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ON THE ANNIHILATORS
OF THE SIMPLE SUBQUOTIENTS OF THE PRINCIPAL SERIES 0

BY A. JOSEPH

ABSTRACT. — Let 9 be a complex semisimple Lie algebra and denote by U (9) its enveloping algebra.
The main result of this paper (Th. 5.2) gives a formula for the annihilators of the simple subquotients of
the (spherical) principal series in terms of the annihilators of simple quotients of Verma modules. The
proof involves a description of the principal series in terms (Th. 5.1) of products of the almost minimal
primitive ideals of U (9). It was motivated by an attempt to find a method for distinguishing primitive
ideals of U (9). In particular for 9 of type A, (Cartan notation) it is shown (Cor. 6.6) that a conjecture
of Jantzen ([I], 5.9) is equivalent to the simple subquotients of the principal series having distinct
annihilators.

INDEX OF NOTATION. — Symbols frequently used in the text are given below in order
of appearance.

1 . 1 . 3, n^ 1), n-, R, R^ B, p, W, £, s,, X., H,, a', P(R), Q(R).
1.2. J(A), Spec A, Prim A, a", U(a), Z(a), S(V), V*. ___
1.3. n, MaxZ(g), R^ , R,4-, B,, W,, ̂ , D,, w,, i, b, e^ E ,̂ M(K), I-,, Z^, M(T),

L(A,), I,,, X^, (p%, (p.
1.4. 'y, u.
1.5. V, j , i, F^ L (K, u), L° (X, u), V (A, u).
2.1. S,(u0, 4(u0, T,(u0, ^.
2.2. S,, £.
3.3. L(M(u),M(X)).
3.4. P, P,, ^(1), < , >, <|/T, v|/.
3.6. I,, 9».
3.9. LAnnV(-ioX, -^), RAnnV(-w^, -X).
4.0. I., I.*, IB.
4.1. T.
4.9. J.,,
5.0. IB.
5.1. J». _
5.4. I" 3 " .
6 .1 . St(i;)"Yg(i;), T', T(, w(T).
6.2. V, u.
6.4. <&.

(1) Work supported by the C.N.R.S.
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420 A. JOSEPH

1. Introduction

1.1. Let g be a complex semisimple Lie algebra with triangular decomposition
g = n4" © 1) © n~ ([8], 1.10.14). Let R e t ) * denote the set of non-zero roots, R4' <= R
a system of positive roots, B c R'1' a Z basis for R, p the half sum of the positive roots,
W the Weyl group for the pair 9, t), S the subset of involutions of W, ^ the reflection
corresponding to the root a. Fix a Chevalley base for 9, let X^ denote an element of
weight a e R of this base, set H^ = [X^, X_J and o^ = 2 a/(oc, a). Let Q (R)
[resp. P (R)] c: I)* denote the lattice of radicial (resp. integral) weights.

1.2. For each Noecherian C-algebra A, let J(A) (resp. Spec A, Prim A) denote the
set of two-sided (resp. prime, primitive) ideals of A. For each C-Lie algebra a, let a^
denote the set of classes of finite dimensional irreducible representations of a, U (a) the
enveloping algebra of a, Z (a) the centre of U (a). For each C-vector space V, let S (V)
denote the symmetric algebra over V and V* the dual of V.

1.3. The principal aim of this paper is the study of Prim U (9). In this recall [3],
(3.2) that n : I \—> I n Z (g) is a surjection of Prim U (9) onto Max Z (g). For each ^ e t)*,
set R^ = { a e R : Ck, oQ e Z }, R^ = R^ n R+, B,, c: R^ a Z basis for R^, W,, the
subgroup of W generated by the s^: aeB^. Set

2^=2nW^ D^={weW: wR^ 'cR 4 -}

and w^ the unique element of W^ taking B^ to —B^. Call X dominant if (K, oQ^N",
for all a e R4' and regular if Ck, a) 7^ 0, for all a e R. Let X denote the orbit of 'k under W*
With b := n4" ® t), let E^ := C e^ denote the one-dimensional b module defined through
X ̂  == 0 : X e n4', H ̂  = (H, X) ̂  : H e 1), and set M (k) : == U (9) ®u(b) ^-p^ consi-
dered as a left U (9) module (c/. [8], Chaps. 5,7). Recalling [8] (8.4.4), set I^ = Ann M (k),
Z^ = n (1 )̂. Recalling [8] (7.1.11), let M (X) denote the unique maximal submodule
of M (X) and set L (^) = M (?i)/M (K), 1̂  = Ann L (K) and X^ = { 1̂  : |̂  e X } considered
as an ordered set (by inclusion of elements). (After Duflo [7], II, Thm. 1.)

THEOREM. - For each ^ e t)*/W, one has X^ = n~1 (Z^).
This reduces the study of Prim U (9) to that of finite sets X^ : K e t)*. Now the Borho-

Jantzen translation principle ([3], 2.12), shows that it suffices to determine X^ for K regular
and then fixing —^-e t )* dominant and regular, the map (p^ : w i-» 1̂  is a surjection of W
onto 7c~1 (Z^). Furthermore if we write w = u?i ̂  : w^ e D,,, w^ e W^, then by [10] (4.2),
we have (p^ (w) = (p^ (w^). That is (p^ factors through W^ giving a map (p of W^
onto Ti"1 (Z^). The Borho-Jantzen translation principle for say ^eP(R) shows that (p

y\

is in a natural sense independent of ^ and suggests that in general (p should only depend
on W^. In [10], we indicated what this dependence might be by exhibiting a partition
of W^, into cells so that each point in a given cell defines the same ideal. The main question
that remains is to show that points in different cells define disdnct ideals. Now this
and the calculations of Borho-Jantzen on the low rank cases ([3], [4]), indicate that
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PRINCIPAL SERIES 421

Duflo's upper bound, namely card X^ ^ card 2^ ([7], II, 2) should be very nearly saturated,
that is one should expect to have card X^ ^ ^/card W^. Let us see how such a bound
might arise.

1.4. Let u i-̂  ̂  (resp. u\—>u) denote the involutory antiautomorphism of U (9) defined
by ̂  = X_,, for all a e R and ^H = H, for all H e t) (resp. X = -X, for all X e 9).
As noted by Duflo ([7], I, Modules de Verma), one has:

LEMMA. - \ == !„, for all K et)*.
1.5. Identity U : = U (9) ® U (9) canonically with U (9 © (Q. Define the embedding

7 : 9 —> 9 © 9 through j (X) = (X, — 'X), for all X e 9 and set 1=7 (9) which is naturally
isomorphic to 9. In this ^T identifies canonically with P (R)/W and we let F^ : v e P (R)
denote the unique simple finite dimensional I module with extreme weight v. For
each [i e t)*, let F^ (\i) denote the subspace of F^ spanned by vectors of weight [i. Given X
net)*, consider (M(—^) ® M(—|i))* as a U module by transposition and let L()i, \i)
denote the subspace spanned by all I finite elements (which is a U submodule). As noted
in say [6] (3.2), Frobenius reciprocity ([8], 5.5.7, 5.5.8) gives:

LEMMA. - For all K, \i e t)*, v e P (R)/W, one has

mtp(v, L(X, \i)) = dimF^-^i).

In particular L (k, [i) = 0, unless ^—|ieP (R). Again if 'k—\i e v, then v occurs with
multiplicity one in L (k, \i) and we denote this component by L° (^, \i). Let V (K, \i)
denote the unique simple quotient of UL° (^, n) admitting a I submodule of type v. These
modules which are said to belong to the principal series have been systematically studied.
The results are reviewed in [6].

