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EQUATIONS DEFINING RATIONAL SINGULARITIES

PAR JONATHAN M. WAHL

INTRODUCTION

Suppose R = P/I is a complete two-dimensional rational singularity (e. g., [2]) of
embedding dimension e, where P is a formal power series ring in e variables over an alge-
braically closed field k. The tangent cone R = gr R is a quotient of the polynomial
ring P = gr P.

THEOREM 1. (see 2.1). — A minimal projectile resolution for P/I = R is

0^p^-!i^ _^p^p^p^p^o,
where

(e-\\(a) the Betti numbers are b^ = ( . - ), < ^ 1,

(b) the associated graded sequence:

0^p^-2^..._p^^^^p^p/i_^o^

is a minimal projectile resolution for R, and (pi has degree 2, (p; has degree 1 (i > 1).
We therefore may say that R is defined by quadratic equations, and all the higher

syzygies are linear. The proof of this result is cohomological, but not difficult; one uses
Castelnuovo's lemma on the projectivized tangent cone, showing it admits a 2-regular
resolution, and then uses a variant of the Artin-Rees theorem to lift the equations for R
to those for R (§ 1). Apparently, more elementary algebraic proofs are available using
only that the multiplicity is one less than the embedding dimension (2.6).

The same techniques yield an analogous result for the "minimally elliptic" singula-
rities of Laufer [12]; these are Gorenstein singularities (hence have self-dual resolutions),
and include cones over elliptic curves and the cusp singularities of the two-dimensional
Hilbert modular group.

THEOREM 2. (see 2.8). — A minimally elliptic singularity (over C) with e ^ 4 has a
minimal resolution as in Theorem 1, except that

(a) b^^^b,=i(e^l~^(e\ z=l , . . . .^3 ,
e-1 v+1/
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232 J. M. WAHL

(b) (p, has degree 2 for i == 1 and e—2, and degree 1 otherwise,
If a rational R happens to be defined determinantally (see § 3) by the 2 x 2 minors of

a 2x(e—l) matrix, then the Theorem follows from the Eagon-Northcott complex [7],
which gives a concrete projective resolution. However, once e ^ 5, very few rational
singularities are determinantal.

THEOREM 3. (see 3.4). — The graph of a determinantal rational singularity of embedding
dimension e consists of one —(e—1) curve and (possibly) some —2 curves.

We conjecture that the converse is true; we have verified it for the quotient singula-
rities over C (3.7) and singularities with reduced tangent cone (3.6). The proof of this
theorem uses a partial desingularization of Spec R with only rational double points as
singularities; this should be contrasted with the Seifert construction of Orlik-Wagreich
for singularities with G^-action, where a space with only cyclic quotient singularities
is constructed. It is amusing (and perhaps significant) that many non-determinantal
rational singularities can be written as the 2 x 2 minors of a big matrix (3.8).

An elementary but useful observation is that every rational singularity in characte-
ristic 0 is a cyclic quotient, etale off the singular point, of a Gorenstein singularity (which
is never rational, unless R is a quotient singularity). In many cases, one can construct
an exceptional configuration for this "canonical cover", and use it to write the equations
of rational singularities, given their graph (§ 4). Some needed facts about cyclic covers
are gathered in an Appendix.

These results suggest a number of conjectures (see § 5).

CONJECTURE 1. — Every rational singularity is a normally flat (i. e., "equimultiple")
specialization of a cone (over a rational curve).

A much more general result should be true, e. g., replacing "rational" by "minimally
elliptic"; in fact, this has been proved recently by Karras and Kulikov for the cusp singu-
larities, using Kodaira's work on exceptional elliptic configurations. Their method
can be used in the rational case for certain taut singularities. In any case, we verify
the result for determinantal rational singularities (Proposition 5.4).

CONJECTURE 2. — A normal two-dimensional singularity with resolution as in Theorem 1
is rational if and only if it is absolutely isolated.

This would be a generalization of Kirby's result [10] that the absolutely isolated double
points are the rational double points; again, we verify the conjecture in the determinantal
case (5.11). Of course, that rational singularities are absolutely isolated is well-known
(e.g., [14]).

Our restriction that k be algebraically closed is not essential—see, for instance, a forth-
coming paper by J. Lipman on two-dimensional resolution of singularities.

