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THE IL OF RINGS WITH MANY UNITS

BY WILBERD VAN DER KALLEN

Introduction

In this paper we give generalisations of Matsumoto's theorem on the presentation
of the K.2 of an infinite field (symplectic and non-symplectic cases). The main results
are as follows. Matsumoto's theorem still holds for a local ring with infinite residue
field, both in the symplectic and the non-symplectic cases. Moreover, for Milnor's K^
(type SLn with n ^ 3), the result even applies with a local ring whose residue field has
more than five elements.

Our approach can be described as follows. "Compute first in general position, then
extrapolate from there." This is also known as the group chunk method (cf. [1]) and
it is only feasible for groups that contain sufficiently many elements in general position.
In the "general position" stage of our computations we need the existence of inverses
of certain coordinates. Therefore the relevant notion of "general position" is that certain
coordinates should be units. In [11], where we used a similar approach, "general position"
corresponded to a certain piece of a column being unimodular. One may view the present
case as the one where the piece of the column has length 1. To get sufficiently many
elements in general position we assume that the ring satisfies certain conditions, similar
to the strongest of Bass's stable range conditions. Roughly speaking, most elements
of the ring should be units and there should be plenty of them, as in infinite fields. We
give two proofs for type SLn, n ^ 3. In the first proof, which applies to a local ring
with infinite residue field, we view SL,, as a Chevalley group and ignore the usual repre-
sentation by n by n matrices. This first proof is easy. The main reason is that, when
proving the necessary properties in general position, we accept losing ground, i. e. we
accept that later results are proved for fewer elements than earlier results. (More and
more expressions are required to have invertible values. The number of such expressions
remains finite, but not bounded.) In the second proof, which is much more computational,
we work with matrices and try to recover, by extrapolation, the ground we lose, so that
we still get useful results when there are only many, not very many, elements in general
position. (This second proof works for a local ring with more than three elements in
its residue field.) We only need to study the situation for 3 by 3 matrices in detail because
we can invoke "stability for K.2" to pass from n = 3 to n > 3.
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474 W. VAN DER KALLEN

To make the computations in the 3 by 3 case, the presentation of Matsumoto is not
convenient. There is a richer presentation (more generators, more relations) which
gives a more suitable calculus. It is the presentation given by Dennis and Stein for the K2
of a discrete valuation ring or a homomorphic image of such a ring (see [8]). This
presentation, which for fields amounts to the same as Matsumoto's, was put in a more
manageable form by H. Maazen and J. Stienstra [16]. They also showed how to use
it in the Steinberg group if certain coordinates are units. (In their application the relevant
coordinates are congruent to 1 modulo the Jacobson radical.) Among other things
Maazen and Stienstra thus extended the above result of Dennis and Stein to all local
rings with residue field Fp, p prime. Our method extends the result of Dennis and Stein
to local rings with more than three elements in the residue field, so it has now been proved
for all local rings.

Our paper is organized as follows. In section 1 we introduce the condition on R
which is used in sections 2, 3, 4. In sections 2, 3, 4 we rewrite Matsumoto's original
proof in the spirit of group chunks. In section 5 we prepare for the case of 3 by
3 matrices by discussing that part of the argument that can be understood in terms of 2
by 2 matrices. (We mostly ignore "symplectic" phenomena in the 2 by 2 case, as they
don't pass to 3 by 3.) In section 6 we prove the presentation for the 3 by 3 case,
i.e. for K.2 (3, R). In section 7 we indicate how one can apply [11] or [23]. In
section 8 we compare the competing presentations (Matsumoto versus Dennis-Stein).
In section 9 we introduce norm residue symbols, as an obvious application of the
main result.

I wish to thank Jan Stienstra and Henk Maazen for the many discussions leading to
the present paper (cf. [12]). I am also indebted to Jan Strooker who introduced us
to the subject of algebraic K-theory.

1. Unit-irreducible rings and the primitive criterion

1.1. Rings are commutative and have a unit.

1.2. EXAMPLE. — Let Aff denote the affine line. If A: is an infinite field, the set fe-rational
points in Aff, denoted by AfF (k), is an irreducible topological space, when endowed with
the Zariski-topology. Let R be a local ring with infinite residue field k. Then Aff(R)
can be endowed with an irreducible topology obtained from the Zariski-topology on AfF (k)
by taking inverse images with respect to the natural map Aff (R) —> Aff (k). Simi-
larly Aff" (R) can be endowed with an irreducible topology. As a set, Aff" (R) is nothing
else than R". So we can transfer the topology to R". A polynomial /(X^, . . . , X^
over R gives a function R" —> R. The inverse image under / of the set of units in R is
an open subset of R", and every open subset of R" is a union of subsets that are obtained
in this way.

1.3. DEFINITIONS. - Let R be a ring. If/(X)eR[X] is a polynomial, we put
D(/) = { reR | /(/•) is a unit in R }. The topology on R which has the D (/) as a
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THE K^ OF RINGS WITH MANY UNITS 475

basis is called the unit-topology. In other words, it is the weakest topology on R
such that:

(i) the set R* of units in R is open;
(ii) every polynomial in one variable over R defines a continuous map from R into R.
The ring R is called U-irreducible if it is an irreducible space when endowed with the

unit-topology. (Recall that this means that the intersection of two non-empty open
subsets is again non-empty.)

1.4. R is U-irreducible if and only if the following holds: given /(X), g (X) e R [X]
and r, s e R such that /(r), g (s) are units, there is t e R such that f(t\ g (t) are units
[or such ihatf(t)g(t) is a unit].

1.5. EXAMPLES. — (a) If R is an infinite field, then R is U-irreducible, because any
nontrivial polynomial has only finitely many zeroes. Finite fields clearly fail to be
U-irreducible.

(b) Let 1 be a set of indices, finite or infinite. Let (R^ei be a family of U-irreducible
rings. Then ]~[ R» is U-irreducible. A similar result holds for a direct limit over a

f e l
directed family of U-irreducible rings.

(c) R is U-irreducible if and only if R/Rad (R) is U-irreducible, where Rad (R) denotes
the Jacobson radical.

(d) Let R be semi-local. Then R is U-irreducible if and only if all its residue fields
are infinite. This is the example one should keep in mind in paragraphs 2, 3, 4.

(e) Let R be a (commutative) von Neumann regular ring. Then R is U-irreducible
if and only if all its residue fields are infinite.

1.6. LEMMA. — Let R be V-irreducible and I an ideal in R. Then R/I is V-ir reducible.
Proof. — It is sufficient to show that the projection p : R —> R/I is continuous with

respect to the unit-topologies. Say/(X) is the projection in (R/I) [X] of/(X) e R [X].
Let v ep~1 (D (/)). There is u e R such that uf(v)-1 e I. Define g (X) e R [X] by
g(X) = uf(X)-uf(v)+l. Then D(g) is an open neighbourhood of v in p~1 (D (/)).
So p is continuous.

1.7. COROLLARY. — If R is V-irreducible then all its residue fields are infinite.

1.8. LEMMA. - Let R be V-irreducible, (a, b) unimodular {i. e. a R+b R = R). There
is r e R such that a+br e R*. So R satisfies the strongest of Basses stable range conditions.

Proof. -- Choose seR such that D(aX-{-bs) is non-empty. Then choose
t e D (X) n D (a X+bs). Take r = st-1.

1.9. It is necessary, in order that R be U-irreducible, that R has infinite residue fields
and that it satisfies Bass's stable range conditions. But even that is not enough. The
ring of totally real algebraic integers in C provides a counter-example (due to
H. W. Lenstra). (One has only one point in D (1+X2), as the norm in Z of 1+oc2 is
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476 W. VAN DER KALLEN

larger than 1 for a non-zero totally real algebraic integer a. It easily follows that the
ring is not U-irreducible. We omit the proof that it satisfies Bass's stable range conditions.
It is clear that all residue fields are infinite [see also 5.4 (5)].) If one takes for R the
ring of all algebraic integers in C then R is U-irreducible. (Again this example is due
to H. W. Lenstra and again we omit the proof.)

1.10. DEFINITION. - A polynomial /(X) e R [X] is called primitive if its coefficients
generate the unit ideal. We say that R satisfies the primitive criterion if every primitive
polynomial/(X) has a unit in its image (i.e. there is r e R such that f(r)e R*).

1.11. LEMMA. — If~R. satisfies the primitive criterion then R is V-irreducible.
Proof. - Let/(X), ^(X)eR[X] so that D (/), D(g) are non-empty. Clearly/,

g are primitive. Therefore / (X) g (X) has nontrivial image in (R/M) [X] for every
maximal ideal M of R. So f(X)g(X) is primitive and D(/(X)^(X)) is non-empty.

1.12. It seems unlikely that all U-irreducible rings satisfy the primitive criterion, but
we don't know an example to the contrary.

1.13. Examples. — (a) Let R be a commutative ring. Let S be the multiplicative
system in R [X] consisting of primitive polynomials. Then S^RpC] satisfies the
primitive criterion and its maximal spectrum is the same as the one of R. In particular,
any maximal spectrum can occur for a ring which satisfies all of Bass's stable range
conditions (compare [9]). The proofs are easy.

(V) Let R be the ring of continuous complex valued functions on a 1-complex K.
Then R satisfies the primitive criterion. Hint: say K is the unit segment. Let
/o(0? - • • » / n ( 0 generate the unit ideal in R. We have to find g(t)eR such that
fo (0 § 0)" + • • • + fn (f) ls fr60 °f zeroes on K. For p e K there is a compact connected
subset V (p) of the unit disc in C, with area ̂  3, so that/o (p) a" + /i (p) fl""1 +... +/„(>) ̂  0
for aeV(p). One can use the same V(^) in a neighbourhood of p.

(c) Let R be a topological ring. (Not necessarily with the unit-topology.) Let A be
a dense subring, and suppose that the units in A form an open subset of A in the induced
topology. If R is U-irreducible then A is U-irreducible. If R satisfies the primitive
criterion, then A satisfies the primitive criterion.

(d) Let R be the ring of rational functions /(X) e C (X) whose poles lie outside the
unit segment. Then R satisfies the primitive criterion [use (b) and (c)].

1.14. It follows from [24] that the ring of real valued continuous functions on the
unit segment is not U-irreducible [compare with 1.13 (6)].

1.15. From now on (until 5.1) we assume that R is U-irreducible.

1.16. DEFINITION. — The unit-topology on R" is the weakest topology which makes
polynomial maps R" —> R continuous (n > 1). In other words, a basis for the unit-
topology on R" consists of the

D(/), /eR[Xi, ...,XJ, where D(/)={(ri . ..., ^)6R"|/(r,, ...,r^)eR*}.
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THE K^ OF RINGS WITH MANY UNITS 477

Alternatively, consider R" as the set Aff^R) of R-valued points in affine /z-space.
Say Aff^ is the scheme Spec (R [Xi, ..., XJ). Then Aff" (R) consists of the sections
of the natural morphism Aff^ —> Spec (R). Let V be an open subscheme of AfF^. The
set V (R) of sections of V —> Spec (R) can be considered as a subset of Aff" (R), hence of R".
If I is an ideal that describes the complement of V, then V (R) = (J D (/). So the V (R)
also form a basis for the unit-topology on R". /€I

1.17. LEMMA. - R" is irreducible.
Proof. — For n = 1 this is our assumption (1.15). Let n > 1 and let D (/), D(g)

be non-empty in R". For r e R let/,. denote the map v\->f(y,r) from R"~1 into R.
Choose r such that D (/,.) is non-empty in R""1 and, similarly, choose s such that D (gs)
is non-empty. By induction we may assume there is v eR""1 such that/(u, r), g(v, s)
are units. Applying the case n = 1 we may now choose t e R such that f(v, t), g(v, t)
are units.

1.18. DEFINITION. — Let X be a scheme defined over R [i. e. one is given a morphism
X—)• Spec (R)]. As in 1.16 a basis of the unit-topology on X(R) [= set of sections
of X -> Spec (R)] will consist of the V (R) with V open in X. Clearly, if Y is an open
subscheme of X, the unit-topology on Y (R) is induced from X (R). Also, if/: X —> Z
is a morphism of R-schemes, the induced map X (R) —> Z (R) is continuous.

1.19. Remark. — We call the topology on X (R) the unit-topology (instead of Zariski
topology), so as not to confuse it with the Zariski topology on X itself. For instance,
X (R) being irreducible is not the same as X being irreducible.

2. The geometry of the big cell

2.1. In Matsumoto's argument it is essential that every element of the elementary
group can be written as a product of certain specific generators. As we want to "start
from general position" we have to prove something stronger: if an element x is in general
position it can be written as a product of certain generators, with certain subproducts
still in general position.

2.2. Let 0 be an irreducible reduced root system and let G(<1>, R) be the group of
R-rational points of the simply connected Chevalley-Demazure group scheme associated
to <I>. Let St (0, R) be the corresponding Steinberg group (cf. [19]). We have the
natural "projection" St (0, R) -> G (0, R), sending ^ (r) to ^ (r) (r e R, a e 0.) The
image of this projection is E (0, R), the elementary subgroup. Actually one expects
E (C>, R) = G (0, R), at least for most examples of U-irreducible rings [see [20] for
conditions which ensure E (<D, R) == G (<D, R)]. We are interested in the kernel K^ (0, R)
of the projection St (0, R) —> E (0, R).

2.3. Recall that the big cell 0 of G (0, R) consists of elements x which can be written
in "lower-diagonal-upper" form, i. e.:

x = e-^i) ... e-ojMn)^i(^i) • • • ̂ (^)^i(^i) • • • ^n(^)-

ANNALES SCEENTIFIQUES DE L'ECOLE NORMALE SUP^RIEURE



478 W. VAN DER KALLEN

Here 04, . . . , o c , are the simple roots, oc^i, . . . ,a» the remaining positive roots, M(,
u. are in R, the ^ are in R*, the ^ (r) are the usual generators, \ (t) = w, (Q w, (-1),
^a (0 = ^a (0 ^-a (-^-1) ̂  (0 (cf. [19]). The order of the positive roots is fixed, once
and for all. We call M,, v,, tj the coordinates of x and also denote them by Ui(x\
Vi(x\ tj(x).

2.4. We provide G (<I>, R) with the unit-topology, as indicated in 1.18 [note that G (^>, R)
is the group of sections of G^ x Spec (R) --> Spec (R), where G^ is the group scheme

SpecZ - '

over Z.] For instance, for SL^ (R) this just means that we use the topology induced
from the unit-topology on R^. The maps x h-> x~1 and x ̂  gx (fix g e G (0, R)) are
continuous (see 1.18). The coordinates u^ Vi, tj on Q induce an embedding Q -> R2"4'1.
Both Q —> R2"^ and Q —> G (0, R) correspond to open immersion of schemes (see [5],
Prop. 1), so Q is an irreducible topological space (use 1.17 and 1.18).

