. — Call the homology of U^ (b, a, N) the relative homology of b with respect
to a in W, and denote it by H^(b, a, W). Write H^(b, a, k) as H^(b, a) (where k is
regarded as the trivial module) and call it the relative homology of b with respect to a. Call
the homology of U* (b, a, N) the relative cohomology of b with respect to a in N*, and denote
it by H* (b, a, N*). More generally, if we replace N* by an arbitrary b-module M in the
second complex in Proposition 2.2, the homology of the resulting complex, which we
denote byS*(b ,a ,M) , is called the relative cohomology ofb with respect too in M
and is denoted H*(b, a, M). Note that S*(b, a, N*)^U*(b, a, N). Write H*(b, a, k)
as H*(b, a), and call it the relative cohomology ofh with respect to a.

Remarks. — (1) For each7'eZ+, H^b, a, N*) is naturally isomorphic to the dual vector
space H^.(b, a, NQ*. In particular, H^b, o)^H,(b, a)*.

(2) From Remark (2) after Proposition 2.1, it follows easily that if 3 is a subalgebra of a
and of the center of b, then for allj'eZ+, H,(b, a) is naturally isomorphic to H-(b/3, 0/3),
and hence H^b, a) is naturally isomorphic to I-P(b/3, 0/3).

(3) U^(b, 0, N) is naturally isomorphic to the standard homology complex

.. .^-N^A1 (bAw^A^b) -> 0,

where for all7>0, neW and b^, . . . , bj-eb,
j

8j(n(Sb^ A . . . \bj)= ̂  (-l)j+l(n.bi)®b^ A . . . A b, A . . . A bj
1=1
+ E (-ly'^n®!^,, bj A &i A . . . A b, A . . . A bs A . . . A bp

^r<s^j

and its homology H^ (b, 0, NQ is the homology H^ (b, W) of b in the right b-module W (cf. [5],
p. 282). Analogously, for a b-module M, S*(b, 0, M) is naturally isomorphic to the
standard cohomology complex

82 §i
. . . ̂  Honifc (A1 (b), M) <- Hom^ (A° (b), M) <- 0,

where for all^eZ+./eHomJA^b), M) and &i, . . . . bj+^eb,

(8^i/)(biA ... Ab.^^-ir^./^A ... A ^ A ... Ab,^)
1 = 1

+ Z (-ir^/ab,, bj A bi A ... A b, A . . . A b, A ... A fo^i),
l ^ r<s^ /+ l

and its homology H* (b, 0, M) is the cohomology H* (b, M) of b in M (again cf. [5], p. 282).
In view of the fact that ^OO^A-^b/o) is naturally a b-module quotient of ^(g^A^b) for

eachjeZ+.we see that Hom^O^A-^b/o), M) may be naturally identified with a certain
subspace ofHom^^^feA^b), M), and it is also clear that this identification gives a natural
injection of the complex S*(b, o, M) into the complex S*(b, 0, M). In terms of the
identification of S*(b, 0, M) with the complex indicated in Remark (3) above, S*(b, o, M)
identifies with the subcomplex whose 7-th term is the subspace Hom^A^b/o), M)

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



176 J. LEPOWSKY

ofHom^A-^b^M). [In particular, the maps Sj in Remark (3) preserve this
subcomplex.] This shows:

PROPOSITION 2.3. — For a b-module M, the cohomology H*(b, a, M) defined above is
naturally isomorphic to the classical relative cohomology of b with respect to a in M defined by
Chevalley and Eilenberg in [6], § 28 (cf. also [14], p. 266). In particular, H* (b, a) as defined
above is naturally isomorphic to the classical relative cohomology ofb with respect to a
(see [6], §22).

Remark. — It is clear that H° (b, a, M) is naturally isomorphic to the space ofb-invariants
in M.

Because it will be useful later (see Prop. 3.12,4.3 and 4.7), we shall recall the following
general (Hopf algebra) principle [II], (a), Prop. 1.7:

PROPOSITION 2.4. — Let M be an a-module and N a b-module. Then there is a natural
isomorphism ofb-modules

(^(x)^M)®fcN^®^(M®fcN);

here the left-hand side is the tensor product ofb-modules, and M®^ N on the right is the tensor
product ofa-modules, with N regarded as an a-module by restriction.

3. (b, a)-projective resolutions

Assume that the field k has characteristic zero, and assume that b is a finitely semisimple
a-module (under the adjoint action), i.e., that b is a direct sum of finite-dimensional irre-
ducible a-modules. Define C (b, a) to be the full subcategory of the category of b-modules
consisting of those b-modules which are finitely semisimple under a.

LEMMA 3.1. — The tensor product of two finitely semisimple a-modules is finitely
semisimple. In particular, C(b, a) is closed under the formation of tensor products.

Proof. - This well-known fact for finite-dimensional Lie algebras a of characteristic zero is
easily extended to infinite-dimensional a (cf. for example [18], Lemma 2.1).

Q.E.D.

COROLLARY 3.2. — As an a-module under the natural action, 89 is finitely semisimple.
Proof. — ^ is an a-module quotient of the tensor algebra over b, and this algebra is finitely

semisimple under a by Lemma 3.1.
Q.E.D.

COROLLARY 3.3. — Let Q be a finitely semisimple a-module. Then the induced
b-module ^®^Q is finitely semisimple under a, i.e., it lies in C(b, a).

Proof. - The tensor product a-module ^(x^ Q is finitely semisimple by Lemma 3.1 and
Corollary 3.2, and as an a-module, <^®^Q is a quotient of^^^Q.

Q.E.D.
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GENERALIZED VERMA MODULES 177

DEFINITION. — A module PeC(b, a) is called (b, a)-projective if for every morphism/:
P -^ N in C(b, a) and every surjection g: M -> N in C(b, a), there is a morphism h: P -> M
in C(b, a) such that goh=f.

DEFINITION. - A module FeC(b, a) is called (b, d)-free if there is a finitely semisimple
a-module Q and an a-module map i: Q -> F such that for every MeC(b, a) and every
a-module map/: Q-> M, there is a unique morphism^: F -> M in C(b, a) such
that^oi=/ In this case, F is called a (b, a)-free module generated by Q. If a
(b, a)-free module generated by Q exists, it is clearly uniquely determined up to natural
isomorphism.

Corollary 3.3 and the standard properties of induced modules (see [8], §5.1) imply:

PROPOSITION 3.4. — For every finitely semisimple a-module Q, the (b, a)-free module
generated by Q exists, and it may be realized as the induced b-module ^OO^Q together with
the natural a-module injection i: Q -> ̂ ®^Q taking qeQ to K^q.

Remark. — The terminologies "(b, a)-projective" and "(b, a)-free" are partly justified
by the fact that when we take a=0, C(b, a) becomes the category of ^-modules, the
(b, a)-projective modules are the projective ^-modules (see [5], p. 6), and the (b, a)-free
modules are the free ^-modules; the (b, a)-free module generated by the vector space
(i.e., finitely semisimple a-module) Q is the free ^-module generated by any basis of Q.
But in addition to being generalizations of the classical concepts "projective" and
"free", the present concepts are analogues of the classical ones, as we shall see presently,
by imitating results on projective and free modules in [5], § 1.2 and V.I .

PROPOSITION 3.5. — A (b, a)-free module is (b, a)-projective.
Proof. - Let F be the (b, a)-free module generated by the finitely semisimple a-module Q

and let/: F -> N and g: M -> N be morphisms in C(b, a), with g a surjection. Since M is
finitely semisimple under a, Kerg has an a-module complement Lc= M, and g \ L: L -> M is
an a-module isomorphism. By Proposition 3.4, we may regard Q as an a-submodule
of F. There is clearly an a-module map h': Q -> L such that g oh'=f: Q -^ N. By the
defining property of F, h' extends to a b-module map h: F -> M, and since ̂  o ̂  | Q = /1 Q, we
must have g o h = f.

Q.E.D.

PROPOSITION 3.6. - Every module MeC(b, a) can be embedded in an exact sequence

0-, N-> F-^ M-^ 0

in C(b, a), where F is (b, a)-free.
Proof. - Let F be the (b, a)-free module generated by M, regarded now as a finitely

semisimple a-module. (F exists by Proposition 3.4) We clearly have a b-module
surjection F -> M, and since F is finitely semisimple under a, the kernel of this surjection is a
b-module in C(b, a).

Q.E.D.
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The category C(b, a) is clearly closed under the formation of (not necessarily finite)
direct sums; and by Proposition 3.4, the direct sum of (b, a)-free modules is clearly
(b, a)-free. The following result for (b, a)-projective modules is straightforward
from the definitions, and we omit the proof (cf. [5], Prop. 1.2.1, p. 6):

PROPOSITION 3.7. — A direct sum of modules in C (b, a) is (b, a)-projective if and only if each
summand is (b, a)-projective.

The last three propositions immediately yield the following two characterizations of
(b, a)-projective modules:

PROPOSITION 3.8. — A module in C(b, a) is (b, a)-projective if and only if it is a direct
summand in C(b, a) of a (b, a)-free module.

PROPOSITION 3.9. - A module PeC (b, a) is (b, a)-projective if and only if every exact
sequence

0-^N-^M-^P-^O
in C (b, a) splits.

Let MeC (b, a). A complex over M is a complex

. . . -^X^X^_i -> . . . ^Xo-^0 ,

E

denoted X, in C (b, a), together with a map Xo -> M in C (b, a), called the augmentation, such
that the composition X^-^Xo-^M is zero. X is called (b, a)-projective [respectively,
(b, a)-free] if each Xf is (b, a)-projective [respectively, (b, a)-free]; and X is said to be a
(b, a)-projective [respectively,^, a)-free] resolution ofM if X is (b, a)-projective [respectively,

€

(b, a)-free] and the augmented complex X -> M -> 0 is exact.
Let M'eC(b, a) and let X' be the complex

. . .-^X^X^^...^Xo^O

e'

over M', with augmentation Xo -> M'. Let/: M -> M' be a map in C(b, a). A map F:

X -^ X' of complexes [i.e., a family Fo: Xo -> Xo, Fi: Xi -> Xi, . . . of maps in C(b, a) such
that the usual diagrams commute] is called a map over fit the diagram

F
X -^ X'•i -it f ^
M -> M'

commutes.
Let F, G: X -> X' be two maps [of complexes in C (b, a)]. A homotopy H from F to G is a

family Ho: XQ ->X[, H^: X^ ->X^ ... of maps in C(b, a) such that d[ oHo=Go-Fo:
Xo-^Xo and for all i^l ,

ri;-noH,+H,-io^=G,-F,:X^X;.
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Note that - H is a homotopy from G to F. IfX and X' are complexes over the same module
MeC(b,a), thenX and X' are said to have the same homotopy type if there are
maps F: X -^ X' and G: X' -> X over the identity map of M such that G o F and F o G are
homotopic to the identity maps of X and X', respectively.

Straightforward imitation of the proofs of Propositions V . I . I and V. 1.2 on pp. 76-77
of [5] yields the following two results:

PROPOSITION 3.10. - Let X, X' be (b, a)-projective resolutions of M, M'eC(b, a),
respectively. [More generally, we may suppose that X is a (b, a)-projective complex over M,
and that X' is a complex over M' such that the corresponding augmented complex X' -> M -> 0
is exact.} Letf: M -^ M' be a map in C(b, a). Then there is a map F: X -> X' overf, and
any two such maps are homotopic.

PROPOSITION 3.11. - Every module MeC(b, a) has a (b, a)-free resolution, and in
particular, a (b, a)-projective resolution. Any two (b, aYprojective resolutions of M have the
same homotopy type.

The general Hopf algebra principle, Proposition 2.4, provides us with useful information
about (b, a)-projective resolutions and so on:

PROPOSITION 3.12. - Let M, NeC(b, a), with M (b, a}-free [respectively, (b, a)-pro-
jective]. Then M®N [eC(b, a) by Lemma 3.1] is (b, a)-free [respectively, (b, a)-pro-
jective]. In particular, ifX is a (b, a)-free [respectively, (b, a)-projective] resolution ofM,
then the complex X®N (defined in the obvious way) is a (b, a)-free [respectively,
(b, a)-projective] resolution o/M®N.

Proof. - Propositions 2.4 and 3.4 immediately imply the assertions about (b, a)-free
modules, and Proposition 3.8 now implies the assertions about (b, a)-projective modules.

Q.E.D.

Suppose now that b1 and b2 are Lie algebras over k with subalgebras a1 c b1 and a2 c: b2

acting finitely semisimply on b1 and b2. Take b to be the direct product Lie algebra b1 x b2

and a to be the subalgebra a1 x a2. Then b is finitely semisimple under a, and so all the
above considerations apply to the pair (b, a). Write ̂ 1, ̂ 2, ̂  and ̂ 2 for the universal
enveloping algebras of a1, a2, b1 and b2, respectively.

If M1 is a ^-module (i=l, 2), then we provide M^M2 with the natural b-module
structure given by the rule

(b1, b2). m1 ®m2 = b1. m1 ®m2 + m1 ®fc2. m2

for all b1 e b1 and m1 e M1. Note that M1 ®M2 may be regarded as the ordinary b-module
tensor product of M1 with b-module structure

(b^b^.m^b^m1

and M2 with b-module structure
(b^b^.m^b^m2

(using obvious notation). Analogous comments hold for the tensor product a-module
formed from an c^-module and an c^-module. In particular. Lemma 3.1 implies that
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ifQ1 is a finitely semisimple ^-module (i=l, 2), then Q^Q2 is a finitely semisimple
a-module. Hence if M^eC^1, a1) ( f = = l , 2), then M^M^C^, a).

Let Q1 be an c^-module ( f= l , 2). Then we have a natural b-module isomorphism

^^(Q^Q2)^1®^1)®^2®^^

In particular, the tensor product of a (b1, a^-free module with a (b2, a2)-free module is
(b, a)-free. Hence by Proposition 3.8, the tensor product of a (b1, a^-projective module
with a (b2, a^-projective module is (b, a)-projective.

Let X1, X2 be two complexes of vector spaces (over k), so that X1' ( f= l , 2) is of the form

...-(x%^(xv^...(^(x%-o.

The tensor product Xi^)X2 is defined as usual to be the sequence

.. .-.(X^X^^X^XVi -^... ^(X^X^o-^O,

where for all neZ+ ,
(X^X2)^ [J (X^^X2),

r + s = n

and for all n>0, x1 e(X1), and ^(X2), with r+s=n, we have

d^xl®x2)=(dl\xl®x2+(-lYxl®(d\x2.

X^X2 is clearly a complex. Let

(Z^Ker^^X"),

(i=l, 2; reZ+). Ifz le(Z l), and z2e(Z2Ur, seZ+), then

z1 ®z2 € Ker d^, c (X1 ®X2)^,,

and for all neZ+, we get a well-defined map

^: [J H^X^^H^X^^H^X^X2).
r+s=n

where the symbols H( denote the obvious homologies. It is a standard fact (see for
example [25], p. 228) that ?,„ is a linear isomorphism. Suppose that the complex X1 is
a b'-module complex (i'=l, 2). Then it is clear from the definitions that X^X2 is a
b-module complex and that [in is a b-module map. Hence we have:

PROPOSITION 3.13. — In the above notation, ̂  is a ^-module isomorphism.
Since ^o ls a b-module isomorphism from Ho(X l)®Ho(X2) onto ^(X^X2), we

immediately obtain:
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PROPOSITION 3.14. - Let M'eC (b1, a1), and let X1 be a (b1, a^-free [respectively,
(b1, ^-projective} resolution of M1 in C(b1, a1) (f=l, 2). 77u?n X^X2 15 a (b, a)-/r^
[respectively, (b, a)-pro/^n^] resolution o/M1®]^2 m C(b, a).

4. The functors Tor^ and Tor^0^

Retain the notation and assumptions of paragraph 3.
DEFINITION. - Let M, NeC(b, a), and let X be a (b, cQ-projective resolution of N

{see Prop. 3.11). Write ]vT for the right b-module associated with M as in
paragraph 2. Define Tor^Nf, N) to be the homology of the complex M^^X.

PROPOSITION 4.1. - Tor^M', N) is independent oj'the (b, a)-projective resolution Xused
in its definition, and defines a covariant functor in M and N, with values in the category of
graded vector spaces.

Proof. - Let MeC(b, a), let/: N-^N' be a map in C(b, a), and let X and X' be
(b, a)-projective resolutions of N and N7, respectively. Then by Proposition 3.10, there
is a map F: X-^X' over/, and for any other such map G: X-»X', there is a homo-
topy H from F to G. Applying the functor M^®^ and using the notation of paragraph 3,
we get

(l®^i)o(l®Ho)==l®Go-l®Fo: M^XQ-^M^XO

and for all i ̂  1,

(l®^4-i)o(l®H,)+(l®H,_i)o(l®^):=l®Gf-l®F,: M^X^M^X;.

It is thus clear that 1 ®F and 1 ®G induce the same map from the homology ofM1®^ X to the
homology of M^^X'. Thus there is a natural map, depending only on/, from the
homology of M^®^ X to the homology of Nf®^ X'. If N' = N and/ is the identity, then we
also get a natural map on homology in the reverse direction, and the two maps must be
inverses of each other because the identity map of X and the identity map of X' are maps over
the identity map of N. Thus Tor^'^M', N) is independent of the choice of X, up to natural
isomorphism, and the rest of the proposition is straightforward.

Q.E.D.
Here is the relation between Tor^ and relative homology:

PROPOSITION 4.2. — The relative homology H^(b, a) ofb with respect to a is naturally
isomorphic to Tor^'^k, k), where k is regarded as the trivial (right and left) b-module. Let
MeC(b, a). The relative homology H^(b, a, M1) is naturally isomorphic to Tor^lvP, k).

Proof. — Foreach;eZ+ ,AJ(b/a)isafinitelysemisimplea-module,andso^®^AJ(b/a)is
a (b, a)-free module in C(b, a), by Proposition 3.4. Thus V(b, a), with the segment -^ k
deleted (see §2), is a (b, a)-free, and hence (b, a)-projective, resolution ofk, by
Proposition 2.1. The rest follows from Propositions 2.2 and 4.1, and the definitions.

Q.E.D.
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The "commutativity" of Tor is often proved using double complexes (cf. [5], p. 109). But
because of the general principle Proposition 2.4 (see also Prop. 3.12) available to us, we can
directly prove even more:

PROPOSITION 4.3. - Let M, NeC(b, a). Then there are natural isomorphisms

Tor^lvT, N^Tor^W, M) ^ Tor^fe, M^N^Tor^ftlv^Ny, k),

where k is regarded as the trivial (right or left) b-module.

Proof. — Let X be a (b, a)-projective resolution of k , so that by Proposition 3.12, X(g)M
and X®M®N are (b, a)-projective resolutions of M and M®N, respectively. Now the
complex fe®^ (X(x)M®N) (using obvious notation) is naturally isomorphic to the complex
^OO^XOOMHc/. Prop. 2.2). Hence their homologies are naturally isomorphic, and so we
have a natural isomorphism Tor^ (k, MOON^Tor^N', M), proving the middle
isomorphism in the statement of the proposition. The last isomorphism now follows by
taking M=k, and the first follows from the natural isomorphism M(x)N^N®M.