Our interest in these questions arose from a paper of 0. Riemenschneider [17], who
computed &i and b^ for the cyclic quotient singularities by writing down generators and
relations for I. (Recently, using our result, he and Behnke have done the same for the
"dihedral" quotients.) We are grateful to David Eisenbud, David Mumford, and
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Heisuke Hironoka for many helpful ideas and remarks; and some of the discussion in
paragraph 5 arose from conversations with Michael Schlessinger.

This research was partially supported by NSF grant MPS74-05588-A01. We would
also like to thank the Insitut des Hautes Etudes Scientifiques for its support during part
of the preparation of this paper.

1. Projective resolutions of local rings and their tangent cones

1.1. Let V* <= P^ = P be a connected purely ^-dimensional projective subscheme
contained in no hyperplane, with r > d > 0. The cone over V is

R= ©r(^p(n))/r(^(n))=P/I,
n=0

where ^ c Op is the ideal sheaf of V,

I = ©r(^(n)) c P = ©rOPp(n)) = fe[zo, . . . , z,];

recall also that V = Proj (P/I). R is Cohen-Macaulay iff it is Cohen-Macaulay at the
vertex.

PROPOSITION 1.2 (Serre-Grothendieck e.g., [II], 2.24). — R is Cohen-Macaulay
(i. e., V c: P is arithmetically Cohen-Macaulay) iff:

(i) R^©r(^v00) (i.e.,r(^p(n))-^r(^v(n)), or H^n))̂ , all n).
o

(ii) H^vCn)) =0, i+ 0, d, all n.

(1.3) A coherent sheaf F on P is said to be m-regular in the sense of Castelnuovo
([15], § 14) if H^F^-Q) = 0, all / > 0. This condition implies:

(1.3.1). F (m) is generated by its global sections;
(1.3.2). r(^p(0)®r(F(w))-^r(F(w+0), all f ^ O ;
(1.3.3). H1 (F(y ))=() , a l l y ^ w - L

If V c: P is arithmetically Cohen-Macaulay, then ^ is 2-regular iff H4 (Oy(l-d)) = 0,
since (1.2. (ii)) already yields the other vanishing.

PROPOSITION 1.4. — Suppose V c P is arithmetically Cohen-Macaulay and
^ (Oy(l—d)) = 0. Then the cone R has a minimal graded projective resolution

0^p^-<p^...->p^^p^^p-.p/I=R^o,

where (p, is homogeneous on each summand of degree 1 (if i > 1) or 2 (;=!).
Further, the Belli numbers b^ are inductively computable from the Hilbert function
H (n) = dim F (Qy (n)), viz,

(1.4.1) (l-ry^SH^r^l+^^-iyfc,^1.
o i
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234 J. M. WAHL

Proof. - As above, ^ is 2-regular, so there is a surjection (1.3.1):

^-^(2),

— 00 _

where &i = A° (J^ (2)). Since I = © F (^ (n)) (V is in no hyperplane), (1.3.2) implies I
_ 2

is generated as P-module by H°(^(2)). Thus, from Gy(-T)^—>^ <= Oy, we form
the map:

(pi : © r(0p (n-2))ftl ̂  © r((Pp(n)),
o o

II II
pbi p

homogeneous of degree 2, with image I. This is the beginning of a minimal resolution.
Let ^i be the kernel of Q^ -^ ^ (2). By construction, H° (^i) == H1 (^i) = 0,

—— 00

and ^ is easily checked to be 1-regular. By (1.3), Ri = © F(^i (n)) is generated
__ o

as P-module by r(^i(l)), and we have a surjection (with b^ = /!°(^i(l))):

^-^(l)^^!)61.

The kernel of (pi is Ri, and the map:

<P2: ©^(^p(n-3))fr2-^©^(^p(n-2))ft l,
o o

Jl jl
p&2 p^l

has image exactly R^. Note that &i = # of quadratic generators of I, and b^ = # of
"linear" relations on the quadratic generators.