2.5. DEFINITION. - The elements of type e^(t) with a or -a simple, reR*, are
called basic. Let V be a subset of E (0, R). We define a path from x to y inside V as
a sequence of steps s^ ..., s^ such that:

(a) The Si are basic;
(b) xs^ s^ ... s^= y\
(c) x, xs-i, . . . , xyi ... s^ are in V.
We call x the starting point of the path and y the end point. (Note that these "paths"

are discrete.) We say that V is path connected if for every x and y in V there is a path
from x to y inside V.

2.6. PROPOSITION. — Any open subset of Q ^ /?^A connected.
Proof. - We will define subsets Fo, ..., FM of E (0, R) such that:
(A) FQ consists of basic elements;
(B) F.SF,^;
(C) F, is invariant under x^->x~1.

We say that s^ ..., s^ define a path of order p from x to y inside V if:
(a) the 5'; are in ¥ p ;
(b) x?i . . . ̂  = ^;
(c) ^c, x?i, . . . , x?i . . . s^ e V.

So a path of order zero is just a path in the sense of 2.5. Let V be an open subset
of Q. The idea is to show first that one can join any x, y in V by a path of
order M inside V. Next that they can be joined by a path of order M-l, and so on.
As instructive example we take <D of type G^, leaving most details of the simpler cases
to the reader.

Let:
FQ be the set of basic elements;
FI = { ^ (0 | te R, Y has height ± 1 };

4® S^RIE — TOME 10 — 1977 — N° 4



THE K.2 OF RINGS WITH MANY UNITS 479

F^= {^(0 | teR, height (y)e{-5, -1,1,5}};
F3 = { ^ (0 [ t e R, y is a root };
?4 = ?3 u { Ay (0 [ te R*, y is a simple root }.
First we have to show that x, y in V can be joined by a path of order 4. We claim

it suffices to show that for x e V the set A^ of z in V which can be reached from x
(by a path of order 4 inside V) contains a non-empty open subset.

For, then A^ intersects Ay, by irreducibility, so x can be joined with y via a point
in A^ n Ay (x, .yeV). We refer to this argument as "starting from both ends". Let
us show that Ay is a neighbourhood of x. We may assume x = 1, as one can shift
via zh->jc~1 z. Consider the standard expression

e-^(ui) ... e,^(u^h^(t^ ... h^)e^(v,) ... e^)

for an element z in Q. We can view the factors in this" expression as steps in a path of
order 4 from 1 to z. This path need not lie inside V, but it does for z = 1. The set
of (MI, ..., Un, ti, . . . , ti, i?i, . . . , Vn) for which the path lies inside V is an open subset
of R2"^, corresponding with an open subset of Q, contained in A^ (x = 1, / = 2, n = 6).
We thus have proved existence of paths of order 4. Next we have to show that one can
join points in V by paths of order 3 inside V. By the previous result we may restrict
ourselves to joining pairs of the form x, xs, where s e F4. If it happens that s e P^, there
is nothing to prove. Say s == Ay (u). It suffices to show that there is an open neigh-
bourhood N of 1 in R such that one can join x with xh^ (t) for t e N. (Start from both ends.)
Again we may assume x = 1. Consider the expression

e^-a^+apr^e^e.^e^-p^+ap)'1) for h,(l+ap)

(it is defined when 1+apeR*). View its factors as steps in a path again. There is
an open neighbourhood W of the origin in R2 such that for (a, p) e W the path lies inside V.
As (0, 0) e W there is a e R* with (a, 0) e W (irreducibility). Fix such an a and
solve l+ap = t for p. The solution, p = (t-l) a~1, is a rational function p(t) of t.
The values of t for which (a, p(t)) is in W, form an open neighbourhood N of 1 in R,
as required. Thus we mastered the construction of paths of order 3. Now we have
to construct paths of order 2 inside V from x to xy, with s e P^, x e V, xs e V. For
example, let s = ^+p(M), where a, P are the two simple roots, a shorter than P. We
can start from both ends again, and it suffices to find a neighbourhood N of zero in R
so that one can join x with x ^+p (t) for t e N. And again we may assume x == 1. Put

g(a, b) = e^d)e^(b)e^d)e^b\

z == z(a, b, c, p, q, r, s) = g(a, p)g(b, q)g(c, r)e^+^(s).

As z is a product of factors from F^ (plug in the definition of g) we get a path of
order 2 from 1 to z. This path lies inside V when (a, b, c,p, q, r, s) = (0, ..., 0).
By irreducibility we can choose a, b, c such that the path lies inside V { o r p = q = r = s = 0
and such that simultaneously the "determinant" abc(a-b) (b-c)(c-a) is invertible.
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480 W. VAN DER KALLEN

Fix such a, b, c. The determinant occurs (as the determinant of a system of equations
in p, q, r) when one tries to solve

z(a, b, c, p, q, r, s) = ^+p(0 for p, q, r, 5

(see [10], § 33 for explicit formulas). As the determinant is invertible, the equations
can be solved and one finds solutions p ( t ) , q(t), r(t), s(t), rational in t, with
p (0) = q (0) = r (0) = s (0) = 0. As before the existence of N easily follows. This
finishes the proof when s == ^a+pOO- F011 s = ^2a+p00 or s = ^sa+pOO one can use

essentially the same proof [same z (a, b, c, p, q, r, 5-)]. Of course the cases s == e_^^ (u),
s = e_^^^(u\ s = ^-sa-pOO are dealt with in an analogous fashion. So much for
paths of order 2. To get back to order 1, exploit that ^a+^p (^p) = [^p (p), [^p (a), e^ (a)]],
where [̂ , ̂ ] stands for xyx~1 y~1. Clearly the right hand side can be written as a product
of factors from Fi and thus we can use the same type of argument as before. Finally,
to get a path of order 0, start from both ends and use irreducibility once more.

Hopefully the reader has got the idea by now. For <3> of type different from G^, let H
be the highesi height. Put FQ = the set of basic elements,

Fp = { ̂ (f) | teR, -p ̂  height(oc) ̂  p} for p ^ H,
FH+ i == FH u { fcy (t) \ t e R*, Y is simple root}.

The proof can now be left to those readers who checked the argument for G^
(for type SL,, it can be left to any reader).

3. Statement of the results

3.1. Recall that the Steinberg group St (0, R) is generated by the Xy, (t) (a e 0, re R).
Defining relations are:
(Rl) ^(0^(i0=x,0+u),

(R2) [XaO),Xp(«)]= [I ^a^p(N,,ap^a
(»j>o

where a, P e 0, a+ P 7^ 0, the Ny,p are known integers (independent of t, u and even R);
the product at the right hand side of (R 2) is taken in some prescribed order. (The order
in this product only matters for type G^.) In case 0 is of type Ai, i. e. G (0, R) = SL^ (R),
one has to replace (R 2) by (R 2'):

(R27) x^t)x^(-^l)x^t)x^u)x^t)x^(^l)x^t)=x^(--^2u),

where a is a simple root, t e R*, u e R. (Of course this relation actually holds for any
root and the factors x^(± t) near the middle cancel.)

We denote x^(t) x^(-t~1) x^(t) by w^(t) and w^(t)w^(-l) by h^(t\ for ae0,
t e R*. [Recall that w^ (t), h^ (t) denote the respective images in E (0, R).] The
group K.2 ($, R) (see 2.2) contains elements {t,u}^, central in St(<3>,R), defined
by {^^},=AJOAJM)(^(^))- l , fo^aeO, t, ueR*.
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THE K^ OF RINGS WITH MANY UNITS 481

3.2. The following relations are standard (see [17], §5; [18], Lemma 9.8):

(a) {^ y}a{xy, z}a = {x, y z } ^ { y , z},;

W {1,1}, =1;

M {^L^-1^-1}^

(d) {^ ^}a=={^ -^}a;

(e) {w, y}^== {w,(l-w)y}^ (where, of course, w, 1-w, y have to be units).

Consequences are (c/. [17], §5; [21], Prop. I.I):

(/I) {^y2Ux,z^={x,y2z}^

(/2) { ^ ^ } a { ^ ^ L = { ^ ^ 2 L ;

03) ^^- lL={^}a=^- l^L;

04) { ^ ^ L { ^ - ^ l } c c = { ^ - l } a ;

(/5) {^^^^{^^^{^^^^{x2^},;

(/6) {x, y}y= {x(l—y), y}^ (Again assuming that both sides make sense.);

(/7) {^ , l } ,={ l , x} ,= l .

Also, if there is pe0 with 2 (a, P)/(P, P) =-1, one has:

fe) {^^}a={^^}a{^^}a-

Here ( , ) is an inner product, invariant under the Weyl group. Put

<a,P>=2(a,p)/(P,P).
Then:

W [h^u),h,(v)]={u,v<^>}^

whence

(0 {^^u^^^i;
0) {u,v}^{v,u]^=l;

(k) ^(0^-a(M)=^-a(M(l+^^l)^(l+^){-rl,l+fM}o^l^O(l+^)'l),

if t, 1+^eR* (c/. [21], Prop. 2.7).

Remarks. — (1) Some authors write { t, u }„ where we write {t,u }_„. For symplectic
types this makes a difference [compare (7)].

(2) When (g) holds, one can simplify (a), (d), (e). Then (6), (c), (/) become obvious.
Note also that (/3), (g) imply (a).
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3.3. Recall that <D is of symplectic type if there is a root a for which no root P exists
with < a, P > == — 1. We call such a a long symplectic root. Long symplectic roots are:

(1) the roots of Ai (i. e. in SL^);
(2) the long roots in B^ or C^ (B^ = C^);
(3) the long roots in C,, / ^ 3.
In a root system of symplectic type (irreducible and reduced, as always) there is exactly

one long symplectic simple root. (We fix an ordering of 0.) Let c/o be this root. Then
all { t, u }„, with a simple, can be expressed in the form { {m, u" }̂  with m, n, p integers
which only depend on a. This one sees by following the Dynkin diagram, starting from oco,
and applying 3.2 (/3), 0') along the way. So the { t, u }̂  are sufficient to describe all
others. One checks that relations 3.2 (a) through (g), for a simple root a distinct from (XQ ,
follow from relations 3.2 (a) through (e) for oco, via the relation { r , u }, = { ^ m , u" } .̂
(Use that mn is even.)

Our purpose is to prove:

3.4. THEOREM. — Let R be V-irreducible, 0 an irreducible reduced root system of
symplectic type with long symplectic simple root (Xo. Then K^ (^>, R) is isomorphic to
the abelian group presented by:

generators: [ t, u }^ with t, u e R*;
relations: 3.2 (a) through (e) with a = (XQ.

3.5. Remarks. — (1) Of course the symbols { t, u }^ in the presentation correspond
to the elements { t, u }^ in K^ (0, R).

(2) Matsumoto didn't include relation 3.2 (d) when stating his result. The reason
is that 3.2 (d) is an easy consequence of the other relations when R is a field. In section 8
we will show that 3.2 ( d ) still follows from the other ones (for U-irreducible R) (see 8.1).
However, this proof of 3.2 (d) is very technical and the proof of the theorem is much
more natural when we keep 3.2 (d) in the list.

3.6. If 0 is not of symplectic type we have relation 3.2 (g) for all a e 0. Then (a)
through (/) can be simplified in the usual way. Again we choose a long simple root oco.
(If all roots have the same length, call them long.) Note that ao need no longer be unique.
As in 3.3 we can express { t, u }a, for a simple, in terms of { , } .̂ The non-symplectic
version of our result is:

3.7. THEOREM. — Let R be V-irreducible, 0 a non-symplectic irreducible reduced root
system, (XQ a long simple root. Then K^ (0, R) is isomorphic to the abelian group
presented by:

generators: { t, u }^ with t, ue R*/
relations: 3.2 (a), (rf), (e), (g) with a = (XQ.

3.8. Remarks. - See 3.5 for Remarks.
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4. Proof of Theorems 3.4 and 3.7

4.1. NOTATIONS. - In section 4 let US(0, R) denote the group defined by the
presentation mentioned in the relevant theorem, i. e. Theorem 3.4 if 0 is of symplectic type,
Theorem 3.7 otherwise. Recall that we have in K^ (0, R) formulas { t, u }„ = { t " , u" }̂
connecting { , }„ with { , } .̂ In US (0>, R) we also have elements called { r, s }^
and it is thus natural to define { t, u }„ as { ^w, M" }̂  in US (0, R). Recall that o^, ..., a,
are the simple roots ((XQ is one of them). Let H, denote the subgroup ofE (0, R) generated
by the h^ (Q, t e R*. Then t ̂  h^ (t) defines an isomorphism from R* into H; (recall
that we use the simply connected group scheme). Let H denote the direct product of
the H,, and view it as a subgroup of E (0, R). Let H act trivially on US (0, R). Then

fn^a-), n v^))^(n [w ^^ucn^^L)
V=l 7=1 / i<J i

is a 2-cocycle, hence defines an extension

1 ̂  US (0, R) -^ H -^ H -> 1.

Using the cross-section (set-theoretic) of p, corresponding to the 2-cocycle, one obtains
elements h^ (t) e H such that h^ (t) h^ (u) (h^ (tu))~1 = {t, u }^ in H and such that 3.2 (h)
also holds in H. (Note that actually 3.2 (a) through (i) hold in H, with a and P simple
roots.) Of course US (0, R) is central in H. For details (see [17]). The 2-cocycle was
chosen such that one has a homomorphism n : H —> St (<!>, R) defined by

^(VO)=UO-
4.2. We do not want to enlarge H to a group which also covers the Weyl group, as

is done in [17]. This would not help at all to get "general position" formulas, as the
Weyl group is something discrete. If one is not satisfied with "general position" one
tends to end up with complicated formulas (cf. [6]). (For fields the formulas are still
manageable; the trouble comes in when one doesn't have a Bruhat-decomposition.)

4.3. NOTATIONS. - Let U~ be the subgroup of St (0, R) generated by the ̂  (t) with a
negative. Let U4' be the subgroup of St (0, R) generated by the x^(t) with a positive.
Recall that V+, V~ are isomorphic with their images in E (0, R). Let us identify them
with these images so that we get coordinate functions u^ v^ on U~, U4' respectively.
When a; = P we also write ^-p, v^ for u^ i?, respectively. Fix a simple root a. Then put

U^={xeU'|i^(x)=0},

U^ ^eU^M =0}.