Q.E.D.
The last two results give:

COROLLARY 4.4. - For all NeC(b, a), H^b.a.NO is naturally isomorphic to
Tor^fe.N). More generally, for all M, NeC(b, a), H^(b, a,(M®Ny) is naturally
isomorphic to Tor^M', N).

Let c be a Lie subalgebra of b such that b=a©c as a vector space, and write ^ for the
corresponding universal enveloping algebra. Let s be a subalgebra of a such that
[s, c] c: c. For a b-module M, s acts in a natural way on each homology space H,(c, M1)
(j eZ+), giving rise to the standard action of son H^(c, M^see [II],(a), § 1. Weshallnow
reconstruct this standard action via relative homological algebra.

It is easy to see from the property [s, c] c: c that ifM and N are b-modules, then M^ N is a
well-defined s-module in a natural way by the rule

5.(m®n)= —m.s®n+m®5.n,

where see, me M1 and neN; recall that s acts on the right on M1.

DEFINITION. - Let M, NeC(b, a), and let X be a (b, a)-projective resolution ofN
(see Prop. 3.11). Define Tor^'^lvr, N) to be the homology (regarded as a graded
s-module) of the s-module complex M^^X.

Imitation of the proof of Proposition 4.1 yields:

PROPOSITION 4.5. - Tor^^'^Nf, N) is independent of the (b, a)-projective resolution X
used in its definition, and defines a covariant functor in M and N, with values in the category of
graded ^-modules.

Proposition 1.4 of [II], (a) and the proof of Proposition 4.2 above now show:
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PROPOSITION 4.6. — The homology H^(c) with the standard action of s is naturally
isomorphic to Tor^'"'0'8^, k), w/i^r^ k is regarded as the trivial (right and left) b-module. Let
M eC(b, a). The homology H^ (c, M1) with the standard action ofs is naturally isomorphic
toToT^'^^W.k).

Using Proposition 3.12 and the proof of Proposition 4.3, we get the following analogues
of Proposition 4.3 and Corollary 4.4:

PROPOSITION 4.7. — Let M, NeC(b, n). Then there are natural isomorphisms

Tor^W, N^Tor^^W, M) ^Tor^'^fe, M^N^Tor^^M^Ny, k),

where k is regarded as the trivial (right or left) b-module.

COROLLARY 4 . 8 . — For all N e C (b, a), H^ (c, N^ with the standard action ofs is naturally
isomorphic to Tor^'^fe, N). More generally, for all M, NeC(b, a), H^ (c,(M®N/) with
the standard action ofs is naturally isomorphic to Tor(^•a•c's)(Mt, N).

Assume now that s=a, so that in particular, [a, c] c: c. We shall set up a useful
relationship between Tor^'0'^ and Tor^. First we note the following two lemmas:

LEMMA 4.9. — Let M and N be b-modules. Then the correspondences® n^-> l®(m(g)n)
defines a natural isomorphism from the vector space M^^N to ^(^(M^^N), where k is
regarded as the trivial right a-module and M^^N is regarded as an a-module (i. e., s-module)
as above.

Proof. — The given map is clearly well-defined, and its inverse is given by the condition
l®(w®n)i—>m®n.

Q.E.D.

LEMMA 4.10. — J/M, N e C (b, a), then k®^ (M'®^ N) 15 naturally isomorphic to the space
of a-invariants in M^^N.

Proof. - This follows immediatly from the fact that M^c N is a finitely semisimple
a-module.

Q.E.D.
For a graded a-module V, we denote by V" the graded vector space whose components are

the spaces of a-invariants in the components of V.

PROPOSITION 4.11. — For M, NeC(b, a), there is a natural isomorphism

Tor^lVr, N^Tor^^lVr, N)°.

In particular, we have natural isomorphisms

H^b.a^H^c)0

and
H^(b, a, M^H^c, Nt)0,

where a acts via the standard action on H^(c) and H^(c, M^.
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Proof. - Let X be a (b, cQ-projective resolution ofN. Then Tor^^Nt, N) is the
homology of the complex M^X, while Tor^^^Nr, N)° is the homology of the
complex (NfOO^X)", the components of M^OO^X being finitely semisimple under a.
By Lemma 4.10, the complex (M^X)0 is naturally isomorphic to the complex
feOO^NfOO^X). Lemma 4.9 now establishes the first assertion. The rest follows from
Propositions 4.2 and 4.6.

Q.E.D.

Let b1, b2, a1 and a2 be as in paragraph 3, and take b=b1 xb2 and a=a1 xa2. (We
temporarily ignore c and e.) Recall that if M1 is a b^-module (i=l, 2), then M^M2 is
a b-module in a natural way.

PROPOSITION 4.12. - Let M1, WeC^b1, a1) (f=l, 2). Then for each neZ+ , we have a
natural vector space isomorphism

Tori^ftM^M2^ N^N2)^ \\ Tor^-^ftM1/, N^Torf^ ((M2/, N2).
r+s=n

In particular, we have natural isomorphisms

Hn(b, a, (M^M2)^ [J H,(b1, a1, (M^OH^b2, a2, (M2/)
r+s=n

and
H^(b,a)^ H H^a1)®^2^2).

r+s=»i

Proof. - Let X1 be a (b1, a^-projective resolution of N1 in C(b1, a1) ( f= l , 2). By
Proposition 3.14, X1 (x)X2 is a (b, a)-projective resolution ofN1 ®N2 in C (b, a). From the
definition of the tensor product of complexes, there is a natural isomorphism

(M1 (gM2)^ (X1 ®X2) ̂ ((M1/®^ X^^ftM2/®^ X2),

where ̂  is the universal enveloping algebra of b1. Taking homology and using the fact
that u^ is a vector space isomorphism in paragraph 3 gives us the first assertion of the
proposition. The second assertion follows from Proposition 4.2.

Q.E.D.
Now suppose that c1 is a subalgebra ofb1 such that b1 = a1® c1 as a vector space, and let s1 be

a subalgebra of a1 such that [s1, c1] c c1 (i = 1, 2). Define c = c1 x c2 and $ = s1 x s2. These
two subalgebras ofb satisfy the above conditions on c and s, and so the above considerations
hold here.

PROPOSITION 4.13. - Let M1, WeC (b1, a1) (f==l, 2). Then for each neZ+ , we have a
natural ^-module isomorphism

Tor^'^M^M^N^N2) ^ ]J Tor^^^Miy, N^Torf^^M^, N2).
r + s = = n

/n particular, we have natural s-module isomorphisms (using the standard actions of s s1

ands2):
HJc^M^M2)')^ ]_I H,(c1, (M1)')®!^2, (M2)')

r + s = n
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and
HJc)^ U H^c^HJc2).

Proof. - Let X1 ( i=l, 2) be as in the last proof, so that X^X2 is a (b, cQ-projective
resolution of N^N2. We clearly have a natural e-module isomorphism ofs-module
complexes

(M1 ®M2y®^(X l ®X2) ̂  ((M1^®^ X1)®^2)^^ X2),

where T is the universal enveloping algebra of c1. Take homology and apply
Proposition 3.13 to sin place of b. This proves the first assertion of the proposition; apply
Proposition 4.6 for the rest.

Q.E.D.

PART II
THE RESOLUTION AND ITS APPLICATION

TO LIE ALGEBRA HOMOLOGY AND COHOMOLOGY

5. A complex for computing certain relative homology

Part II contains our general results on Kac-Moody Lie algebra homology and
cohomology, and an application to finite-dimensional Lie algebras in paragraph 7. In [11],
(a), Th. 8.7, a standard module for a Kac-Moody Lie algebra is resolved using generalized
Verma modules. This result, restated as Theorem 5.1 below, is central to the present
paper. The main idea in Part II is to combine the relative homological algebra of Part I
with Theorem 5.1 applied to the product of a Kac-Moody Lie algebra with itself
(see § 6). The basic references on Kac-Moody Lie algebras are [15], (a)-(d) and [22],
(a)-(c). We use the notation of [II], (a).

Let I e Z+ , let A = (Ay)^^ ^ be an I x I (generalized) Cartan matrix (= "Cartan matrix"
in [II], (a)) which is symmetrizable, and let k be a field of characteristic zero. Let g be the
corresponding (possibly infinite-dimensional) Kac-Moody Lie algebra g(A) over k, with
canonical generators h,, e, ,f, (1 ̂  i ̂  0 (see [11], (a), p. 47). Let 1) be the span of the h,, and let
T| be the involution of 9 which interchanges e, and/, and sends h, to - h, for each i. Let D,
(1 ̂  i ̂  0 be the i-th degree derivation of g with respect to the natural Z^-grading, and let bo be
the ^-dimensional abelian Lie algebra of derivations of 9 spanned by the D^. For a subspace
b of bo, form the semidirect product Lie algebra g6 = b x g, and let t)6 be the abelian subalgebra
b©t). Define the simple roots oci, . . . , o^e^6)* by the conditions [h, ^]=oCi(^)^ for all
he\f and f e { 1, . . . , < } . Call b an admissible subspace of bo if oci, . . . , ocj are linearly
independent. Admissible subspaces exist; fix one.

If A is classical of finite type, then 9 is the finite-dimensional split semisimple Lie algebra
with Cartan matrix A. In this case, we may choose b = 0, so that cf = 9, and then the roots,
Weyl group and other concepts discussed below simply reduce to the usual classical
ones for 9.
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Let A c= (t)6)* be the set of roots o fQ ,A+ the set of positive roots and A- the set of negative
roots. Then we have the root space decomposition

9=t)© U ̂  U ^
(peA+ <peA-

It is easy to show that the center of 9 is the subspace of t) c= \f on which all the roots of 9
vanish (see [15], (a). Chap. II, § 1, Lemma 1).

For each f e { 1, . . . , ? } , define the linear automorphism r^ of (I)6)* by the condition
rf(p=(p-(p(^)a; for all (pe^)*. Then ^a»=-ai , and r^ acts as the identity on the
codimension 1 subspace consisting of all (pe(t)6)* such that (p(^)=0. Let W (the Weyl
group) be the group of automorphisms of (I)6)* generated by y-i, . . . , r^ Then W is a
Coxeter group with generators ^ and relations which can be given in terms of the Cartan
matrix A; each element of W preserves A, and W is naturally isomorphic to the group of
linear automorphisms it induces on the span of A.

Define the set Ap of real roots to be the set of Weyl group transforms of ai, . . . , ocj, and
define the set Ai of imaginary roots to be A — AR . Then dim c^ = 1 for all cp e Ap, but this
need not be true for (peAp We have WAR=Ap, WAi=Ap A R = - A R , Ai=-Ai and
W ( A i n A + ) = A i n A + .

For all weW, define

(D^A+nicA-^cpeA+lw^cpeA-} ,

so that 0^ c AR n A + . Let n (w) be the number of elements in Oy,. Let I (w) be the length
ofw, that is, the smallest nonnegative integer j such that w can be written as r, r, .. .r,
(l^i^l). Then n(w)==l (w) (a finite number).

Define pe^6)* to be any fixed element satisfying the conditions p(h,)==l for all
ie{ 1, . . . , ? } . For every finite subset <D of A, define <0>e(y)* to be the sum of the
elements of 0. Then < Oy, > = p - w p for all w e W, and if this is zero, then l(w) = n (w) = 0,
and so w = 1.

Fix a subset S of { 1, . . . , !} such that the square submatrix B of A defined in the obvious
way by S is a classical Cartan matrix of finite type. Then the Lie subalgebra g§ °f 9 = 9 W
generated by {hi, ^f,/i},es ls isomorphic to the finite-dimensional split semisimple Lie
algebra g(B) whose Cartan matrix is B. Let t)g be the span of {^} ,es i A^AnUZa, ;

f ^ S
A^A+nA' ; A^A-nA8 ; A-^^A-^-A^ and A-(S)=A--A8-. Then

9s=I)s© U ̂  U ^ '
(peA5 (peA^

Define the following subalgebras of g:

n= U ^; n'= U 9^ ^ U ^
<peA+ • (peA- (peAS

^s~= U ̂  u= U ^ u -= U ^ ^Qs+t);
(peA^ (peA^) (peA^
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and p=r©u (a subalgebra because [r, u] cu). Then

9=n~©t)©n; 98=^" ©^s®^. n=Tts©u;
n~=ns -©u~; r=ns"©I)©ns and 9=u~©p.

Also, r is a (finite-dimensional) reductive Lie algebra with commutator subalgebra g§ and
center a subalgebra of t).

Let V be an ^-module (for example, a ̂ -module regarded as an ^-module by restriction),
and let ^(t)6)*. Define the weight space V^cV corresponding to [i to be
[ve\\h.v=[i(h)v for all /let)6}. Call [i a weight of V if V^O, and call the nonzero
elements of V^ weight vectors with weight n.

A (f-module V is called a highest weight module if it is generated by an n-invariant weight
vector v. In this case, the highest weight vector v is uniquely determined up to nonzero
scalar multiple, its weight is called the highest weight of V, and its weight space is the highest
weight space of V. The highest weight space is one-dimensional, V is the direct sum of its
weight spaces, which are all finite-dimensional, and the weights of V are all of the form

i
\i— ^ n^i (n fGZ+) , where ^icO)6)* is the highest weight.

1=1
For every b-invariant subalgebra tof 9, denote by t6 the subalgebra b© tof g6.
There is a natural bijection, denoted ^ h-> M (^), between the set P^ of all ^ e (^)* such that

X,(/ii)eZ+ for all f eS , and the set of (isomorphism classes of) finite-dimensional irreducible
r^-modules which are irreducible under gg. The highest weight space (relative to I)s and Hg)
of the gg-module M(^) is ^-stable, and \ is the resulting weight.

For all ̂  e Ps, we define the generalized Verma module V^^ to be the cf-module induced by
the irreducible p^-module which is M (k) as an r^-module and which is annihilated by u. Let
^e and y (regarded as a subalgebra of ^e) be the universal enveloping algebras of g6 and p6,
respectively. Then V^^6®^. M(X). V^ is a highest weight module with highest
weight \. The highest weight space of V^^ coincides, under the natural identification of
M(X) with the p^-submodule l®M(?i) of V^, with the highest weight space (relative to
l)s and Us) of the Qs-module M(^).

Letx? = (^i, . . . , ^) be a finite sequence of elements ofPg. A ^-module V is said to be of
typex? if (1) V has a ̂ -module filtration 0 = V o C = V i c : . . . c : V ^ = V such that the sequence of
(^-modules Vi /Vo, V^/Vi, . . . , V^/V^_ i coincides up to rearrangement with the sequence of
generalized Verma modules V^^, . . . , V^ and (2) V is finitely semisimple as an
^-module. (Condition (2) was not assumed in the corresponding definition in para-
graph 7 of [II], (a).)

Define W^ to be the subset of the Weyl group W consisting of those weW such that
Ow<=A^(S) .

A ^-module R is called standard (as in [7]; quasisimple in [15], (c) and [II], (a)) if R is a
highest weight module with a highest weight vector x such that there exists neZ+ with
/?. x = 0 for all i e {1, . . . , ? } . The trivial one-dimensional module is standard; its highest
weight is 0. Let P be the set of dominant integral linear forms, i. e., the set of all ̂  e (t)6)* such
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that ^ (h^ e Z + for all i e { 1, . . . , ;} . Then the highest weight of a standard ^-module lies
in P, and for all p,eP, there exists a standard c^-module with highest weight \i. If A is a
classical Cartan matrix of finite type and b =0 (see above), then the standard g^-modules are
just the finite-dimensional irreducible g-modules.

Theorem 8.7 of [II], (a) gives the following resolution of a standard module in terms of
generalized Verma modules:

THEOREM 5.1. — Let R be a standards-module with highest weight [ieP. ForalljeZ+,
let ̂  be the (finite) family of (distinct) elements o/(^)* { w (u + p) - p } as w ranges through the
set of elements ofWj^ of length j; each element of ̂  lies in Pg. Then there is an exact
sequence of (^-modules

. . . -> EI -> Eo -> R -> 0

where Ej is of type ̂ for each j.

Remark. — Note that this result includes the information that each Ej is finitely semisimple
under r6.

Remark. — Theorem 5.1 implies Kac's theorem that for [ie P, there is exactly one (up to
equivalence) standard c^-module with highest weight (i, and it is irreducible; see [II],
(a), §9. Thus P bijectively indexes the set of equivalence classes of standard ^-modules.

In order to place ourselves in the context of paragraphs 3 and 4, we note the following:

PROPOSITION 5 . 2 . — Under the adjoint action of^, g6 is finitely semisimple. In particular,
r6 is a reductive Lie algebra. The standard cf-module R is finitely semisimple as an ̂ -module.

Proof. — For each v e A u { 0 } , let A (v) be the set of all elements of A u { 0 } which can be
written in the form v + ^ n^ o^ with n^ e Z, It is clear that there exist Vi, V2, . . . e A u { 0 }

ieS

such that g6 is the direct sum of the spaces U Q^ U Q^, .. • , and that each of these
<peA(vi) (peA(v2)

spaces is an r^-submodule of cf. Proposition 5.1 and Lemma 5.2 of [II], (a) imply that
each such space is finitely semisimple under xe, and so the first two assertions of the
proposition are proved. The last assertion follows from the case 7=0 of Proposition 6.3
of[ll^• Q.E.D.

Now let b be a subalgebra of cf such that g^b+p6, and suppose that the subalgebra
a=b n p6 is a subalgebra of r^ which is reductive in r6. (One example of this is the case
b=re©u - , a=xe.) Then the action of a on any finitely semisimple r^-module is finitely
semisimple (see for example [8], Prop. 1.7.9(ii)), and so in particular, a acts finitely
semisimply on g6 and hence on b, and also on R, by the last proposition. Thus in the
notation of paragraph 3, the category C(b, a) is defined, and R and the modules Ej in
Theorem 5.1 lie in this category.

PROPOSITION 5.3. — The complex in C(b, a):

. . . -> EI -> Eo -^ 0

obtained from the complex in Theorem 5.1 by omitting the segment -> R is a (b, a)-free
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resolution ofR. For eachjeZ+ , Ej is isomorphic to the (b, a)-free module (cf. Prop. 3.4)
^®^L[M(w(p,-hp)-p), where w ranges through the set of elements o/W^ of length j.

Proof. - It is sufficient to prove the last statement. We know that Ej has a ^-module
filtration 0=Vo c=Vi <= . . . c:V^=E^ such that the sequence of ^-modules Vi/Vo,
V2/Vi, . . . , V^/V^-i coincides with the sequence V^, . . . , V^, where ?4, . . . , ̂  are
the elements w(|i+p)-p indicated in the statement of the proposition. But for each
f = l , . . . , n, there is a natural b-module isomorphism V'^^^^M^), where on the
right-hand side, M(^) is regarded as an a-module (see [8], Prop. 5.1.14). By
Propositions 3.4 and 3.5, each V^^ is thus (b, a)-projective. Repeated application of
Proposition 3.9 now proves the proposition.

Q.E.D.

Remark. — This argument is essentially the same as the one used to prove Lemma 7.8
of [II], (a).