Suppose inductively we have found exact sequences

(1.4.2) ^p(-0^1-^ • • • ->(5p(-2p->0p-^e)y->0,

and
© r(^p(n~ i))^-1 -^ . . . -^ © r(^p(n-2)y1 -^ © r((pp(n)) -^ © r(c?vW) -^ o

(1-4.3) J j \\_ j|
pfri-i—!Li_^ ———, pfci ———v!——, p—————,p^———,0,

such that the kernel-image short exact sequences arising from (1.4.2):

(1.4.4) 0^^.-^--->^,-i(l)-->0,

have ^,-1 1-regular and bj = h° (^,_i (1)) (here 1 ^y ^ f-1, with ^o=^0))-
By definition of b,.^ H° (^,-1) = H1 (^»-i) = 0; and a check (using the 1-regularity
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—— 00

of ^-2) shows 3t^\ is 1-regular. Thus, R^i = © H° (^-i (n)) is generated as
_ o
P-module by H°(^_i(l)). Letting &, = A° (^,-1 (1)), one forms the surjection

^-^,-.,(1),

and continues as before. A well-known property of Cohen-Macaulay ideals says that
the sequence terminates after r—d steps.

The identity (1.4.1), pointed out to us by R. Stanley, is apparently a special case
of a more general result of Hilbert. That says that if V is arithmetically Cohen-Macaulay
with "pure" resolution, i. e.,

(1.4.5) ^(-a,)^ . . . ̂ ^(-a^-^O^-a^-^Q-^O^^Q,

where a^ < a^ <, ..., then:

(1.4.6) ^ H^f^O-O-^^.S^-iy^^.
n=0 0

This is proved by comparing coefficients on each side; use the Cohen-Macauley property
(as in 1.2) to show that if a^ ^ a,+/ < ^1+1, then:

fc,(/i°op(0)== E (-ly+lfc,-,fco((p(^+^-^-,))+(-l) iH(^+^).^==1

1.5. Let R be a Cohen-Macaulay local ring of residue field k, of dimension d+1^2
and embedding dimension e\ assume R = P/I, where P is a regular local ^--algebra of dimen-
sion e. The tangent cone is

R == grR == © m^m^1 = P/I, where P = fe[xi , . . . , xj,
o

and I is the ideal of leading forms of I. The projectivized tangent cone is

V=ProjRc:P e" l=P,

a rf-dimensional scheme contained in no hyperplane, to which we can try to apply the
preceding theory (if R is Cohen-Macaulay). Viewing P as filtered by the w-adic filtration
(by abuse of notation, we let m denote the maximal ideal of P or R), we wish to compare
projective resolutions of P/I and P/I. We need first a precise form of the Artin-Rees
Theorem.

LEMMA 1.6. — Suppose M <= P^ is a submodule, with the induced filtration
M„ = M n m" P^. If gr M c: gr (P^) is generated by homogeneous elements of degree s,
then:

Mnm^'p^T^M, all n > 0,

and M is generated by any set of elements whose images generate gr M.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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Proof. - By assumption, the inclusion mM^M^^ is surjective modM,+2, for all
i ^ s. On the other hand, the Artin-Rees theorem (e. g., [19], 11-9) guarantees the
existence of an integer j so that

m M , = M , + i , all i^j.

An easy descending induction starting at max (7, s) shows

mM,=M;.+i, all f ^ s ;
thus,

m" M, = M^+s, all n ^ 0,
as desired (since M c: m3 P6).

Next, suppose { x,} in M have images generating gr M, and let M' c: M be the sub-
module they generate. If xeM, by assumption there are a » e P with

x—^^fX,eM,4.i = mM, c: mM.

Applying Nakayama's Lemma, M' = M.

THEOREM 1.7. - With notations as in (1.5), suppose R is Cohen-Macaulay and
H d ( (Pv ( l—rf ) )==0 . Then there exist minimal projective resolutions:

(1.7.1) O^Pbt-d-lv^...-^P^P^P^p/I-^0,

(1.7.2) O^Pbc-d- l<P^...^Pb2^P f c l^P^p/I^O,

such that
(a) (1.7.2) is the associated graded complex attached to (1.7.1).
(b) (p. is homogeneous of degree 1 (/ > 1) or 2 (/ = 1).
(c) The b^s are inductively computable from H (n\ the Hilbert function of R.

Proof. - Proposition 1.4 gives the sequence (1.7.2) satisfying (b) and (c). It remains
to derive (1.7.1).