1.6. After Duflo ([7], Prop. 7), one has:

PROPOSITION. — For all K, |iet)* :X—p,eP(R) , there exist V eK, ^e\i such that

AnnV(-H, -?i) = 1̂  ®U(g)+U(9)®Iv.
y^

Consider the special case when ^ is regular and \i e X. Then \i == w K, for some w e W^
and through the isomorphisms of the V (—w ^, —^) ([6], 4.1), we can assume —K fixed
and say dominant. It follows that if the (non-isomorphic) U modules V(—w)i , —^):weW^,
have distinct annihilators, then (card X^)2 = card W^. Unfortunately we shall see that
the former assertion is generally false; yet it is obviously of interest to determine a precise
formula for Ann V (-w K, —K). Our main result (Th. 5.2) shows that under the above
hypotheses we can take p/ = u\ w 'k, ^ = w^ w~1 X (recall that the I«,^ : w' e W^ are
not all distinct). For W^ simple of type A^ (Cartan notation) it is further shown (Sect. 6)
that the Ann V (— w ' k , — K) : we W^ , are pairwise distinct if and only if card X^ = card 5^.
In this we recall that if X e P (R), then Borho and Jantzen ([3], [4]) have shown that
the former equality holds up to n = 5. Perhaps the most interesting results are those
of Section 4 which give remarkable sum and product formulae for the "almost minimal"
primitive ideals which generalize [8] (7.8.12) and [7] (Prop. 12).
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422 A. JOSEPH

1.7. The proofs we give are entirely algebraic; but depend on results on complex Lie
groups, so we have preferred to simply assume 9 defined over C. The use of the principal
antiautomorphism U is not strictly necessary; but it seemed preferable to stick to the
notational conventions of ([5], [6], [7]) where logically possible. I should like to thank
M. Duflo for many discussions concerning these papers. Part of this work was done
during a stay at the Sonderforschungsbereich, Bonn and I should like to thank W. Borho
for a preview of his recent results with Jantzen concerning X^.

2. Two order relations on the Weyl group

2.1. For each X e 1)*, w e W^ set

S^(w) = w-1^- nR^, ^(w) = cardS,, (M;), ^(w) = S^(w)nB^

Recall that 4 (w) is just the least number of ways of writing w as a product of the generating
reflections { ̂  : a e B^ } and such a product is called a reduced decomposition for w.
The group \\\ admits an order relation ^ defined as follows. Let

w = 5 i 5 2 . . . 5 ^ , s,=s^ a,eB^

be a reduced decomposition for w. Then w' ^ w iff we can write w' = s, s, ... s, ,
where 1 ̂  i^ < ̂  < . . . < ^ ^ n. It is easy to show that the expression for w' can be
assumed reduced and then by [8] (7.7.4), this is the same order relation as that defined
in [8] (7.7.3).

LEMMA. - For all w, w'eW^,
(i) w ^ M/ ow~1 ^ w'~1;

(ii) w ^ w' o w^ w ^ w^ w\
(i) is clear, (ii) follows from [8] (7.7.3) and the relation 4 (w^) = 4(w^w)+4(w)

(c/. [10], 3.1).
2.2. Recall that the map S^ : w^S^(w) of W^ into P(R^) is injective ([10], 3.9).

The group W^ admits an order relation c, defined through w' c w iff S^ (w') c s^ (w).
By say [10] (3.1), we have:

LEMMA. - Foreachwe^,aie^(w~l)onehass^w^w. Moreover {s^w: aeT^(w~1)}
is the set of all maximal elements o/W^ strictly less than w (for s).

In particular w ^ w' implies w ^ w\
2.3. Let a, P be distinct elements of B^ and suppose that (a, a) ^ (p, p). Then

(a", P) = -k, with k = 0, 1, 2, or 3. One has

5aSp=5p5, : fe=0 , S,5p^=5pS,5p: k = 1, (s, 5?)^ = (s? S,̂  : k = 2, 3.

For the appropriate k we call this a j '̂r relation (for the pair a, P). Recall that W^ is
generated by the involutions ^ : oc e B^ satisfying all possible pair relations.

LEMMA. — Let w e W^. Any two reduced decompositions of w can be transformed
into one another through just the pair relations (i. e. without using the identities
^ = 1 :oceB,).
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The proof is by induction on 4 (w). If 4 (w) == O? ^^ ^ == 1 and the assertion is
trivial. Suppose in the respective reduced decompositions we have w = ^ w^,
w = 5-p W2 : a, P e B^. We can assume a ^ P and then by say the first part of [10] (3.6),
we have aer^(M^1) , peT^w,"1). By the induction hypothesis and 2.2, we can write
w^ = s^w^, w^ = s^ 1̂ 4 up to pair relations. If k = 0, then w^ = w^ and the assertion
holds in this case. Otherwise by [10] (3.6), we have as above w^ = s^w^, w^ == s^ u^,
up to pair relations. This process eventually gives the required assertion.

Remark. — This elementary (but for us important) fact is for example noted in [17]
(Lemma 83 a) where its proof is left as an exercise.

3. The principal series

3.0. Fix X, p, e I)*, with X , — n e P (R). We start by summarizing some classical results
on the modules M (^), L (^, \i), V (k, \i).

3.1. THEOREM. - (cf. [6], I, 4):
(i) V (X, \i) is isomorphic to V (K\ [i') iff V = w 'k, p.' = w (A, for some w e W;
(ii) UL° (^, p,) = L (X, n), if K or p, is dominant;

(iii) UL° (^, \i) = V(^, ^i), if —K or —\JL is dominant;
(iv) L (^, n) A^ finite length as a U module^ its simple factors are amongst the

V (^/, ji') : X,' e X, H' e |1, rn^A V (X, n) occurring exactly once.
3.2. THEOREM. — (c/. [7], [8], 7.6.23. Suppose — X e l ) * dominant and regular.

For each pair w, w'eW^, M(w'X) [r^sp. L(w'X)] is a submodule (resp. subquotient)
of M(wK) iff w ' ^ w ' .

3.3. Consider Home (M (n), M (X)) as a U module through {(a ® b).T) m=(tarT b) m,
for all T e Home (M (\i), M (X)), a, beV (9), w e M (j^). Let L (M (^), M (X)) denote
the subspace of Home (M ((i), M (X)) spanned by all f finite elements (which is a U sub-
module).

Suppose M (X) is a submodule of M ([i) and suppose given I e J (U (c0/lp) satisfying
IM (\i) c= M (X). Then the representation of U (9) in M (|A) defines an embedding of I
in L(M(n),M(X)).

3.4. Let P denote the projection of U (9) onto U (t)) [which identifies with S (I))] defined
by the decomposition U(g) = U(t)) © (n~ U(9)+U(9)n4 '). For each Xet)*, define
P, : U (9) ̂  C, through P, (^ = (P (a), K- p). Given I e J (U (9)), set

^(^{Xel)*: P^p(a)=0, for all ael}.

Define a bilinear form on M(X) through <^p-p, ^a-p) = I\C^) (which we recall
is f invariant and determined up to a scalar by this latter property). Identify E^_p
(resp. E^_p) with the corresponding weight space in M (\\) [resp. M (^,)]. Given
T e L (M (\i), M (k)) define

v|/TeHomc(U, Homc(E^-p, E^_p))
through i / ^ i . \ \ / TL \<^-p^T(^®^)^n-p>=<^3l-p.Tfc^_p>,

for all a, 6eU(g). After Conze-Berline, Duflo ([5], 5.3, 5.5), we have

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



424 A. JOSEPH

PROPOSITION. - The map v|/ : T h-> ̂  is a V module homomorphism ofL (M (n), M (K))
into L(—^, —p). Furthermore:

(i) ker v|/ = { T e L (M (n), M (X)) ^c/z ̂  TM (^i) c: M^)};
(ii) given M (X) simple, then \|/ f51 ̂  isomorphism.

Remark. - Assume -Xet)* dominant. Then as noted in [5] (6.3), it follows
from 3.1 (ii), 3.2, 3.4 (ii) that v|/ induces a U module isomorphism of U (cQ/1^ onto
L ( — ^ , — X ) and w^ identify these modules.

3.5. We require the following refinement of 3.4. Take - X e t)* dominant and w e W^.
Suppose we have J e J (U (g)/!^) satisfying w^? ((^-w Xf, J) = 1, JM (w,, 9i) = M (u\ w K)
and generated as a U module by its component of type (k—w'k)^.