COROLLARY 5.4.- Retain the notation of Theorem 5.1, and let T e C (b, a). The relative
homology H^(b, a,(R®Ty)o/b with respect to a in the right b-module (R®Ty (see § 2) is
naturally isomorphic to the homology of a complex of vector spaces of the form

. . .^Vi ->Vo^O,

where for each ;eZ+, V; is the space of a-invariants in the tensor product
a-module T®]jM(w(|^+p)-p), as w ranges through the set of elements of W^ of
length j.

Proof. - By Corollary 4.4, H^(b, a, (R® TV) is naturally isomorphic to Tor^CT, R),and
by Proposition 5.3, this is naturally isomorphic to the homology of a complex of the
form.. . -> Vi -> VQ -> 0, where for each j e Z+ ,

v^r^^^U^^+rt-p)-
where w ranges through the set of elements of W^ of length j. Clearly, there are natural
isomorphisms

V,^r®^LIM(^(^l+P)-P)c±^®^(T®U[M(w(^l+p)-p)),

where T® ]J M (w (p, + p) — p) is the tensor product of a-modules. Since this tensor product
is a finitely semisimple a-module, V, is naturally isomorphic to the space of a-invariants in
T®]jM(wOi+p)-p).

Q.E.D.

The relative homological algebra in paragraph 4 enables us to deduce easily the main
homology result (Th. 8.6) in [II], (a) from the resolution (Th. 5.1 above):

THEOREM 5.5. - In the notation of Theorem 5.1, H,(iT, RQ with the standard action of^
is naturally isomorphic to ]J M (w (n + p) - p), where w ranges through the set of elements o/W^
of length j. In particular (see [11], (a). Prop. 1.6), W (u~, R*) with the standard action of^
is naturally isomorphic to U M (w ([i + p) - p)* (same w). Let C,(R) be the ^-module
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A^u")®]^, so that the standard r^-module complex for computing the standard action ofx" on
H^ (u~, R/) has the form

. . . ^Cx(R)^Co(R)^0 .

Let Bj(R) be the unique ^-submodule ofCj(R) isomorphic toY[ M(w(^i+p)—p) , with w as
above, and let B}(R) be the unique ^-module complement ofBj(R) in Cy(R), i. e., the sum of all
irreducible ^-submodules M(k) ofCj(R) where A-ePs is not of the form w (p, + p) — p for any
w E W^ of length j. Then the Bj (R)form a subcomplex B^ (R) ofC^ (R) all of whose maps are
zero, and the Bj(R)form a subcomplex B^(R) ofC^(R) whose homology is zero.

Proof. — Apply Proposition 5.3 to the pair (b, a) = (r6 ©u -, r6) and take c = u ~ and s == r6

in the first assertion of Corollary 4.8. The fact that H, (u~, R^) is naturally isomorphic to
U[M(w(u+p)—p) now follows since the irreducible r^modules M(u;(jLi+p)—p) are
inequivalent as w ranges through W;| (last assertion of [II], (a), Th. 8.5). Because each
^-module M (w (p, + p) - p) (w e W^ of length j ) occurs with multiplicity one in Cj (R), which
is a sum ofr^modules of the form M (X), ̂  e Pg (see [11], (a), Th. 8.5), we now see that 8j must
map Bj(R) to zero and B^.+i (R) into B}(R). The rest is clear.

Q.E.D.
It will be convenient to introduce the analogues of the standard ^-modules with the roles

of the positive and negative roots reversed. We define a lowest weight vector in a c^-module
to be an n~-invariant weight vector, and a lowest weight module to be a g^-module generated
by a lowest weight vector. The corresponding lowest weight of the module is uniquely
determined, and lowest weight modules have obvious properties analogous to those of
highest weight modules. In fact, statements about highest weights, highest weight
modules, etc., imply the corresponding statements about lowest weights, lowest weight
modules, etc., by application of the involution T| of 9 defined above; T| may be extended to
g6 by defining it to be — 1 on b.

We shall say that a ̂ -module R is A --standard if R is a lowest weight module with a lowest
weight vector x such that there exists n e Z + with ef. x = 0 for all i e { 1, . . . , ? } . Then every
A--standard module is irreducible, the lowest weight of a A--standard module lies in the set
—P, and for all ue —P, there is a unique such module with lowest weight u. In this way,
— P bijectively indexes the set of equivalence classes of A--standard c^-modules.

Let p - be the subalgebra r©u~ofg . For all ^ G Pg, we define the ^-module V^* to be
the c^-module induced by the irreducible (p~ ̂ -module which as an r^-module is the
contragredient r^-module M(^)* and which is annihilated by u~ . Let T=(A,i, . . . , XJ
be a finite sequence of elements of Pg. A g^module V is said to be of A --type ^¥ if (1) V
has a c^-module filtration 0=Vo c=V\ c:... c:V^=V such that the sequence of
c^-modules Vi/Vo, V ^ / V i , . . . , Vn/^n-i coincides up to rearrangement with the
sequence V^^*, . . ., V^1^"1, and (2) V is finitely semisimple as an r^-module.

From Theorem 5.1, we get:

THEOREM 5.6. — Let R be a A --standard cf-module with lowest weight ue —P. For all
j e Z +, let ^F7- ^ be the (finite) family of (distinct) elements of^)* {w(— n + p ) — p } asw ranges
through the set of elements o/W^ of length j; each element of^fLy, lies in P§. Then there is an
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exact sequence of cf-modules

-> EI -> Eo -> R -> 0

wher^ E^ is o/A--r^ ̂ L^for eachj.
Theorem 5.5 [or Proposition 5.3 applied to the pair (b, a)=(re©u, r6) together with

Corollary 4.8 applied to c=u and 5=r6, as in the proof of Theorem 5.5] yields:

THEOREM 5.7 ' . — In the notation of Theorem 5.6, H (u, R/) with the standard action of xe is
naturally isomorphic to ]_[ M (w (— \\. + p) — p)*, where w ranges through the set of elements of
W^ oflength j. In particular (see [II], (a). Prop. 1.6), the cohomology W(u, R*) with the
standard ^-action is naturally isomorphic to ]_[M(M;(—|i+p)—p) (same w).

6. The relative homology H^g6, r6) and related relative homologies and cohomologies

We shall continue to use the notation of paragraph 5. Our principal aim is to implement
Corollary 5.4 in a certain special situation.

Let A' be the 2 ( x 2 / symmetrizable Cartan matrix diag (A, A). Recall from paragraph 5
the involution T| of 9 (=9 (A)) which acts on the canonical generators hi, e^fi by
interchanging e^ and fi and taking hi to — ̂  for all i e [ 1, . . . , ? } . The direct product Lie
algebra 9' = 9 x 9 may be identified with the Lie algebra g (A7), where the 61 canonical
generators are

(^,0), . . . , (^ ,0) ,(0,r | (M,. . . , (0,r i(^)) ;

(^,0), ...,(^O),(O,TI(^)), ...,(O,TI(^));

(/i,0), ...,0i, 0),(0,ri(/0), . . . , (O,TI (/,)).

Let bo be the direct product Lie algebra bo xbo, where as in paragraph 5, bo is the
(-dimensional abelian Lie algebra spanned by the ( degree derivations of g. Then bo may
be naturally identified with the Lie algebra spanned by the 21 degree derivations of 9'.
Recall that b is an admissible subspace of bo (see § 5). Then b ' = b x b is clearly an
admissible subspace of bo. Let (9')^ be the natural semidirect product Lie algebra b' x 9'.
Then (9')^ is naturally isomorphic to the direct product cf xcf. Set t)'=t) xt)<=9', and

ftT^'ei^yxi^gr.
Identify ((l)')T with (t)6)* © (t)6)* in the obvious way. Then the analogues for (97 of
ai. . . . , o^ are the 2/linear functional (a i, 0), . . . , (ocj, 0),(0, -ai), . . . , (0, -a^inftt)')6)*.

Let A'd^t)')6)* be the set of roots of 9', A+ the set of positive roots and A'- the set of
negative roots. Then

A'=(A, 0)u(0, A), A'+=(A+, 0)u(0, A-) and A'- =(A_, 0)u(0, A+).

The Weyl group W of 9' is naturally isomorphic to the direct product group W x W acting
in the obvious way on ((t)')6)* =(^)* © (t)6)*. We may write the elements of W' as the pairs
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(wi,^), where each w,eW. The length of this element is l{w^-^l(w^). For all
w ' = (wi, w^) e W, define 0,,, to be A+ n w ' A'-. This set is just

(A+nM;iA_,0)u(0, -(A+nw2A_))=(^,0)u(0, -OJ.

Define p' e ((I)')6)* to be the functional (p, - p), with p e (I)6)* as in paragraph 5. Then p'
takes the value 1 on the 2; canonical generators (h^, 0), . . . , (hi, 0), (0, -h^), . . . , (0, -^)
of 9'. Foreach^i .w^eW^eW^p'^Wi.w^p'^p-Wip, -(p-w^p)).

Let S' be the subset S u (S +1) of { 1, . . . , 2 ^} , and let B' be the square submatrix of the
Cartan matrix A' defined in the obvious way by S'. Then the Lie subalgebra gg, of 9'
generated by

{(^, o), fe, o), (y, o)}^u{(o, -h,), (o,yD, (o, ^)},,s

is isomorphic to the finite-dimensional split semisimple Lie algebra whose Cartan matrix
isB', and this algebra is just gsxggcg' . The analogues for (g')6 and S' of the
subalgebras I)s, n, n", tig, n^, u, u ~ , r, p, r6 and p6 associated with g6 and S are, respectively,

Vs'=^sx^s•> n^nxn-; (n'r^-xn; ns,=nsxns~; (ns'r^s'x^
u / = u x u - ; (u / ) -=u - xu; r ' = r x r ; p ' = p x p ~

(where p ~ = r © u ~ " , as in §5);

(r'^r'xr6 and (p')^?6 x (?")'.

The analogue of Pg is

Ps/={(^,u)e((^)r |^GPs,ue-Ps}.

For all Ck, u) e Pg,, the associated Qs'-irreducible (r^-module M' (?i, u) is naturally isomorphic
to the r6 x ̂ -irreducible module M(?i)® M(-a)*; here M(?i) (5^ § 5) is regarded as a
module for the first factor r^, and M (- u)* is the contragredient of the module M (- u) for the
second factor^. [To see this, note that if xeM(^) is a highest weight vector and
^eM(-u)* is a lowest weight vector relative to t)s and rig, then x 0 y is a highest weight
vector relative to %, and n^, for the irreducible action of gs' on M (k) (g) M (- a)*; moreover,
x (x) y is a weight vector for the action of^')6, and its weight is (X, u).] The analogue, in the
present situation, of Ws1 is (W%1 = Wg1 x W^.

The analogue of P is

P '={(^ ,u)6((Ar)* |^P,ue-P}.

We may construct the unique (up to equivalence) standard (irreducible) (g^-module R with
highest weight (X, u) e P' as follows: Let R1 be the standard module with highest weight X for
the first factor Q6 in (g')6 = g6 x g6. Let R2 be the A--standard module with lowest weight u
for the second factor g6 in (g')6 (see § 5). Then R1 ® R2, with the obvious action of(g7, is by
definition a standard (gV-module with highest weight (X, u), so that R^R^ R2. Thus
Proposition 4.13 immeaiately implies:
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PROPOSITION 6.1. - Let{k, [i)eP',andletR,R1 and R2 be as above. For all neZ+, there
is a natural {x^-module isomorphism

H^((ur,R^ U H^u-^R^^H^uJR2/),
r+s=n

where (x^ acts on the left by the standard action, and on the right by the tensor product of the
standard actions of the two factors xe of(xf)e. In particular, there is a natural {x^-module
isomorphism

HJ(ur)^ U H,(u-)®H,(u).
r+s=n

Combining this with Theorems 5.5 and 5.7, we have:

COROLLARY 6.2. — In the same notation, there are natural (x^-module isomorphisms

^((ur^R^UM^^+rt-rt^M^^-H+rt-p)*
and

H»((u')-)^UM(wip-p)®M(w,p-p)*,

where the direct sums are over those Wi, w^ eW^ such that l(w^)-\-l(w^)=n.
Remark. — Corollary 6.2 may be proved without referring to Proposition 4.13 by

applying the first assertion of Theorem 5.5 to (g')6, (u')~ and R; we get a natural (r'y-module
isomorphism

H^ ((uT, RQ ̂  U M' (wi (^ + p) - p, w, (H - p) + p)

where (u?i, w^) ranges through the set of elements of(W')^=W^ xW^ of length n, proving
Corollary 6.2. Proposition 6.1 then follows from Corollary 6.2 by means of
Thorems 5.5 and 5.7.

Let a be the diagonal subalgebra { (x , x) \ x e r6} of (r')6 =xe x x " . Then a is reductive in
( x ' y , since in fact the adjoint action of a on (r'y is the direct sum of two copies of the adjoint
action of the reductive Lie algebra r6 on itself. Hence the action of a on any finitely
semisimple (r^-module is finitely semisimple.

LEMMA 6.3. — Let ^eP, [ie — P , Wi , w^ eW^. Denoting by superscript the space of
invariants, we have

(M(wi(X+p)-p)®M(w2(-H+p)-p)*)°=0

unless 'k== —p, and Wi =w^, in which case there is a natural isomorphism

(M (wi (^ + p) - p) ® M (wi (5i + p) - p)*)° ̂  End ,M (w, (K + p) - p),
a one-dimensional space with a distinguised basis {the identity operator).

Proof. — Since M (wi (^+p)—p) and M ( ^ ( — H + p ) — ? ) are absolutely irreducible
^-modules, it is enough to show that the condition Wi(^+p)=M^(—|Li+p) implies that
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^ == - H and w^=w^. For v, ^ e (t)6)*, we shall say that v ̂  if ^ - v is of the form ^ n, a,
1=1

for some ^eZ+. Let Y be the standard g^-module with highest weight ^ By [II], (a),
Prop. 6.1, W 2 1 Wi ^ is a weight of Y, and so w^lw^fk^fk. Also,

W21Wlp-p==-<0^-^> ^0,

and this element is zero only if w^=w^ (see § 5). Thus

— [i = W2 1 Wi (k + p) - p ̂  ̂ ,,

and equality would imply that Wi =W2. The same argument with the roles of ^ and -n
reversed shows that ̂  —^i. Thus equality does hold, and we have Wi =w^ and X,= —(i.

Q.E.D.
Remark. — This proof demonstrates (and follows from) the known facts that two

W-equivalent dominant integral elements coincide, and that if ^€(1)^)* is regular
dominant integral (i.e., ^(^)eZ+ - { 0 } for all f e { 1, . . . , ;}), then the only Weyl group
element fixing ^ is the identity.

Corollary 6.2 and Lemma 6.3 immediately imply:

COROLLARY 6.4. — Let a be the diagonal subalgebra of (r')6. In the notation of
Corollary 6.2, suppose that X,^ —[i. Then

H^((u')-, RT=0.

Suppose that 'k= —\i. Then
Hj(ur,RT=o

ifneZ+ is odd; and ifn=^2j(jeZ+), then there are natural vector space isomorphisms

H^(ur.Ry^LlBnd^M(w(?i+p)-p)^End^IjM(w(?i+p)-p),

where both direct sums range over the elements weW^ of length j. In particular,

H^ur)0^
ifn is odd; and ifn=2j, then there are natural vector space isomorphisms

H, ((u')-)0 ̂  U End,e M (w p - p) ̂  End ,e U M (w p - p),

where the direct sums range over the same w as before.
Remark. - Note that Ha^iQ", R')0 and Ha^u')")0 have distinguished bases.
We now have:

THEOREM 6.5. - Let a be the diagonal subalgebra o/OQ6, letK e P and [i e - P, and let R be
the standard (^-module with highest weight (X,, n)eP'. Ifk^ —[i, then

H^(ae(uT, 0,^=0.
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Suppose that ^= —H. TTien

HJa©(u')-, 0,^=0

ifn€Z+ is odd. Ifn^2j(jeZ+), then dim HJa©(u')~, a, R^i's the number of elements of
W^ of length j, and there are natural vector space isomorphisms

HJa©(ur, a, R^UHnd^M(w(^+p)-p)^End,eH,(u-, (R1/),

w/ier^ tfo^ direct sum ranges over the elements weW^ of length j , and R1 is the standard
^-module with highest weight X. In particular, H2,(a©(u')~, o, R1) has a distinguished
basis. For R=k, we have

HJa®(ur,a)=0

ifn is odd; and ifn = 2 j, then dim H^ (a © (u')~, a) is the number of elements o/W^ of length j,
and there are natural vector space isomorphisms

HJa®(u')-, a)^UEnd,eM(wp-p)^End,<H,(u-),

where the direct sum ranges over the same w as before. H2j(a © (u')~, a) has a distinguished
basis.

Proof. — Just combine Corollary 6.4 with Proposition 4.11 [applied to b = a © (u')~] and
the first assertion of Theorem 5.5.

Q.E.D.

We shall now take advantage of Corollary 5.4. With a as in Theorem 6.5, let b be an
arbitrary subalgebra of (g'y such that (^^^(PT and a=bn(py. Then all the
hypotheses of Corollary 5.4 hold in the present context, and so we can make use of it. One
example of such a b is the diagonal subalgebra of(gy = ̂  x g6. Another is a © (u')~, which
we considered above. The following result generalizes Theorem 6.5:

THEOREM 6.6. - Let a and b be as above, and let ^, \t and R be as in Theorem 6.5. If
^ —^ then

H^b^R^O.

Suppose that X= —n. Then there is a natural isomorphism of graded vector spaces

H^(b, a, R^H^a®^')-, a, RQ,

which in turn is described in Theorem 6.5. In particular, there is a natural isomorphism

H,(b,a)^H,(a©(ur,a);

again see Theorem 6.5.
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Proof. — Applying Corollary 5.4 to the case T=fc, we see that H^(b, a, R/) is naturally
isomorphic to the homology of a complex of vector spaces

. . .-^Vi-^Vo^O,

where for each n e Z + , V^ is the space of a-invariants in the (r'^-module

UM^^^+pO-p'),

where w' ranges through the elements of (W)^ of length n; recall that the notations M'and p'
have been defined above. Thus ¥„ is the space of a-invariants in

UM(wi()i+p)-p)®M(u;2(-H+p)-p)*,

where the direct sum is over the pairs Wi, u^eW^ such that l(w^)+l(w2)==n. I fX^ —\JL,
then each V^=0, by Lemma 6.3. If^= —^thenLemma 6.3 implies for odd nthatV^=0,
and for n=2j that there is a natural isomorphism

V,^LjEnd^M(u;(?i+p)-p),

where w ranges through the elements of W^ of length j. Hence the homology of the
complex of V^'s is naturally isomorphic to the complex itself, and the rest is clear.

Q.E.D.
We summarize this result in the important special case in which b is the diagonal

subalgebra of (gT and R = k:

COROLLARY 6.7. — For odd neZ+ ,
HJ^r^O.