Let K» = Ker (p»; it is generated by degree 1 elements of P^ (1 ^ i<e-d-\).
By Lemma 1.6 and the construction of I,

(1.7.3) Inm^^m"!, all n ̂  0,

and I is minimally generated by &i elements, whose leading forms (all of degree 2) are
independent over k. We can therefore construct (pi : P^ —> P, with (pi (m" P1'1) c= m^2

and with image I, whose associated graded is (pi.
Let KI == Kercpi. We claim grK^ ^Ki, where the filtration on K^ is induced by

that on P^. The injectivity is obvious. It suffices to lift an aeK^ of degree 1 to Ki.
Lifting first to a e m P^, we have (pi (a) e m3 n I (since (pi increases the filtration by 2);
in fact, since (pi (a) = 0, (pi (a?) cw4 n 1= m21 (by 1.7.3). Thus,

^(^Z^q)!^), for n.em2, ^eP^.
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So,
^Z^iSKi

has image a, and the claim is established. By Lemma 1.6,

(1.7.4) K,nmn+lPbl=mnK^ all n ̂  1,

and KI is generated (necessarily minimally) by b^ elements whose leading forms are inde-
pendent over k. Consequently, we can construct ^2 : P^2 —> P^ which has image Ki,
increases the filtration by 1, and whose associated graded is (pz.

The same argument works successively for each K, = Ker (p,, except that if a e m P^'
is a lifting of aeK, = Kercp,, then (p,(^)ew2 P^-1 n K,_i (since (p, will increase the
filtration by 1). But again, since (p, (a) = 0, we get:

^(^em^^^nK^^m2^.!,
and we proceed as above.

Remarks 1.8.- The method of proof above allows one to go quite generally from
a minimal projective resolution of I to one for I, if the resolution of I is "pure"
[as in (1.4.5)].

1.9. A particular example of a resolution as in Theorem 1.7 arises from the Eagon-
Northcott complex. Here, R = R is the generic determinantal singularity, defined
by the 2x2 minors of a 2xn matrix, viz.

rfeP11 "• ^t^l,pn • • • ^ t^ i^
L^21 • • • ^2j~"L^21 • • • ^J~"

in k [̂ 11, . . . , x^~\. The minimal resolution is given in [7]. However, the Veronese
embedding P2 c> P5 is 2-regular but not determinantal (see § 3).

2. Syzygies for rational and minimally elliptic singularities

THEOREM 2 . 1 . — Let R = P/I be a rational surface singularity of embedding dimension e,
with P a regular local k-algebra of dimension e. Then there exist minimal projective
resolutions:

o-.p^^..._p^p^p^p/i^o.
o^p fc—^...-.p^^p^^p^p/I^o;

so that:
(a) the second resolution is the associated graded complex attached to the first;
(b) (p, is homogeneous, of degree 1 (; > 1) or 2(i = 1);

<^-(^}
ANNALES SCIENTIFIQUES DE I/ECOLE NORMALE SUPERIEURE 31



238 j. M. WAHL

Proof. - By (1.4) and (1.7), we can prove (a) and (b) once we know that the tangent
cone R is Cohen-Macaulay, and that H1 (Oy) = 0 for the projectivized tangent cone
V c: P6-1.

Let X —»• Spec R be the minimal desingularization, factoring X -^ B —> Spec R via the
first blow-up. Now, W ^ B = ^ B ( - V ) , where V c B is the exceptional divisor
(= projectivized tangent cone, with very ample line bundle 6?v(~V)). Further,
m0^ = ^x(-Z), where Z is the fundamental cycle of M. Artin ([2]). We claim:

(2.1.1) ^v(~^V)^g^z(-nZ), a l l n ^ O .

For, apply g^ to the exact sequence

0^x(-(^+l)Z)^x(--"Z)^z(--"Z)^0;
and use that

g^(-nZ) ̂  ̂ (^(-"V)) ̂  (PB(-WV) ® g^x ̂  ̂ B(~"V),

(projection formula) and R1 g^O^(-nZ)= 0 for /z ^ 0 (by rationality of the singu-
larities of B—see [14], 12.1). This gives:

0^^(~(n+l)V)->^(-nV)-^g^z(-nZ)-^0,
whence the claim.

Artin has proved ([2]) that

(2.1.2) m"/mn+l-^HO(Z,^(-nZ)), all n ^ 0.

Therefore, by (2.1.1), we have

(2.1.3) m^m^-^H^V.^-nV)), all n ̂  0.

By (1.2), R is Cohen-Macaulay. Finally, we have a surjection 0^ —^ Oy; H1 (6^) = 0
by rationality, while all H^s are 0 on B, so H1 (Oy) = 0. This completes the proof
of (a) and (b).