This defines subgroups of St (0, R), both of them normalized by the x, (t), x_, (Q.
If x e U~ then xx^y (—M-a (x)) e U(~_^. In analogy with the definition of Q we let ft
be the direct product U~ x H x V^ (direct product as sets). We define n : ft -> St (0, R)
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by 7i (M, h, v) = u n (h) v. [Recall we have already n : H —> St (0, R).] We define
p : Q —> Q. by composing 7t with the projection St (0, R) -^ E (<D, R). (The composite
map has fl as its image.) We provide Q with the weakest topology which makes p
continuous. Next we want to define partially defined maps L (g) : Q —> Q such that
n (L (g) (z)) = g n ( z ) when z is in the domain of L (g). [Here ^ e St (0, R).] We put

L(x,(0)(MX_,(w),ft,t;)
=(x,(OMx„(~Ox-Jw(l+tw)- l),^(l+^){-^ l ,l+^}; l?^,x,(Ot;),

where a is simple, teR*, UGV(~_^, w e R , /zeH, i^eU4 ' , 1+^weR*, ^' is such that
^ (^ (1 + ̂ )~1) p (h) == /? (A) ̂  (Q. [Compare 3.2 <^).] We also put

L(X-^(O)(M, ft, i;) = (x^(t)u, h, v\

where a is simple, teR, ueV~, AeH, veV^.
Similarly we put

R(x^(w))(u,h,x,(t)v)

=(MX_,(W'), hh^(l+tw)[w, l+tw}^l,x^(t(l+tw)~l)x^(-w)vx^(w))

if a is simple, weR*, M e U ~ , AeH, ^eR, i;eU^), 1+^eR*, w' is such that
e^ ( w ' ) p Ch) = p (h) e., (w (1 +tw)-1).

And we put
R(^(O)(M, ft, i;) == (M, ft, ̂ (0)

if a is simple, t e R, M e U~, heH, v e V+.

4.4. LEMMA. — Let a &^ simple, ^eR*, zeO. 7%^ L(^(Q)(z) ^ defined if and
only if ^(07?(z)eQ.

Proof, — We can always write z in the form (ux-^ (w), A, r) with u e U(~_ .̂
If L (^ (^)) (z) is defined, it is an element of 0 and ^ (t)p (z) = p (L (^ (^)) (z))e Q.
Conversely, assume ^(07?(z)e0. We have to show that 1+tw is a unit. If it isn't
a unit, pass to a residue field where it vanishes. One finds, with R replaced by the residue
field, that

e^t)p(z)e\J-e^t) e.^t-^pW^ =\J-w,(t)p(H)V\

which is disjoint from Q by the Bruhat-decomposition. This contradicts e^ (t) p (z) e Q.

4.5. Let a be simple. It is clear that L(Xy,(t)) defines a homeomorphism from an
open subset of Q to an open subset of Q. The map L (x-^ (t)) defines a homeomorphism
from Q to ̂ . It is easy to see that R (x_^ (w)) (z) is defined for z e Q with p (z) ^_^ (w) e Q.
(Compare the Lemma.) Just as n (L (g)) (z) == gn (z) one has n (R (g) (z)) = 71 (z) g,
but we will not use this. [We will use that p (R (g) (z)) is the same as the image
of 71 (z)g in Q.]
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4.6. 5^ ([18], §12) for an exposition of left-right aspects. The crucial result is
(c/. [17], lemma 7.1):

LEMMA. — Let a, P be simple, t, we R*, y, z e R. Then the maps L (Xy, (t)), L (x-^ (z))
commute with the maps R(^p(j7)), R(^:_p(w)) as far as the composites are defined
[e. g. L (x^ (0) R (x_ p (w)) (u, h, v) = R (x- p (uQ) L (^ (Q) (M, ̂ , i;) ;/6o^ sides are defined}.

Proof. — For combinations like L (x-y (z)) with R (x-p (w)) this is a trivial consequence
of the definitions: L(x_a(z)) R(x-p (w)) (u, h, v) has the same projection in Q as
R(^-p (w)) L(x_a (z)) (M, /?, i;), and their H-components look the same. Remains the
combination L(^(^)) with R(jc_p(w)). If a ^= P then it is still easy: one notes
that R (x_p (w)) doesn't affect the coordinate u-y, and that L (^ (?)) leaves the coordinate i^p
alone. Consequently the H-components of

L(^(0)R(x-p(w))(M, h, v) and R(x_p(w))L(x,(0)(M, fc, v)

still look the same. So we are left with the combination L (^ (^)), R (x-y, (w)). In
other words, our computation explains why one only needs relations that come from
rank 1 or from the action of an h^ (u) on the rank 1 subgroup corresponding to Oy
[as expressed in 3.2 (g), (A)]. Now let us deal with the remaining combination. Again
the H-components are the relevant ones, as the images in E (0, R) still coincide. Say
(u, h, v) = C^-^ (a\ h, x^ (b) v) with u e U(~_^, v e U^, a, b e R. Say r = a ( p (A)),
i.e. p ( h ) x ^ ( l ) = Xy,(r)p(h). If a is a long symplectic root then r is a square and
therefore { x, r }„ { w, x }„ = { w r ' ^ x } ^ for xeR*. [Use 3.2 (/).] If a is not
a long symplectic root then the same relation holds, so we may use it in any case.

Put A = l+bw+at+abtw+r'1 tw, B = A/(1+W) (1+^0, C = a+abw+r'1 w.
We get

L(^(0)R(x^(w))(u,ft,iO
=L(^(0)(MX-,(C(l+fcw)- l) , ;^^(l+fcw){w,l+fcw}; l ,*)

=(*,^(A(l+bw)- l){~r^A(l+fcw)- l}; l^,(l+fcw){w,l+fcM;}; l ,*).

One sees from 3.2 (A), (/I), (g) that [A^ (z),A] = {z^}y.' So the H-component is

{-r \A(l+fcw)- l}; l{w,l+&w}; l{A(l+bw)- l , l+fcw},{l+bw,r}; l^(A)/I ' .

Similarly we get the following H-component for R (x-y, (w)) L (^ (Q) (u, h, v):

{-r^l+^^-^ACl+flO-Sr^-^l+^Aa+^O-^^w.AO+aO-^.-^^A)^.

So if Q is the quotient of the first H-component by the second, then

Q = { -r1, (1+^)B},-1 {r- 1 w, 1+fcw};1

x{(l+at)B,l+bw}^{-t~\l+at},{r~lw, (l+bw)B}^[l+at, B(l+fcw)};1

= { -rl(l+^), a};1^^, Bj^r-^O+fcw), B},{1+^, B};1

x^+^B^B.l+fcw},.
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Now 1-B =-r""1 tw(l+at)~1 (l+bw)~\ so

Q == {r-^O+fcw)-1, B},-1 {(1+fcw)2, B};1 {r-^O+fcM;), B},

which is 1. This proves the Lemma. (Compare 5.12.)

4.7. We are going to construct a group G from the "group chunk" Q.

DEFINITIONS. — Let /, g be two maps each defined on an open dense subset of Q and
with values in Q. We call /, g equivalent if they coincide on an open dense subset of Q
(necessarily contained in the intersection of the two domains). We denote the class
of / by [/].

Let G be the set of classes that have at least one representative / such that
(i) /has an open image and is a homeomorphism;
(ii) if P is a simple root and M;eR* then R(^-p (w))f coincides with /R(.x-p (w))

where both are defined. Similarly, for y e R, the composite maps / R (xp (y)) and
R OcpOO)/ coincide where both are defined; <%> M

(iii) if s e US (0, R) then / commutes with the map (u, h, v) ^-> (u, hs, v);
/%/ HM

(iv) there is x e St (0, R) such that n (/ (u, h, v)) == x n (u, h, v) whenever the left
hand side is defined.

We write p ( x ) = = ^ ( f ) when x is as in (iv). We also write (p ([/])==/? (x).
(Note that x only depends on the class of/.)

A representative / which satisfies (i) through (iv) is called special. The composite
of two elements of G is formed as follows. Let [/], [^] eG have special represen-
tatives/, g respectively. Put h = /o g, i. e. h (x) = f(g (x)) whenever the latter is defined.
We claim that h is again special so that its class [A] is again an element of G. We put
[/] ° b] = W- (^e class of h does not depend on the particular choice of repre-
sentatives.) In order to see that h is special, note that if, for example, gR(x-p(w))
and g are both defined at some point t, the map R(x-^(w))g must also be defined at
that point, because p (g (t)) ^-p (w) = (p (g) p (t) 6?_p (w) = p (g R (^_p (w)) (Q) e Q.
(Compare 4.5.)

It is easy to see that with the above composition G is a group and (p : G —> E (0, R)
a homomorphism. It is also clear from preceding results that G contains the classes
of L (^ (t)), L (x^ (z)) for a simple, t e R*, z e R. Further, if s e US (0, R) the class
of the map (u, h, v) ̂  (u, hs, v) is in G and even in the kernel of (p.

4.8. LEMMA. — Let [/], [̂ ] e G with special representatives/, g respectively. Iff
and g coincide at one point they coincide at any point in the intersection of their domains.
In particular, [/] = [̂ ]. (Compare [18], Lemma 12.8.)

Proof. — Say/(y) = g ( y ) and let z be in the domain of both/and g. We have to
show that f(z) = g(z). Let V be the intersection of the domains of / and g. If
R(^-p(^))OOeVthen

/R(x-p(u;))00 = R(^p(w))/GQ = R(x.p(w))g00 = gR(x_p(w))00,
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so / and g also agree at R(x-p (w))(y). Similarly, if ^ looks like (u, A, v) and
if s e US (0, R), then / also agrees with g at (u, hs, v). Now use that there is a path
from p (y) to p (z) inside the open set p (V) (see Prop. 2.6) to join z with y and to pass
from the equality f(y) = g ( y ) to the equality /(z) = g(z\

4.9. NOTATION. - Let de H. Let L (d) be the map (M, A, v) }-> (n (d) u n (d~1), dh, v)<%> <%>
from 0 to Q. Its class is an element of G, denoted by [rf], and L (d) is a special
representative of [rf]. (Compare Proof of 4.6.)

4.10. LEMMA [cf. [17], lemma 6.11 (d)]. - The kernel of (p consists of the [d~\
with d e US (<D, R). These [d ] aro central elements of G.

Pn?o/. — The latter statement is part of the definition of G. For the first
we only need to test at one point, by Lemma 4.8. If (p (/) = 1, then/ (u, A, v) = (u, sh, v)
for some u e U~, h e H, v e U'1', s e US (<!>, R) and we see that [/] must be [^].

4.11. NOTATIONS. - Let a be simple. Put x,^ (t) = [L (x.^ (Q)], for teR.
Choose ^=[L(^p))][L(x-J-l))][L(^(l))] in G. So (p (w,) = w, (1). Put
^a(0 = ^a^-aC—O^ 1 - (We will come back to this definition in 4.13.) More
generally, if y is a positive root, choose Wy e G with (p (Wy) = u;y (1). Let ;c_y (0 denote
the class of the map (u, h, v) h-> (^c_y (Q M, h, v) and put Xy (t) = Wy x.^(-t) w^"1.

4.12. LEMMA. — The Steinberg relations hold in G.
Proof. — Let a be simple. Then x-a is obviously additive and therefore Xy is additive.

Next consider w^ (t)x.^ (u) w^(—t), where w^(t) = x^(t) x.^(—t~1) x^(t). Up to a
central element we have w^ (t) = u^ [̂  ̂ -1)]. Also [̂  ̂ -1)] ̂ --a (u) [h^ (^~ l)]~ l is
easily seen to be x _ ^ ( t 2 u). [Test for instance at (1, 1, 1) and then apply 4.8.] So
w^ ( t ) x.^ (u) w^ (O-1 = ̂  (-t2 u) or w ^ ( - t ) x ^ ( - t 2 u) w^ (t) = x.^ (u\ as required.
This shows that the Steinberg relations hold in the rank 1 case.

Choose aeR* with l—^eR*. Let Y be a positive root. Choose A - y 6 H such
that/? (A-y) = A_y (a). Also choose Ay e H with/? (Ay) = Ay (a). Then (p ([A-y]) = A_y (a)
and [[A_y], x_y (^(at2-!)"1)] = ^-y(0, as one sees by testing at (1, 1, 1). So x_y(Q
satisfies Steinberg's normalisation (cf. [22], 9.2) and therefore x ^ ( t ) does it too.
(Recall Steinberg's trick which tells that "(p (x) = (p (x') and (p QO = (p Cy7)" implies
"[̂  ^] = [ '̂? y~y\ because ker ((p) is central. Thus

Xy(Q = [Wy[Ly]Wy-1, Wy X __ y( - t ̂  2 - 1) - 1) Wy- 1 ] == [[fcy], Xy (t {02 - 1) - l)] .)

Because of this normalisation we have w ^ x ^ ( t ) w ^ ' 1 = x ^ ( Q t ) when

Wy (1) ̂  0 ) w, (I)-1 = ^ (£ 0, e = ± 1.

(Use Steinberg's trick again.) Those Steinberg relations which involve only negative
roots are easy [test at (1, 1, 1)] and by means of the Wy we can reduce the arbitrary case
to that situation (see [3], 1.5 Th. 2 and 1.7 Cor. 2.)
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4.13. We have defined ^ (t) as w^ x_^ (-r) w^1. If a is simple and t e R* we also
have [L (^ (r))]. One expects ^ (Q = [L (^ (0)], which is indeed the case. For, by
Steinberg's normalisation and Steinberg's trick, x ^ ( t ) = [[AJ, [L^^a2-!)"1))]].
By testing at (1, 1, x^(t (a2-!)'1)) the required equality follows.

Similarly one sees that x^(t~1-!) x^(-l) x^(l-t) x,(-t~1) == [h^ (Q] by testing
at (1, 1, 1). [Note that the analogous identity holds in St(0, R) by 3.2 (/7), (k).']

By Lemma 4.12 we have a homomorphism T from St (0, R) to G sending Xy (Q to x^ (t),
It sends A, (u) to [̂  (^)] (a simple, u e R*). Let x = x^ (^) ... x^ (t,) e K^ (<D, R)
with Yf equal to a simple root or its negative and t, e R*, i = 1, ..., r. (Any x e K^ (0, R)
can be written this way, as St (0, R) is generated by the w^ (1) and the ̂  (^) with a simple,
^<=R*.) As (pr(x) = 1 we have r(^) = [rf] for some ^eUS(^), R). Also,

7r(L(x î)) ... L(^(O)(M, fc, v)) =xn(u, h, v)

whenever the left hand side is defined. By Lemma 4.8 the left hand side is n ((u, dh, v))
or n (d) n (u, Ji, v). We see that n (d) = x. Therefore the map x v-> T (x) = [d~\ \-^ d
is the inverse of the restriction of n to US (0), R). (Use T (h^ (u)) = [h^ (u)'].)
Theorems 3.4 and 3.7 follow.