For n=2j(jeZ+), there are natural vector space isomorphisms

H^, v6)^ U End,eM(wp-p)^End,eH,(u-),

where the direct sum ranges over the elements weW^ of length j. In particular, H^jW, r6)
has a distinguished basis, and dim H^j (Q^ re) is the number ofw e W^ of length j, and is also the
number of irreducible ^-module components in H,(u~) [or in H,(u~, R/) for any standard
(^-module R].

To obtain other consequences of Corollary 5.4, we define cT to be the diagonal subalgebra
o f r ' = r x r , so that a^r, and cT is reductive in a (defined as in Theorem 6.5) and hence
in (r'y. We start with the following analogue of Lemma 6.3:

LEMMA 6.8. — Let w^, M;2eW^. Then {superscript denoting the space of invariants):

(M (w, p - p) (x) M (W2 p - p)*)^ =0

unless u;i=u;2, in which case there is a natural isomorphism

(M (wi p - p) ® M (wi p - p)*)^ ̂  End, M (wi p - p),

a one-dimensional space with a distinguished basis (the identity operator).
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Proof. - Note that the modules M (wi p - p) and M (w^ p — p) are absolutely irreducible
under r. Hence it is enough to show that ifwi p and w^ p have the same restriction to t) <= t^,
then Wi = u;2. But ifwi p and w^ p agree on t), then Wi p — w^ p is a W-fixed element of (t)6)*
(s^e § 5). Hence in (I)T,

<ou,^ l^>=P-w^ lw2P=^^ l(^lP-^2p)

=W2 1 (Wlp-W2p)=^2 1^ lP-P=-<^-^>,

and so
<<^>=<0^>=0,

which implies that Wi =1^2 (s^ § 5).
Q.E.D.

By Corollary 6.2 and Lemma 6.8, we have (cf. Cor. 6.4):

COROLLARY 6.9. — For all odd n e Z + ,

H»((u')-y=0.

For n=2j(jeZ+), there are natural vector space isomorphisms

H^(ur)°^UEnd,M(wp-p)^End,nM(wp--p),

where the direct sums range over the elements weW^ of length j. In particular, H2J((u/)-)a

has a distinguished basis.
As in the proof of Theorem 6.5, we now obtain from Proposition 4.11 [applied to

b = cT ® (u')~] and Theorem 5.5:

THEOREM 6.10. - Let a " be the diagonal subalgebra ofr'; and let n e Z +. If n is odd, then

HJa'©(ur,a')=0.

Ifn=2j(jeZ+). then dim HJ(T ®(u')~, cT) is the number of elements o/W^ of length j,
and there are natural vector space isomorphisms

HJc^®(u')-, a^[jEnd,M(wp-p)^End,H^(u-),

where the direct sum ranges over the elements weW^ of length j. In particular,
^2j(a' Q(^)~» <Q has a distinguished basis.

Now let t^ be any subalgebra of (gT such that (g')6 = b^ 4- (pT and (T = tT n (p'y. [One
example of such a b" is the diagonal subalgebra of 9' = 9 x g; another is a" ® (u')".] Then
Corollary 5.4 applies in the present context to the pair (b", a ) in the role of the pair
(b, a). Applying it to the case-R=T=fe, as in the proof of Theorem 6.6, and using
Lemma 6.8, we obtain the following generalization of Theorem 6.10:

THEOREM 6.11. — Let a" and b^ be as above. Then there is a natural isomorphism of graded
vector spaces

H^(b',a')^H^(a'©(ur,ci'),

which is described in Theorem 6.10.
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In the important special case in which b" is the diagonal subalgebra of 9', this becomes:

COROLLARY 6.12. - For odd neZ+,

HJg,r)=0.

For n=2j (jeZ+), the are natural vector space isomorphisms

H^9,r)^UEnd,M(wp-p)^End,H,(u-),

where the direct sum ranges over the elements w e W^ of length j. In particular, H^j (9, r) has
a distinguished basis, and dim H2j(g, r) is the number o/weW^ of length j, and is also the
number of irreducible x-module components in H^(u~).

Recall from paragraph 5 that the center of 9 is the subspace of t) <= \f on which all the roots
of 9 vanish. By Remark (2) after Proposition 2.2, we thus have:

COROLLARY 6.13. — Let 5 be the center 0/9. Then 3 <= r (in fact, 3 <= I)), and there is a natural
isomorphism of graded vector spaces

H^(9/3,r/3)^H^(9,r),

which is described in Corollary 6.12. Moreover, 3 acting trivially on M (w p — p)for w e W^
[and hence on H^(u~)], we may replace the symbol End,. by End^ in 6.8-6.12.

The situation for cohomology in place of homology is now very simple. We recall
Remark (1) after Proposition 2.2 (relating relative cohomology to relative homology), and
we use the distinguished bases of the above homology spaces. Then the results above
immediately imply the following corollaries:

COROLLARY 6.14. - Let a, b, 'k, [i and R be as in Theorem 6.6. Ifk^ —[i, then

H*(b, a, R*)=0.

J/X= —[t, then there is a natural isomorphism of graded vector spaces

H*(b,a, R*)^H^(b, a, RQ.

There are also natural graded vector space isomorphisms

H^6, r^H^b, a)^H^(b, a).

(See Theorems 6.5 and 6.6 and Corollary 6.7 for descriptions.)

COROLLARY 6.15. — Let cT and b^ be as in Theorem 6.11. Then there are natural
isomorphisms of graded vector spaces

H* (9, r) ̂  H* (b', a') ̂  H^ (b', (T);

see Theorems 6.10 and 6 . 11 and Corollary 6 .12 for descriptions.

4' SERIE - TOME 12 - 1979 - N° 2



GENERALIZED VERMA MODULES 199

COROLLARY 6.16. — Let 3 be the center 0/9. Then 3 c: t) c r, and there is a natural graded
vector space isomorphism

H*(9/3,r/3)^H*(9,r).
For odd neZ+,

H"(9/3,r/3)=0.

For n=2j(jeZ+), there are natural vector space isomorphisms

?(9/3, r/3)^ UEnd^M(wp-p)^End^W(u-),

where the direct sum ranges over the elements w e W^ of length j. In particular, H2-7 (9/3, r/3)
has a distinguished basis, and dim H27 (9/3, r/3) is the number ofw e W^ of length j, and is also
the number of irreducible x/-^-module components in W(u~).

If we take S =(? in paragraphs 5 and 6, so that r = t ) , u ~ = n ~ , W ^ = W , P s = ft6)* and M (^)
is a one-dimensional weight space with weight ^ for all 5ie(^)*, then we obtain:

COROLLARY 6.17. — Let b be the diagonal subalgebra o/^')6, a the diagonal subalgebra
^/W)6, fct ^ e P, p, e - P and let R be the standard (QY-module with highest weight (X, \i) e P'.
If"k^-\i, then

H*(b,a.R*)==0.
Letrk=-\Ji. Then

H^^H^b^R^O

ifneZ+ is odd. Ifn=2j (jeZ+), then

dim H^, ^)=dim H"(b, a, R^dim W(n~, (R1)*),

and this is the number of elements o/W of length j; moreover, there are natural vector space
isomorphisms

H^b, a, R^nEnd^^w^+p^p^End^H^n-, (R1)*),

where the direct sum ranges over the Weyl group elements of length j, and R1 is the standard
^-module with highest weight K. In particular, H27 (b, a, R*) has a distinguished basis. Let
3 be the center 0/9, so that 3<=l). Then

H" (9/3, t)/3)= ?(9^=0

i/neZ+ is odd. Ifn=2j(jeZ+), then

dim ?(9/3, t)/3)=dim ?(9, t))=dim ff(n-)

{the number of Weyl group elements of length j), and there are natural vector space
isomorphisms

?(9/3, t)/3)^H"(9, ̂  UEnd^M(wp-p)^End^(n-),
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where the direct sum ranges over the Weyl group elements of length j. In particular,
H^g/s, t)/3) has a distinguished basis.

Remark. — The last corollaries generalize, and give a new proof of, the well-known special
case in which g6 = g is a finite-dimensional complex semisimple Lie algebra, so that r6 = r is the
reductive part of a parabolic subalgebra. The numbers dim ?(9, r) in this finite-
dimensional case, computed algebraically by Kostant in [16] (c), are the Betti numbers of a
generalized flag manifold U/Ui, where U is a compact connected semisimple Lie group
and Ui is the centralizer of a torus in U (see [3], (a), Introduction and [16] (c), Introduction
and Remark 5.3, for discussions of the history of the study of these Betti numbers). In this
finite-dimensional case, the equality

dim H^g, t))=dim W(n~, (R1)*)

in Corollary 6.17 amounts to Bott's "strange equality" [3], (fc), p. 247, which motivated
Kostanfs papers [16] (b), (c) (see [16] (fc), Introduction). The above results considerably
generalize Bott's strange equality (in an algebraic sense) and explain it in a new way. Our
results also to a certain extent explain the relationship, observed by Garland [10], between
the Betti numbers of the loop space of a compact Lie group and the cohomology of certain
subalgebras of "afflne" Kac-Moody Lie algebras; see Part III below.

7. Minimal f-types for complex semisimple Lie algebras

Here we shall use Corollary 5.4 to recover the theorem, proved in [23], § 2.2, on minimal
types for finite-dimensional irreducible representations of complex semisimple Lie algebras
regarded as real.

Retain the notation of paragraph 6 preceding Proposition 6.1. Assume that the Cartan
matrix A is of finite type, that b=0, and that S is the null set. Then 9^=9 is a finite-
dimensional split semisimple Lie algebra, (Qf)e=Qf=QXQ is also, xe=y=^) is a Cartan
subalgebra of 9. and (xj ̂ J =^'=^ xt) is a Cartan subalgebra of 9'. Let f be the
diagonal subalgebra of g', so that fc±g, and let m be the diagonal subalgebra of t)', so that
m^t) and m is a Cartan subalgebra of t.

THEOREM 7.1 ([23], p. 394, Cor. 1). - Let R be a finite-dimensional irreducible ^-module,
with highest weight \JL e P' c: (t)')*. Denote by v e m* the restriction of[i to m, so that v is an
integral linear form on the Cartan subalgebra m of I. Let T be the unique (up to equivalence}
irreducible t-module which contains v as an extremal weight. Then T (5 contained in R
(regarded as a l-module) with multiplicity one.

Remark. - Let H=(^i, ̂  with ̂  eP and ̂ e -P, and let R1 (respectively, R2) be the
finite-dimensional irreducible g-module with highest weight Hi (respectively, lowest
weight ^2)- Then R ̂  R1 (x) R2 as 9' = 9 x Q-modules, where the first factor 9 acts on R1 and
the second factor 9 on R2. Let Y be the finite-dimensional irreducible g-module containing
l^i + pa as an extremal weight. Then Theorem 7.1 amounts to the assertion that the tensor
product 9-module R1 ® R2 contains Y with multiplicity one. Note that if ^i = - ̂  then
this assertion simply reduces to Schur's lemma.
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Proof of Theorem 7.1.-- The multiplicity of T in R is the dimension of the space of
f-invariants in R*®T, which is dim H°(f, m, R* ®T), by the Remark following
Proposition 2.3. Hence in view of Remark (1) after Proposition 2.2, it is sufficient to prove
that

dimHo(i ,m,(R(x)T*y)=L

Applying Corollary 5.4 to f, m, R and T* in place ofb, a, R and T, respectively, we see that it
is sufficient to show that dim Vo = 1 and Vi =0 (using the notation of that corollary). The
only Weyl group element (for 9') of length zero is the identity, and the Weyl group elements of
length one are the simple reflections (r,, 1) and (1, r») (r, a simple reflection for g with respect
to t)). Identifying f with g, m with t) and T with Y (see the above Remark), we see that it
suffices to show that HI+I-^ is a multiplicity-one weight ofY, but that for every simple
reflection r,, neither y^ == rf HI + H2 — ̂ i nor 5^ = HI + ̂  H2 + a; is a weight of Y.

By definition of Y, HI+I^ is an extremal, and hence a multiplicity-one, weight of
Y. Let ( . , . ) be the natural bilinear form on t)* induced by the Killing form of 9. Then for
each i,

(ji^i)- (^i+l^ Hi+^2)=-((M^)+l)a, ,Hi+^2)
- Ok + ̂ 2 - (^ W +1) a, (Hi (h,) +1) a,)

^ - ((Hi (hi) +1) a, Hi) - (Hi - (Hi (h,) +1) a, (m (h,) +1) a,)

(since HI e P ^d H2 e ~ P)

=(M^)+1){ -2 (a,, Hi)+04(^)+l)(^ a,)}.

Since Hi (^i^2^ ^)/(ai, ai), the expression in braces is just (o^, (Xi), and so

(7^ 7i)>(Hi+H2» ^1+^2).

Hence we also have (8», §i)>(Hi +^2» Hi +^2)» because 8,=r^. Thus neither y , nor 8, can
be a weight of Y, and the theorem is proved.

Q.E.D.

PART III
EUCLIDEAN LIE ALGEBRAS AND EQUIVARIANT LOOP SPACES

8. Automorphisms of finite order of semisimple Lie algebras

In Part III, we formulate the relative cohomology results of Part II in the important special
case of Euclidean Lie algebras (which were introduced and studied by Kac [15], (a)-(d) and
Moody [22] (a)-(c)), and we relate this to work of Bott on loop space cohomology. Kac's
description [15], (b) of the automorphisms of finite order of semisimple Lie algebras is basic
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here. Because the notation convenient for us frequently differs from Kac's notation in
[15] (ft), we find it necessary to summarize the contents of [15], (b). The present section
is devoted to this summary.

Assume that our field k of characteristic zero is algebraically closed; and let 9 be a finite-
dimensional Lie algebra over k. Given an automorphism 9 of finite period m of 9, we obtain a
gradation mod m of 9 as follows: Let c be a primitive m-th root of unity in fe.For all i e Z/(m),

'denote by 9, the e'-eigenspace of 6 in 9. Then 9= U 9i» and [^, 9j]c:9^. for all i,
ieZ/(m)

jeZ/(m). Conversely, given a Lie algebra gradation 9= U 9i ̂  9> the endomorphism
ieZ/(m)

of 9 which multiplies each element of 9; by c1 is an automorphism of 9 of period m.
Continuing to use the above notation, define

9=9®fefe[^ t~1},

the infinite-dimensional k-Lie algebra obtained by tensoring 9 with the commutative algebra
of finite Laurent series in one indeterminate t. Also define

L(9,e)=[j9.(mod.)®^
ieZ

Then L(9, 9) is a Lie subalgebra of 9, and 9==L(9, 1).
We shall assume now that 9 is nonzero and semisimple, and that the pair (9, 6) is

indecomposable, i.e., that 9 cannot be. decomposed into a direct product of nonzero
6-invariant ideals. The centralizer 90 of 9 is reductive in 9. Choose a Cartan subalgebra
I)o of 90, and identify 90 with the corresponding subalgebra of L (9, 9). Let D be the degree
derivation of L (9, 9) with respect to its natural Z-grading. That is, D acts as multiplication
by i on 9,(modm) ® t1 for all ieZ. Let t)i = kD © I)o, so that L(9 9) has a natural weight
space decomposition with respect to t)i. If a weight is nonzero on I)o, then the
corresponding weight space is one-dimensional. The roots of 90 with respect to l)o are
identified with certain linear functionals on t)i which vanish on D. Choose a system of
positive roots of 90 with respect to l)o. The union of this set with the set of weights ofL(9, 9)
(with respect to l)i) which are positive on D is called the set of positive weights of
L (9, 9). Those positive weights which cannot be written as the sum of two positive weights
are called the simple weights ao, . . . , o^(J^l). Every positive weight is a nonnegative
integral linear combination of the simple weights, which form a basis of t)f. The restrictions
ao | I)o. . . . , aj I)o are nonzero elements of I)o which are linearly dependent over Z.

The Killing form of 9 is nonsingular on l)o and thus induces a nonsingular form ( . . . )
on l)o. This form is rational-valued and positive definite on the rational span of
the weights. The (J+1) x (l+1) matrix A given by

^2(a,|t)o, o^|l)o)
IJ (oc,|l)o,a,|l)o)

is thus well defined. A is called the Cartan matrix of L (9, 9), and gives rise in the usual way
to a Dynkin diagram. Specifically, we draw a vertex for each simple weight, we connect the
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f-th and 7-th vertices by A^Aji lines, and we draw an arrow pointing from the i-th vertex
toward the 7-th if |A^| < [A^|. (If 1^7, then A^e -Z+.) Also, above (or near) the
vertices, we place the smallest positive integers which give a linear dependence relationship
among the respective columns of the Cartan matrix; these numbers exist and are
unique. They are the same as the smallest positive integers which give a linear dependence
relationship among the restrictions to t)o of the simple weights.

The Dynkin diagram of L(9, 6) is in Tables 1-3 (where each diagram has /+1 vertices).
For each i = 0, . . . , ( , there is a unique element ̂  e t)o such that (Xi, h) = o^ (h) for all h e l)o;

here (., .) denotes the Killing form of 9. There is a unique rational multiple h[ of Xi such
that (Xf (h'i) =2. We may choose elements e,, f, e L (9, 9) such that e, lies in the weight space
for af, fi lies in the weight space for -oCi, and [^,/i]=^. Then

W, ̂ ]=A^, [h[J^ -A,,/, and h,/,]=5,,^

for all ij = 0, . . . , / . The elements h[, e, and f, generate L (9, 6) as i ranges from 0 to /. We
shall call them canonical generators of L(g, 9).

The Lie algebra L(g, 6) is graded-simple in that it has no proper nonzero ideals
homogeneous with respect to the weight space decomposition.

Two Lie algebras of the type L(g, 9) which have the same Dynkin diagram (or Cartan
matrix, up to index permutation) are isomorphic (without regard to gradation) by an
isomorphism which sends a set of canonical generators for one to a set of canonical
generators for the other.

Moreover, if 9 is a simple Lie algebra of rank n and 9 an automorphism of order 7 induced
by an automorphism of order 7 of its Dynkin diagram, then the Dynkin diagram of L (9, 9) is
the diagram X^ of Tablet (7=!, 2, 3), where X^ is the type of g. Call these L(g, 9)'s
standard.

Thus every L(g, 9) is isomorphic to a standard one (without regard to gradation).
The Cartan matrix A of L(g, 9) is a symmetrizable (generalized) Cartan matrix. In the

notation of paragraph 5, the Lie algebra 9 (A) has a one-dimensional center, say c (the
subspace of I) = span {^} on which the roots vanish), and there is an exact sequence

0^c-^9(A)^L(9,9)^0.