THEOREM:
(i) given J $ K e J (U (9)/I^), r/^ KM (t^ K) c M(w,wX);

(ii) y J4= I^M,x» ^^ C^L^O/L^ ^ isomorphic to ^ (~wK, - ' k ) as a V module.
Consider J as a submodule of L (M (w^ 'k), M (w^ w X)) and restrict \|/ defined in 3.4

to J. Then
kerv|/= { a e J : aM(w^) <= M(w^w^)}

c: { a e J : aM(w^M;^)<=M(w^wX)}c=I^^.

Through the hypothesis JM (w^ K) = M (w^ w X), we have Im \|/ 7^ 0 and since J is
generated as a U module by a I submodule of type (w^-w^w^)' it follows that
Im\|/ = UL°(-t^wX, -w^X). Yet w^ is dominant and so by 3.1 (i) and 3.1 (iii),
Im\|/ is isomorphic to the simple U module V(-w^, -K).

If K $ J, then \|/ (K) can have no component of type (K-w ^T and so is a strict sub-
module of V (-w K, -K). By 3.4 (i), this gives (i).

If J ¥ lu^x ? then ker \|/ = J n 1^^ by the simplicity of Im \|/. This gives (ii).
3.6. Fix ~'k e t)* dominant and regular. By [7] (Cor. 2 to Prop. 10), { 1̂  : a e B^ },

is the set of smallest primitive ideals of U (^) strictly containing the minimal primitive
ideal 1^=1^. We call then the almost minimal primitive ideals. Set 1 :̂ == I^/I^.
Take we^ and recall 3.2. The injection M Ck) ^ M(wK) defines by transposition
a U module homomorphism 9^ of L(-X, - w ' k ) into L(-?i, -X) and by restriction
a U module homomorphism 0^ of L (M (w X), M (?i)) into L (M (^), M (k)). Define v|/
(resp. v|/') as in 3.4 with [i == wK (resp. (i = ^). This gives the commutative diagram

L(M(wX), M()i)) ^L(M(?i), M()i))

•I . ••!
L(-^, -M;X)-^->L(-X, -?i).

Since — X is dominant, M (^) is simple and so by 3.4 (ii) \|/, v)/' are isomorphisms.
Set I = Ann M (w X)/M (X) [computed in U(g)] and define Dim as in [15] (2.1).

It follows exactly as in 4.7 that Dim U (g)/I = card R-2 = DimU(9)/I,,-2 and so
I/I,, ^ 0. Recalling that Ann M (w X) = Ann M (?i) and 3.3, it follows that the repre-
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sentation of U (9) in M (w X) defines an embedding of I/I^ in L (M (w X), M (X)) and
the restriction of 0^ to I/I^ is injective. Hence Oy, 7^ 0.

THEOREM. — For all weW^, aeB^:
(i) ^^ ^x^5' a U module monomorphism 9y, (r^s-p. 6^) o/ L ( — i ^ X , —X) [r^?.

L(-X, -w^)] ^o L(-X, -X);
(ii) mtp(y (-M\X, -X), L( -wX, -X)) = w^ (V(-w^ X, -X), L(-K, -wK)) = 1;
(iii) any non-zero U module homomorphism of L ( — w X , —X) [r^y/?. L ( — X , —w^)]

into L ( — X , —X) is injective and coincides up to a scalar with Oy, (resp. 9'y,). In particular
we can take Q^ to be 6y,;

(iv) L ( — X , —s^K) = L ( — 5 a ^ , —X) = 1 ,̂ considered as submodules of L ( — X , —X).
The first part of (i) follows on taking a reduced decomposition of w and repeated appli-

cation of the first part of [7], Lemma 5. Consider L ( — w X , ~ ' k ) as a submodule
of U (g)/I^. Then as noted in [7] (Prop. 9), ̂  (—w X, —K) is isomorphic as a U module
to L(—^, —w^) . This proves the second part of (i).

The proofs of the two parts of (ii) and (iii) are similar and we consider only L ( — w K, — X).
By [7] (Prop. 4), mtp (V (-w^K, -^), L (-w K, -X)) ^ 1. By (i) it suffices to reverse
this inequality in the case when w = 1. By (i) and 3.1 (iii), V ( — M \ ^ , —^) identifies
with a submodule of L ( — ?i, — ̂ ) and so by 3.4, there exists I e J (U (9)) such that
I/I^ = v(--w^, -K) up to isomorphism. Yet 1̂  is prime (in fact completely prime)
and so by [2] (3.6), one has Dim U (g)/I < Dim U (g)/^. It follows from say [2] (5.5),
that U (g)/I is too small to admit a subquotient isomorphic to I/I^. This proves (ii).

We have seen that L (—^, —^) admits a submodule V isomorphic to V (—w^ K, —^).
By [7], Remark preceeding Proposition 12, L(—?i, —^) admits a unique simple sub-
module which must hence coincide with V. By (i), L (-w X, —X) admits just one simple
submodule and this is necessarily isomorphic to V. Now let 9 be a U module homo-
morphism of L ( — w X , —K) into L(—^, —X). If Im6 ^ 0, then it contains V. If
ker 9 + 0, it contains a submodule isomorphic to V. Then (iii) follows from (ii).
(iv) follows from [7] (Lemme 5 and Proposition 10).

Remarks. — The assertions corresponding to (ii) and (iii) for Verma modules are well-
known [8] (7.6.6), and the proof of (ii) was inspired by the improved Borho-Jantzen
proof of [8] (7.6.6). The way to obtain (iii) from (i) and (ii) was pointed out to me
by Duflo.

3.7. HYPOTHESES 3.6

COROLLARY. — For each weW^, one has ^ ( — w X , —X) = L ( — X , —wX) , considered
as submodules of U (c0/l^.

As remarked in [7] (Prop. 9), the above are isomorphic as U submodules of U (c0/l^.
Hence the assertion follows from 3.4 and 3.6 (iii).

3.8. NOTATION and HYPOTHESES 3.6. Consider L ( — X , —wK) as a two-sided ideal
otU(9)/I,.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



426 A. JOSEPH

PROPOSITION. - For all w, w' e W^ :
(i) ker ©«, = 0;
(ii) L (-X, -w ^) =) Ann M (w X)/M (X) ^computed in U (9)/IJ;

(iii) L(-X, -M?^) =» L(-X, -t^X), ;/ ^ ^ M/.
Through the commutative diagram defined in 3.6, we obtain (i) from 3.6 (iii) and (ii)

from 3.3, 3.4 and 3.6 (iii). Given w' ^ w, we obtain from 3.2 the injections
M (k) c? M (w 'k) <^ M (w' X) and hence by restriction the homomorphisms

L (M (u/ ^), M (X)) @>L(M(w X), M 0))
and

L (M (w X), M (^)) 0? L (M (?i), M (X)).

Clearly ©„, © = ©„,. and so © is injective by (i). This gives (iii).
3.9. Fix —^el)* dominant and regular. For each weW^, set

LAnnV(-wX, -X)={aeU(9) : (o®l)V(-wX, -X)==0,

RAnnV(-wX, -X) == {aeU(g) : (l®a)V(-w^, -X)=0}.

In the notation of 1.6 taking ^ = = w X , we have LAnnV(--wX,-l)=I^ and
RAnn V (-w X, -^) = 1 .̂. We set ^ = M;i K, ^ = w^K : w^ w^ e W^.

PROPOSITION. — For all w e W^ :
(i) Wi ^ ̂  u?/

(ii) LAnnV(-t^, -^) = RAnnV(-M;~ lX, -K);
(iii) { LAnn V (-(^, -X) : CT e £„ } == X^ (Duflo [7]).
Recall the argument of [7] (Prop. 7). By 3.1 (i), (iii), V(-wK, -X) identifies with

a submodule of L (—M\ w X, —u\ X) and then its orthogonal M in M (w^ w K) ® M (M\ X)
is a proper submodule of the latter. Let M' be a submodule (not necessarily unique)
of M(w^wX) ®M(t^X) containing M such that M'/M is simple. By 3.2, M'/M is
isomorphic to L (w^ X) ® L (w^ X), for some w^ w^ e \\\ with w^ ^ w^ w. By duality
this gives (i). (ii) follows from 1.4, 3.1 (i), 3.1 (ii) and 3.7. (iii) is just [7] (Prop. 9).