5. The rank 1 case

5.1. We start all over again, with a slightly more general type of ring, but restricting
ourselves to type SL^. Again we prove our intermediate results in big subsets ("general
position"), but these subsets are no longer open dense. In fact our ring may now be
finite so that we now have a discrete situation. Section 5 is still easy, section 6 will
be messier.

5.2. Let us recall some notations and terminology from [12]. Let A: be a positive
integer. The commutative ring R is called k-fold stable if, given k pairs (a,, &,) of elements
in R with a^ R+A, R = R, there is r e R such that each of the ^+&» r is a unit. A pair
(a, b) e R2 with ^ R + 6 R = R i s called unimodular. (Unimodularity can be checked in
the residue fields of R. This will often be the convenient way.) The group D (R) is
defined by the following presentation:

Generators are the symbols < a, b > with a, b e R such that 1 -\-ab e R*, where R* is
the group of units of R.

Relations are:
(D 0) the group D (R) is abelian;
(Dl) < ^ > < - ^ ^ > = l;
(D 2) < a, b > < a, c > = < a, b+c+abc >;
(D 3) < a, be > == < ab, c > < ac, b >.
Here it is assumed that the left hand side makes sense, e. g. in (D 2) one needs a, b, c e R

such that 1+ab, 1+aceR*.
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For n ^ 2 we have a Steinberg group St(?2, R) = St(A^_i, R) (cf. §3). As usual
the generators are denoted by x^(r) and we put w^ (u) = Xij(u) Xji(—u~1) x^' (u),
h^ (u) = w^ (u) w^ (—1), for u e R*, i ^ j, 1 ̂  i ̂  n, 1 ̂ j ^ /?. [We do not

«w «w

write hij (u) for the element of St (n, R) so that h^ is analogous to hy of section 3,
not h^ of section 2.] We put { u, v },y = h^ (u) h^ (v) (h^- (uv))~1, for u, i;eR*.
If 1+flAeR* we define an element of St(^,R) by

< a, b >., = x,, (-b (1 +ab)-1) ̂  (a) x,, (b) x,, (-a (1 +ab)-1) h^ (1 +^).

If fl? is also a unit, < a, b >fy = { -a~1, \-^ab }^1 [see 3.2 (fe)]. Note that
< ^, b >., e K^ (^, R) = ker (St (n, R) -> E (n, R)).

5.3. THEOREM. - Let R Z?6? 3-/o/rf stable:
(i) K.2 (2, R) is a central subgroup ofSt (2, R), generated by the [u,v }ij with u,v e R*,

ij = 12 or 21;
(ii) there is a homomorphism T : K.2 (2, R) —> D (R), sending < a, 6 >i2 ?0 < a? ^ )

^r a, & e R m7A 1+^eR*.

5.4. EXAMPLES AND REMARKS. — (1) Note that { u, v }i2 { v, u }2i = 1 by 3.2 (7).
(2) In the next sections we will see that ker T is just the kernel of the standard map

K2(2,R)->K2(R).
(3) A semi-local ring is ^-fold stable if and only if each of its residue fields has at

least k+1 elements. This is the example to keep in mind. For (commutative)
von Neumann regular rings we have the same criterion (that all residue fields should
contain at least k+1 elements). Of course U-irreducible rings are also k-fo\d
stable (cf. 1.8).

(4) The analogues of 1.5 (b), (c), 1.6 hold for A:-fold stability. [For the case k = 1,
see [24]. For k ^ 1, use that if I is an ideal in the fc-fold stable ring R, and if ax + by — 1 e I,
there is re R such that (a+r (ax +6y—l), b) is unimodular, by ibid. Theorem 1.]

(5) It has been shown by H. W. Lenstra that the ring of totally real algebraic integers
in C is fe-fold stable for any k ^ 1. Compare this with 1.9.

(6) In general T : K^ (2, R) —> D (R) is not injective. If one wants to get an injective
map, and thus a presentation for K^ (2, R), one has to use a different list of relations.
Of course this list should contain only relations that are known to hold for the < a, b >i2
(given that the ring is 3-fold stable). The following list of relations will do. [That they
hold follows from two facts: R is commutative and K^ (2, R) is central in St(2, R).
For the second fact see part (i) of the theorem.]

(A) < t, u >i2 commutes with < a, b > i2^
(B) (t+u, v^^= <u.v>i2<t, ^(l+^O"1)^ {(l+tv+uv)(l+uv)~\ 1+uv}^,

where [ p , q } i 2 stands for (pq-q,q~1^;
(C) U M + U > i 2 = 0 , M^OO+MO- 1 , 1 ;>^{1+^, (l+^+^)(l+^)- l}l2;

(D) ^r-2!?)^ = ^-^i;)^^^"2)^;
(E) <M, ! ;> i2 = <V(1+UV)~\ -M>i2 .
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Compare [7], § 9. The construction of a map T, based on this list, is quite similar
to what follows, but more cumbersome.

5.5. The proof of the theorem is given in the remainder of this section. So R will
be 3-fold stable. (We do not use this in the next two lemmas.)

5.6. For u, ceR* put { u , v ] = < (u-V)v~\ v > eD(R).

LEMMA (cf. [16]). - The following relations hold in D (R), whenever the left hand side
is defined:

< a , 0 > = = l , < ^ i > = i , < o , a > = l , < - i^>=i ;

<fc, ^ > < c , a)=(b+c+abc, a>;

< a , & > = < - f c , a ( l + a & ) - l > ;

{u, -M}=I , {u,l-u}=l;

{tu,v}={t,v}{u,v};
{ t , u v ] = { t , u } { t , v } ;

{u,v}[v,u}=l;

< ^ & > < & , a > = = { l + a & , -1}.
Proof. - Use

<a,0y=^a,0y=(0, ~a>-1;
^O^a,!)^-!,-^-1;

< & ^ > < c , ^ > = = « - a , -&><-a , -c>r1;
< f l , & > < - a ( l + ^ ) - l , f c > = < 0 , & > ;

{«, -M}=<-(M-1)M-1 , -l^^M.CM-l)^-1)-1

=<-(M-1)M-1 ,M(1+M-1)-1>-1;

{Ml?, -Ml;} = {u, -U}{u, v]{v, U]{v, -I?}.

5.7. LEMMA. - Let u, ueR*. Then

^^ -^"'^—^(^^(^^(-^-^-^{M, -^}y1,

which is central.

Proof. - Write out w^ (u) w^ (v) and follow the obvious path. Centrality follows
from [18], Corollary 9.3.

5.8. LEMMA. - Any element o/St(2,R) can be written in normal form
/u-12 (a) x^ (b) x^ (c) where h is in the subgroup H of St (2, R) generated by the A,y (t).

Remarks. - Once this lemma is proved, it is easy to see that K^ (2, R) c H and part (i)
of the theorem follows as in the proof of [18], Theorem 9.11. Note that the normal
form in the lemma is not unique.
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Proof of lemma. — Let X be the set of elements that can be written in normal form.
It suffices to show that X is invariant under right multiplication by x^ (1) and x^ (u),
as these generate St (2, R). Consider hx^ (a) x^ (b) x^ (c) x^ (1) = y. By threefold
stability choose t such that t, 1+bt, 1+c—t are units. Then

y=hx^(a)x^W
X<^021^2l(*)^2l(*)^2l(*)<^-^ 1>12^12(*)^12(*)

and, via Lemma 5.7, it easily follows that y e X (cf. [18], Lemma 9.2). Here, and in
the sequel, we use stars where the precise form of an expression is irrelevant.

5.9. The proof of part (ii) of the theorem is based on setting up a calculus with normal
forms, or rather with equivalence classes of normal forms. We will describe the proof
in a different language, viz. with partially defined maps (cf. § 4).

DEFINITIONS. — Let 1 —> D (R) —> H -°> R* —> 1 be the central extension defined by
the 2-cocycle { t , u } (cf. 4.1). We use the suggestive notation h^ for the cross section
of a that corresponds to the 2-cocycle. So h^ (t)h^ (u) = h^ (tu) {t, u } and D (R)
is a central subgroup of H. [Recall that h^(t) is an element of St(2,R), with
Ai2 (0 ^i2 (u) = ^12 (tu) {t, u }i2- So Ai2 mimics ^12-] The chunck C is the set of
triples (JC2i (a). A, x^ (b)) with a, A e R , A e H . We will simply write x^(a)hx^(b)
for (x2i (a\h, x^ (6)). (As x^j (*), h are not in the same group it will be clear where
one should put the commas.)

We define n : H -> E (2, R) by n (K) = d^ (a (A)). Here d^ (0 is the diagonal matrix
with diagonal (t, t~1). We define the map n : C->E(2, R) by

TI; (x^ (a)hx^ (b)) = e^ (a) n (h) e^ (.b).

We also define n : St (2, R) -^ E (2, R) by TT (x,y (r)) = e^ \r\ So there are three
maps TC, all with codomain E (2, R). The first and the last one are homomorphisms.
(C is not a group.)

5.10. As in section 4 we model left and right multiplications in the Steinberg group
by partially defined maps from the chunck into itself. Note that n (C) = Q is the big
cell of SL (2, R), i. e. it consists of the matrices (a,y) e SL (2, R) with a^ e R*.

DEFINITIONS. — Let
p === x^(a)hx^(b)eC, feR.

We put
L(^i(0)(p)=X2i(a+0^i2WeC,

L(x^(t))(p)=x^(a(l+at)~l)(t,ayh^+at)hx^(b+u)eC,

where u is such that e^ (t (1 +at)~1) n (h) == n (h) e^ (u). (So CT (A)2 u = t (1 +at)~1).
Of course L(x^(t))(p) is only defined when e^ (t)n(p)€Q. or, equivalently, when
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1+a^eR*. We do not define L(y) for arbitrary ^eSt(2,R). For A ' eH we put
L (A/) (?) = ^21 (u)V hx^ (b) e C, where p is as above and u is such that

n(ht)e^(a)=e^(u)n(hf).

Note^ that n (L (y) (p)) ==n(y)n (p) when L (^) (p) is defined, where y = x,j (t) or
y = Ji' e H. Further we put

R(^i2(0)(p)=^2i(^)^i2(fr+OeC,

R(^2l(0)(P)==^2l(^+M)A<fc,QAl2(l+fc0^12(fr( l+&0" l)eC,

where M is such that n(h) e^ (t(l+bt)~1) = e^ (u) n(h) and p is as before. The
domain of R (x^ (0) consists of the p e C with n (p) e^ (t) e Q. Finally we put
R W (?) = ^21 (ff) hh' x^ (u) where A' e H and^ is chosen such that

e„(b)K(hf)=K(hf)e^u).

Note that n (R (j) (/?)) = n (p) n (y) in all these cases.

5.11. LEMMA (c/. 4.6). - Let p = x^i (a) ho x^ (b) e C,

y=x^(f) or ^==X2i(0 or }7=ft'eH,
«w w

z = Xi2 (^) or z = x^i (u) or z = ^/ e H.

y n (y) K (p), n (p) n (z), n (y) n (p) n (z) are elements of Q then
L(y)R(z)(p)=R(z)L(y))(p).

Proof. — First note that the assumptions are such that both L(y)R(z)(p) and
R (z) L (y) (p) are defined. As n (L (y) R (z) (p)) =n(y)n (p) n (z) = n (R (z) L ( y ) (p))
we only have to compare the H-components (cf. 4.6).

Say
R(z)(p) = X2i(*)Mi^i2(*), L(j)R(z)(p) = x^Wh^hoh^x^W,

L 00 (p) = X2i (*) h^ ho x^ (*), R (z) L 00 (p) = X2i (*) ^3 ^o /4 ̂ 12 (*).

In most cases A^ ==^4 ,^2 = AS and the result follows. The only exception is y = x^ (t),
z = x^ (v), where one has to make more detailed computations. One finds

L(} ;)(P)=^2l(*)<^^>^12(l+^)^0^12(&+^(^o)~2^(l+^)~ l),

R(z)LOO(p) = X2i (*) < t, a > h^(l+at)ho

x(b+aCho^2t(l+at)~\vyh^^+bv+va(hV2t(l+at)~'l)x^W,

and similarly

L^)R(z)(p)=X2l(*)<^^+^o•(Ao)"2(l+^)~ l>

A(l+^+^(7(fo)-2(l+&^;)- l)Ao<fc,t;>Al2(l+^)^12(*).
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So we need to prove an identity in H. Write ho = h^ (s) D, where D e D (R),
s = a (ho). Put

A= l^-bv•}-s~2•tv(\.-{-at)~l,

B= l+flf+s '^^^Cl+fcy)"1 .

Then A(l+at) = B(l+to), which also follows by applying n to the formulas. As

(t,a-}-s~2v(l+bv)~ly=(t,ay(t,s~2v(l+at)~l(l+bvYl)
and

<b+s~ 2 ^( l+a0~ l , t ; > = < & , ^Xs'^Cl+^r^l+fciO"1, i;>

(note the symmetry) we have to show that

h^l+a^h^h^Xs'^^+aty^l+bvr^vy
equals

<^S~2^;(l+^^ l(l+to)~ l>Al2(B)Al2(5)^2(l+to).

Now the latter equals

<S•"2((l+^)~ l(l+fcl;)~ l,l;>

x{A(l+to)- l ,s-2(l+aO" l(l+fcy)- l}^2(B)/^l2(s)fcl2(l+^),

so remains to show that { 1 +at, s ] {(1 +at) s, A } equals

{A(l+fct ; ) - l ,5~ 2 ( l+f lO~ l ( l+bl ; )~ l}{B,s}{B5, l+^}.

Plug in A = B(l+bv)(l-}-at)~1 and the result is clear from the multiplicative rules
for the symbols {*,*}.

5.12. The above computation is a generalisation of the computation in 4.6, at least
for the non-symplectic case. [Although SL (2, R) is of symplectic type we made a "non-
symplectic" computation by factoring out the defining relations of D (R), thereby forcing
relation 3.2 (g).] The above computation can also be interpreted in terms of gradual
replacements inside "words", as in [16] (cf. the comment in 6.10).