Here n is determined by the condition that it send the canonical generators hi, e, fi for 9 (A)
(see §5) to the respective canonical generators h[, e^fi for L(g, 9) defined above. (Note
however that the index set {0, . . . , ? } now plays the role of the index set {1 , . . . , / } in
paragraph 5.) The Lie algebras L (9, 9) are called here the Euclidean Lie
algebras. [Sometimes the central extensions 9 (A) are called the Euclidean Lie
algebras.] The corresponding Cartan matrices are called the Euclidean matrices. The
Euclidean Lie algebras of the form 9 (9 simple), or their central extensions, are called the
affine Lie algebras, and the corresponding Cartan matrices are called the affine Cartan
matrices.
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TABLE I

A;^ or A, (/ ̂  2)

1

A^ or A,
1 1

TABLE 2

A^ (/ ^ 2)

1 2 2 2
<x==^o——---a==^o

A^

1 v2

Bj^ or 6, (/ ^ 3)

. 2 2 2 v 2

D!i\ (/ ^ 2)
1 1 1 1
r/^ Q— " • •. —Q o

A^-.a^s)

C^ or C/ (/ ^ 2)

E^

1 2 3 . 2 1

G^ or G,

1 2___v3
0———0 0

F^ or F,

1 2 3 . 4 2

1 2 3 2 1

1 2 3 4 3 2 1

1 2 3 4 5 6 4 2
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Each Euclidean Lie algebra L(g, 9) is equipped with a natural Z-grading, as we observed
above. This Z-grading is uniquely determined by asserting that t)o have degree 0 and that
the weight space corresponding to the weight ±(Xi have degree ±a»(D), for i=0, . . . , I
(recall that D is the degree derivation). The numbers (Xi (D) are nonnegative integers, not all
zero. Conversely, given nonnegative integers SQ, . . . , 5 ^ , not all zero, we define the
Z-grading ofL(g, 9) of type (so, . . . , Sj) to be the unique Z-grading which assigns t)o
degree zero and the weight space for ±(Xi degree ±Si, for i=0, . . . , / . Then every
Euclidean Lie algebra, with its Z-grading, is graded-isomorphic to a standard Euclidean
Lie algebra with a grading of type (so, . . . , Si). Moreover, a standard Euclidean
Lie algebra L (9, 9) with a grading of type {SQ, . . . , S i ) is graded-isomorphic to a
Euclidean Lie algebra L(g, 9') (same 9, but 9' possibly different from 9) with its natural
Z-grading.

Suppose that L(g, 9) is standard, and that 9 has order;', so thatj'=l, 2 or 3. For a
positive integer r, define the ideal

I,=(1-^)L(9,9)
i

of L (9, 9). Provide L (9, 9) with a grading of type (so, . . . , Si), and let m =/r ^ Sf &», where
1=0

the bi are the integers above the vertices of the relevant Dynkin diagram in Table j. Then
L(g, Q)/lr is a (finite-dimensional) semisimple Lie algebra graded mod m and isomorphic
(ignoring the grading) to a direct product of r copies of 9. The corresponding
automorphism of period m of L (9, 9)/I^ is inner if and only if7'=r=l. Conversely, every
automorphism 9' of finite order of a semisimple Lie algebra g7, such that (9', 9') is
indecomposable, arises by the construction just given.

It is illuminating to know how to construct the diagrams in Tables 1-3 from the Dynkin
diagrams for the (finite-dimensional) simple Lie algebras (see [15], (a)): To construct the
diagram Xj^ in Table 1, adjoin to the ordinary Dynkin diagram Xj one vertex
corresponding to the lowest root of the associated simple Lie algebra (connecting this vertex
to the original ( vertices with the obvious lines and arrows). Place the integer 1 over this
adjoined vertex, and place the expansion coefficients of the highest root in terms of the (
simple roots over the original (vertices. To construct the diagrams X^ in Table j (j = 2, 3),
let 9 be a simple Lie algebra of type X»; 9 an automorphism of order j of 9 induced by an
automorphism of order j of the Dynkin diagram X^; 90, 91 and possibly 92 the components
of 9 for the modj grading associated with 9; and Y( the Dynkin diagram of 90, which is a
simple Lie algebra of rank I . To construct the diagram for X^, adjoin to Y( one vertex
corresponding to the lowest weight of 90 acting on the (irreducible) module 91, place the
integer 1 over this adjoined vertex, and place the expansion coefficients of the highest weight
of the 9o-module 91 (in terms of the ( simple roots) over the original I vertices. If
X^D^i, A^-i, E^ or D^, then Y^=B(, Q, ¥^ or G^, respectively, and the highest
weight of 91 coincides with the highest short root of 90. If Xj/^A^^^ 1), then Y^=B(,
and the highest weight of 91 coincides with twice the highest short root of 9o.

In each diagram in Tables 1-3, assign the adjoined vertex the index 0. The diagrams are
all drawn so that the 0-th vertex occurs at the left.
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Remarks. — (1) For each Dynkin diagram in Tables 1-3, the natural Z-grading of the
corresponding standard Euclidean Lie algebra L(g, 9) is of type (1,0, . . . , 0). Moreover,
the corresponding mod m graded semisimple Lie algebra L(g, 9)/Ii is just g provided with
its mod j grading given by 6 (where j is the table number). If 7'=!, then L(g, 6) =9 and
L(g, 6)/Ii =9 with the trivial mod 1 grading.

(2) Suppose that we drop the hypothesis that the pair (9, 9) be indecomposable. Then
with certain obvious modifications, everything in this section remains valid. Specifically,
assume that 9 = 9 i X . . . x g N » where the 9i are nonzero 9-in variant indecomposable
semisimple Lie algebras. Then the centralizer QQ of 6 is the direct product of the
centralizers go, i °f 9 m tne 9i» ̂ dtne Cartan subalgebra I)o is the direct product ofCartan
subalgebras t)o, i of the go, i ' We have

L ( g , 9 ) = L ( 9 i , 9 ) x . . . xL(^e),

and each factor L (9^, 6) carries a natural degree derivation Di which vanishes on all the other
factors. Let I)i,, == fc D^©t)o,». Then t)i = t)i, i x . . . x t)i ^ is the abelian Lie algebra with
respect to which we take the weight space decomposition of L(g, 9). The set of positive
weights of L(9, 0) with respect to l)i may be identified with the union of the sets of positive
weights of theL(g;,9) with respect to the I)i^, and similarly for the set of simple
weights. The Dynkin diagram of L(Q, 6) need not be connected, and is a disjoint union of
diagrams from Tables 1-3. The Cartan matrix A of L (9, 9) is the direct sum, in the obvious
sense, of the Cartan matrices of the Euclidean subalgebras L(gf, 9); the center c of 9 (A) is
N-dimensional; and there is an exact sequence

0^c- .9(A)^L(g,9)^0

such that K takes canonical generators to canonical generators; this sequence is the direct sum
of the N corresponding exact sequences for the Euclidean factors of L(g, 9).

9. The relative cohomology theorem for Euclidean Lie algebras

Continuing with the notation of paragraph 8, let 9 be an automorphism of finite order of a
semisimple Lie algebra g such that (g, 9) is indecomposable, and consider the corresponding
Euclidean Lie algebra L (9, 9), its (?+l)x( ;+l) Cartan matrix A, and its central
extension g (A). Recall thatn is the surjection g(A)->g(L, 9). We are free to use the
concepts and notation of paragraph 5 in discussing 9 (A) (except that the index
set {0, . . . , / } now plays the role of the index set {1, . . . , < } in paragraph 5). The
centralizer go of 9 in 9 embeds naturally in L(g, 9), and 7i~1 (go) is a reductive subalgebra
of 9 (A). In fact, let SQ, . . . , Si be the nonnegative integers such that the natural Z-grading
of L (9, 9) is of type (so, . . . , 5j), and letS c {0, . . . , 1} be the subset of those i e {0, . . . , ? }
such that Si=0. [These are just the ie {0, . . . , / } for which the canonical generators e^fi
of L (9, 9) lie in go-] Then n ~1 (go) is exactly the subalgebra r = gg +1) associated with S in
paragraph 5. The center c of 9 (A) is the kernel of 71, and is contained in t) and thus
in r. We have natural isomorphisms g(A)/c^L(g, 9) and r/cc^go.
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Recall from paragraph 5 the Weyl group W, the subset W^ of W, the length function
defined on W, the subalgebra u~ of 9 (A), the element pe(t)6)*, and the finite-dimensional
irreducible ^-modules M(X) (^-ePs). Recall also that wp-pePg for a l lweW^
(see Th. 5.1), that M (A,) is absolutely irreducible under r for al lXePg, and that for
all7'eZ+, H,(u~) with the standard action of r is naturally isomorphic to the direct sum of
inequivalent irreducible r-modules ]jM(wp-p), where w ranges through the set of
elements of W^ of length j (Th. 5.5 and Lemma 6.8). Corollaries 6.13 and 6.16 imply:

THEOREM 9.1. — For odd neZ+ ,

H»(L(9, 9), 9o)=HJL(9, 6), 9o)=0.

For n=2j (jeZ+), there are natural vector space isomorphisms

H"(L(9, 6), 9o)^H,(L(9, 6), 9o)^UEnd^M(wp-p)^End^IP(u-),

where the direct sum ranges over the elements weWj, of length j. In particular,
H^L^, 9), 9o)andH2j(L(9, 9), go) have distinguished bases, and dim H^L^, 9), (^o) is the
number o/weWj of length j, and is also the number of irreducible ^-module components
inH^u-).

Remarks. — (1) W^ in the present context will be described concretely in Part IV.
(2) In Theorem 9.1, the case 9 simple and 9 = 1 (i. e., L (9, 9) = g and go = 9) §^8 H* (§» 9)

and H^ (9, 9).
(3) It is easy to see from Remark (2) at the end ofparagaph 8 that Theorem 9.1 also holds

when the assumption that (9, 9) be indecomposable is dropped. Cf. also paragraph 6 and
the last assertions of Propositions 4.12 and 4.13.

10. Equivariant loop spaces

Here we shall relate Euclidean Lie algebras with certain equivariant loop spaces, and we
shall raise some questions.

Let X be a topological space, and let T1 be the unit circle in the complex
plane C. Write Oy(X) for the space of (continuous) maps from T1 to X, i. e., the space of
unbased (or free) loops of X.

Now let G be a compact connected (real) Lie group. Then Q^ (G) is a topological group
under pointwise multiplication of functions.

Suppose that 9 is an automorphism of finite period m of G, and let e be a primitive m-th
root of unity in T1. The cyclic group Z/(m) of order m acts on G by sending n + (m) (n eZ)
to 9", and Z/(m) acts on T1 by sending n+(m) to multiplication by e". Define Q2(G) to be
the closed subgroup of Ou(G) consisting of the loops equivariant with respect to these two
actions of Z/(m). Then

02(G)={co6QJG)|co(ez)=9o>(z) for all zeT1}.

Note that if 9 is the identity and m= 1, we have Q2(G)=^u(G).
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Let Go be the fixed set of 9 in G, so that Go is a compact Lie subgroup of G. The set of
constant maps from T1 into Go forms a closed subgroup ofQ^(G) naturally isomorphic
to Go, and we denote this closed subgroup also by Go. Then we may form the
homogeneous space Ee(G)=QS(G)/Go (E f01 "equivariant").

Examples. — (1) If 6 = 1 and m = 1, then Ee (G) is clearly homeomorphic in a natural way to
the ordinary (based) loop space 0(G) ofG consisting of the maps from T1 into G
sending 1 eT1 to the identity element of G.

(2) Let G^ = G x G and let 9 be the involution of G^ which takes (x, y) to (y, x) for all x,
yeG. The fixed set of 9 is the diagonal subgroup ofG^ and is isomorphic to G, by
projection of G^ to either factor G. Then E9(G(2)) (with m=2) is naturally homeomor-
phic to the space Ei (G) of Example (1), by projection of G^ to either factor G. Hence by
Example (1), E9(G(2)) is naturally homeomorphic to 0(G).

(3) More generally, for m^l , let G ^ ^ G x . - . x G (m times), and let 9 be the
automorphism of order m o f G which takes (xi, . . . , x^) to (x^, Xi, x^, . . . , ^m-i) f01"
all Xi e G. The fixed set of 9 is the diagonal subgroup of G^ and is naturally isomorphic
to G, by projection ofG^ to any factor G. Then EetG^) is naturally homeomorphic
to Ei (G) [see Ex. (1)] by projection of G^ to any factor G, and so Ee(G(w)) is naturally
homeomorphic to Q(G).

Let 9n be the (real) Lie algebra ofG. Then the unbased loop space Qu(9n)ls an infinite-
dimensional real Lie algebra under pointwise bracket of functions. Denote again by 9 the
Lie algebra automorphism of period m of QR which is the differential of the automorphism 9
of G. In a formal sense which we do not attempt to rigorize, the infinite-dimensional
group 02(G) has as its "Lie algebra" the infinite-dimensional real Lie algebra

0^(g^)={coeOJgR)|o)(sz)=9co(z) for all zeT1}.

Note that Q^ (g^) consists of the maps from T1 to 9^ which are equivariant with respect to the
above action ofZ/(m) on T1 and the action ofZ/(m) on 9^ which sends n+(m) (neZ)
to 9". If 9 = 1 and m = 1, then Q^ (9^) = Q« (9^).

Write QR o for the fixed set of 9 in QR- Then the set of constant maps from T1 into QR o
forms a Lie subalgebra of Q^ (&) naturally isomorphic to ̂  o, and we denote this subalgebra
also by g^ o. Write Ee^) for the infinite-dimensional coset space Q^B^/QR.O- I11 ^e
same spirit that 0^ (^) is formally the "Lie algebra" of 0^ (G)» we have that Ee ten) is formally
the "tangent space" at the origin {Go} ofEe(G)=0£(G)/Go.

Denote by 9, go and 9 the complexifications of 9^, ̂  oand 9' respectively, so that 9 is an
automorphism of period m of 9 and Qo l s lts fix^ set- Then Qu(g) is a complex Lie algebra
under pointwise bracket of functions, and is the complexification of 0^ (ga). Moreover, the
complex Lie algebra of equivariant loops'

Q^(g)={coeQJg)[(o(£z)=9o)(z) for all zeT1}

i^ ihc complexification ofO^gJ, and Qo may be identified with the subalgebra of constant
loops in Q^ (9) with values in QQ . Write Ee (9) = 0^ (9)/9o • Then Ee (9) is the complexifica-
tion ofEe(9R), and is the "complexified tangent space" at the origin ofEe(G). Note
that 02(9) is the formal "complexified Lie algebra" of 02(G).
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Call a loop co: T1 -> 9 algebraic if it is the restriction of a (necessarily unique) everywhere
defined algebraic morphism from the punctured plane C*(=C—{0}) to 9, and denote
by Q^(g) the set of algebraic loops in 02(9)- Recall the notations 9=9®cC[^, t~1]
and L(9, 6) from paragraph 8, with k=C. The following results are clear:

PROPOSITION 10.1. - There is a natural Lie algebra isomorphism 9-^^(9) which
takes x^t1 (xeQ, feZ) to the map z i-> z1 x from C* (or T1) into 9. This isomorphism
intertwines the action ofZ/(m) on 9 which takes l+(m)eZ/(m) ro ^ automorphism
x<S)ti\->Q(x)®(s~l r)1 wft/i t^ acrion ofZ/(m) on 0^(9) w/nc/i ta^s l+(m) to r^
OK tomorphism co(.)i—»9o)(8~1).

PROPOSITION 10.2.- 77^ isomorphism in Proposition 10.1 restricts to a natural Lie algebra
isomorphism L (9, 9) -> Q^ (9) w/ifc/i maps 90 <= L (9, 9) onto 90 <= Q^ (9). L (9, 9) and Q^ (9) are
exactly the centralizers of the actions ofZ/(m) on 9 and on Q^ (9), respectively.

Thus L (9,9) is the formal "complex algebraic Lie algebra" of Q^ (G), and L (9, 9)/9o is the
formal "complex algebraic tangent space" at the origin of Ee(G).

It is well known that if U is a compact connected Lie group and Ui is a compact connected
Lie subgroup, with complexified Lie algebras u and Ui <= u, respectively, then the topological
cohomology H* (U/Ui, C) (with complex coefficients) is naturally isomorphic to the relative
Lie algebra cohomology H* (u, Ui). The proof is based on the de Rham theorem and
integration over a compact group.

Suppose that G is simply connected. We shall call a generalization or analogue of the
above classical cohomology theory a suitable de Rham theory if it establishes that there is a
natural isomorphism (at least of graded vector spaces):

H*(Ee(G),C)^H*(L(9,9),9o).

The cohomology on the right is the relative Lie algebra cohomology. The above heuristic
discussion makes this isomorphism plausible. We shall give more evidence below.

PROBLEM 10.3. - Construct a suitable de Rham theory.

Remark. - Every automorphism 9 of finite order of the complex semisimple Lie algebra 9
(see paragraph 8 for the description of such 9) arises by the above process, in the following
sense: It is known that 9 preserves some compact real form 9g of 9. (I thank J. Tits for this
remark.) Let G be the compact simply connected Lie group corresponding to 9^. Then 9
exponentiates to an automorphism a of finite order of G. Let us call the pair (G, o)
indecomposable ifGis nontrivial and is not a direct product of proper nontrivial a-in variant
normal subgroups. Then it is clear that (G, a) is indecomposable if and only if the
corresponding pair (9, 9) is indecomposable. Moreover, G is in general a product of
a-invariant normal subgroups G» such that the corresponding pairs (Gf, a) are
indecomposable. Note that the topological group QS(G) is the direct product of the
corresponding subgroups 02(Gi), anc! tnat tne space E(y(G) is the product of the
corresponding spaces E<y(Gi). In view of the last assertion of Proposition 4.12, this is
consistent with the solvability of Problem 10.3 [cf. Remark (3) at the end of paragraph 9].
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Suppose that G is simple (in addition to being compact and simply connected) and that
9 = 1 and m = 1. Then Ee (G) = 0 (G) [Ex. (1) above], and H* (0 (G), C) is given by a well-
known theorem of Bott. Specifically, Bott has proved [3], (a) using Morse theory that 0 (G)
has the homotopy type of a countable CW-complex, with no odd-dimensional cells, and with
known numbers of even-dimensional cells. In particular, H"(0(G), C)==0 for odd n, and
dim H27 (Q (G), C) is the number of cells of dimension 2j for each j e Z + . Now the natural
Z-grading of L(g, 9)' is of type (1, 0, . . . . 0) in this case [see Remark (1) at the end of
paragraph 8], and the correspondingly determined subset S of {0 , . . . , ? } is { 1 , . . . , ? }
(see § 9). The subset Wj of W will be described in Part IV.

In this case. Garland has observed "empirically" in [10] that dim H2j(Q.(G), C), given by
Bott, is exactly the number of elements of W^ of length 7, or equivalently, the number of
irreducible g-module components in W(u~) (cf. §9). Combining Theorem 9.1 [and
Remark (2) following it] with Bott's theorem and Garland's observation, we conclude:

THEOREM 10.4. —' There is an isomorphism of graded vector spaces

H*(0(G),C)^H*(Q,9).

Suppose more generally that we are in the situation of Example (3) above with G simple;
this includes as special cases the situations of Examples (1) and (2) with G simple. The
associated Euclidean Lie algebra is 9, and the associated go is just g. That is, if we write g^
for the complexified Lie algebra ofG^, then the pair (L (g^, 9), go) is isomorphic to the pair
(9, g). In view of Example (3) and Theorem 10.4, we thus have:

THEOREM 10.5. - For m^l , let G(m)=Gx...xG (m times), and let 9 be the
automorphism of order m of G which takes (xi, . . . , x^) to (x^i, Xi, . . . . x^_i) for all
XiCG. Then there is an isomorphism of graded vector spaces

H* (Ee (G^), C) ̂  H* (L (g^, 9), go).