Remark, — By (ii), (iii) one has card X^ = card 2^, iff the Ann V (—aX, —X) : o- e Z^
are pairwise distinct (cf. 1.6 and 6.6).

4. The almost minimal primitive ideals

4.0. In this section we fix —Xel )* dominant and regular. For all aeB^, we set
la '' = ^s^.l\ and 1̂  : = ly,̂ /!^ (this latter notation is motivated by a conjecture of Borho-
Jantzen [3], 2.19). For all B' c: B^, we set IB. = I^,?A-

4.1. Define a map T : X^ -^ P (BQ, through T (I,J = { a e B), : 1̂  =» 1,̂  }. Borho-
Jantzen and Duflo established independantly \cf. [10], 4.4 (ii)] that

THEOREM. - T (ly^) = T^ (w), /o/- flf// w e W^.

4° SERIE ~ TOME 10 — 1977 — N° 4



PRINCIPAL SERIES 427

4.2. COROLLARY. - For all w e W,,, a e B^ one has !„ M (w K) = M (w K) iff a ^ T^ (w):

I,M(w?i)c:M(wX) o IaC:LA ^ Isa^1^ ^ ae^(^
^ 4.1.

4.3. LEMMA. - Suppose weW,,. Then LAnnV(-w^, -^) = 1 ,̂ iff w = \.
In the identification U (cQ/I^ = L (—X, —X), the image of 1 is the unique trivial I sub-

module of L(-X, -X). Then recalling 3.1 (ii) we have V(-X, -X) = U(g)/I^,
which gives sufficiency. Necessity follows from 2.9 (i).

4.4. LEMMA. — For each B' c: B^, aeB', o^ has:

(0 1̂  = IB.;
(ii) I,+I,* = IB,;

(iii) (I^+IB')/I? [and hence IB'/(I^ ^ IB')] ls isomorphic to the simple U module
V(-^?i, -?.);

0V) I,2 = la.

Suppose (i) is false. Then by 3.1 (iv) and 3.4, there exists J e J (U (9)/IQ containing I2^
such that IB^/J is isomorphic to V( -wX, —^), for some weW^. Then clearly
LAnnV(—w^, — X ) = ly,^ and so w = 1, by 4.3. Yet this is impossible since 1^
does not contain the trivial I submodule. Hence (i). Now suppose J e J (IB^) strictly
contains some 1̂ . Then since ly,^ is almost maximal (cf. [3], 2.19) it follows that
^/J = Ig^. Hence J = IB^ by (i). Combined with 4.1, this gives (ii) and (iii). Suppose (iv)
is false. By 3.6 (ii) and 3.1 (ii), I^ admits a unique maximal submodule and by (iii)
taking B' = { a }, it follows that this coincides with 1̂  n I^. Then I,2 c= 1̂  n I^, which
contradicts 4.1. Hence (iv).

4.5. The best we could do to prove that I2. = Ig. for all B' c: B^ is the following:

PROPOSITION. — For all B' c: B^, the following statements are equivalent:
(i)li=lB-;
(ii) IB. admits exactly card B' distinct simple quotients;
(iii) IB, = S I,.

aeB^
Recalling 3.4, we have

^(Z i^)= n ^aj=^(L,j,
aeB' aeB'

by [10] [4.5 (ii)]. Then 1 ,̂ = F^ 1^, by [10] (2.1) and so (i) ̂  (iii).
\ aeB'

Through 4.4 (iii), it follows that (ii) ==> (i) as in the proof of 4.4 (iv). Now let K be a
maximal submodule of IB'. If (iii) holds, then K n I^ $ I, for some aeB' and so
IB'/K = UI^n K) = I^/(I,n 1 )̂ where the last equality follows by 3.6 (iv), 3.1 (ii)
and 4.4 (iii). Hence (iii) ==> (ii).

Remarks. - By [7] (Prop. 12), (iii) holds if B' c= B and by [10] (4.2), it is sufficient
that there exists w e W such that w B' <= B. Conversely by 4.4 (i) and 4.5, we have

^w^k= 2-» ̂  •
aeB?,
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This shows that for all K e I)* regular the maximal ideal in the fibre Ti;"1 (Z^) (i. e. ly, ^
though generally not itself induced (c/. [3], 4.2) is nevertheless a sum of the induced
ideals 1̂  : cxeB^.

4.6. PROPOSITION. - For a// weW^, ae^(w), w^ has !„ M (w X) = M (w^X).
Since ae^(w), we have w ^ w^ by 2.2 and so by 3.2, M(ws^'k) is a submodule

of M (w X). Then I, M (w X) ^ ^ M (w^ X) = M (w^ X), by 4.2.
For the opposite inclusion, let s be a real positive number and set

Ca,^,s = {vet )* :(v, a) = 0, B^ c: B^, (v, v) < e}.

Assume 8 sufficiently small so that X+C^g lies in a fixed Weyl chamber (and hence
-(X+v) : v e C^^g is dominant). Observe that a e B^ and set

C^={veC^:B^={oc}} .

Set H := w (X+v)-w^ (X+v) = w k-ws^ X = (a\ X) w a e N R^ 0 } and set P = w a
Then 5p w = w^, so by [8] (7.6.23), M(ws^(k+v)) is a submodule of M(w(X+v))
and (c/. [8], 7.5):

(*) eh M(M;^+V)) = ,- ̂ -M^
M(w^(X+v)) M(w5^/

for all v e C^,,. Identify (cf. [8], 7.1.5) M (w (k+v)) canonically with U (n~). Then
by [11] (Lemma 1), there exists a polynomial map v\->a^ of C^^g into U(n~) such
that M(w^(^+v)) identifies with \J(n~)a^. By (^) the dimension of each weight
space of U (n~)/U (n~) ̂  is independent of v. Hence the representation of U (9) in
M (w (^+v))/M (w^ (X+v)) depends rationally on v about v = 0.

By [7] (Prop. 1), there exists a U module homomorphism

B(s^ -'k-v, -X-v): L(-?i-v, -X-v)-^L(-5<,(?i+v), -5^+v)),

with kerB(^,-?i-v,-?i-v)=I^^^/I,+,, [7] (Prop. 10). By [7] (Lemma 5),
and 3.1 (ii), Is^+vA+v is generated by a simple I submodule of type (^-^^ in
L(-X-v, ~X-v) and hence by the lowest weight vector/^ of this submodule. The
restriction &v of B (s^, -X—v, -X-v) to the lowest weight space of the isotypical com-
ponent of type (X-^^T in L(-^-v, —?i-v) has for image the lowest weight space
in the isotypical component of type (X-^)" in L(-^(^+v), -^(^+v)) and for
suitable n (cf. 1.5) is an n x n matrix with entries depending rationally on v, [7] (Prop. 1).
Since -K-v is always dominant the singularities in 6y lie outside C^^^g. (This is made
explicit in [6], III, 3.8, 4.7.) Evidently rank ^ = n-1, for all veC^,,. Choose
a cofactor b^ which is non-zero at v = 0. Then we may writer = (b^, b^2, . . . , b^)
and so it follows that the map v \->f^ is rational in v about v = 0.

By 4.2, we have 1,^+v) M (w Q^+v)) c: M (w (k+v)), and for all veC^, one
has M (w (X+v)) = M (w^ (X+v)) by [9] (Satz 3). Let ̂ ^ _p be the representative
°f ew(K+v)-p in M (w (X-+v))/M (w^ (?i+v)). We have shown that /^ ^+^_p depends
rationally on v about v = 0 and vanishes in the Zariski dense set C^, g. Hence it vanishes
at v = 0 and so 1̂  M (w k) c M (ws^ X), as required.
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Remarks. — The special case when 9 is simple of type A^ and ^ = p was given by
Dixmier [8] (7.8.12). It is not known if an arbitrary induced ideal depends rationally
on the available parameters (but it does depend continuously [3], 3.96), and in fact
the crucial point in the above argument is the description of 1̂  through the Kunze-Stein
intertwining operators. The equality 1̂  M (w K) = M {ws^ K) would not have followed
from the second part of the proof and only follows from the deep fact noted in 4.1.
(In this connection see [10], 4.6.)