5.13. DEFINITION. — Let G be the set of partially defined maps/that can be written
as / = L (H) L (x^i (a)) L (x^ (b)) L (x^ (c)), with h e H, a, b, c e R. Our purpose is to
provide G with a group structure. Define n : G —> E (2, R) by

n (/) = n (h) e^i (a) e^ (b) e^ (c),

where/is as above. This is the fourth map n (see 5.9 for other three). The value of n (/)
does not depend on the way/is written, because n (f(p)) = K (/) n (p) for all p in the
domain of/. [The domain of/ consists of the/? = x^ (r) A' x^ (*) with n. (/) n (p) e ft,
hence it consists of the p with TT (/) e^ (r) eQ. There is at least one such r,
by 1-fold stability.]
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5.14. LEMMA (cf. 4.8 or [18], Lemma 12.8). - Let p, q e C. TA^w ^ one and exactly
one feG with f(p) = q. Moreover, if g, heG are such that g(h(p)) = q then
/(r) = g (h (r)) whenever the right hand side is defined.

w
Proof. — Soyp = x^i (t) h' x^ (*). It is easy to see that we can choose / of the form

L(/OL(^(*))L(^(*))L(x^(-0) such that f(p)=q.

Uniqueness of/will follow from the second statement of the lemma, upon taking h == id.
Thus let g, h be such that g (h (p)) = q. Clearly n (/) = n (g) n (h), so f(r) is defined
whenever g (h (r)) is defined. If z is as in Lemma 5.11 then

g(h(R(z)(p))) = g(R(z)h(p)) = R(z)g(h(p)) = R(z)/(p) = f(R(z)(p))

provided that the left hand side is defined (use Lemma 5.11). Let V be the domain
of r h-> g (h (r)) and X = { v e V | f(v) = g (A (v)) }. Then X is non-empty and what
we just showed amounts to the rule "if r e X and R(z)(i;)eV then R(z)(t;)eX'\
[Note that one needs R (z) (v) to be defined.] We want to use something like propo-
sition 2.6, as employed in 4.8. (The present situation is much simpler.) Note that

V = {^21(^)^0 ̂ 12 W I ̂ W ^21 W and ^(s)^(h)e^(a) lie in Q}.

The above rule implies that the following are equivalent:
(i) x^(a)hQX^(b)eX\

(ii) ^i(^)Ao^(0)eX;
(iii) x^(a)h^(l)x^(0)eX.

In particular, the fact that/? = x^ (t) h' x^ (*) e X implies that x^ (t) h^ (1) ^12 (0)e X.
But then also x^ (t+u) h^ (1) x^ (0) is an element of X, whenever it is one of V. We
may conclude that V = X.

5.15. LEMMA. - Let /, g, h e G. There is peC such that f(g (h (p))) is defined.
Proof. - Try p = x^ (t) h^ (1) ^12 (O) and use 3-fold stability.

5.16. DEFINITION. — For/, geG let f-kg be the unique element of G that extends
the map p^->f(g(p)\ If/ g, heG one has

(/*fe*/0)(p) = /(g(^(p))) == (Cf*g)*/0(p) for some peC,

so that * is associative. (Use last two lemmas.) It is easy to see that the composition *
makes G into a group. Put y^ (t) = L (x^ (0) and y^ (t) = L (x^ (t)). Then y,j (t) eG.

5.17. COMMENT. — Only 2-fold stability is needed to define the composition *. [Given/
and g one needs p e C so that/(^ (p)) is defined, in order to assert uniqueness of/*g.]
However, we do not see how to prove associativity in G without something like 3-fold
stability. Of course one can impose additional relations on the < a, b > and thus force G
to be associative. Such an approach has little appeal however, as it leads eventually
to awful presentations for K^. We know, at least for local rings, that in fact K^ is given
by the nice presentation from 5.2. Therefore we only use the nice relations and see
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where we get with them. It then seems necessary to use 3-fold stability and we are unable
to recover the result of Maazen en Stienstra for the case of a local ring with a very small
residue field. It seems that we could obtain, by the present method, some awful presen-
tation for K^ of 2-fold stable rings. In this presentation the various obstacles would
be reflected which we avoid here by 3-fold stability. So it is not true that the simple
relations of 5.2 come out naturally from this sort of proof. It is true, however, that
the relations from 5.2 (and their consequences) are the only short relations encountered
when computing in the chunks. (Two more chunks are to come, see next section.)
We will not point out the further obstacles we need 3-fold stability for. They are easy
enough to find. The trick is to avoid them.

5.18. LEMMA. — Xij(t)—>yij(t) defines a homomorphism (p : St(2, R)—^G sending
<a,b\^ to L«a ,A».

Proof. — We have to show that the Steinberg relations hold between the y^ (t).
By Lemma 5.14 identities in G can be checked by evaluating at some conveniently
chosen p in C. It is therefore trivial to prove y^ (t+u) = y^ ( t ) y^ (u\ When t e R*
and a e R we need to show that

^12(0 Y2i (-^l)37l2(0 yiiW(y^(t) y2i (-r^y^y))'1 ̂ ynd-t'2^
or that

yl2(0}72l(-^l)}/12W};2lO~l)};12(-0=^2l(-^2^.

If it happens that 1+at"1 e R*, we test at the "origin" p = x^ (O)^ (1) x^ (0) and
we see it boils down to proving

0, -ar 2 ( l+ar l ) - l>{(l+^- l ) - l , l+ar l}<a,r l>=l ,
or

< -at-2, -Q{ -1, l+af^Ka, r1) = 1,
or

{i+ar1, -^}{-i, l+at~l}{l+at~'l,t~l}=l,

which is clear. For arbitrary a e R we choose, by 2-fold stability, u e R such that 1 + ut ~~1

and l+(a—u)t~1 sire units. We can write y^(a) = y^ (u)y^ (a-u) and apply the
previous computation to the factors. So the Steinberg relations hold indeed. Now if u,
v e R* the element

^l2Ww^(v)==X^(u)X2l(-U~l)x^(u+v)x^(-V~~l)x^(v)

goes to L « u+v, —v~1 > Ai2 (—uv~1)), as one sees by testing at the origin again.
So Ai2 (u) goes to L (h^ (u)) (put v = — 1) and < a, b >i2 ^oes to L « a, b ».
[Test at xn (0) h^ (1 +a6) x^ (0).]

5.19. For xeK^(2,R) one has 7i((p(x))=l , so (p (x) is everywhere defined.
Furthermore (p (x) (x^ (0) Ji^ (1) x^ (0)) = x^ (0) Dx^ (0) for some D e D (R). Put
T (x) == D. Then T is a homomorphism of the type required in the theorem.
[UseL(T(x))=(p(x).]
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6. The rank 2 case

6.1. We want to do the same sort of thing as in the previous section, now for K^ (3, R).
The chunk C* in which we can prove the necessary relations lies over the big cell Q again.
However, some relations are easier to prove in a bigger chunk C, in which we incorporate
the results of the previous section. This bigger chunk was used before to prove injective
stability for K^ (see [11]). Its role is only secondary in the present approach. We use
it to avoid a few lengthy computations of the type occurring in 6.9, by reducing to the
previous section. We will not establish the analogue of Lemma 5.11 with points ranging
over all of C. (Before 6.9 we have trouble to extrapolate that far out from our "general
position" results and we also do not see how to carry through the general position com-
putations in a range that would be more adequate for the study of C.) Once we have
established (in 6.9) the analogue of 5.11 with the small chunk C* as range, we can extra-
polate along paths "all the way out to St (3, R)" (cf. the application of 2.6 in 4.8).

Now let us explain the connection with the problem of injective stability for K^, to
motivate the definition of C. (Here we also introduce some notations.) Let St' (2, R)
be the group which is obtained by factoring out the kernel of T : K^ (2, R) —> D (R)
from St (2, R) (see 5.3). In other words, St' (2, R) is the group G which was constructed
in the previous section. The image of x^j (a) in St' (2, R) will be denoted by ^y (a) and
the image of A,y (t) by h^ (t). [This convention is harmless as we won't use St (2, R)
any more.] The image of K^ (2, R) in St' (2, R) will be identified with D (R) in the
obvious way. It is known (see [16]) that < a, b > h-> < a, b )^ defines a homo-
morphism D (R) -> K^ (3, R), and also that, because our ring is 3-fold stable and hence
certainly 1-fold stable, the usual map K^ (2, R) —> K^ (3, R) is surjective (see [20] or [25]
and also 6.23 below). Now E^ (2, R) -> K^ (3, R) factors through D (R) —> K^ (3,R)
(use 5.3), so that the latter map is also surjective. Therefore D (R) ^ K^ (3, R) follows
if we show that the natural map St' (2, R) —> St (3, R) is injective. (Check that there
is such a map.) This is a problem of the same type as the problem of injective stability
for K.2, so that it is natural to introduce the chunck C suggested by Keith Dennis in that
setting (cf. [11].)

6.2. THEOREM. - Let R be 3-fold stable. The map < ^ , 6 > « - > < ^ , & > i 2 defines an
isomorphism D (R) —> K^ (3, R).

6.3. The proof of this theorem is given in the remainder of this section.

DEFINITION. - We define a copy St" (2, R) of St' (2, R) in which the generators are
written as x^ (t), x^ (t) instead of x^ (0, ^21 (0 respectively. So x,y (t) h-> ;c,+i^+i (t)
defines an isomorphism St' (2, R) —> St" (2, R). We write the image of < a, b > as < a, b >
i. e. we also identify D (R) with a subgroup of St" (2, R). We write the image
ofWij(u) as ^f+i^.+i (u) and the image of h^ (u) as A » + i . y + i (u). The big chunck C
consists of equivalence classes [x, M, y~\ of triples (x, M, y), with

xeSt'(2, R), M = e,,(q)e^(r)e^(a)e^(b)eE(3, R), yeSt^l, R).
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Here (x, M, y) is called equivalent with (x', M', y'\ notation (x, M, y) ^ (x', M', y ' )
if there are t, u e R, D e D (R) such that x = x' Xi2 (0 D, ^ = D-1 ^32 (^) ^',
M/ = ^12 (0 M ^32 (M). Check that this is an equivalence relation. (One may also
check that this is really the same type of chunck as in [11].) We put

^ Oc,, (0) = e,j (0, n ((x, M, y)) = n ([x, M, y]) = n (x) M n (y).

Check that this defines homomorphisms St' (2, R) -> E (3, R), St" (2, R) -> E (3, R),
and a map C —> E (3, R).

6.4. Let us mimic the multiplication in St (3, R), by defining partially defined permu-
tations of C (cf. 5.10). If zeSt'(2, R) put L(z)(x, M, y) = (zx, M, y) and
L (z) [x, M, ̂ ] = [zx, M, y~], the class of L (z) (x, M, ^).

I f z = = e^(t)e^(u) put

L(z)(x, M, y) = (x, 7r(x)-1 z7i(x)M, y)

L(z)[x, M, ĵ ] = class of L(z)(x, M, y).
and

If Z = 6?i2 (0 ^13 (") PUt

R(z)[x, M, y] = [x, Mn(y)zn(y)~\ 3;].

IfzeSt"(2,R) put
R(z)[x,M,^]=[x,M,^z].

It is easy to check that all these maps are well-defined and that

n (L (z) (p)) = TC (z) 7i (p) or zn (p),

TT (R (z) (p)) == 7i Q?) 71 (z) or 7t (jp) z.
Next let

z = e^We^W, M = ^31 to) ^32 W ^12 W ^13 W,

7I;(x)~ lZ7l(x)=^3(0^23(M), 1+^CR*.

Then we put
L(z)(x,M,^)=(x/i i2(l+^)<-^ -^>^(uq(l+tq)),

^iWe^a-b^^+tqY^e^^t-au+bru+b+bqt),

X23 (M (1 + tq)) ̂ 23 (1 + ̂ ) X32 (r) };).

Clearly this formula is more complicated than the ones in rank 1, which is one reason
to do some of the work in the rank 1 setting. One has n (L (z) (x, M, y)) = z n (x, M, y)
again. We will show in 6.5 that the class of L (z) (x, M, y) only depends on the class
of (x, M, y). But note that L (z) (x', M', y ' ) need not be defined for all representatives
of [x, M, y], because the analogue of the statement 1 +tq e R* may fail. We will denote
the class of L (z) (x, M, y) by L (z) [x, M, y].
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6.5. Let us now show that L (z) is compatible with equivalence [z = ^3 (*) ̂ 3 (*)
as above]. Assume (x, M, ^) is equivalent with (x\ M', y) and assume L (z) is defined
at both of them. Write x ' = xx^ (-/) D-1, y ' = x^ (-g) Dy,

M' =e^(q)e^(r+g-fq)e^(a+f+bg)e^(b) with DeD(R),

q, r, a, b as above. Then n (x')"1 z n (x ' ) = ^3 Q+/M) e^ (u) and 1 +(r+/M) q must
be a unit. Say A = 1+^ and B = I+(^+/M)^. We find

^^(x^M^y^^^xx^-Wh^X-t-fu, -^>X2i(^B),*,
^3(MB)^3(B)X32(r+g-/^)X32(-g)D^).

Note that n (L (z) ( ,̂ M, y)) = z TC ([.c, M, y~\) = n (L (z) (^/, M', ^/)). Therefore, to show
that L (z) (x\ M', y) is equivalent with L (z) (x, M, y), it suffices to show that

x/ii2(A)<-?, -^>X2i(^A)

^^(-yWWBX-^/M, -^^(i^B^a'A^B-1)
and

X23(MA)^3(A)X32(r)^=X32(/^A- lB- l)X23(MB)^3(B)X32(r-/^)Dl^

hold simultaneously, for some DieD(R). One finds that the following identities
must hold:

^i2(A)<-r, ~ -g>=<- / ,M^B- l >/ l l2 (AB- l ) / I l2 (B)<- f - /M, -^>Di-1

and
^3(B)<«B-1, -/^^(AB-^D^/^A).

In other words we need

<-t, - ^ > ~ l < - / , ^ B - l > { A B - l , B } < - f - / M , - ^ > = D i
=<uB- 1 , -/^-^B.AB-1}'1,

or
<~/,^B- l><-f-/M, -^><t,B-1, - /^>=<-^ -<?>.

Now < M B - 1 , -/^> = < -M^B-^/X/MB-1 , -^> so we are left with the true
relation < -t-fu, -^X/^B-1, -^r> = < -r, -^ >.

6.6. DEFINITION. — We define the small chunk C* to consist of the elements
[Ai2 (v) X2i (u) D, M, x^ (s) h^ (0] with

M, seR, ^, i;eR*, DeD(R), M = ̂ i(*)^2(*)^i2(*)^3(*)

as usual. Note that an element of C* has exactly one representative of the form
(Ai2 (*) ^21 (*) D, M, ^23 (*) ^23 (*))• We call this representative the normalized one.
When p e C, n ( p ) = (a,y), then p is in the small chunk if and only if (a,y) is in the big
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cell Q, i.e. if and only if both a^ and the minor a^ ^22 ~~ ̂ 12^21 are units. Say
p = [x, M, ^] with n (x) = (b^) and n (y) = (Cy). Then

On = fen and ^11^22-^12^21 = <'22-

So p e C* if and only if both x and y lie over Q.