Moreover, Ee(G(m)) has the homotopy type of a countable CW-complex, with no odd-
dimensional cells, and with dim H^L^^, 9), go) 2j-dimensional cells for alljeZ+ .

Remarks. — (1) Granting that Problem 10.3 can be solved (and Theorems 10.4 and 10.5
give some evidence that this can be done), we have provided the promised "explanation"
(see the last Remark in paragraph 6) of Garland's empirical observation, mentioned before
Theorem 10.4, that dim H^^G), C) is the number of irreducible g-module components in
W (u~). This is because Theorem 9.1 and the theory behind it explain in a natural way why
dimH27^, 9) is the number of irreducible g-module components in W(u~). Our
explanation is in the same spirit as Kostant's explanation [16], (b), (c) of Bott's "strange
equality" (recall the last Remark in paragraph 6, where we have also pointed out that the
present theory re-explains Bott's equality in the finite-dimensional special case dealt with by
Kostant).

(2) Theorem 9.1, the discussion surrounding Problem 10.3, and Remark (1) suggest in
striking ways that the spaces Q(G)=Qy(G)/G and more generally, the spaces
Ee(G)=02(G)/Go» provide the correct extension to Euclidean Lie algebras of the concept of
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generalized flag manifold U/Ui (U a compact connected semisimple Lie group, Ui the
centralizer of a torus in U); see also the last Remark in paragraph 6. To see the analogy
more clearly, note that the complexified "Lie algebras" of 0^(0) and Go are a Euclidean Lie
algebra (or product of such) and the reductive part of a parabolic subalgebra, while the
complexified Lie algebras ofU and Ui are a semisimple Lie algebra and the reductive part of a
parabolic subalgebra. [Note that it is more illuminating to view the based loop space Q (G)
as a quotient Q^ (G)/G of the unbased loop space Qy (G) than as a subspace ofQy (G).] More
evidence for the analogy between the spaces Ee(G) and generalized flag manifolds will be
given later. -—-

(3) Kostant's theorem on the cohomology of the nilradical of a parabolic subalgebra of a
semisimple Lie algebra is well known to be equivalent to Bott's generalization of the Borel-
Weil theorem on the realization of finite-dimensional irreducible modules; see [16], (&),
paragraph 6. This of course suggests using the main cohomology theorem of [II], (a),
Theorem 5.5 above, to obtain an analogue of the Borel-Weil-Bott theorem for standard
irreducible modules for Euclidean (or more general) Kac-Moody Lie algebras. But note
already that the present viewpoint ties together two quite different theorems of Bott in the
same algebraic setting, in the following sense: The Borel-Weil-Bott-Kostant theorem is
related to the cohomology theory of generalized flag manifolds (the case of semisimple Lie
algebras) as Theorem 5.5 is related to Botfs cohomology theory of A(G) (the case
of 9). The transition in each case is via a "strange equality", explained by the present theory
for all Kac-Moody Lie algebras. This analogy will be pushed further below. Note that
MacdonakTs identities, which are intimately related to Theorem 5.5 (see [II], (a)), form an
essential part of this picture.

The following conjecture is motivated by the above discussion, the distinguished bases in
Theorem 9.1, and Theorems 10.4 and 10.5 (see also the Remark below):

Conjecture 10.6.- Suppose that G is a compact simply connected Lie group and that 9 is
an automorphism of finite order of G. Then Ee (G) = 02 (G)/Go has the homotopy type of a
countable CW-complex with no odd-dimensional cells (this assertion follows from a
theorem of Bott; see below), and with numbers of even-dimensional cells determined by a
natural isomorphism

H*(Ee(G).C)^H*(L(9,9),9o);

the structure of H* (L (9,6), go) ̂  ̂ iven in Theorem 9.1 and Remark (3) following it. The
elements of length j(jeZ+) in W^ naturally index both the cells of dimension 2j in Ee(G), as
well as a natural basis ofH2J(Ee(G), C) constructed from the natural basis ofEndg^ W(u~)
(see Th. 9.1). Each such basis element of H2-7 (Ee (G), C) is realized by a "closed differential
form" on Ee(G) whose integral over the corresponding homology cell is nonzero and whose
integral over every other cell is zero.

Remark. - This conjecture was first formulated for the case in which 9 has order 2, so
that G/Go is the most general compact simply connected symmetric space. The bulk of the
Morse-theoretic work needed to construct the even-dimensional cell decomposition in this
case was done by Samelson and Shahshahani. After this, Bott informed me of an
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unpublished Morse-theoretic result of his (Th. 11.1 below) which implies the even-
dimensional cell structure in a situation even more general that of Conjecture 10.6
(see § 11). In fact, Bott's result was one of the stimuli to formulate the conjecture (part of
which is Bott's Theorem) in the above form. It appears to require nontrivial work to
translate the Morse-theoretic counting procedure for the Betti numbers into the present
one. In addition, the conjectured naturality of the isomorphism

H*(Ee(G),C)^H*(L(9.9).9o)

would involve more—presumably the solution of Problem 10.3. The conjecture on the
construction of the "closed differential forms" from the natural basis of End H^u") is
suggested partly by the paper of Garland-Raghunathan [12], (especially its last paragraph)
and the work of Kostant [16], (c) on (finite-dimensional) generalized flag manifolds. The
even-dimensional cells of Ee(G) should undoubtedly be constructed using a generalized
Bruhat decomposition as in Garland-Raghunathan [12] and Quillen [unpublished], as well
as via Morse theory. This algebraic approach to the cell decomposition might also lead to a
solution of Problem 10.3; that is, it might be possible to prove that Ee(G) has the same
homotopy type as a suitable "algebraic subspace" (cf. [12]) for which the desired de Rham
theory can be carried out. Note that since the "closed differential forms" come from
W(u~), they are closely related to MacdonakTs identities; cf. [II], (a) and Part IV below.

11. Botfs theorem

In response to a preliminary version of Conjecture 10.6, Bott informed me of
Theorem 11.1 below, which he had proved around 1960 [unpublished]. After stating the
result, I shall relate it to the material in paragraph 10. I am grateful to W. Dwyer for
helping me to formulate some of the arguments in this section.

As in paragraph 10, let G be a compact simply connected Lie group. Let 9 be an
automorphism of G, not necessarily of finite order, and consider the Q-twisted adjoint action
of G on itself, given by AdQg(x)=Q(g)xg~1 (g, xeG). Denote by e the identity element
of G, by I the interval [0, I], and by PG the space of paths (D : I -^ G such that co (0) = e. For
every subset S of G, define the space

Qs={coePG|co(l)eS}.

THEOREM 11.1 (Bott). — Let S be any 6-twisted adjoint G-orbit in G. Then Og has the
homotopy type of a countable CW'-complex with no odd-dimensional cells.

Remark. — There exists a procedure for determining the Betti numbers of Qs» c/ [26].
We now begin relating this result to the equivariant loop spaces of paragraph 10.

PROPOSITION 11.2. — For all x e G, let Ad x = Adi x (the inner automorphism ofG defined
by x). Let R be the Q-twisted orbit AdeG(x), let T^Adx'^O, and let S be the x-twisted
orbit Ad^G(e). Then OR and Q§ have the same homotopy type.
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Proof. — For all geG,

M,g(e)=x(g)g-l^x-lQ(g)xg-l=x-lM,g(x).

Thus xS=R, and so Q§ is homeomorphic to the space of paths from x to R. The rest
is clear.

Q.E.D.

Note that Proposition 11.2 reduces Theorem 11.1 to the special case in which S is the
9-twisted adjoint G-orbit of e. Call this orbit Se, so that SQ={Q(g)g~1 \geG}, and 89
is a compact submanifold of G. Let Go be the fixed set of 9. Then the isotropy
subgroup of G at e for the 6-twisted adjoint action is exactly Go, and so we have a
diffeomorphism

; : G/Go -> Se

gGo\->Q(g)g~1.

For a path co: I -> G and g e G, denote by o) g : I -> G the path (co g) (t) = co (t) g for all (el.
Let Ae be the path space

Ae={co:I-^G|co(l)=e(o)(0))}.

Then Go acts on the right on Ae by

(OI-XOfifo-

PROPOSITION 11.3. - The map
h: Ae/Go -> Qs,
coGo^(o(o)(0)~1)

i5 well-defined and is a homeomorphism. The inverse ofh is the (well-defined) map which takes
coeQs^ to ((O^)GO, where ^Go^i"1^!)).

Proof. — Write i: G/GQ -> G for the injection defined by ;, write j for the fibration
PG -> G which takes coePG to co(l), and let P be the pullback defined by the diagram

P -> PGi , -i
G/Go" G

Then P is the space of pairs (gGo, co) such that geG, coePG and i(^Go)=;((o), i. e.,
w(l)=Q(g)g~1. The projection map P-^PG is clearly a homeomorphism from P
onto Qse •

Let B be the space of pairs

B={fo, o))|^eG, coePG, w(l)=Q(g)g-1}.
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Then Go acts on the right on B by the (well-defined) action

andB/Go=P.
Consider the map

and the map

(̂  <o)^o=(^o> ®)>

p : Ae -^ B,
(o^((o(0),(o(o)(0)-1))

^ : B^Ae

(^,o))h->o)^.

Then p and ^ are well defined and are inverses of each other, and hence are
homeomorphisms. Moreover, p and q each commute with the right actions of Go on Ae
and B. Thus p defines a homeomorphism from Ae/Go onto P, and hence a
homeomorphism

h : Ae/Go -> Qs,'
coGoi-^o)(o)(0)~1).

The rest is clear.
Q.E.D.

Now Ae is a topological group, under pointwise multiplication of functions from I
to G. The constant paths with images in Go form a closed subgroup of Ae isomorphic
to Go, and the above right action of Go on Ae may be identified with the corresponding right
multiplication in Ae. Thus Ae/Go may be regarded as a coset space.

Suppose now that 9 has finite period m, and that e is a primitive w-th root of unity in T1, as
in paragraph 10. Recall from paragraph 10 the closed subgroup 02 (G) of the topological
group OJG), and also the homogeneous space Ee(G)==Q2(G)/Go- We clearly have:

PROPOSITION 11.4. — The map
d : Ae^Q2(G),

(01—^T

where T is the unique element o/Q^ (G) such that T (e1) = co (t)for all t el, is well-defined and is an
isomorphism of topological groups. The image of the subgroup Go o/Ae is the subgroup Go
o/02(G).

Propositions 11.3 and 11.4 imply:

COROLLARY 11.5. — The spaces Ee(G) and Q^ are naturally homeomorphic. Specifically,
the map

f: QS(G)/Go-^Os,»

TGo^^TMl)-1

is well-defined and is a homeomorphism. The inverse off is the (well-defined) map which takes
© e Qs, to (d (o) g)) Go, where g Go = t~1 (co (1)).
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Remarks. — (1) Theorem 11.1 and Corollary 11.5 justify the assertion in Conjecture 10.6
about the cell structure of Ee(G).

(2) For 9 of finite order. Corollary 11.5 and the discussion in paragraph 10 show that the
path spaces Qse are ̂  Euclidean Lie algebra analogues of generalized flag manifolds.

(3) It seems likely that for arbitrary 9 not necessarily of finite order, there is a suitable
automorphism a of finite order of G such that fi.^ and Qge ̂ ve ̂  same homotopy type. If
this is true, then Proposition 11.2, Corollary 11.5 and Remark (2) show that the most
general space Q§ considered in Theorem 11.1 is essentially a generalized flag manifold
associated with a Euclidean Lie algebra.

(4) Theorem 11.1 appears to be closely related to Macdonald's identities, in view of the
above Remarks and the comments preceding and following Conjecture 10.6.

PART IV
AUTOMORPHISMS OF FINITE ORDER

AND SPECIALIZATIONS OF MACDONALD'S IDENTITIES

12. The affine root system T

Our next goal is to associate a power series identity to each automorphism of finite order of
a simple Lie algebra 9 over an algebraically closed field of characteristic zero (see
Th. 13.15). The identity is a specialization of a suitably rewritten Macdonald identity, and
it leads in paragraphs 16 and 17 to new T|-function identities. The material in Part IV is
based on Macdonald's results [21], on Kac's and Moody's recognition ([15], (c) and [22], (c))
that Macdonald's identities amount to Weyl's denominator formula for the Euclidean Lie
algebras, as well as on Kac's description [15], (b) of the automorphisms of finite order. We
must quote frequently from [21] and [22], (c). The concrete description of W^ promised in
paragraph 9 is given in paragraph 13.

Throughout Part IV, our field k of characteristic zero is assumed to be algebraically
closed. Let L(g, 9) be a standard Euclidean Lie algebra, defined as in
paragraph 8. Then 9 is a simple Lie algebra of type X^ over k, 9 is an automorphism of 9
induced by an automorphism of order j (j= 1, 2, 3) of the Dynkin diagram X», and L(g, 9)
has Dynkin diagram X^ in Table; of paragraphs. L(g, 9) is a certain subalgebra
of 9. As in paragraph 8, let go be the centralizer of 9 in 9, so that gols a simple Lie algebra
of rank I which is naturally identified with a certain subalgebra of L(g, 9). Let I)o be a
Cartan subalgebra of go, and let oco, . . . , o^ be the corresponding simple weights ofL(g, 9);
the (Xi are linear functionals on I)i = k D © t)o, as in paragraph 8. Since L (9, 9) is standard,
we have (X()(D)= 1 and af(D)=0 for f== 1, . . . , ? , by our convention in paragraph 8 which
assigns the index 0 to the "adjoined" vertex in the Dynkin diagram X^.
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Let A be the Cartan matrix of L(g, 9), g(A) the corresponding Kac-Moody Lie algebra
defined in paragraph 5, c the (one-dimensional) center of 9 (A), and

0^c-^9(A)^L(9 ,9) ->0

the exact sequence defined by the condition that 71 take the canonical generators hi, e^ / of
g(A) (§ 5) to the corresponding canonical generators h[, e^ / of L(9, 9) (see §8). Then n
maps the (?-hl)-dimensional subalgebra 1) = span [hi] of 9 (A) onto the (-dimensional
subalgebra t)o of L(g,9), and n maps each root space of 9 (A) isomorphically onto the
corresponding weight space ofL(g, 9). The set A of roots ofg(A) [defined as in paragraph 5
as elements of (I)6)*] may, and will, be identified with the set of weights of L(g, 9)
in (l)i)*. Under this identification, the set A+ of positive roots becomes the set of
positive weights, and the roots a» of paragraph 5 become the simple weights
oco, . . . , aj of paragraph 8. We shall make use of the following objects defined in para-
graph 5 : the set A- of negative roots, the Weyl group W (which acts on the rational
span of A), the simple reflections y*o, . . . . rj, which generate W, and the set AR of real
roots (the W-transforms of oco, . . . , a j ) . For all weW, we have <D«,=A+n wA- ,
which is a finite subset of A^HA^-. The number of elements in <S>y, is the length of w.
The sum of the elements of 0«, is < O^ >.

Denote by I)o Q the rational span of the vectors h'Q, . . . , h[ in t)o. The restriction ( . , . ) to t)o
of the Killing form of 9 is rational-valued and positive definite on t)o Q (see § 8). Let V be
the real vector space bo.Q ®Q^» ̂ h ̂  positive definite bilinear form on V still denoted
(.,.). Define a norm on V by the condition [[ x \\ = (x, x)112. Now regard the set V as an
affine space E on which V acts faithfully and transitively by translations. Then E is a
Euclidean space with metric given by the distance function H ^ — ^ H .

We recall some elementary notions about Euclidean affine spaces "from [21]: An afflne-
linear functional on E is by definition a map /: E -> R for which there is a linear functional
a/eV*, called the derivative of/, such that f(x+v)=f(x)+(8f)(v) for all xeE and
ueV. We use the form (...) on V to identify V and V*. Then we may regard
5/e V. Let F be the (?+ l)-dimensional space of affine-linear functionals on E. Then F
carries a bilinear form defined by (/, g) = (8f, 8g). This form is positive semidefinite, and the
isotropic elements of F are the constant functions.

An affine-linear mapping from E to itself is a map /: E -»• E such that there is a linear map
a/eEndV (the derivative of/) such that f(x+v)=f(x)-{-(8f)(v} for all xeE and
ueV. For each non-constant /eF, we define

.r=2//(//),
and we define the affine-linear isometry Wf : E -> E by the condition

Wf(x)=x-f(x)8f

for all xeE. Then Wj- is the reflection through the affine hyperplane in E on which /
vanishes. The reflection Wf also acts in a natural way on F by the rule
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^f(g)=gowJl=goWf for all g c ¥ . That is,

^f(g)=g-(f, g)f=g-(f, g)f.

More generally, any affine-linear mapping w : E -> E acts ufa transposition on F, by the
condition w (g) = g o w~1 for all g e F.

Following Macdonald [21], we define an affine root system on E to be a subset T (whose
elements are the affine roots) ofF satisfying the following conditions: T spans F; the elements
of T are nonisotropic, i.e., nonconstant; w^ T = T for all a e T; (a, b^) e Z for all a, b e T; and
the Weyl group W (T) of affine-linear isometries ofE generated by the reflections Wa (a e T) acts
properly on E, i. e., if Ki and K.2 are compact subsets of E, then the set of elements w e W (T)
such that w(Ki) meets K^ is finite.

We shall follow Moody [22], (c) in identifying the set AR of real roots with an affine root
system on E: Let Q be the (I + l)-dimensional real vector space Q A ®Q R. Then oco, . . . , aj
form a basis of Q. Since ao (D) = 1 and a, (D) = 0 for i = 1, . . . , / , evaluation at D is a well-
defined linear functional on Q; this functional is just the 0-th dual basis element. Also,
restriction to ^o^bi gives rise to a well-defined linear map 5 from Q to the real vector
space V*. We define a linear map ^ : Q -^ F as follows: For all a e Q, let ^ (a) be the affine-
linear functional on E which takes xeE to oc(D)+8(a)(x). The derivative of ^(a) is
8(a)eV*. The map ^ is clearly a linear isomorphism from Q to F.

Let T =^ (AR). It is shown in [22], (c) that T is an affine root system on E. Moreover, T is
irreducible in the sense that it is not empty and not the direct sum of two or more nonempty
affine root systems (see [21], § 3 for the precise definition) and reduced in that for every a e T,
the only affine roots proportional to a are ±a. Also, the isomorphism (3 sets up an
isomorphism between W and W(T), and intertwines the actions of W on Q and of W(T)
on F, in the following sense: For all a e Ap, let r^ e W be the Weyl reflection with respect to a,
regarded as acting on Q. Then for all peQ,

^aP)=u^(P).

Thus the correspondence r^\—>w^ defines an isomorphism from W to W(T). We shall
denote this isomorphism by £;, so that in particular, ^(r^)=w^ for all aeAp.

For all f=0, . . . , ;, let ^=(;(af). Note that 2(^, o,)/(a,, af)=A^. (the Cartan matrix
entry) for all i,j. Define the set CcE as follows:

C={xeE |a , (x )>Ofora in=0 ,^ . . . , ; } .