For (c), use (1.4.1) and the fact that the Hilbert function of a rational singularity is
H(n) = n{e-\)-}-\ ([2]). Or, note that the b^s depend only on e. Since the cone
over P1 c> P6"1, defined determinantally by

^pi ^2 ... ^-i1^
L^ X3 . . . ^ J~

is such a singularity, merely read off its Betti numbers from the (explicit) projective reso-
lution of Eagon-Northcott [7].

Remarks 2.2.1. — Therefore, rational singularities of embedding dimension e are
defined formally by \(e-\) (^-2)/2] power series of multiplicity 2, with independent
leading forms; and there are \_(e-\) (e-2) (^-3)/3] relations with independent linear
terms. This much was proved by 0. Riemenschneider [17] for the cyclic quotient
singularities; but he wrote down actual equations and relations.
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2.2.2. Not every tangent cone as in Theorem 2.1 can arise from a rational singularity;
the absolute isolatedness [14] implies the following:

PROPOSITION 2.3. - Let R = ^[[^i, ...,xJ]/I be a complete rational singularity,
with e ^ 4. Then the strict tangent cone ofR has dimension ^ 1, i. e., the space of linear
derivations ^ a^ (3/5x,) vanishing on the tangent cone has dimension ^ 1.

Proof. — We must show that one cannot have two variables, say ;q and x^, missing
from the leading forms of r = [(e-1) (^-2)/2] generators of I. Suppose in fact we have
I=( / i , ...,/r), with

fi =Qi (^3> • • • > ^J+CiOq, . . . , x^)+. . .

fr =Qr(^3» • • • » ^)+C^(Xi, . . . , X^)+. . . ,

where the Q; are quadrics, the C, are cubics, etc. Since e > 3, generators for the linear
relations on the @i are °f Ae form:

£L,,Q,=0,

where L,y = L^ (x^, . . . , x^). By the Theorem, these relations extend to relations on
the /,; thus,

EL,,Q=EM^Q,,

where the M,y are quadrics. We claim that C, has no terms in Oq, x^)3. For instance,
suppose C, == Oi x\ ̂ 2+ ••• Since Q; has no (x^, x^) terms, ̂  M^. Q» has no x{ x^ term,
so ̂  ^f L^. = 0, ally. If some a^ + 0, we may perform a linear transformation ofthe/,'s,
and assume L^. = 0, all j. But the relation (Q^, —Qi, 0, . . . , 0) on the Q»'s could not
then be in the span of the relations L.y (since Q2 ^ 0). This establishes the claim.

Now, an easy computation shows that blowing up the origin via x^ = x\ x^ (i > 1)
yields/i, .. -,/^ containing no linear terms and no terms of the form x^ or x^. (linear
form in x^ ^3, . . . , x^). Therefore, by the Jacobian criterion, the first blow-up contains
singularities along x^ = ^3 = . . . = x^ = 0, x\ arbitrary, hence is not normal. This
contradicts absolute isolatedness.

Remark 2.3.1. — For ^ = 3 , only the A^-singularities satisfy the Proposition.
2.4. The highest Betti number bg-z, called "the type" of a Cohen-Macaulay singularity,

may be computed as either:
(2.4.1) dimExt^fe, R);
(2.4.2) length of the socle, i. e., the length of the annihilator of the maximal ideal

in R/(M, i;), where u, v is an appropriate R-sequence.

(See [9].) Theorem 2.1 says this is e—2 for a rational singularity, but we outline another
proof.

First, Ext^ (w, R) -^ Ext^ (k, R). Choose e generators for m, and write:

O-^J-^R^m^O.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



240 J. M. WAHL

Then Ext^ (w, R) = Coker ((R^ —^ JO. Pulling this sequence back to the minimal
desingularization /: X —> Spec R and dualizing, one gets:

0 -^ ^x(Z) -^ -^ Hom(/*J, ^x) -^ 0.

Taking cohomology (i.e., /^) yields:

dim Extern, R) = ^(^(Z)).

But A1 (^x(^)) = h1 (^z (Z)), and one may use Riemann-Roch to show this equals e—l.
2.5. Since the type of a Gorenstein singularity is 1, we have that the only Gorenstein

rational singularities are the double points. However, this could also be proved using
Serre duality on X, and in any case is generally known. More generally, since a result
of Serre implies Gorenstein resolutions are self-dual [3], the only 2-regular arithme-
tically Gorenstein subschemes are degree 2 hypersurfaces [in the notation of (1.4), the
degree of ^-d must be equal to 2, the degree of (pi].