6.7. DEFINITION. - Let p e C*, p = [h^ (v) ^21 (u) xl2 (d), M, y~\. For rfe R* we put

L(^23(d))(p)
= [^i200{^ rf}x2i(^)^2(tr1^, 7r(^3W)M7r(^3W)"S ̂ W^].

We have n (L (^23 (d)) (p)) = n (h^ (d)) n (p), as usual. Check that L (h^ (d)) is well-
defined. (Its domain is C*, by definition.)

6.8. DEFINITION. - Let/?eC*. Write

P= [̂  ^31 te) ̂ 32 (r) e^ (b), x^ (s) h^ (0].

(Note that p can indeed be written this way.)
Let de R be such that n (p) e^ (d) e Q. We put

R(^2iW)(p) = [xx^(td), e^(q+rtd)e^(r)e^(b), x^(s-btd)h^(f)\.

One has n (R (^i (d)) (p)) = n{p) e^ (d\
There is another way to describe R(^2i (d)) (p). Say

(^12 (P) ̂ 21 (u) D, e^ (q) e^ (r') e^ (a) e^ (b), x^ (s) h^ (t))

is the normalized representative of p. Then

R(^2iW)(p)
= [^(^i^+^l+a^)"1)^, tdyh^^+atd)D,

e3^q-}-qatd+rftd)e^(rf(l-}-atd)~l)e^(a(l+atd)~l)e^W,
x^{s-btd)h^(t)\,

where we use the condition TC (/?) e^ (d) e Q to conclude that 1 +atd is a unit. Check
the equivalence of the two descriptions of R (^21 (d)) and note that the last one (or the
first one, for that matter) is automatically well-defined, because it starts from a unique
representative of p. In the first description the condition n (p) ^21 (.d) e Q seems useless,
but we insist on it because we do not want R (^21 (d)) (p) to be defined too often, as that
would make the proof of the next proposition harder. [So the next proposition only
sounds natural because we choose this definition of R(^2i (^))']

6.9. So far we have defined maps L (z), R (w) in the following cases:

Z e St' (2, R), Z = €31 (*) ̂ 32 (*), Z = ^13 (*) (?23 (*),

z = h^\ weSt"(2, R), w = ^i(*), w = e^We^W.

We will leave it there.
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PROPOSITION (cf. 5.11). - Let peC. If L (z) R (w) (/») W R (w) L (z) (/?) are both
defined, then they are equal.

Proof. - Assume both are defined. As there are four possibilities for z and three
for w, there are twelve cases in total. As TC (L (z) R (w) (p)) = n (R (w) L (z) (/?)), by
associativity of matrix multiplication, it suffices to show there are x, y such that
L(z)R (w)(p) =\_x, M,y~\ and R(w)L(z)(/>) = [;c, M',j>] for some M, M'. (Then M = M'
will be automatic.) In eleven of the twelve cases it is easy. [Use the second definition
of R(62i (*)) when w = e^ (*), z = h^ (*).] Remains the tedious case

Say
z = 613 (/') 623 (g'), w = 621 (d).

P = [^12 (t») X2i («) D, 631 (q) 632 (r) 612 (a) 613 (&), X23 (s) ^23 (()].

[Recall that p must be in C* in order that R (621 (d)) (p) be defined. There are further
restrictions on p.~\ Say

7t (/li2 (.V) X2i («))" 1 Z It (/li2 (l») X21 (")) = Ci3 (/) 623 (g).

We get

L (z) R(w) (p) = L (z) [/ii2 00 X2i (« + (d (1 + atd)~1) < a, td > /i^ (1 + atd) D,

63^(g+ga(d+r^)632(r(l+a^)-l)6l2(*)6^3(*),

^23(*)/l23(0]

=[/ii2(v)x2i(*)<a,(d>/ii2(l+a(d)DAi2(A)

< -f(,l+atd)~\ ~(q+qatd+rtd))x^), *,

^23(g(l+a^)A-/(rfA)/^23(A)x32(r(l+afrf)-l)x23(*)/l23(0]

where A = l+fq+frtd(l+atd)~1.

Now we know, from the fact that R (w) L (z) (p) is defined, that the answer lies over Q,
so we get

L(z)R(w)(p)

=[.hu(v)(a,td^h^(l+atd)Dh^W<-f(l+atd)~1,

-(q+qatd+rtd)yx2l(.*),*,h^W<,g(l+atd)A~l-ftdA~l,

ril+atdy^h^l+fq+g^A-^x^Wh^t)].

Next we compute

R(w)L(z)(p)

=R(w)[/ll2(v)X2i(u)D/li2(l+/g)<-/, -<?>X2i(*),

e3l(<l)e^(.(a-br)(l+fq)~l)e^(f-ag+brg+b+bqf),

^23 (g(l+/^»)/l23 (1+/<?)^32 0-) ̂ 23 (*)/l23 (0]
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=R(w)[h^(v)Dh^(l+fq)( -f, -g>x^(*),

e3l(q)e3^(r(i+fq)-l(l+fq+gr)-l)

xe^a+afq+fr^l+fqr^l+fq+grr^e^W,
/l23(l+/4)<g(l+^)-l,r>^3((l+/g+gr)(l+/g)-l)x23(*)^3(0]

=[^(t;)DD^l/ll2(l+/g)<-/, -<?>^i(*)

<(a+a/g+/r)(l+/g)-l(l+/4+gr)-l, f(l+^+gr)d>/t^(B),i*,

D^3(*)/»23(l+/<?)<g(l+/<?)~S '•> h^+fq+gr^l+fqr^h^t)],

where B = l+atd+frtd(l+fq)~1 and Di6D(R) is a superfluous element which
symbolizes that R (e^ (d)) has been evaluated via the second description in 6.8.

Now both answers can easily be put into the form [h^ (•*•) x^ (*) D', M,
D" ^23 (*)/;23 (*)] and their images in Q. are equal. It follows easily (cf. 2.3) that
they can only differ in the components D', D", after we have put them into the indicated
form. All in all we need to show that there is D^ e D (R) with

<a, ^>/ii2(l+a^)D2/ii2(A)<-/(l+a^)""1, -(q+qatd+rtd)^

-h^l+fqX -f,-q>
x<(a+aA+/r)(l+/g)-l(l+/g+gr)-l,((l+/g+gr)d>/ll2(B)

and with

h^(A)<g(l+atd)A~l-ftdA-l,r(l+atd)~l^h^((l+fq+gr)A-l)D^

=h^(i+fqXg(l+fq)-l,ryh^l+fq+gr)(l+fq)-l).

Just as in 6.5 we can eliminate D^ and reduce to proving one identity in D (R). This
identity essentially reads

<<?, /^{l+A, B}<(fl+a/(^+/r)(l+/»•)-l(l+/(^+gr)-l, td(l+fq+gr)y

x<a,(d>-l<g+ga(d+r(d,/(l+a(d)-l>{A, l+atd]

={A, -(l+fq+gr)}^g(l+atd)A-l-ftdA-l,r(l+atd)~l)

x<g(l+fq)~l,ry-l{-(l+fq+gr),l+fq}.

To simplify it, use (D 1) and the following six relations:

<a,(d>=<-/rA-l(l+a(d)-l,(d><(a+fl/g+/r)(l+/g)-l,^>;

<(a+a/g+/r)(l+/<^)-l(l+/g+gr)-l,^(l+/g+gr)>

=aa+afq+fr)(l+fq)-l,td^{B,l+fq+gr}•,

(g(l+atd)^~l-ftdA~l,r(l+atd)~l)

= < -/^A-S r(l+atd)~l'><g(i+atd)(l+fq)~l, r(l+atd)~1 >;
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<g(l+a^)(l+/^)-1, rO+a^)-1)
=<g( l+ /^ )~ l , ^ •> {(l+/^+gr)(l+/^)- l , l+a^}- l ;

<^ />{ l+ /<? , l+a^} - 1

=<-r^A- l , / ( l+^^)~ l ><^+^^+r^ , / ( l+a^)- l >

[because both sides equal < <?(!+ ̂ ),/(!+ atd)~1 >];

^^./rA-'^l+^d)"1)
=<-r^A- l , /( l+a^)- l><-^/A- l ,r(l+^)- l>{A- l(l+/^),A- l(l+a^)}.

Then it reduces to proving { 1 +fq, B } { A"1 (1 +fq), (1 +atd) A"1 } { A, 1 +atd }

{^l+fq+gr}{l+fq,l+atd}-1

= { A , -.(l4-^+gr)}{(l+^+gr)(l+^)- l,l+^}- l{-(l+^+gr),l+/^}.

Plug in B = A (l+atd) (1+/^)~1 and the rest is straightforward.

6.10. COMMENT. — It may seem rather mysterious that a computation like the one above
works. Here is a plausible interpretation. Both

R (^i (d)) L (^3 CO ̂ 3 fe')) (P) and L (^3 (/') ̂ 23 fe')) R (^21 W) (p)

mimic a way to reduce

^13(//)^23fe0^12(^)^2l(M)^3l(^)^32(r)•X:12(^)^13W^23(s)^23(0•x2l(^)

in St (3, R) to the form

^12(*)^2lW^3l(*)^32(*)^12(*)^13(*)^23(*)^23(*)^

with k e K^ (3, R). The two ways are quite different. That is why one gets such a
complicated relation in terms of elements < *, * >»y when comparing the results.
However, there are many intermediate ways to reduce the original expression to the
desired form. Comparing two ways that are closer to each other will result in simpler
relations between the < *, * >^-. In the above situation there are apparently sufficiently
many intermediate ways to bridge the total gap by means of many easy comparisons.
We forced the existence of such intermediate ways by requiring that \-\-atd, I+fq,
1 +fq+gr, A are units. [These "general position" conditions are implicit in the assumption
that both R (w) L (z) (p) and L (z) R (w) (p) are defined.] Note that this is exactly how
similar units were used in [16]. (In loc. cit. the units are equal to 1 modulo the Jacobson
radical.) In our case the four units are also needed to write down the desired identity
in terms of elements of D (R). This is not typical. See for instance loc. cit. 3.6 VIII,
where one uses one more unit (viz. 1 +^"3 2^1 +^2 Yi ~X2 Yz ^i)to prove a relation in D (R)
than one needs to state the relation, or to prove its analogue in K^ (3, R).

6.11. LEMMA. — Let
peC, Zi,Z2eSt '(2,R), t,ueR
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such that L (Z i )LQ?i3 (t) e^ {u))\.(z^){p) is defined. Then

L^.zWn^^e^^e^Wn^))^)

is also defined and its value is the same.

Proof. - Trivial.

6.12. LEMMA. — Let /?eC*, t, u, f, g e R such that both ^{e^(t)e^(u)){p) and
L(^i3 (^+/) ^23 (^+^)) Cp) are elements of C* (and defined). Then

L(^3a+/)^23^+g))(P)=L(^3(/)^3fe))L(^3(0^3(^))(P).

Proof. — By means of the previous lemma we can reduce to the case

P = [^ ^31 (^) ^32 (r) e^ (*) ̂ 13 (*). y]'

As we may push e^ ( r ) over to y we may further assume r = 0. Then

L(^3(/)^3fe))L(^3(0^23^))(P)

=L(^3(/)^23fe))[^12(l+^)<-^-^>X^(*),

^31 (^) ^12 (*) ̂ 13 (*), ^23 (*) ^23 (1 + tq) y]

==[h,,(l+tq)(-t, -q>h^(l-^fq(l+tq)-1)

<-/(1+^)-1, -^>X2l(*),*,^3(*)^3(l+^(l+^)~ l)^23(l+^)} ;]

=[^12(1+/^+^){1+^,1+/^(1+^)-1}

<-f-t, -^>X2i(*) ,* ,X23(*){l+/^( l+^)~ 1 , l+tq}h^(l+fq+tq)y]

=L(^+/)^23(^+g))(P).

(For the same reason as in the proof of proposition 6.9 we need not compute the
coefficients of x^i and ^"23)'

6.13. DEFINITION. - For A e E ( 3 , R ) put

V(A)={geQ|A^eQ},

W(A)={^eC*|7t(p)eV(A)}.

6.14. LEMMA. - Let Ai, A^, A3 e E (3, R). Then V (Ai) nV (A^) n V (A3) is
non-empty.

Proof. — Let g == e^ ( p ) e^ (q) e^ (r). For each ; there is a choice of/?, q, r such
that (A^)n is a unit. (Use 1-fold stability, cf. [24], proof of Th. 1.) By 3-fold stability
we may use one and the same p. Fixing such p we can use one and the same q.

Fix it too. Now there is a value of r such that A^g e 0 for i = 1, 2, 3. (Use 3-fold
stability and check unimodularity of the relevant pairs by passing to residue fields.)
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6.15. DEFINITION. - Define left to consist of partially defined maps/from C* to C*
such that:

(i) there is A e E (3, R) such that W (A) is the domain of/and such that n (f(p)) = A n(p)
for peW(A). We write A = 71 (/). (Clearly A is unique.);

(ii) /(R (w) (p)) = R (w)f(p) when both sides are defined. (Compare 6.9 and [11 ], 4.10.)

6.16. LEMMA. - Letf = L (z) L (^3 (t) e^ (u)\ where z e St' (2, R), t, u e R. Let g
be the restriction of f to W (n (z) e^ (t) e^ (u)). Then g e left.

Proof. — First let us check that the domain of/is big enough to define g. If p e C*
and ^(z)e^(t)e^(u)K(p)e^ then ^3 (t) e^ (u) n (p) is a matrix (c^) whose top
left minor c^ c^-c^ c^ is invertible. Say/? = [;c, M, y]. There is, by 1-fold stability,
an element ^ e R such that

e^(K)K(x)~1 e^(t)e^(u)n Cp)e0.

Now L (6?i3 (t) €23 (u)) (xx^ (~X), e^ (X) M, y) is defined, so/(/?) is defined (check this).
So much for the domain. Other things being obvious, we still have to prove that

g R (6?2i (d)) (p) = R (6?2i (d)) g (p) when both sides are defined (de R). Writer = L (x');?'
where // has the form [1, e^ (*) e^ (*) ^13 (*), h^ (*) ^23 (*)]. Now

gR(^i(d))(p) = gL(x')R(^iW)(p')

by Proposition 6.9. Also, using 6.11, it is easy to see that ^L(x') is the restriction
of some map /' = L ( z x ' ) L(e^ (*) ̂ 3 (*)). It suffices to show that

/'R(^iW)(p') = R(^I^))/'(P'),

so we may assume p = p ' . Then there is X e R such that

e^W^(p)e^{d\ e^)e^(t)e^(u)n(p\

^12 W ^13 (0 ^23 (u) ̂  (P) ^21 W

are all in Q. (Use 3-fold stability and compare with the beginning of this proof.) We get

R(^2i(d))g(p)

=R(^l(d))L(zXi2(-^))L(^2a)^3(0^23^)^2(-^))L(^2W)(^)

and in the last expression R(e^ (d)) can be moved three steps to the right, because
proposition 6.9 applies three times (check this). The result follows.