Then C is an alcove (or chamber) in E (see [21], [22], (c)), and the walls of C are the affine
hyperplanes on which OQ, . . . , ai vanish. C is a nonempty open (-simplex. Let XQ, . . . , Xi
be the vertices of C, with the vertex x; opposite the wall on which a, vanishes. Then
a, (Xj) = 0 whenever i + j; a^ (x,) is a positive rational number for all i; XQ = 0 e E (= V as a set);

i i
and the elements ofC are the points ^ c^x, with c,eR, ^ ci=l 8Ln(^ each ^i^- The

i=0 1=0

images under £, of the simple reflections ro, . . . , rj e W are the simple reflections w^, . . . , w^
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in W(T) defined by the walls of C, and these;+1 reflections generate W(T). Denote by7(.)
the corresponding length function on W (T), so that for all w e W (T), l(w) = l(^ ~1 w). Let
T+ =^(ARH A+) and T- =^(AR r^A-), and call these the sets of positive and negative afflne
roots, respectively. Then every positive affine root is a nonnegative integral linear
combination of^o, . . . , ai and is positive on C, and every negative afflne root is a nonpositive
integral linear combination of OQ, . . . , ai and is negative on C. For all weW(T), define

T(w)=T+ nwT_.

Then T(w)=^<D^-i^, and so T(w) is a finite set with l(w) elements. Let

s(w)= ^ a.
a€T(w)

Then s (w) = ̂  < 0^-iy,). The derivatives 8a i, . . . , 8ai e V are a basis of simple roots of the
gradient root system 3T = { oa \ a e T } of T.

By [21], Prop. 7.1, there is a unique element reE on which the functions OQ, . . . . a[ all
take the same value. The point r lies in C, and the common value is denoted g ~1, where g is
a positive rational number. Proposition 7.5 of [21] asserts:

PROPOSITION 12.1. - For all weW(T) and xeE, we have

s(w)(x)=^g(\\wr^x\\2-\\r-x\\2).

13. Specializations of Macdonald's identities

We continue in the setting of paragraph 12.
Macdonald's identities state:

THEOREM 13.1. — We have

n (i-^-cp))^9^ ^ (-i^M-^w)).
<peA+ u?eW

Here g (A)^ 15 the root space in g (A)for the root (p, l(w) is the length of w, and the symbol e (.) is
a formal exponential. The identity takes place in the formal power series ring
Z[[^(—ao), ..., ^(—o^)]] in the l-\-l analytically independent variables ^(—(Xi).

The reader is referred to [22], (c) for a translation of Macdonald's original version of the
identities into the above version, and to [15], (c) for the generalization to all Kac-Moody Lie
algebras. In [11], (a), § 9, Th. 13.1 (for all Kac-Moody Lie algebras) is derived by the Euler-
Poincare principle from either the homology theorem (Th. 5.5 above) or the resolution
(Th. 5.1 above).

Notation. — Write Ui=e(—^ for all f=0, ..., I.
Each Macdonald identity may be written as an equality between two formal power series in

UQ, . . . , Ui. It is convenient to introduce the following:

4*' SERIE - TOME 12 - 1979 - N° 2



GENERALIZED VERMA MODULES 219

I

Notation. — For every integral linear combination (p= ^ c^i of the oc,, let
1=0i

£. (<p) = cj (7=0, . . . , 0. For every integral linear combination a = ̂  c^ a^ of the a^, also let
1=0

^•(a)=Cj(7=0, . . . , 0. Note that under the identification ^, the two maps ^ agree.
MacdonakTs identity for g(A) can clearly be rewritten in two ways as follows:

COROLLARY 13.2. — In Z[[uo, . . . , Ui\],
/ I Xdm^A)^ I(1) n 1- n ^((p) = z (-^ n ̂ w>)

(peAA i=0 / weW i=0

and

/ I \ dim 9 (A)- I(2) n i - n ^i((p) = z (-1)1 (w) n ̂ i'^
(peAA i=0 / weW(T) i=0

DEFINITION. - Let (5o, . . . , Si) be a sequence of nonnegative integers. Let q be an
indeterminate. The homomorphism of power series rings

Z[k), ...,^]]^Z[M]

which sends u, to q51 for all f = 0, . . . , I is called the q-specialization of type (so, . . . , Si). (It is
not everywhere defined.)

We clearly have:

PROPOSITION 13.3. - The q-specialization of type (so, . . . , Si) of Corollary 13.2 (2) asserts:
i i

ys.£.((p) Ts.^(s(w))n (i - g-» n1""9(A)' = z (-1)'w ̂  •
(peA+ u;eW(T)

Remark. - If some s» = 0, then this last equation merely says 0=0. Indeed, the factor on
the left corresponding to (p=ai is 1-^°=0. We shall now remedy this defect. The
following discussion (through Th. 13.4) holds in the generality of all Kac-Moody Lie
algebras.

Let S be an arbitrary proper subset of {0, . . . , ( } . (For general Kac-Moody Lie algebras,
we would choose S to be a subset of finite type, in the sense of [II], (a), § 3.) Recall from
paragraph 5 the subsets A5, A^ and A+(S) of A+ , the subset W^ o fW, the reductive
subalgebra r6 of g (A)6, the absolutely irreducible ^-modules M (k) (k e Pg), and the fact that
-<(D^>=wp-pePsfora l l weW^. Note that for weW^,M(- <<Du,» may be regarded
as an absolutely irreducible module for the reductive Lie algebra r/c. Also, let Ws be the
subgroup of W generated by the simple reflections ^ for i e S. Then W§ is the Weyl group
of r6 (and also of r/ c), and is finite. Moreover, every element w e W can be written uniquely
in the f o r m w = W i W 1 , where WieWg andu^eW^, and l(w)=l(w^)-}-l(w1) (see [II],
(a), p. 66). For every XePg, we denote by xM(^) the character of M()i), i.e., the finite
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formal exponential sum in the integral group ring of^)*:

XM()I)= ^ dimM(U^Oi),
ne(t)T

where M (^ is the ^-weight space of M (^). We shall prove the following reformulation of
Theorem 13.1:

THEOREM 13.4. — We have

PI (l-^-cp))'"119^ E (-I^XM^O,)).
(peA+(S) weW^

an identity in Z[[uo, . . . , uj].
Proo/. — The left-hand side in Theorem 13.1 may be written

no-^-cp)) n (i-^-cp))^9^
<p6A° <peA+(S)

since dim ^(A)^ 1 for all (peA^, these (p being the positive roots of the finite-dimensional
reductive Lie algebra x6. In view of [II], (a), Prop. 2.5, the right-hand side equals

Z E (-^(-ly^^^w^-p)
« ' € W ^ WieWg

= E/-!)'^ z (-ly^wid^p-rt+^p-p))
w^Ws WieWs

= Z (-i)'^ Z (-l)'("'•)e(wl(-<<I>,.»-<^».
w^eWg M;i6Wg

Now simply divide both sides by ["[ (1 - e (- (p)) and apply WeyFs character formula for the
(peA8

finite-dimensional irreducible r^modules with highest weights - <C)y,i > (w1 eW^).
Q.E.D.

We shall next determine the images under the correspondence (3 of W^, W§, etc.
Denote by Fg the subspace of F consisting of the afflne-linear functionals on E which

vanish at x, for all ie {0, . . . , ;} not in S, and set T^T n Fg. Let W(T)s be the subgroup
of W (T) which fixes x, for all it S. As in [21], p. 102, we have that the bilinear form (., .) is
positive definite on Fg; T8 is a (finite, reduced) root system in Fs; [a, \ ieS} is a basis of T5;
and W(T)s is the Weyl group of T5.

. The Weyl chambers of the root system T8 may be identified with the closures of the
connected components in E of the complement of the union of the vanishing hyperplanes of
the afflne roots in T5. The dominant chamber for T8 is the set

Cs={xeE|^(x)^0 for all ieS}.

It is clear that ^(A^T^ ^(A^T^ (^^nT8); i;(A^ (S)nAR)=T^ -T^; and
^ (Ws) = W (T)s. The following result is the concrete description of W^ promised in Part III:
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PROPOSITION 13.5. — The image of Wj under the isomorphism ^: W -> W (T) fs the
s^tW(T)^ of elements o/W(T) w/nc/i (ak^ ̂  (dominant) alcove C into the (dominant)
chamber C§.

Proo/. - LetweW. Bytlll^^^rop.S.l^weW^ifandonlyifw'^^cA+^.e^ifand
only i f u ^ l a f e A + for all ieS, i.e., if and only ifi^w^a^i^w)"1^ takes nonnegative
values on C for all feS, i.e., if and only if a, is nonnegative on C,(w)(C) for all feS.

Q.E.D.

Remark. - It follows that every element of W(T) can be written uniquely in the
form wi W1, where Wi eW(T)s and w1 eW(T)^.

In order to understand ^M(- <<p^ » in Theorem 13.4, we prove the following:

PROPOSITION 13.6. — Recall the meanings ofr and gfrom Proposition 12.1. For all we W
and i'=0, . . . , I , we have

(wp)(h,)=ga^^(w)(r))
and

~ <0. > (h,)=g(8a^ (^(w)r-r)=ga!(^(w) (r))-l.

Proof. — It is sufficient to prove the first formula, for which we use induction on I (w). The
formula is certainly true if ;(w)=0. Given w'eW with HW')>O, write w' in the form rjW,
where 7=0, . . . , l(rj being the 7-th simple reflection) and w e W has length one less than that
of w'. Suppose that the formula is true for w. Then

(u/p) (/i.)=(r,.wp) (^)=(wp-(wp) (/z,)a,) (h,)

=(wp) (^)-a^) (wp) (h,)=ga^(^(w)(r))-^gaJ(W(r))

=^(ar-A,,a;) W(r))=g(w^)) W(r))

= ga, (w. ̂  (w) (r)) = go, K (rj) ̂  (w) (r)) = go, (^ (w1) (r)),

and so the formula is true for w ' .
Q.E.D.

COROLLARY 13.7. - For all weW and f=0, .. , , l , w e have

<^>(hi)=(8a^8s(^(w))).

proof. — Combine the second formula in Proposition 13.6 with [21], Cor. 7.6; recall
that V and V* are identified by means of ( . , .).

Q.E.D.
The following is clear:

PROPOSITION 13.8. - The set 5T8 of derivatives of elements ofT5 forms a root system in V,
except perhaps that ^T8 might not span V. The Saifor i e Sform a basis ofST3, and ST^ is the
corresponding positive system. The Weyl group is 3W(T)s. The dominant chamber in V
is [ x e V [ (8ai, x) ̂  Ofor alii e S }. The objects 5T8,3W (T)s, etc., are naturally isomorphic to
the root system, Weyl group, etc., of the reductive Lie algebra r/c.
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By Propositions 13.5 and 13.6 and the fact that - <0^>ePs for all weW^, we get:

PROPOSITION 13.9. — For all weW(T)^, a==^(wr—r) is a dominant integral weight in V,
i.e., (8a^, [i)eZ+ for all ieS.

We are now ready to give the improved version of Proposition 13.3. Combining WeyPs
dimension formula with the above, we get:

PROPOSITION 13.10. - Let (SQ, . . . , Si) be a sequence of nonnegative integers, not all

zero, and let S = { i e { 0 , . . . , /}|5,=0}. Let ps=l/2 ^ R e V (see Prop. 13.8). The
pe^T?

q-specialization of type (SQ, . . . , Si) of Theorem 13.4 states:

n (i-^y1"11^ E (-D"-^
<peA+(S) weW(T)^

Z SiWw))

where
to(wr-r)+ps,P)

w peUs (PS,P)

Moreover, d^ is the dimension of the irreducible module with highest weight g(wr—r)for the
reductive Lie algebra r/c, with the identifications made in Proposition 13.8. Also, d^ is the
dimension of the irreducible xe-module M (— (<D.-i )>).

We now determine explicitly the vertices Xi of the alcove C and the positive rational
numbers Of (Xi): Consider the basis oa^, . . . , 5 f l j of simple roots of the gradient root
system ^T in V*. The simple affine root OQ is of the form

i
^o=l- E bioa,,

1=1

where the b, are positive integers. In fact, the (/+ l)-tuple (fco = 1, b^, . . . , bi) is the list of
integers written above the corresponding vertices in the Dynkin diagram of 9 (A) in Table j

-(j = 1, 2, 3) of paragraph 8. Recall from paragraph 8 that the Dynkin diagram X^ of 9 (A)
is obtained by adjoining a 0-th vertex to the Dynkin diagram Xj if 7= 1 (in which case n=l)
ortoaDynkindia^^n^if/=2, 3. Ifj=l, then foi , . . . , bi are the expansion coefficients
of the highest root in terms of the simple roots ofX^; if j=2, 3 and X^D^i, A^-i, E^
or D^\ then bi, . . . , bi are the expansion coefficients of the highest short root in terms of the
simple roots of \i {=Bi, Cj, ¥4. or G^, respectively); and if./=2 and X^A^, then Y^=B^
and bi, . . . , bi are the expansion coefficients of twice the highest short root in terms of the
simple roots of Yj.

PROPOSITION 13.11. — Let y ^ , . . . , yi e V be the dual basis to the basis 8a^, . . . , Sai of simple
roots of the gradient root system 5T in V*, and let 1 =bo, b^, . . . , bi be the positive integers
determined by the condition

i
OQ = 1 — j^ bi 9ai
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and described above. Then the vertices of the alcove C are given as follows:

xo=0,
^=y^/bi for i=l , . . . , l .

(Here we identify E with V.) Moreover,

ai(Xi)=l/bi for f=0, ...,;.

Proof. — The vertex Xi is determined by the conditions aj(Xi)=Q if i^j. Hence XQ=O
and Xi is a multiple of ^ for i>0. The precise multiple comes from the condition
ao(Xf)=0. The formula for a^) is clear.

Q.E.D.

PROPOSITION 13.12. — Given s =(so, . . . , Si), where the 5» are nonnegative integers not all 0,
there exists a unique point t^eC (the closure of the alcove C) at which ao, . . . , ai take values

i
proportional to SQ, . . . , Sj, respectively. Let N= ^ Sibi (see Prop. 13.11 for the positive

1=0
integer s.bi). Then

Na^)=s, /or f=0, . . . , ( ,
and

t,= ̂  ^x;,
i=0

where
^=5,b,/N /or f=0, ...,;;

we have £ ̂  = 1. 77î  point tg e C if and only if each s, > 0.
i

Proof. - Letx€E,sothatx= ^ ^;CfWith^(=Rand^=l. Thenforall f=0, . . . , ( ,
1=0

ai(x)='kiai(Xi)='ki/bi,

by Proposition 13.11. By hypothesis, there is a constant c such that Si=cai(x) for
each i. Then

i-Z^Z^M^"1!5^^"1^
so that c=N. The rest is clear.

Q.E.D.
By combining Propositions 13.12 and 12.1, we immediately get a nice expression for the

exponent of q on the right-hand sides of the formulas in Propositions 13.3 and 13.10:

PROPOSITION 13.13. - Let s, ts and N be as in Proposition 13.12, and let w e W (T). Then

^ 5,^(5(w))=N5(w)(^=N^(||wr-^||2-||r-rJ|2).
1=0 z
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The left-hand side of the formula in Proposition 13.10 can also be written in a nice
way. Recall from paragraph 8 that our Lie algebra L(9, 9) provided with the grading of
type (5o, . . . , Si) is graded-isomorphic to a Euclidean Lie algebra L(g, 9') (same 9, but 9'
possibly different from 9) with its natural Z-grading. Moreover, 9' may be constructed
from 9 and (so, . . . , Si) as follows: Provide L(g, 9) with its grading of type (so, . . . , s^ and
let Ii be the ideal (1-^) L(g, 9) ofL(g, 9). Then L(g, 9)/Ii is isomorphic to 9 and is

graded mod m, where m =j ^ s, b,, where the b, are the integers above the relevant vertices
1=0

of the Dynkin diagram in Table j. The automorphism of 9 corresponding to this mod m

grading is 9'. The graded level of each root (p e A+ is precisely ^ s» ̂  (cp). With S chosen
1=0

as in Proposition 13.10, the level of (p is positive if and only if cpeA+(S). Thus the
dimension of the rf-th degree subspace (d>0) of L(g, 9') is the number of roots (peA+ (S),

with multiplicities counted, such that ^ 5^((p)=rf. On the other hand, this dimension
1=0

depends only on the congruence class of d mod m, and is just dim Q^odm)» where 9 is given
its mod m grading. Hence we have:

PROPOSITION 13.14. - Foralld> 0,ferL(g, 9'), be the d-th degree subspace ofL(9, Q'),and
let 9 = ^ 9, be the mod m grading of 9 associated with 9' (see above). Then the left-hand

i6Z/(m) . J

side of the formula in Proposition 13.10 may be written either

T~[ n .-^y^mMg.e'),,
d>0

or
^(l-^yiimg^odm).
d>0

Combining Propositions 13.10, 13.13 and 13.14, we have the following conclusion:

THEOREM 13.15. - Lets=(so, . . ' , s i ) be a sequence of nonnegative integers, not all zero;
9= E 9f the corresponding mod m grading 0/9 described before Proposition 13.14;

»eZ/(m)

ts and N as in Proposition 13.12; r and g as in Proposition 12.1;

S={ fE{0 , . . . ,? } |5 ,=0} ;

W(T)^ as in Proposition 13.5; and d^for weW(T)j as in Proposition 13.10. Then the
q-specialization of type s of Theorem 13 A states:

FJ (1 _^dimg^^dm)= V ( _ ̂  («0 ̂  q^S/^r-t^-^r-t^2) ^

d>0 ' M;6W(T)1

S

If5,>0 for all f=0, . . . , ; , then WCI^WCT), and d^=l.
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14. MacDonahTs specialization of type (1, 0, . . . , 0)

Most of the one-variable power series identities obtained by MacDonald in [21] are
specializations of type (1,0, . . . , 0) (see the definition following Corollary 13.2). That is,
they correspond to the natural grading of the standard Euclidean Lie algebra L(g, 9) of
paragraphs 12 and 13, and the associated automorphism of finite order of 9 is just 9
[see Remark (1) at the end of paragraph 8]. If the Dynkin diagram of L (9, 9) is in Table 1 of
paragraph 8, then 9 is just the identity automorphism. It is via this specialization (which
from our viewpoint comes from 9=1) that MacDonald gets his famous identities for
the dim 9 power of Dedekind's eta-function.

Hereweapply Theorem 13.15inthecases=(l,0, . . . , 0) to obtain another formulation of
MacDonald's specialized identities. In our case, the identities involve the subset W(T)^
ofW(T) instead of the translation lattice, which MacDonald uses. We set up some
notation.