2.6. As Eisenbud has pointed out, there is a purely algebraic way to obtain some of
the above results, since a rational singularity R is Cohen-Macaulay of multiplicity e—1.
If u, v is an appropriate R-sequence, then the artinian ring R/(u, v) has length e—\ and
embedding dimension e—2, hence:

R/(M,i0^fe[zi, ...,z,_J/(z,z,).

Thus, the type of R = length of annihilator of maximal ideal in R/(M, v) = e—2, and
R/(M, v) is determinantal:

r ^ 2 1 z2 • • • ze-2 0 1 ^ 1 .Tzi z^ ... z^_2 0 1
[_0 zi ... z^_3 Ze-i\' O Zi . .. Z,_3 Z,.

But a recent result of J. Sally [18] implies that the tangent cone of R is also Cohen-
Macaulay (because emb dim = mult + dim—1), hence the same analysis applies.

2.7. Our methods can be modified to determine the syzygies of the minimally elliptic
singularities of Laufer [12]. These are Gorenstein singularities with h1 ((P^) = 1 for
a desingularization, and are absolutely isolated for e ^ 4; included are cones over elliptic
curves, and the cusps of the 2-dimensional Hilbert modular group.

THEOREM 2.8. — Let R = C [[jCi, . . . , ^e]]/I = P/I be a minimally elliptic singularity
mth e ^ 4, with R = P/I the tangent cone. Then there exist minimal projective resolutions:

0 -> P —^ Pbe'3^...->Pb2-2>Pbl-J>P->P|l->0.-^llip^-a. ..p^^pfti^

0^p^p^-3^...^p^pfri^p^p^o

so that

(a) the second resolution is the associated graded complex attached to the first;
(b) (pi is homogeneous, of degree 2 (i = 1 or e—2) or 1 (1 < i < e—2);

, i(e-i-2)( e \ . , .
b,=-———— , ( = 1 , ...,<?-3.

e-\ V+l/
(c) b, =
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Proof. — Suppose we know R is Gorenstein. Letting V = Proj R c: Pe~l, write a
minimal graded resolution:

here,
0 -^ F^ ̂  • • • -> FI -> ̂ p -^ ^v -> 0;

Fi=(p(-^)©...©6?(-d.-r,),
with r» ^ 0 (summands may appear many times), and all intermediary summands are
0 (— di -1), 0 ^ / ^ r,. The resolution has length ^ - 2, by the Cohen-Macaulay property.

We claim rf,+i > d^ For, if di+i < d^ then Hom(^(—^+i), F,) = 0, contra-
dicting the minimality of the resolution. If ^+1 = rf», then an ^ ( — r f i + i ) summand
in Ff+i would map either isomorphically or as the zero map to the 0 (—rf») summands
in F,; this again contradicts minimality. This proves the claim. Note also that d^ == 2;
since the Hilbert function is ne [12], an easy check shows I contains some quadrics.

Since the Gorenstein resolution is self-dual, we have F^_^ = ^ (—^-2)9 m fa0^
^e-2=°(-e) (since dim H1 (Oy) = 1). Further, F^-, (--<?) ̂  F,, or

(2.8.1) -d,-r,=^-^,-^.

Now, 2 = fi?i < d^ < . . . < d^-3 < ̂ -2 = ^. But ^,3 = e—d^—r^ ^ ^-2, so
^ • = f + l , 2 ^ f ^ ^-3. From (2.8.1), each r, = 0. Thus,

F.=^(-(f+l))\ l ^ i ^ ^-3.

This proves (A). To compute (c), one uses (1.4.6); H(w) = w^, so:

^H(n)tn=l+-^=(l-t)-e(l+ej!(--l)ib,ti+i+(-l)e-2te).
(l-O2 *=i

A calculation now gives the result.
To prove (a), use the Artin-Rees technique of Theorem 1.7. Thus, it remains to show

that R is Gorenstein.

Now, R is Cohen-Macaulay, by the same argument as in the proof of Theorem 2.1.
Here R ^ © H° (Z, (P^(-nZ)) (by [12], 3.13, since e ^ 4), and B has only rational
(double point) singularities (loc. cit., 3.15); thus (2.11) is still valid.