4.7. We note the following fact which finds application in 7.2.

COROLLARY. — For each aeB^, and each weW^ satisfying aer^(w) one has
1̂  = Ann M (w K)/M (ws^ K).

Set My, = M(wX)/M(w^) and Ky, = Ann My,. By 4.6, one has Ky, =» 1̂  with
equality if w = ^. Define Dim as in [15] (2.1). Since each My, identifies with
U (n~)/\J (n~) afy,, for suitable ^y,eU(n'~), it follows that Dim My, = d i m n ~ — l .
Again {cf. [2], 3.1) one has

Dim My, = sup { Dim L : L e/^ My, }
and

Dim U (g)/Ky, = sup { Dim U (9)/Ann L : L e /^ My, }.

Hence by 3.2 and [15], 2.7 it follows that Dim U (9)/Ky, == card R-2 = DimU(9)/I^.
Yet 1̂  is a prime ideal and so by [2] (3.6), one has Ky, = 1 ,̂ as required.

4.8. For each w e W^, consider L (—w K, —X) as a U submodule of U (cQ/1^ (cf. 3.7).
Recalling 3.9, choose w^ e W^ (not necessarily unique) such that L Ann V (— w X, — X) = ly,^.

LEMMA:
(i) T,(wi)=B,, iffw= 1;

(ii) B,\T, (w,) = { a e B, : I, L (-w ̂  ~X) = L (-w ̂  -?i) }.
(i) follows from 4.3. (ii) follows from 3.1 (ii) which implies that L ( — w'k, —^) has

a unique maximal submodule and the quotient is isomorphic to V (— w 'k, — K).
4.9. Given w e W^\{ 1 }, let w = s^ s^ ... s^ : ̂  = s^ : o^ e B^, be a reduced decom-

position r of w and set Jy,^ := I^I^_^ ... Io^. (We shall eventually see that Jy,^ is
independent of r.)

PROPOSITION. — For all w, w' e W ,̂ m7A reduced decompositions r, r' o^ toy:
(i) Jy,,,M(w^) = M(t^u^);
(ii) Jy,,, c: ^Ann M (w X)/M (^)) c: L (-w ?i, -)i);
(iii) Jy,^ <= Jy,,^ implies that w ^ w'.
(i) obtains on successive application of 4.6. Combined with 2.1 (ii) and 3.2, this

gives (iii). Again successive application of 4.6 gives ^w,r M (wX) = M (k). Combined
with 3.7 and 3.8 (ii) this gives (ii).

4.10. Recalling 2.3, let a, P be distinct elements of B^ and suppose (a, a) ^ (P, P).
Set k =-(a", P).
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LEMMA:

(i) la Ip = Ip I, : f e = 0 ;

(ii) Up la = Ip Up :k== 1;
(iii) (Up)'= (Ip V : ̂  = 2, 3.
By 3.6 (iv), 3.7, 3.8 (iii) and 4.9 (ii) we have Ip I, c L(-^?i, -^) c I, n Ip.

Choose Y e B^\{ a, P }. If y ^ ̂  ((^ ^p)i) (notation 4.8), then by 4.8 (ii), we obtain
Ipla c: L(-^^pX, -^) <= U^, which contradicts 4.9 (iii). Then by 4.8 (i) we must
either have a ̂  ̂  ((^ ^p)i) or P i ̂  ((^ ^p)i). Suppose the first holds. Then by 4.8 (ii),
we obtain Ipl^ c Up. By 4.9 (iii) this can only hold if k = 0 and then by 1.4 we
obtain (i). If k ^ 0, then we must have P ̂  ((^ 5p)i) and so from 4.8 (ii) we obtain
Ipla = L ( — ^ ^ p X , —X). A similar argument with a, P interchanged gives

Up = L(-jp^, -^).

Substitution from 3.7, 3.8 (iii) and 4.9 (ii) gives

IJpI^cL(-s^5p5,X, -^)c:UpnIpI^.

Then by 4.8 and 4.9 (iii) either a ̂  T, ((^p .yji) or P f T, ((^ .?p ̂ )i). Suppose
P ^ ̂  ((^a ^p ̂ i). Then by 4.8 (ii), la Ip la c Ip la Ip and so k = 1 by 4.9 (iii).
Yet as above:

IpIJpC:L(-5p^SpX, -^)=L(-5,SpS,X, -^)=lalpnlpla,

and since P i ̂  ((^ ^p ̂ )i), this gives IpUp = L( -^p^^p^ -?,). Recalling 1.5, it
follows from 3.5 (ii) that either Ip I, Ip = I, Ip I, or I, Ip I, M (w, K) f M (^ ̂  ^p ̂  9i).
The latter contradicts 4.9 (i) and so we obtain (ii). The remaining cases follow similarly.

4.11. COROLLARY. - For each weW^\{ l} , Jy, , is independent of the reduced
decomposition r of w.

Apply 4.10 and 2.3.

4.12. PROPOSITION. - Choose B' c: B^ for which 4.5 (iii) holds. Then

MQ^)= ^ M(WB^).
aeB'

Set M = ^M(w^s^y Certainly MfM(w^K). Recalling [8] [7.6.1 (i)],
<X € ft'

let M' be a submodule of M (w^ ^) strictly containing M such that M'/M is simple and
hence isomorphic to L (w K), for some w ^ w^ (by 3.2). From the hypothesis and 4.6
we obtain 1̂  c: AnnM'/M = 1̂ . By 4.1, this gives r(w) ̂  T(WB-) = B' and so
w = w^. Hence M' = M (WB- ^) and so M = M (w^ X).

Remark. - In particular by 4.4 and 4.5, it follows that M (^ X) = E M (^ ̂  5i) and
cceBx

so is generated by the Verma submodules it contains. This is well-known if 5i e P (R)
([8], 7.2.5).
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5. Main theorems

5.0. In this section we retain the conventions of 4.0 and in addition set 1̂  = I^^/I?,,
for all B' c: B^. Identify L ( — w ' k , —X) and L ( — ^ , —wK) with U submodules of
U(9)/I,(c/. 3.6).

5.1. Set Ji = U(g)/I, = L(-X, -5i) (c/. 3.4). Given ^eW,\{ 1 }, let

w = s ^ s ^ . . . s ^ s, = s^, a^eB^

be a reduced decomposition for w and recalling 4.11 set J y , := I^Is^ . . . 1^.

THEOREM. — For all w, w' e W^ :
(i) J , = L ( - w X , -?i);

(ii) L(-w^ -K) = L(-X, -w-1^);
(m) L (-^ -w ?i) = Ann M (w ?i)/M (^);
(iv) L(-?i, -wX) ^ L(-^, -w^), (^ w ^ w'.
The proof of (i) is by induction of 4 (^). It has already been established for 4 (^) = 0,1

[cf. 3.6 (ii) and 3.4]. Take w as above and set w' = s^ w. Then \(w') == 4 (w)—l ,
so by 3.7, 3.8 (iii), 4.9 (ii) and the induction hypothesis we obtain

(*) J,c:L(-u^, -X)c:J,,.

We show that T^(Wi) => B^\T^(w) (notation 4.8). If this is false choose

a e B^\(T^ (w) u ̂  (w^)).

Since a ̂  T^ (w^), we obtain from 4.8 (ii) and (if) that Jy, <= 1̂  Jy,, = Jy,. ̂  and so by 4.9 (iii)
that w ^ w' 5oc Yet a ^ T^ (w) and so by [10], 3.1 (iii), we obtain

400=4(^+1 =4(0+2.
Further application of [10], 3.1 (iii) and 3.1 (iv) gives 4 (wf Sy) = 4 (w) and so w =w' 5',
This contradicts a^T^(w).

Through the above inclusion and 4.8 (i) it follows that there exists a^T^(w) with
a^T^i). Set w" = w^. Then 4 (w") = 4(w)-l, so by 3.7, 3.8 (iii) and the
induction hypothesis we obtain L ( — w ^ , — X ) < = J ^ . Then by 4.8 (ii) and 4.11,
L ( — w ' k , —^) <= IO(JM," = J«,, which combined with (^) proves the required assertion.