Let 9 be a simple Lie algebra (over our algebraically closed field of characteristic zero); 9 an
automorphism of order j of 9 induced by an automorphism of order j of its Dynkin diagram;
9 == ^ 9i the corresponding mod j grading of 9; t)o a Cartan subalgebra of the simple Lie

»eZ/0-)

algebra 90; t)o,Q Ae rational subspace oft)o on which the roots take rational values;
V = t)o, Q®Q R A6 rea! Euclidean space with scalar product ( . . . ) induced by the Killing form
of 9; || , [| the corresponding norm on V; 0+ a system of positive roots for 90 with respect
to t)o, Q, ̂ h ^+ regarded as a subset of V by means of the identification provided by (., .);
po=l /2 V PeV; and Pi, . . . , P^eV the simple roots in 0+. Define Po^V as follows:

ped^

If7'= 1, then Po ̂  Ae highest root in 0+. Vj=2 or 3, then Po is the highest weight of 90
acting on the (irreducible) module 91 (so that Po is either the highest short root or twice the
highest short root in 0+; see §8). Let Co be the open dominant Weyl chamber in V;
C=={xeC| (Po , x)<l}; reC the unique point at which the numbers

2(Pi, r)/(Pi, Pi), ..., 2(P,, r)/(P,, ?,) and 2(1-(Po, r))/(po, Po)

are all equal; g ~ 1 their common value; W^ (the afflne Weyl group) the group of afflne
isometries of V generated by the reflections through the ?+1 walls of C; l(w) the length of a
minimal expression of w e W^ as a product of these I +1 reflections; and W^ the subset of Wa
consisting of the elements sending C into Co. The following result is immediate from
Theorem 13.15 and other relevant results from paragraph 13:

THEOREM 14.1. — Let q be an indeterminate. In Z[[^]], we have:

^(l-qd)dv[n9d(raodj)= V ( - ̂  W ̂  ̂ HMP-IHI2^

d>0 u?eW^

where

. _ FT to(wr-r)4-pp, P)
'"pil (Po, P)
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Moreover, g(wr-r) is a dominant integral element o/V with respect to 0+, and d^ is the
dimension of the irreducible QQ-module with highest weight g(wr-r).

Remark. — If j==l , then the left-hand side of the power series identity is
["[(l-^""9. Also, g = l / 2 and r=2po, since (., .) is the canonical bilinear form
associated with the root system in V (see [21], Prop. 7.3 and 7.13).

15. The case Ai and polygonal numbers

Partly to motivate the results in paragraphs 16 and 17, we point out an amusing sequence
of specializations ofMacDonakTs identity for g where 9 ̂  sl (2, k). The identity, which is of
course Jacobi's classical "O-function identity" (cf. [21], p. 93) states, in the notation of
Corollary 13.2:

PROPOSITION 15.1. — In Z[[»o. "i]L we have
(n\ (n+l\^(l-^^)(l-^^^ l)(l-^-lM"l)= ^(-ir^27^ 2 /.

n^ l neZ

This formula is written in various ways in the literature, and when one-variable
specializations are deduced from it, the specialization procedures seem unmotivated and
unsystematic.

First note that the version chosen above for the identity is natural from our point of view,
because the variables used come from the simple roots of the underlying Kac-Moody Lie
algebra [UQ = e ( — ao) and u^ = e ( — ai)].

We specialize the identity by applying Theorem 13.15 to the sequence s^=(l, n),
neZ+. That is, we send UQ to q and MI to q" (but if n==0, we first divide both sides
by 1 —Mi) . The n-th such ^-specialization corresponds to an automorphism of order n+1
ofsl(2,fe).

Notation. - Write (p(^)= n^"^1)'
i>o

When n==0, we have S = { 1} in Theorem 13.15, and the result is

(1) (pte)^ ^( - l ) l (2f+l )^ l / 2 > l < i + l \
16Z+

When n >0, we have S=0, W (T)i=W(T) and ^==1 in Theorem 13.15. Forn=l,weget

^-.s- '̂
and for n= 2, we get

(3) ^^(-W2"'3-1'.
l€Z

Formulas (1), (2) and (3) are due to Jacobi, Gauss and Euler, respectively (see [I], pp. 11,
23, 176).
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From the exponents of (p (q) on the left-hand sides of (3), (2) and (1), respectively, it might
appear that these three identities, in this reverse order, form the beginning of a natural infinite
sequence of identities. However, the "right" infinite sequence of identities begins with (1),
(2) and (3) in forward order, and comes from the sequence s^=(l, n) and the associated
automorphisms of-sl(2, k) of order n+1. [In paragraphs 16 and 17, we will in fact produce
identities for arbitrary powers of (p((?), but from Kac-Moody Lie algebras other than Ai.]

It is easy to check that for n>0, the ^-specialization of type (1, n) of Proposition 15.1
states:

PROPOSITION 15.2. - For all n>Q, we have
V (i—q^+^i)(i—q(n+^i~l)n—q(n+^i~n)=Y (_nf^(l/2)i((n+l)i-(n-l))

i>0 ieZ

Note that the exponents of q on the right-hand sides of formulas (1), (2) and (3) are the
triangular numbers, the squares (i. e., the "quadrangular" numbers) and the pentagonal
numbers, respectively. (See [24], p. 224 for a pictorial definition of the pentagonal numbers;
this definition extends in a natural way to the obvious definition of what might be called the
polygonal numbers, i.e., the r-a^onal numbers for all r^3.) Here is a pleasant
surprise—the completion of the above pattern in the ^-exponents:

PROPOSITION 15.3. — The exponenets of q, for f>0, on the right-hand side of the n-th
identity in Proposition 15.2, are the (n-\-3)-agonal numbers.

Proof. — The (i +1) st (n + 3)-agonal number is the f-th plus (n -h 1) i +1 (cf. the diagrams on
p. 224 of [24]). The first (n + 3)-agonal number is 1. By induction, the f-th is (1 /2) i ((n -+-1)

'-^
Recall from paragraph 8 that the affine Lie algebras are the Euclidean Lie algebras of the

form 9 for g simple. In this section, we have focused on one affine Lie algebra 9, and we have
looked at a natural infinite sequence of specializations of the associated Macdonald identity,
corresponding to different automorphisms of finite order of 9. Note that among this infinite
sequence, formulas (1), (2) and (3) are the "nicest". Formula (1) is the prototype of
Macdonald's ^-identities for all affine (or even Euclidean) Lie algebras, discussed in
paragraph 14; when the Lie algebra is 9, the corresponding automorphism of finite order is
the identity automorphism of 9. It turns out that (2) and (3) also have natural extensions to
all affine Lie algebras 9. Formula (3) is the prototype of a family of identities for (p (^)rank9

(see § 16); the corresponding automorphism of finite order is a certain natural one of order
h-\-1, where h is the Coxeter number of 9. Formula (2) is the prototype of an interesting
family of identities related to the exponents of 9 (see § 17); the corresponding
automorphism of finite order is Kostant's "principal" automorphism, which has
order h. [For sl(2, fe), h=2.]

Macdonald's ̂ -identities can be expressed in terms of powers ofDedekind's r|-function, in
place of the cp-function defined above, because of the Freudenthal-de Vries "strange
formula" Hp^^dim 9)/24 for a simple Lie algebra 9; see [21]. Analogously, the new
identities in paragraphs 16 and 17 can be expressed in terms of the T|-function because of new
"strange formulas"; see below.
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16. A formula for r\ (^rank9

Recall from paragraph 15 that (p(^)= ]~[ (1 -q1). Also define T| (q)=ql/24^(q) (a formal
i>0

power series in Z[[^/24]]). Then T| (q) is essentially Dedekind's r|-function.
Let 9 be a simple Lie algebra, so that 9 is the corresponding affine Lie algebra. We shall

apply Theorem 13.15 to s = (2, 1, . . . , 1) to obtain a formula for T] (q)1, where / as usual is the
rank of 9.

Recall from paragraph 14 the following notation: t)o (a Cartan subalgebra of 9 since j= 1
and 6 = 1); l)o Q ; V = I)(),Q®Q R; the scalar product (., .) on V induced by the Killing form of 9;
the identification of V with its dual via ( . , .); the norm [| . | [ on V; 0 + c V ; poeV;
Pi, . . . , P^eV the simple roots; the highest root Po; the alcove C defined by the condition

C = { x e V | ( P , , x ) > O f o r i = l , . . . , ; and (Po, x) <1};

r=2poeC; g , which equals 1/2 (see the last Remark in paragraph 14); the afflne Weyl
group W^; and l(w) forweW^.

Let 0)= +0+ c: V be the set of roots. For all pe0, the height of P is the sum of its
expansion coefficients in terms of the simple roots. The Coxeter number h of 9 is
1 + height Po. The exponents mi, . . . . m, of 9 are positive integers less than h, assumed to
be arranged in nondecreasing order, and defined as follows: For all p = 1, . . . , h, let r|p be the
number of (positive) roots of height p. Then r|p-T^+i is the multiplicity with which p
occurs as an exponent of 9. It is well known that the exponents satisfy the following duality
property: If i=l , . . . , / , then w,-hm^i_,=/i (cf. [16], (a) or [21], p. 121). We have the
following straightforward consequences (cf. [21], p. 121):

PROPOSITION 16.1. — For all p= 1, . . ., h,

r{p-^r[h+i-p=l.

PROPOSITION 16.2. — Forallp==l, . . . , / i - l ,

r\p+r[h-p=l+m\i\ip,

where mult p denotes the multiplicity with which p occurs as an exponent ofQ.
(Note that there is a misprint in the statement of the assertion of Proposition 16.2 on

p. 121 of [21].)
The automorphism of finite order of 9 associated with s=(2, 1, . . . , 1) clearly gives 9 a

mod (h +1) grading (see paragraph 8 and the discussion before Proposition 13.14). Denote

this grading by 9= ]J 9,.
16Z/( /1+1)

PROPOSITION 16.3. - For all i= 1, . . . . h +1,

^^(mod^+l))^-
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Proof. — Since 9A+i(mod(A+i))=b» the desired result is true for i=h-\-\. If ?€<!>+ has
height i, then the root space corresponding to P lies in 9,(mod(/i+i))- If P e 0- has height — i,
then the corresponding root space lies in 9/i+i-,(mod(/»+i))- Now apply Proposition 16.1.

Q.E.D.
Hence the left-hand side of the formula in Theorem 13.15 is ^>(q)1. To determine the

right-hand side, first note that the sum is over the full afflne Weyl group W^; rfy,=l; and
N=ft+1. All we have left to determine is t^.

PROPOSITION 16.4. — Define

^,?.. (^ev-
so that po is half the sum of the positive roots for the root system dual to 0. Then
t,=po/(h+l).

Proof. — By Proposition 13.12, all the simple roots Pi, . . . , P( (which may be identitified
with ai, . . . , ai in the notation of Proposition 13.12) take the value 5i/N=l/(h+l)
on ^- But po is characterized as the element o fV such that (P i ,po )== l for all
f = l , . . . , / . Hence t,=po/(^+l).

Q.E.D.

By Theorem 13.15, our conclusion is:

THEOREM 16.5. - In Z [[qQ,
o)^V:= V (- ly(w)^+l)/4](|IM;(2po)-lpo/^+l)]||2-l|2po-lpo/(/'+l)]||2) ^

U76W,

\

By analogy with Macdonald's transition from his formula for (p^1"19 to his formula for
r( (^dim9 via the "strange formula" || Po ||2 = (d™ 9)/24 of Freudenthal-de Vries (see [21]) we
are led to conjecture the following new "strange formula":

THEOREM 16.6. — We have

^ll|^_ PoU 2 ^
4 1]-- h+l\\ 24-

If<D has only one root length, then it turns out that this formula follows easily from the one
of Freudenthal-de Vries. Indeed, (P, P)/i=l for all pe<D (cf. [16] (d), Prop. 2.2), and so
2 po =(l/h) po in this case. However, for 9 of type Bj, Cj, ¥4. or G^, we have had to resort to
brute-force case checking using the tables at the end of [4]. There seems to be no point in
dragging the reader through the details. But the conclusion is nice:

THEOREM 16.7. — We have

-p /^y = y (- IV ( w ) ̂ +l)/4lll^2P^-^Po/^+W.
weW,,

Remark. — This formula (or Th. 16.5) is a natural generalization of Euler's pentagonal
number formula for<p(^) (cf. § 15) from the case g=sl(2, k) to all simple g.
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The right-hand side in Theorem 16.7 can be written in a form more convenient for
computation by using the fact that W^ is the semidirect product of the Weyl group Wo of€>
with the translation subgroup To of W^ (cf. [21], Prop. 6.1). Moreover, To is the group of
translations by elements of the lattice A generated by { P ^ |PeO}, where, as usual,
P^=2p/(P, p) [21], p. 118. For ^eA, denote by t(^) the corresponding translation
in Wa. Then for a e Wo and K e A, we have

^)a(2po)-^=2a(po)+X-^,

and this implies:

PROPOSITION 16.8. - The right-hand side in Theorem 16.7 equals
y (—n^0) V ^( / l+ l)IICT(po)-lpo/(2(/^+l))]+^||2^

oeWo peM

where M is the lattice in V generated by { P/(P, P) | P e 0 }. J/0 has only one root length, then
the exponent ofq may be replaced by

(h-\-l) a(po)-^—j-Po+l-t .

and M i5 the lattice generated by { ^ P | P e <D }.
Example. - If 9 is of type Aj, l^ 1, Theorem 16.7 becomes:

< + i
1/(2(/+1)(/+2)) ^ ((l+2)a(i)-(l+l)i+iii-l/2-l)2

nte)^ ^ sgna E q
oe^,+i Hi, ...,n,+i€(/+l)(f+2)Z

ZH,=O

where ^+1 denotes the symmetric group of { 1 , . . . , l+1}. For 1=24, this is:
25

1/1,300 ^ (26a(f)-25i+H,-13)2

S TW^to)2^ Z sgna E ^ -
neZ+ 06^25 pi, .... H256650Z

ZH,=O

where T is Ramanujan's r-function (cf. [13], Chap. X).

17. The ^-identity for the principal specialization

Retain the notation of paragraph 16. In this section, we apply Theorem 13.15 to
s=(l, . . . , 1). The corresponding automorphism of finite order of 9 is inner and has
order h, and its centralizer is a Cartan subalgebra (see paragraph 8 and the discussion
preceding Proposition 13.14). Therefore, it is Kostanfs "principal" automorphism, and it
induces the Coxeter element of the Weyl group on a suitable Cartan subalgebra (see [16], (a),
(d)). We call the ^-specialization of type s the principal specialisation.
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Denote the mod h grading of g associated with s by g= ]_J gi. Using Propo-
ieZ/(h)

sition 16.2/we obtain, exactly as in the proof of Proposition 16.3:

PROPOSITION 17.1. — For all i= 1, . . . , h,

dim 9^od/o='+ mult i.

Thus the left-hand side of the formula in Theorem 13.15 is

<p(^ n (i-^)-
n6Z+

Also, N=h. Just as in Proposition 16.4, we get:

PROPOSITION 17.2. — With po as in Proposition 16.4, ^=Po/^-
Hence Theorem 13.15 yields:

THEOREM 17.3. - In Z [[q]\,

(ptoV n (l-qmi+nh)= y (-l^^^^^^P^-^^ll2-!!^0-^0^!!^.
neZ+ weW,

An easy case check implies;

PROPOSITION 17.4. — The left-hand side in Theorem 17.3 can be expressed uniquely as a
shortest possible expression of the following form:

(p^r'n^^n^^)"1'
I J

where the di and Cj are distinct divisors ofh and are greater than 1.
Case checking using the tables at the end of [4] implies another new "strange formula":

THEOREM 17.5. - We have

^"'-t '-^s"1-^
Remark. — If O has only one root length, then this number is 0. It is ((—1)/24 for g of

type B( or Q(;^2), 6/24 for F4, and 4/24 for 02.
We can conclude:

THEOREM 17.6. - We have

^(qr'n^m^r1- z (-iy(-)^)ii-(2po)-(po/.)ii2.
I J W6W,

Remark. — This result (or Thi 17.3) is a natural generalization of Gauss' formula for
(pO?)2/^2) (cf. § 15) from the case g=sl(2, k) to all simple 9.

In Table 4, we list the left-hand sides in Theorem 17.6.
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TABLE 4

Type of Q Left-hand side Type of 9 Left-hand side

A( />H r}{qrl F ^Ito)8^6)^9)
^i+l) 7 )̂,i(,3)̂ )

Br/>^ T1farl p Tito)9^6)^^15)
t v = / ^to2) E8 Tito2)^3)^)^30)

Q(^2) Il^i F, ^)5^6)
^te2) ri^Tito3)Titor1^-1) _ Ti(g)3^6)D d>4} lw lw ' n 1 W TI ̂ ^

i(- ) TI^W^-2) G2 n^r,^3nte2)^-2) VJ2 iite2)^3)
nO?)7^ to4) rifa6)

E6 n^TI^TI^12)

Remark. - For g=5l(n, fc). Theorem 17.6 gives a formula for T| (g)"/r| (^n), and for 9 of
^pe B^_ i or C^_ i, the theorem gives a formula for T| (qY/r} (q2). By multiplying both sides
by T| (q") or T| (q2) and using Euler's pentagonal number formula, we get various expressions
for T| (a)". Thus Theorems 17.6 and 16.7 give many new formulas for arbitrary positive
powers of T| (q). All these formulas which come from Lie algebras other than 9=sl(2, k)
seem to be new. In particular, we get many new formulas for the generating function T| (q)24'
of Ramanujan's T-function (cf. [13], Chap. X).

To facilitate computation, we note as in Proposition 16.8:

PROPOSITION 17.7. - The right-hand side in Theorem 17.6 equals

y (-iy<°) y ^ll^(po)-(po/2A)+H||2

oeWo peM

where M is the lattice in V generated by {?/(?, P) | P € <D }. If 0 has only one root length, then
the exponent ofq may be replaced by

^||a(po)-po+H||2,

and M is the lattice generated by{h^\^e^>}.
Example. - Let g=sl(^, k)(n^2}.

Then Theorem 17.6 states:
riW _ _ l/2E(a(0-^H.)2

———= ^ sgna ^ q .-.
1}\(1 ) ae.y, ^, ...,n,6nZ

ZH.=O

where y^ is the symmetric group of { 1, . . . , n ] . Changing T| to (p, multiplying through by
(p(^1), and using Euler's formula for (p, we get:

( \n ^ ( i\v v^ (l/2)(nv(3v+l)+^(a(0-i+p,)2)(Pte) = E (-l^sgncr ^ q
CT6^ ^. ..., ̂ enZ

veZ ^n,=0
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Since (p(^)~1 = Y p(v)^, where p is the classical partition function (see [I], Chap. 1), we
V6Z+

also have:
l/2^(o(i)-i+p()2

(E PWM^ S sgna ^ ^ -
veZ+ oe^n ^, ..., ̂ enZ

SP.=O

When n=24, we get:
24

(6v+l)2+(l/2)^(CT(0-^•+^.)2

^ T^^ri^)2^ ^ (-irsgna ^ ^
V€Z+ 06^24 Hi. • • • > H24624Z

veZ SH.=O

and
24

l/2^(o(0-i+p..)2

(E PM^KZ T(^+I)^)= ^ sgna i: ^ •=1

V6Z+ ^6Z+ 06^24 Hi. . . . .H24624Z

SP.=O
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