Let u, v be an R-sequence such that u, v is an R-sequence (by taking leading forms).
Now, R/(M, v) is artinian, of length e and embedding dimension e—2, and the annihilator
of the maximal ideal has length 1 (the type is 1 for Gorenstein ring). Choose a C-basis 1,
Zi, . . . , ^e-2» S^ where z,'s generate the maximal ideal m, and g e m2. Then z, Zj = a^ g,
z ^ g = 0, and g2 = 0; by the annihilator condition, the symmetric matrix (a^) is invertible.
So, after linearly changing the z.'s, we may assume z2 = g, z, Zj == 0 (i ̂  j). It is then
an easy matter to check that:

R/ (M, iO^C[z i , . . . , z ,_2]AL
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where J = (z, z,, z?~z^) 0- + j); in particular (z^, . . . , z,.^)3 <= J. Thus, R/(M, i;) is
graded, defined by quadrics. It follows that R/(u, v) is a quotient of R/(w, i?), whence
the length of the first is ^ e\ but it couldn't be e— 1 [i. e., there can be no new quadratic
relation in R/(u, v)], so it's e, and R/(u, v) -^ R/(M, i;). Since each is Gorenstein, R is
Gorenstein.

Remarks 2.9.1. - Thus, minimally, elliptic singularities with e ^ 4 are defined
by \e(e-3)ll~\ quadratic equations, and the higher syzygies are linear, except for the
last one. Note that for e = 3 (a hypersurface), the singularity may be cubic (e. g., the
cone over a plane cubic).

2.9.2. Theorem 2.8 predicts the nature of higher syzygies of theta functions, since
one can use theta functions to embed elliptic curves into projective space.

2.9.3. Another recent result of J. Sally yields directly that the tangent cone of R
in Theorem 2.8 is Gorenstein, because emb dim = mult + dim-2.

3. Determinantal rational singularities

3.1. Suppose R = k [[x^, . . . , xj]/l = P/I is a normal surface singularity of embed-
ding dimension e. R is said to be determinantal if I is defined by the t x t minors of
an r x s matrix of P (t ^ r ^ s), for which e-2 = (r-r+l) (s-t+1) (== codimension
of I) - see [6]. If e = 3 or 4, then R is automatically determinantal, being (respectively)
a hypersurface or Cohen-Macaulay of codimension 2 (a result of Hilbert). We will
see below (Theorem 3.4) that "few" rational singularities with e ^ 5 are determinantal.

PROPOSITION 3.2. - Suppose R = P/I as above is a determinantal rational singularity,
e ^ 4. Then I is defined by the 2x2 minors of a 2 x (e— 1) matrix.

Proof. — One may assume that all the matrix entries are in the maximal ideal of P.
Since I is generated by elements with independent quadratic terms (Theorem 2.1), neces-

sarily t = 2. Thus (r-1) (s-1) = e-2. There are ( ^ y i ^ ) 2 ^ minors of a t x s

matrix; since I is generated by ( ) elements (2.1):

r(r-l) 5(5-1) ̂ (g-l)(g-2)^[(r-l)(5^1)+l](r-l)(5-l)
2 ' 2 ~ 2 2

A simple computation reduces this to

(r-2)(5-2)^0.

We may suppose r ^ 2, s ^ 3 (since e ^ 4). Thus, r = 2 and s = e—\.
3.3. Thus, a determinantal rational singularity is defined by the maximal minors of a

2 x (e— 1) matrix. As mentioned earlier, the Eagon-Northcott complex provides an explicit
resolution, and any rational singularity has the Betti numbers of a determinantal singularity.
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THEOREM 3.4. - Let R = P/I be a determinantal rational singularity of multiplicity
d = e—1. Then the graph of R consists of one —d curve and (possibly) some —2 curves,

Proof. - Write the equations of R formally via ' d . Let V <= Spec RxP1

L^i • • • ^ J
be defined by sf^ = tg^, ..., sf^ = tg^ where (s, t) are homogeneous coordinates on P1.
(V should be thought of as the closure of the graph of the rational map Spec R —> P1

given by the columns of the matrix).
It is easy to see that V —> Spec R is proper and surjective, and an isomorphism off the

singular point of Spec R. Also, the ideal (/., gj) defines in V a reduced P1, a section of
the mapV—>P1 . We will be done if we show V is normal with only hypersurface
singularities. For, letting X —> V be the minimal resolution, X —> Spec R is a reso-
lution, so those hypersurface singularities were rational. Then, X —> Spec R is the
minimal resolution, with graph consisting of one — d ' curve and some -Ts. But
the d ' has multiplicity 1 in the fundamental cycle Z, since it has multiplicity 1 in V.
But Z.K = -Z2-^ = rf-2, so d' = rf.