(ii) follows from (i), 1.4 and 3.7. (iii) follows from (i), 3.7, 3.8, 4.9 (ii). (iv) follows
from (i), 3.7, 3.8 (iii) and 4.9 (iii).

Remarks. - Necessity in (iv) also follows from 3.1 (iv) and [7] (Prop. 4). By 3.1 (ii)
the embedding defined in 5.1 (iv) is unique.

5.2. THEOREM. — For all weW^, one has

AnnV(-w?i, -K) =L^®U(9)+U(9)®L.-u.

By 1.6 and 3.9 (ii) it is enough to show that LAnn V (- w 'k, -K) = 1^^. By 3.1 (ii),
L (—w K, —K) admits a unique maximal submodule and so ly,^ : = LAnnV(-w X, —X)
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is just the largest element of J (U (g)/!,) such that 1^ L (-w ̂  -K) $ L (-w ?i, -X).
By 5.1, 4.9 (i) and 3.5 (i) this is equivalent to 1̂  M (ww^ X) c: M (ww^ X), which gives
the required assertion.

5.3. In [7] (II), Duflo notes that for each I e Spec (U (9)/IQ, there exists a unique
smallest J e J (U (g)/I;J strictly containing I. When I == 1̂  we compute J below.

THEOREM. - For all B' c: B^ :
(i) J^, is the smallest element of J (U (g)/^) m^ mJfcaf/ 6^W ^ Q 1 .̂ In parti-

cular J^, = ( Q 1̂ , /or ^// integer I sufficiently large;
aeB'

(ii) J^^1^ fly rt6? Mm^6? smallest element of J(U(g)/y .ym'crfy containing 1̂
Furthermore (J^, + I^)/I^ = V(-M;B'X, -X), up to a V module isomorphism.

Choose JeJ(U(9)/I,) such that ^/J = f) !„ and set K = J+I^, considered as an
aeB'

element of J (U (9)). By [10] [2.1 (v) (notation 3.4)] we have -T (K) == [j -T (1 )̂.,

Then by [10] [2.1 (i), 2.1 (ii)], the inclusion K c I,,,̂  implies w^w^Ke-T (1 )̂,
for some P e B' and so by [10], 2.1 (i) that 1^^,, =) 1,̂ . This contradicts 4.1. He^ce
(J+I$/)/I^ ^ 0. In particular we may take J = J^,, and then by 5.1 (i) and 3.5 (ii)
this gives (ii). Again if J $ J^,, then by 3.5 (i), KM ̂  w^ K) c M (w^ w^ X) which
implies K <= lu,^^,^. This contradiction gives (i).

5.4. Fix w, w' e \\\ satisfying 4 (w' w) = 4 (w')+4 (w). Then M (w' X) is a submo-
dule of M (w' w K) and we set J^' = Ann M (w' w X)/M (w' X), J^' = Ann M (w'wX)/M (M/X)
computed in U (g)/! .̂ Certainly J^ <= J^. Let B (w', -X, -M;X) be the U module
homomorphism of L(-X, -wK) into L(-w'X, -w'wX) defined in [7] (Prop. 1),
and let \1/,̂ , ̂  (or simply, \|/) be the U module homomorphism of L (M (w' w X), M \w' A,))
into L ( — M / X , — M / W ^ ) defined in 3.4.

THEOREM:
(i) L (-^, -w X) c: J^', m^ equality if w' = 1 or w = ^ : a e B^;

(ii) UL° (-w' ̂  -w' w ?i) = v|/ (L (-?i, -w X)) cz (M (w'^) ® M (w' w ^))1;
(iii) Mp ^ a non-zero scalar (depending on w' w\ and w' K) the restriction of \|/^ ^ „

to L(—K, — w ' k ) coincides with B (w\ — ^ , - w X ) ;
(iv) ker B (w\ -X, -w X) = J^ n L (-X, -w X).
(i) obtains from 4.6, 4.7 and 5.1. Then by 3.4 (i), 4.9, 5.1,

\|/ (L° (-5i, -w K)) = L° (-w' X, -w' w X),

which by 3.1 (ii) gives the first part of (ii). By [11] (Sect. 2), the bilinear form < , >
defined on M(w'^) has kernel M(w' ?i). Hence Im \|/ c: (M (w' K) ® M (w1 w ^))1

which gives the second part of (ii). By 3.1 (ii), any U module homomorphism of
L(-X, —wK) into L ( — w ' X , — w ' w X ) is determined by its restriction to the lowest
weight vector of the t-submodule L°(-^, -w^). Hence (iii) and (iv).
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Remarks. — The importance of (iii) is that it gives a new way of representing the Kunze-
Stein intertwining operators B(w', -X, -wX). Taking w' w = w^ and recalling the
argument of 3.9, we see that (ii) implies 5.2 and is indeed a stronger result. Taking
w = 1 in (iv), we recover [7] (Prop. 10) as a special case. It would be rather useful to
establish equality in (i). For example this would give ker B (w\ —X, — w ^ ) = J^f and
a further application is noted in 7.1. It is part of a general question raised in [8]
(Prob. 30). By 4.7 and the definition of J^,, it follows that L (-^, -w 'k) and J^' have
the same radical. Again we note that

J^ = Ann M (^ w X)/M (X) = L(-K, -^wX) c: L(-?i, -w?i),

by 5.1 and so ker B (^, - ̂ , - w K) = L (- \ — ̂  w K), which is essentially [7] (Lemma 5).
Finally does one have ker B (w\ —X, —wK) == (I^/I,) L ( — X , —wK) ? By (iv) they have
the same radical.

5.5 Take w e W^. Then ^ M (w' K) is generally a strict submodule of M (w 'k).
w' < w

Recalling 3.1(ii) let L (-K, — w ' k ) denote the unique maximal submodule of
L (-X, -w ?i). By 1.5 and 5.1 (iv), ^ L (-?i, -w' ?i) is contained in L ( - ' k , -wK)

w' < w

and we show that this inclusion is generally strict.

LEMMA. - Take a e B^ and set B' = B^\{ a }. Ifl^ ^ IB', then J : = ^ L (-^, -s^K)
_________________ W^Sa

^ <ar ^nc^ submodule of L(—K, — s ^ ' k ) .
By 4.1 and 5.1, J = ^ (I, Ip+Ip I,) c= I, n 1̂ . By 4.4 and 4.5,

PeB'

V(Ia^lBO^(Ia+lB')/lB'=WlB^

which by 4.4 (iii) is a simple U module iffi^' == I?' This establishes the required assertion.
Example. - Take R of type A3 with ^ e P (R) and a = o^. By [3] (4.4, 4.17), one

has I* ^ IB.. Also M (w^ s^K) is not generated by the Verma modules it contains.
5.6. Fix—^ el)* dominant and let L(L(w^), L(wK)): w e W ^ denote the subspace

of all I finite elements of Horn (L (w'k), L (w X)) (which is a U submodule). Recalling 3.4,
let < , > denote the non-degenerate bilinear I invariant form on L (w K). Given
T e L (L (w K), L (w 'k)) define \|/T e (L (w ^) ® L (w X))* through (\|/T, m ® ^) = < m, T 72 >,
for all m, ^ e L (w ^). Let (M (w X,) ® M (u? 'k)) denote the unique maximal submodule
of M (w K) ® M (w X,) and let (M (w K) ® M (w ^))1 denote its orthogonal complement
in (M (w ?i) ® M (w X))*.

LEMMA. — 77^ wop \|/ : T h-» \|/T induces a U module isomorphism ofL (L (w ,̂), L (w X))
o^o L (-w X, -w X,) n (M (w ^) ® M (w X))1.

It follows exactly as in [5], 5.5 that \|/ is a U module isomorphism of L (L (w X), L (w K))
onto the subspace of all f finite elements of (L (w X) ® L (w X))* which further identifies
with the subspace of all f finite elements of (M (w X) ® M (w A<))1. This gives the required
assertion.
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5.7. From say 3.3 we obtain an embedding U (9)/I^ c> L (L (u; ?i), L (w ?,)). This
is generally strict (c/. [5], 6.5). Yet

THEOREM. — For all— X e I)* dominant and regular one has

U (9)/I^ = L (L (u;̂ ), L (^ ?i)).