6.17. PROPOSITION (c/ 4.8 or 5.14). - Letf, g e left, ̂  e C*, such thatf(p) = g(p\
Then f = g.

Proof. - Put A = TT (/). Clearly A = n (g) too. Put

X={qeW(A)\f(q)=g(q)}.
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Then X is invariant under the R(z) inside W(A), i.e. if qeX, and R(z)(^)eW(A)
then R (z) (q) e X (c/. proof of 5.14). To show that X = W (A) it is therefore sufficient
to show that any q e W (A) can be joined with p, inside W (A), by successive applications
of maps R (z) (cf. 4.8). If D e D (R) then D e St" (2, R) and we have the map R (D)
at our disposal. Therefore the problem of joining/? with q is really only a problem about
matrices. Thus let us join n ( p ) with n (q) inside V (A), by successive multiplications
from the right. [We will use factors ^(*) with ij distinct from 31, as we may.]
Write n ( p ) as M^ M^ where Mi is a lower triangular matrix, M^ is an upper triangular
matrix with ones on the diagonal. Instead of joining n ( p ) with n (q) inside V(A) we
may join M^ with M^TT^) inside V (AM^). Therefore we may assume Mi = 1.
But then it is clear that M2 may be joined with 1 inside V (A) by means of the e^ (*)
with i < j. We may thus assume that M^ is also 1. Say n(q) = M. We can join M
with a lower triangular matrix by means of the e^ (*) with i < j. So say M is lower
triangular, with M 11 = t. By 2-fold stability there is M e R* such that M e^ i ( - ut) e V (A).
Then join M with M ^21 (-ut)e^(.t~1 u~^-u~^e^ (u) e^ (-u'^+tu'1) mthe partial
products. [Check that they are in V (A). ] This reduces the situation to the case M^ i = 1.
Similarly we can achieve M^ = 1. [Or recall that we actually may multiply by
diag (l,u,i;~1).] Now M is of the form e^{a) e^{b) e^(c). By 2-fold stability
there is ?ieR such that An+(^+^) Ai2 e R* and M e^ (^) eV(A). Replacing M
by M ^21 (^) we may thus assume A^+aA^ e R*. Now there is, by 3-fold stability,
a unit \i such that e^ (a) e^ (b) e^ W e V (A), ^ (A^ +a A^)-b Ai2 e R*. We can
join M with ^21 (a) e3l W ^32 (n) and then with

e2lWe^(b)e^We^(-b[i~l)=e2^a-b[i~l)e^W'

Then we can join it with ^21 (a—b n~1) and finally with 1 = n (/?).

6.18. DEFINITIONS. — We define G^ to consist of the/e left that are obtained by
restricting a map g = L(^i (*) ^32 (*)) L (^23 (*)) L (z) to C*, where zeSt'(2,R)
is such that n (z) is lower triangular. [Check that any such g does indeed yield an elemen'
of left. Also note that z must have the form ^12 (*)^2i (*)D with DeD(R). j
Similarly we define Gy to consist of the / e left that are obtained by restriction from a
map L(xi2(*))L(^3(*)^3(*)) (cf. 6.16.)

6.19. LEMMA. — Let fe Ie ft, geG^. Then the composite maps fg and gf are both
elements of left.

Proof. — As g is everywhere defined on C*, this is easy.

6.20. LEMMA. - Letfe left, g e GL such that n (/) n (g) e Q. Then there are h^ e GL,
/?2 e Gu such that fg = h^ h^.

Proof. - It is easy to see that there are Ai e GL, h^ e Gu such that fg ( p ) = h^ h^ (p)
for p = [1, 1, 1]. Now apply proposition 6.17.

6.21. LEMMA. — Let /, g e left. There is a unique h e left extending p ^->fg (?)-
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Proof. — Uniqueness follows from lemma 6.14 and proposition 6.17. Now assume/,
g are obtained by restricting

L(x,,(a))L(e^(b)e^(c)), L(^(r))L(^3(^23(0)

respectively. Choose h e Gy such that n (/) n (g) = n (h).
V f§(p) is defined there is ^ e R such that

L(xi2W)/g(p)
=L(^3(*)^3(*))L(x^(X+a))g(ri
=L(^3(*)^3(*))L(x^(^+a+r))(p)=L(^2(A))ft(p).

[Use 6.11, 6.12 and 3-fold stability (cf. proof of 6.16).]
So A extends fg. Let us return to the general case.
Choose A: e GL such that n (k) e V (TT (g)) n V (n (/) IT fe)), using 6.14. Then gk = g^ ^2

and /^i = /i /2 for some /i, ̂  e GL, /2, ^2 e Gy.
Choose A:' e GL such that kk' is the identity, for instance with the help of proposition 6.17.

By the above there is h^ e Gy which extends f^ g^ Then/i h^ k ' extends/i f^ g^ k' = fg.

6.22. DEFINITION. — For/, g e left let/ * g be the unique element of left that extends fg.
Let G be the group with underlying set left and * as composition. (It is a group for the
same reasons as in 5.16.) Putj^y (a) = L (e^ (a)) when ijis one of the pairs 13, 23, 31, 32.
Put Yij (a) = L (xy (a)) when ij equals 12 or 21.

6.23. It is easy to see that the y^ satisfy the Steinberg relations, as we may test
at p = [1, 1, 1] (cf. proof of 5.18). So we have a homomorphism (p : St (3, R) —> G
and thus, as in 5.19, there is a homomorphism T : K^ (3, R) —> D (R), defined by
(p (x) [1, 1, 1] = [T (x\ 1, 1] or by (p (x) = L (r (x)). It sends < a, b )^ to < a, b >
because of the way St' (2, R) is built into C. Thus we have an inverse for the map
D (R) —> K.2 (3, R) which sends < a, b > to < a, b >i2. Theorem 6.2 follows, because
we know that the < a, b >i2 generate K.2 (3, R) (see 6.1). That the < a, b >i2 gene-
rate K.2 (3, R) can also be seen in the fashion of section 4, as follows. Define
cr : C* —> St (3, R) as suggested by the rules

^j-^^j. ^j^^J

(e. g. [>i2 (d\ ^31 (^ ^32 W ̂  xl2 (a) ̂ 31 (&) ^32 (c)). Then check that

<y (VijW (?))== ^(0<^ (?)•

For/e left show, as in 6.17, that there is a unique element of St (3, R), denoted by a (/),
such that a (f(p)) = <7(/) 0(7?) whenever the left hand side is defined. Note that a
is the inverse of (p, so that (p is an isomorphism. The theorem follows again. From
the proof of 6.21 one sees that G = GL Gy GL. This shows that there is a normal form
in St (3, R), similar to the one in 5.8. By proving this directly, as in 5.8, one can also
see that the { u, v },y generate K.2 (3, R), and it is standard that { u, v }^- = { u, v }^
in K2(3,R).
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7. The stable case

7.1. THEOREM. - Let R be 3-fold stable. The map (a,b^\->(a,b)^ defines an
isomorphism D (R) —> K^ (m, R) for m ^ 3. In particular, K^ (R) ^ D (R).

Proof. — The case w = 3 has been proved in the previous section. Remains to show
that K.2 (n, R) —> K^ (^+1, R) is an isomorphism for n ^ 3. But this follows from [23],
Theorem 4.1, because a 3-fold stable ring is certainly 1-fold stable and therefore has the
minimum possible stable range. (In the conventions of loc. cit., the stable range is 1.)

7.2. For the sake of completeness we will show how to derive the isomorphism
K.2 (n, R) ^ K.2 (/?+1, R) from our own work on injective stability. So Theorem 7.1
can be proved entirely by the chunck method. [When saying this we ignore the easy
part of the theorem stating that the < a, b >i2 generate K^ (m, R).] Note that if R
happens to be semi-local, Theorem 1 of [11] applies. We want to show that Theorem 4
of [11] (§ 3) applies for any 3-fold stable ring. We have to check the technical conditions.
We restrict ourselves to the hardest one, leaving the remaining conditions to the reader.
(One should argue as in 6.14.)

7.3. Let A, B, C, D be four 2 by 3 matrices, each obtained by taking the top two rows
of an element of GL (3, R). Further let a, b, c, de R2. Our objective is to show that
there is v e R3 such that a+Av, b+Bv, c-{-Cv, d+D v are unimodular. [Recall
that w e R2 is unimodular if and only if there is an R-linear map/ : R2 —> R with/(w) == 1.]
Clearly we may replace A, B, C, D by AU, BU, CU, DU for any U e GL (3, R). As A is
part of an invertible matrix we can arrange that its first row is (1, 0, 0). Then we can
multiply the four matrices by a suitable matrix e^ (^)^i ([i) such that B^, C^, D^
are also units. [Use 3-fold stability {cf. proof of 6.14).] We may further assume A^i =0,
because a, A may be replaced by e ^ ^ ( t ) a , e^(t)A with teR. Now choose v e R3

such that a+Av has a unit in its second coordinate. Note that the first coordinate v^
of v has no influence on the second coordinate of a+A v. Therefore we may change v^,
by 3-fold stability, so that a+Av, b+Bv, c+Cv, d+Dv are unimodular.

7.4. REMARKS. — Actually the proof in [11] can be simplified a little for 3-fold stable
rings. Instead of invoking the technical conditions SR^ (c, u) one may use 3-fold stability
directly. Our first proof of injective stability for 3-fold stable rings followed the line
of section 2, 3, 4, 5. So instead of using the analogue of C from section 6 this
original proof only used the analogue of C* from section 6. For higher dimensional
maximal spectra one needs C however, which is why we introduced C in [11]. The
proof in [11] (just as the original proof) can be adapted so that it works for 2-fold stable
rings, but that still yields a result that is weaker than the one in [23]. In loc. cit. Suslin
and Tulenbayev proved injective stability for K.2 in the form it had been conjecture
([7], Problem 4). To do this they had to unravel the Steinberg groups at hand. Our
approach is quite different. Instead of trying to understand a given group better, we
look for groups in which the part we already understand is big enough to extrapolate
from. The advantage of our approach is that one is sure to get a theorem. Which

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE 66



508 W. VAN DER KALLEN

theorem depends on how carefully the extrapolation is done. We have not been very
careful for types different from type SL^. (It is clear that one can do better than in
sections 2, 3, 4.) Working with the crude method of open dense subsets (in a suitable
topology) one should be able to prove stability results for symplectic K^, say, ofanoetherian
ring of dimension d when there are only infinite residue fields. When some residue fields
are finite, one has to be more specific about the size of the sets where statements are to
be proved. By means of results like 5.14 and 6.17 one can presumably "recover ground"
each time a statement is proved in too small a set. The smaller the residue fields, the
harder it will be to carry the extrapolation through.

8. Comparing some presentations

8.1. PROPOSITION. — Let R be V-irreducible (see 1.3) and A an abelian group.
Let c : R* x R* —> A be a map satisfying

c(x, y)c(xy, z) = c(x, yz)c(y, z),

c( l , l )= l ,

c(x, y) = c(x~1, y~1) when x, y, zeR*,

c(u, v) = c(u, (l—u)v) when u, v, 1-MeR*.

Then c also satisfies c (x, y) = c (x, —xy) for x, y e R*.

Proof. - We partly follow the proof of [17], 5.7.

Step 1. — Suppose x, y, 1—x are units. Then c ( x , y ) = c(x, —xy) because

c(x, y) = c(x~\ y~1) = c^-^O-x-1)^-1) = c(x, x(x-l)~1 y) = c(x, -xy).

Step 2. - If u E R* then c (1, u) = c (u, 1) == 1 (easy).

Step 3. - Suppose x, y, 1 -x, 1 -y, 1 -xy are units. Then c (x, y) = c (y~1, x) because

1 =c(xy, l)=c(xy, - y ~ 1 x~1) = c(x, -x"1)^, -y~1 x'^c^x, y)~1

= c(x, l)c(y, x'^c^x, y)~1 = c(y~\ x)c(x, y)~1.

Step 4. - Put b (x, y) == c (x, y) c (y, x)~1 for x, y e R*.
Then b is bimultiplicative because

b(xy, z) == c(xy, z)c(z, xy)~1 = c(y, z)c(x, yz)c(x, y)~1 c(z, xy)~1

=c (y, z)c(x, zjQ^zx,1^)''1^, x)~1 = c(y, z)c(x, z)c(z, y)~1 c(z, x)~1.
And

b<ip,q)==b(q,p)-1.

Step 5. - Suppose x, y, 1 -x, 1 -y, 1 -xy are units. Then

c ( x , y 2 ) = b ( x , y )
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because
c(x,y2)c(x,y)~l = c ( x y , y ) c ( y , y ) - 1 = c(yx, -x-l)c(y, -I)""1

= c(y, x)-1 c(x, -x~1) = c(>, x)~1.

5'̂  6. -- Suppose x, y, 1—x are units. Then c (y, x) = c (y (1 -x), x), because

c(y, x)c(y(l-x\ x)-1 = c(x, ^)c(x, ^(1-x))-1, &(x, y)~1 b(x, y(l-x))
=b(x, l-x)=c(l-x,x)-l=l.

Therefore, if c' (x, y) is defined by c' (x, y) = c (y, x), then c ' has the same properties
as c. For instance, if x, y, 1 —y are units then c (x, y) = c ( -xy , y).

Step 7. — Suppose x, y, 1—x are units. Then c ( x , y 2 ) = b ( x , y ) because there is,
by U-irreducibility, an element t e R such that

c(x, y2) = c(x, t 2 y 2 t - 2 ) = c(xt2, y2t-2)c(x, t2)^2, y2!-2)-1

= b(xt2, yt~l)b(x, t)b(t2, yt-^-^b^ y).

(One has to choose t such that t, t — y , 1 —xt2, 1 —txy, 1 —t2, 1 —x^, 1 —yt are units.)

5^? 8. — Suppose x, y are units. Choose ^eR such that t, t 2 — x , t 2 — x 2 y , l—t2,
l+t2y are units. Then

c(x, -x^) = c(^xr2, -x^) = c(f2, -x2t~2y)c(xt~2, -xy)c(t2, xF2)"1

=c02, -x2^2^^^-2, t2y)c(t2,xt~2rl

=b(t, -x2t-2y)c(x, y)c(xr2, t^c^t2, yY'b^ xt-2)-1

= b(t, -xy)c(x, y)b(xt-2, t)c(t2, -t2y)-l

=b(t,-xy)c(x,y)b(t,xt-2rlb(t,-t2yrl=c(x,y).