Set L == L (L (^ X), L (^ X)). By 3.1 (iv) and 5.6, L has finite length as a U module.
Let V be one of its non-zero simple U subqaotients. Since t!^ L = 0, we obtain from
1.4 and 1.6 that LAnn V => 1 .̂ This by 4.3 and the maximality of 1̂  gives
V = V(-X, -X) up to isomorphism. By 3.1 (iv) and 5.6, V(~X, -X) occurs with
multiplicity at most once in L which is therefore itself a simple U module. Hence
L = U (cQ/Iy,^ as required.

Remark.-In the special case for which B^ c: B this result is due to Conze-Berline
and Duflo (combine 2.12, 6.2, 6.3 of [5]). More generally they show that

L (L (WB. X), L (we. ?i)) = U (g)/I^,

for all B' <= (B^ n B) and — K dominant. For X regular we sketch an alternative proof based
on 5.7. Let 8 be a real positive number and set Cg^ ^ g = { v e 1)* : (v, a) = 0 : a e B',
B^ c B,,, (v, v) < e }. Given B' c: B and taking s sufficiently small it follows from [6],
3.9 and 4.3.3 (as pointed out to me by Duflo) that B (u^, —(X+v), —(A-+v)) is indepen-
dent of v e CB. , „, e. Hence by [7], Prop. 10,1 ,̂ ^+v)/^+v is independent of v. By [10],
4.3, this also holds when B' = { a } <= B and hence it is true for any subset B' of B
satisfying 4.5 (iii). Conversely since we can always choose v e CB',^ such that
B' = B^, the independence of 1 ,̂ ̂ +vA+v on v implies 4.5 (iii). This gives an inde-
pendent proof of [7], Proposition 12. By 4.5 (iii) and 4.12 it follows that L (w^ (X+v))
identifies with an induced module. Then by 5.6, L (L (w^ (X+v), w^ (X+v)) identifies
with a principle series module and so as a I module is independent of v. Taking v so
that B' = B^+Y the required assertion follows from 5.7.

6. The symmetric group

6.0. Theorem 5.2 is slightly unsatisfactory in the sense that the 1̂  : w eW^ are not
pairwise distinct. Here we recast this formula into a better form when W^ is of type A^_ i
(that is when it is isomorphic to the symmetric group S^). We follow the notation of [10]
(Sect. 7), briefly outlined below.

6.1. Let n be an integer > 0, ^ a partition of n and set | ^ | = n. Let St (i;)
[resp. Yg (i;)] denote the set of standard (resp. Young) Tableaux of type ^. Given
T e Yg (Q, let T1 (resp. T,) : i = 1,2, ..., n, denote the columns (resp. rows) of T and m (T)
the set of positive integers (assumed pairwise distinct) occurring in T. We recall that by
definition m (T) = { 1, 2, ..., n} iff T e St (Q.

6.2. By an ordinal we mean an element of N'1" u { oo } given its natural order. Let T
be a Young Tableau and k, I positive integers not occurring in m (T). We define a new
Table T V k (resp. T u /) by the following rule. First complete T to an infinite square
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array by putting oo into the empty places. Then define ordinals ko ^ k^ ^ k^ ^ ...
(resp. IQ ^ /i ^ /2 ^ ...) inductively as follows. Set ko = fe (resp. /o = /) and for
each feN 4 ' , let fc, (resp. /,) be the smallest ordinal ^ A:,_i (resp. /,-.i) in T (resp. T,).
Finally set (TVfe)1 = (T\{k,}) u {^ } [resp. (T u/). == (T,\{/. }) u {/.^ }].
The following result is due to Schensted [16] (Lemma 6).

LEMMA. — Let T be a Young Tableau (possibly the trivial empty Tableau).
Given k, /eN^mCT) distinct, then (TVA;) u / == (T u /)Vfc.

Define k^ k^, ... (resp. /i, /^, ...) as above and call it the k (resp. /)-sequence.
Observe, for example, that /,-i takes the place of /, in (T u /) and that the /-sequence
moves downwards and to the left in T. Both sequences are increasing and hence have
either exactly one common element which is finite, or (possibly) several infinite ones.
Choose r, s e N4' such chat ly = ks. We can assume without loss of generality that there
are no further common elements and that 4-i, k^-^ < oo. One has /,.eT5 and so
either r = 1 or /^i e T", for some v ^ s. Again s = 1 or ^_i e Ty, for some u ^ r.
Suppose u = r. Then /,-i > ^_i by definition of the /-sequence and so v > s (for
otherwise /:s-i > 4-i by definition of the fe-sequence). Now

(Tu/), = (T,\{/,}) u {4-1 } and (TVfe), = (T,\{^})u { k,., },

for some ordinal t ^ v > s. Hence ((TV^) u /), = (T,\{/„ k,}) u [k^^ 4_i }.
Again since lr = ks, it follows from the definition of the ^-sequence that 4_i is the
smallest integer > k,., in (T u /)5. Hence ((T u /) V k\ = (T,\{ /„ k,}) u {k,^ l^ },
as required. The remaining rows coincide because they do not contain the intersection
point of the sequences. The case u > r, v > s, 4_i > ky-i is exactly the same and the
remaining cases follow by interchanging rows and columns.

Remark. — The above proof is different and shorter than Schensted's which uses induc-
tion on n.

6.3. Given TeYg(^), then after Robinson (c/. [10], 7.5 (i)), we can always write
T =( ( . . . (/i u 12) u y u ... u^ , for some (pairwise distinct) /.eN4 '. Given
I e N^w (T), set / u T : = ((... (/ u /i) u y u . . . u /„. Let T* denote the Young
Table obtained by rotating T about its main diagonal.

COROLLARY (Schensted [16], Lemma 7):
(i) / u T = = T V / ;
(ii) ((... (/i u /,) u /s) u ... u /„)* = = ( ( . . . (/„ u 4_i) u 4-2) u ... u /i;
(i) follows easily from 6.2. For (ii), observe that (T u /) = (T* V /)* = (/ u T*)*,

by (i). Hence (/ u T*) = (T u /)* and (ii) follows by induction on n.

6.4. Assume that R is of type An_ i. Then W^ is isomorphic to the symmetric group Sn
which we consider as the permutation group of { 1, 2, ..., n }. For each w e S^, set
k, = w~1 i : i = 1, 2, ..., n and A (w) : = ((... (k^ u k^) u ^3) u ... u k^
B (w) : = A (w~1). Then after Robinson, Schensted and Schutzenberger (c/. [10], 7.5),
the map $ : w \-> (A (w), B (w)) is a bijection of S^ onto : (J { Yg © x Yg (Q : | ^ | = n }.
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LEMMA:
(i) A(w^w)=A(w)*;
(ii) A(w^w~1) = B(M;)*.
One has (w^w)~1 i = w~1 (n+l-i) = ^+1-, and so (i) follows from 6.3 (ii). By (i),

B(w)* = A(w~1)* = A(i^uT1), which is (ii).

6.5. HYPOTHESES 6.4. - For each w e W ^ define the involutions

<7i(u0 : = (D-^A^)*), A(w)*) c^(w) : = O-^B^)*, B(w)*).

Through the injectivity of 0, the map w i-> (c^ (w), a^ (w)) of W^ into (5^, 2^) is injective.

THEOREM (R^ o/ %?6? A^.i). - For all weW^, ow^ A^

Ann V(-w?i,-^)=^(,),®U(9)+U(9)® !„(,),.

This follows 5.2, 6.4, and [10] (5.1, 6.1 and 7.9).

6.6. COROLLARY (R^ of type A,,_i). — The following two statements are equivalent :
(i) card X^ = card 2^;
(ii) card { Ann V (-w K, -K): w e W^ } = card W^.

Remark. - If ^ e P (R), then after Borho-Jantzen ([3], [4]), (i) holds up to w = 6.

6.7. If B^ admits roots a, P which span a subsystem of type B^ or Ga one has
I^=I^p^by[10](5.1). Then by 5.2

Ann V (-M\ ̂  5i, ~^) = Ann V (-M^ ̂  ̂  ̂  5i, -^)

and since w^ = — 1 (under the above hypothesis) this gives card X^ < card 5^ by 3.9 (iii).
Consequently card { V ( — w ^ , —^) : u ? e W ^ } < card W^ and one can expect this to
also hold if R^ admits a subsystem of type D^ or E^. Yet it is plausible that

AnnV^w^-^^AnnV^w"" 1 ^ , -^ ) if w 9^ w~1,

holds in general. In case A,,-, i such a result would distinguish the {1^ : CT e 2^ } associated
through 0 with standard Tableaux of the same form (i. e. defined by the same partition i;).
Furthermore if CT = <3>~1 (A, A) with A e S t (^), then one expects that the zero variety
of the graded ideal gr 1̂  will admit a dense nilpotent orbit corresponding to ^ (cf. [I], 5.9)
and together these results would distinguish the { 1̂  : <je2^ }. In [15] (4.2), when 9
itself is of type A^_i we have already shown that the zero variety ofgr 1̂  has the expected
dimension. This is an important and rather non-trivial application of our main result 5.2.
It further allows us to classify X^ when card B^ = 3, [15] (Sect. 5). Finally we remark
that Spaltenstein [12] has pointed out in case A,,_i that the Robinson map 0 can be
viewed as the inverse of a map recently introduced by Steinberg in connection with the
unipotent variety. The Steinberg map is defined without restriction on type; but in the
general case there is a tantalizing distinction between this map and what would be required
to generalize 6.5 for arbitrary W^.
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7. The rank 2 case

7.1. Retain the notation and conventions of 4.0. It is well-known and follows easily
from 5.3 (i) that card J(U(g)/I^) = 1+cardB^, if card B^ 1. Here we consider
the case when card B^ = 2. In this situation Jantzen [14], has recently shown that
/ ^ M (w^ ^) is multiplicity free. It is natural to then ask if /J^ L (-^, --^) is also
multiplicity free and we remark that such a result leads easily to a complete description
of J (U (c0/l^). We can show that this would result from equality in 5.4 (iii) when
w' w == w^. Unfortunately we were not quite able to establish the latter; but to illus-
trate our method we give a new proof of [3] (Folg. 2.20). First we note an easy and
well-known consequence of the fact that /^f M (w^ X) is multiplicity free.

LEMMA. - Set B^ = { a, P }. Then

M (w^ s^ K) == M (w^ Sp X) = M (w^ Sy X) n M (w^ 5p ̂ -).

Remark. — When B^ is of type A^ xAi or A^, this also follows from [13] (Lemma 1).

7.2. COROLLARY. - 1̂  = Ip, 1̂  == I,.
By definition !„ <= 1 .̂ For the opposite inclusion, note that 1̂  c: 1,+Ip by 4.4 (i)

and 4.5 and so 1^=1^0 Ip+I^. By 4.4 <ni) taking B' = { P }, we have 1̂  n Ip ^ Ip
and so by 3.5 (i) and 5.1 (i) it follows that (1^ n Ip) M (w^ K) c: M (w^ s^ K) <= M (^ ̂  ^)»
by 7.1. Then by 4.6, I^M(i^X) <= M(w^s^K) and so 1̂  c: 1 ,̂ by 4.7.

Remark. — It is clear that this result is equivalent to [3] (Folg. 2.20).

7.3. Set B^ = { a, P } and choose I e {2, 3, ..., (1/2) cardW^-1 }. Then there
are exactly two distinct elements w, w' e W^ satisfying 4 0<0 = 4 (w/) = ^ Furthermore

LEMMA (notation 5.1) :
(i) j ,+j^=anipy-1 ;

(ii) J ,nJ, .=(I ,nIpy;
Clearly (!„ n Ip) => !„ Ip+Ip la and any non-zero simple subquotient V of

(I,nIp)/(Up+IpIJ

must satisfy LAnn V = 1,+Ip. Then by 4.3, 4.4 (i) and 4.5, V == V (-?L, -^) up to
isomorphism which contradicts the fact that (1̂  n Ip) does not admit the trivial t submodule.
This gives (i) for / = 2 and the general case obtains by taking powers. Again
3w ^ J w ' ^ (la ^ Ip)1 and I, (J«, n J ^ ) c: J^ n J^ c (!„ n Ip)1 by (i). Thus a similar
argument gives (ii).

7.4. Set B^ = { a, P } and define k as in 2.3.

PROPOSITION. - Suppose k = 0, 1, 2. Then /^ L (—^, —X) is multiplicity free,
Suppose B^ is of type B^. We show (see Fig.) that

{ J, : w e W,, 1,+Ip, (I, n Ip)1 : / = 1, 2, 3 }
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is the set of non-zero U submodules of U (g)/I^. By 5.1 (i), (iv) and 7.3, these are pair-
wise distinct and satisfy the given inclusion relations. We show that each arrow defines
a simple quotient. By 4.4 (i) and 4.5, la+Ip is the unique maximal submodule.
By [7] (II), there exists a unique minimal submodule which by 5.3 (i) is L (-M\ ̂  -^)
and this by the argument of 7.3 (i) and 4.10 (iii) equals (I,, n Ip)3. By 7.3 and a, P inter-
change it suffices to prove simplicity for the arrows labelled 1, 2, 3. For 1, this follows
from 7.2 and 4.4 (iii). Consider 2. By 3.1 (iv) and 3.4 any simple subquotient of
!„ Ip/(Ia n Ip)2 is isomorphic to y ( — w K , — ' k ) for some weW^. Taking 4.3 into
account it follows from 7.2 that

AnnV(-wX, -^)=ip®U(9)+U(g)®I,.

Substitution in 5.2 gives w = 5p ^- Yet I,, Ip = L (—5p s^ K, —X) by 5.1 (i) and so
by 3.1 (iv), V (-5-p ̂  X, —K) can only occur once in !„ Ip/(I^ n Ip)2 which is hence simple.
Consider 3. Let V ( — w X, —)i) : w eW^ be a simple subquotient of I^ Ip Ia/(Ioc n Ip)3.
Then Ann V (-w K, ~ ' k ) = Ip ® U (9)+U (9) 0 Ip and so by 5.2, w = s^ or w = s^ s^ s^.
The former choice contradicts [7] (Prop. 4) and the latter implies the simplicity of
1̂  Ip V(I, n Ip)3 as above.

U(9)/I,

The submodules of U fe)/I^ and their inclusion relations for B^ of type Ba.
The notation M —> N denotes M => N with M/N a simple U module.
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By 4.4 (i) and 4.5, I^+Ip admits exactly two simple quotients. By 7.3 (i) and 3.1 (ii)
the same is true of the (1̂  n l^)1:1 = 1, 2. By 3.1 (ii) and 5.1 (i) the J^ : w e W^ admit
exactly one simple quotient. Since each arrow defines a simple subquotient it follows
that there can be no other submodules of U (g)/I^ than those given in the Figure.

Then by [7] (Prop. 4), or by direct computation it follows that /^ L (-X, ~ ' k ) is
mulitplicity free for B,, of type B^ (i. e. when k = 2). The remaining cases follow similarly.

Remarks. The cases k = 0,1 are unpublished results of Duflo. In genera
/^ L(-?i, -K) is not multiplicity free if card B^ 3 (cf. [5], 7.1 and [7], Cor. 1 to
Prop. 11). Recalling 4.6 and 5.1 one can also easily verify that the conclusion of the
proposition implies that the map 11—> IM (w^ K) is a bijection of J (U (cQ/I^) onto the
set of submodules of M (w^ 'k) (cf. [8], Prob. 30). It would be important to show that
this holds in general and we remark that the counterexample to surjectivity given in [13],
Ex. 1, is for ^ non-regular. More generally if B^ is of type A^ (resp. B^) with X on exactly
one wall (i.e. subregular) then similar calculations show that card J (U (cQ/IO = 2
(resp. 3) whereas after Jantzen [14], M (w^ K) admits 3 (resp. 4) distinct proper submodules.
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