8.2. REMARK. — Clearly the above proof also works for a local ring whose residue
field contains at least ten elements.

8.3. DEFINITION. — Let R be a commutative ring. We call US (R) the group generated
by symbols { x , y }, where x, ^eR*, subject to the following relations and their
consequences:

(i) US(R) is abelian;
(ii) { x, yz } = {x, y } { x, z } for x, y , z e R*;

(iii) { xy, z } = { x, z } { y, z } for x, y, z e R*;
(iv) { x, 1 -x } = 1 if x, 1 -x e R*.

8.4 THEOREM. - Let R be 5-fold stable. Then T ( { x, y }) = < (x-1) y-1, y > defines
an isomorphism US (R) —> D (R).

Proof. - We compute in US (R).

Step 1. - If x, 1-x are units, then { x, - x } = { x , 1 } = 1 (see step 1 of
previous proof).
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Step 2. - If y, z, 1 -y, 1 -z, 1 -yz are units, then [ y , z } [ z , y } = \ because

{y , z } { z , y } = { y , - y z } { z , -yz}=[yz, -yz}=L

Step 3. - If y, z, 1 -y are units, then { y , z ] { z , y ] = l because

{ y , z } { z , y } = { y , z t } { z t , y } = l ,

where t is chosen such that t, 1—t, 1-ty, 1-zt, 1—zty are units.

Step 4. — If y, z are units, then { y , z } { z , y } = l because

[ y , z } { z , y } = { y t , z } { z , y t } = l

when t, 1—t, 1—ty are units.

Step 5. — If y is a unit, then { y, —y } = 1 because

{ f , - t ] { y , - y } = { y t , -yt] = 1

when t, 1—t, 1-yt are units.
Put

<a, &>(x)={l+^,x}{( l+f l fc) ( l+ax)- l , (&-x)( l+^x)- l },

when l-}-ab, x, 1+ax, b—x are units.

Step 6. — If a, 1 +a6, x, 1 +fl?x, b—x are units, then < a, b > (̂ :) = { —a, 1 +^A } because

{(l+afc)(l+ax)~1 , a (x- fc) ( l+ax)~ l }=l and {1+ax, -ax} = 1

(both by the same rule).
Step 7. - If b, 1 +flA, x, 1 +ax, b-x are units, then < a, b > (x) = { 1 -\-ab, b } because

[xb~\ (b-x)b~1} =1 and { -b(l+ax)(x-b)~\ x(l+a&)(x-&)-1} = 1

(as above).
It follows that < a, b > (x) doesn't depend on x when 1+ab, a are units or when 1 +ab,

b are units. We therefore often write < a, b > for < a, b > (x) in these cases. [The idea
is that this < a, b > will serve as r~1 « a, b ».] Note that

< a , & > ( x ) = < f l , x > < f l , ( & - x ) ( l + f l x ) - l >

when the left hand side is defined.
Step 8. — If 1 + ab, x, 1 + ax, b—x, 1 + ac, b + c 4- abc —x, c are units, then

< ^, 6 > (x) < a, c > = < ^, A+c+flAc > (x) because

<^, f c+c+afcc>(x)<a , x > ~ 1

= <a, (fc+c+^fcc-x)(l+ax)-1 >((fc-x)(l+ax)~1) = <a, (fc-x)(l+ax)~1 > < a , c>.

Step 9. - If \-\-ab, x, \-\-ax, b—x, y, b—y, l+ay, y — x are units, then

( a , b y ( x ) = ( a , b ) ( y )
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because
<a, &>(x) = <a, ^>W<a, (fc-j0(l+aj0-1 > = <a, fc>00.

5'̂  10. — If \-\-ab, x, 1+ctx, b—x,y,b—y, 1 + ay are units, then < ar, A > (x) = (ct,b)(y)
because

<f l , f c>0c)=<^ fc>(0=<a, fc>00

when ^, b—t, 1-^-at, t—x, t—y are units.
So < ,̂ 6 > (x) = < fl?, b > (^) whenever both sides are defined. Therefore we also

write < a, b > for < a, b > (x). Note that < a, b > is defined [in US (R)] exactly
when 1+aAeR*.

Step 11. -- < a, b > < a, c > = < a, b-{-c-\-abc > when 1 +af6, 1 -\-ac are units, because

<a, b+c+a&c>(x)<a , x > ~ 1

=<a, ( fc -x+c+a&c)( l+^) - l >W= (^cX^X^^-x^l+ax)-1)

when;c, 1+ax, b—x-^-c+abc, b-x,y, 1+ay, c—y, (A-^+c+^c) (l+c?^)"1-^ are units.

Step 12. — If x, 1 +flAx are units, then < a, bx > = < ax, b > < ab, x > because

<a, fcx>(x};)<afc, ̂ -^ax, b>(^))-1 = 1

when ^, &-^, 1+axy are units.

5'̂ /? 13. — If x, y, x-{-y, \-\-axb, 1 + axb + ayb are units, then

<ax+a^, b)=(ax, by^ay(l+axb)~1, & >
because

<ax, by(ay(l+axb)~\ b) = <fl, x^> <a, ^(1+axZ?)"1 > <aZ), x > ~ 1

x<a&, ^(l+axb)"1)"1 = <a, x f c + ^ & > < f l f c , x+yY ~ l =<^x+a^, &>.

^e/? 14. - If 1 +a,^l +6+flf6, 1 +flA are units, then < a, b > = < -&, -a >~ 1 because

< f l , f c > = < a , & > < a , ! > = < a , l + f c + f l & > = { ( l + f l ) ( l + ^ & ) , 1+b+^b}
=<fc ( l+ab)~ l , ( l+a ) ( l+a fc )> - l = < f o ( l + a f c ) ~ 1 , - a><&( l+a fc )~ 1 , 1>-1

= < - f c , f l ( l + a & ) ~ l > < a & , -(l+^fc)"1)"1

=<-&, -^>- l<-^0>{(l+a&)- l, -(l+a&)-1}-1 ==<-&, -^>-1.

5'̂  15. — If 1+^, 1+^& are units, then < a, b > = < —6, —^ >~ 1 because

<^, f c > = < a , x b > < a , ( l - x ) & ( l + a x f c ) ~ l >
= <-xfc, -a>-1 <-(l-x)&(l+axfc)"1, -^>~ 1 = <-fc, - f l>~ 1

when 1 + axb, 1 + xb + ̂ 6, 1 + ab + 6 (1 — x), x, 1 — x are unit*?.

5Y<?/? 16. — If 1+ab is a unit, then < ^ , 6 > = < —b, —a^~1 because the previous
computation is also valid when 1+axb, 1—xb, l+ab-}-(l—x)(—b—ab), x, 1—x are
units. (So we iterate step 15.)
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Step 17. - If 1 +abc is a unit, then < a, be > = < a6, c > < ac, b > because

<a, fcc> = < a , x c > < ^ , (fc-x^l+axcr1)

=<ax, c><ac ,x><a(&-x) ( l+axc)~ 1 , c><ac , (fc-x)(l+^xc)~1 >
^-c.-^-^-c.-aCfc-xKl+axc)-1)-1^, fc>
^-c,-^)-1^,^

when x, 6-x, 1+a^c are units.
It follows from the above that < a , ^ > ^ < a , 6 > defines a homomorphism

o- : D (R) -> US (R). Also, it follows from Lemma 5.6 that T ({ ^, y }) = < (x -1) y ~ \ y >
does at least define a homomorphism US (R) —^ D (R). Clearly or = id and it is also
easy to see that TO = id.

8.5. COROLLARY. - Let R be 5-fold stable. Then K^ (R) is isomorphic with US (0, R).

Proof. - As R is also 3-fold stable we have K^ (R) ^ D (R), by 7.1.

8.6. Example (R. K. Dennis). - Let R = F4XF4. So R has 16 elements and R
is 3-fold stable. Let ^ be a primitive third root of unity in F4. Put

^((^^),(^^))=^"M.

It is easy to check that c induces a homomorphism US (R) —> F^. However, c does not
satisfy the rule c (x, -x) = 1, because c (x, -x) = c ( x , x ) = ̂  for x = (^, 1). It follows
that the analogues of proposition 8.1 and theorem 8.4 do not hold under the weaker
condition of 3-fold stability (see Lemma 5.6).

8.7. Remarks. — We do not know whether 4-fold stability suffices for theorem 8.4.
We even do not know whether 4-fold stability suffices when one weakens the theorem
by adding the relation { x, —x } = 1 to the list in 8.3. Anyway, it is known that something
like D (R) is needed for a local ring with a very small residue field. [Say R = Zp where p
is the prime ideal 2 Z. Then we have in K^ (R) the relation {27, 13 } = 1, because
{ 27, 13 } = < 2, 13 > = < 2, 1 >3. But in a group like US (R) such information is
lost, because 8.3 (iv) never applies.]

9. Power norm residue symbols

9.1. Let 0^ denote the nth cyclotomic polynomial, i.e. the minimum polynomial
over Q, with leading coefficient 1, for a primitive nth root of unity 0). It is well-known
that 0^(X)eZ[X] and that On (X) = n (X-®1).

0<i<n
g.c.d.(i,»)=l

If A: is a field and a an element of k, then the following statements are equivalent:
(i) On (a) = 0 and n is invertible in k,

(ii) a is a primitive nih root of unity in k.
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9.2. DEFINITION. — Let a be an element of the commutative ring R. We say that a
is a primitive nth root of unity in R if 0^ (a) == 0 and n is invertible in R. Equivalently,
a is a primitive nth root of unity in R if the image of a in R/w is a primitive nth
root of unity for all maximal ideals m of R.

9.3. If (p : R —^ S is a homomorphism of rings and co is a primitive nth root of unity
in R, then (p (o) is one in S. In particular this applies when R is a field and o a primitive nib
root of unity in R, in the usual sense.

9.4. Let co be a primitive nih root of unity in R. If a, b e R* we define, as in [18] (§ 15),
an associative algebra A^ (a, b) (with identity 1) which is generated by elements x and y
subject to the relations x" = a1, y" = b 1, yx = co xy. As an R-module A^ (a, b) is
free of rank n2.

Consider the special case a = c", c e R*. Define the ring homomorphism
f : R [x] -> R x . . . x R by

/(x)=(c,coc, ....(o^c),

/(r)=(r, r, ..., r) for reR.

If R is a field, then/is injective and, as the dimensions are equal,/is even an isomorphism.
If R is a local ring, then / is an isomorphism because of the Nakayama lemma. For
general R we still get an isomorphism because the question is local. We gave such an
elaborate argument because it exemplifies how to generalize the arguments of [18] (§ 15).
In particular, we find n orthogonal idempotents e^ in R \_x~\ and isomorphisms
Aa (c", b) —> HoniR (A e,, A e,). Note that the yj e^, 1 ̂  i ^ n, 0 ^ j ^ n -1 form
a basis of A^ (c", b), so that the left ideals A e^ are free R-modules.

From the special case just considered we see that in general A^ (a, b) is an Azumaya
algebra, split by S = R [T]/(T"-a). Let Br (R) denote the Brauer group of R (see [15]).
The following is standard.

9.5. PROPOSITION. — Let o be a primitive nth root of unity in R:

(i) there is a homomorphism c^ : US (R) —» Br (R) which sends { a, b } to the class
of A(Q (a, b). We call c^ an nth power norm residue symbol;

(ii) ;/ R is semi-local, a symbol [ a, b } is in the kernel of Cy, if and only if a is a norm
from the extension R^]/^-^) of R.

Proof. — See Milnor's discussion and adapt it in the fashion indicated above.

9.6. Remark. — One can be more general. Let G be the cyclic group of order n,
say with generator a. Then A^(a, b) is a crossed-product algebra A(/; S; G) in the
sense of [2], p. 404. Here S = R [y] and

/(a1,^! if i + j < n ,

f(G\aj)=a if i+j^n (0^ i < n, O ^ j < n).

It is easy to see that a is a norm from S if and only if/ is a coboundary. Thus (ii)
is a special case of [2] (Th. A 15) or [4] (Cor. 5.5).
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9.7. THEOREM. - Let R be semi-local or 5-fold stable, co a primitive nth root of unity in R.
There is an nth power norm residue symbol c^ : K^ (R) -> Br (R), sending {u, v }^ to
the class of A^ (u, v), for u, v e R*.

9.8. REMARK. - Assuming n > 1 the residue fields of R have at least three elements,
so we know by [21] that K^ (R) is generated by the { u, v }^ [cf. 5.3, 5.4 (1), (2)].

PROOF OF THE THEOREM. — When R is 5-fold stable we have K^ (R) ^ US (R) and the
result is an obvious consequence of 9.5. Remains the case that R is semi-local with
at least one small residue field. (Here "small" means less than 6 elements. Let N
be the set of integers m for which the rule { u, v }^ h-> (mth power of the class of A^ (u,v))
defines a homomorphism K^ (R) —> Br (R). Clearly N is a subgroup of Z. We have
to show N = Z. For m = n we get the trivial homomorphism (cf. 9.4), so n e N.
As R has a "small" residue field, n is 2 or 3 or 4. (We have a primitive nih root of unity.)
Say7?i, . . . , pk are the characteristics of the residue fields of R. Put m = p^ p^ . . . pk+n2,
S = R^J/^-T^+l). Then R-^S is a finite etale extension of constant rank m,
so by [14] there is a norm or corestriction map Br (S) —> Br (R) such that the composition
Br (R) -» Br (S) —> Br (R) sends a class to its mth power. Now S is 5-fold stable, as
it is a semi-local ring without "small" residue fields. So we have a composite homo-
morphism K^ (R) —> K^ (S) —^ Br (S) —> Br (R) which sends { u, v }^ to the mth power
of the class of A.^ (u, v). Therefore m e N and, as m is prime to n, we get N = Z.

9.9. COROLLARY. — Let R be semi-local, mth primitive nth root of unity co. There
is an nth power norm residue homomorphism D (R) —> Br (R), sending ((u— 1) v~1, v " )
to the class of A<o (u, v), for u, v e R*.

9.10. REMARK. — Let R be a noetherian domain which is smooth over a fied, CD a
primitive n-th root of unity in R. Let F be the field of fractions of R. We have
a commutative diagram

K2(R)->Br(R)
I I

K,(F)-^Br(F)
C<o

For, by Hoobler (to appear), the intersection of the images of the Br (Ry) in Br (F) is
isomorphic with Br (R). (Here y runs through the maximal spectrum of R.) And
the composite map K^ (R) -> K^ (F) -> Br (F) factors through K^ (Ry) —> Br (Ry).
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