Next, it suffices to check at t = 0 on/; = tg^, since more general points can be put in
this form by adding a multiple of one row of the matrix to the other. This done, we can
add linear combinations of columns to each other.

The leading forms /i, . . . , fa span a space of dimension ^ d—1; otherwise, the
tangent cone

r/> ... /.-j
LSi • • • gdj

can be assumed to have 2 zeros in the top row, which would mean fewer than [d(d—1)/2]
quadratic equations for the tangent cone, contradicting Theorem 2.1. If/i, ...,/r
are linearly independent, then clearly/, = tg^ is nonsingular at t = 0.

So, suppose /2, ..., fa are linearly independent and /i = 0 (performing operations
on the rows). Choose coordinates so that f^ = jc^, ..., /j = x^-i. Then ^i ^ 0,
or again we'd have too few quadratic equations. If ^i ^ C/2, . . . , fa), we may assume
gi = x^ Then V is given by/i = tx^ where/i e (x^ ..., ^+i)2. But (,8/8x^ (fi-Ix^)
at x^ = . . . = x^+i = 0 is — t ; s o , y has an isolated hypersurface singularity at t = 0,
(hence is normal).

We are left with the case ^i e(^i, . . . , ^-i); we may suppose g^ = x^. In fact,
assume the tangent cone is of the form:

r o xi . . . x^_i x, ^+1 ...i
L^i x! ^n g ' " ' A

for some n ^ 1. Suppose g e (x^, . . . , x^). Then the tangent cone contains the subscheme
defined by x^ = . . . = x^ = 0 and a (possibly empty) set of equations

?„+! ... x^_2"1
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Ifn ^ e-4, then every component has dimension ^ 3, by [7], a contradiction.
I fw == e—3, then ̂  = ... = Xn = 0 is a component of dimension = 3 (^-2? xe-\^ x

sire arbitrary), also impossible. Finally, if n = e—1, then 2 variables are missing from
the tangent cone, contrary to Proposition 2.3. Therefore, g ^ ( x ^ , . . . , x^).

I f g e ( x ^ . . . , ̂ -i)-0q, .. . , ^), we write g = A(^+i, . . . , ^-2)+B(^i, . . . , ^),
where A ^ 0. Changing the last few coordinates, we may suppose A = ^+1. Adding
appropriate linear combinations of columns 2 through n+1 to the ^+2 column, and
changing the last few coordinates again, we may suppose g = x^+i.

We eventually reach a stage where g^(x^ ...,^4-1); changing coordinates again,
we write the tangent cone as

^ 0 Xi ... X^.i X^ X^+i . . . Xrf-i l

L^i -^2 ^ ^d . • • • • J'

Therefore, final (non-linear) coordinate changes, after adding multiples of certain columns
to the first column, lets us write R as

fQO^^+i) ^i • • • ^n-i ^ ^n+i • • • ^-i1
|_ XI+AI X2+^2 ^n+^n ^ • • • • • J'

where multiplicities of Q, h^ . . . , h^ are ^ 2. Now, V at t = 0 has coordinates t,
x^ JCj+i, with equations

Q=^i+/h),
^1 =^(^2+^2)»

x^-i=Hx^+U
^n= ^d,

These reduce to Q (x^ x^^) = r^+r2 h^ . . . +^ n A„+^ + l ̂  = ^ n + l ^+B, where
Be^(^, ^+i)2. To be singular at Xj = ^+1 == 0 requires:

^-(Q^x.-B)^^^^1

8x^

to be zero, whence t = 0, and the singularity is isolated (hence normal). This completes
the proof.

Remarks 3.5.1. — The construction of the partial resolution V, suggested byMumford,
should be thought of as analogous to the partial Seifert resolution of Orlik-Wagreich [16]
for singularities with G^-action. However, these spaces are in general different for deter-
minantal rational singularities with G^-action. For example, the triple point

-3
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has on V an A3-singularity, while the Seifert space has 3 cyclic quotient singularities.
Showing the deformations of V inject into the deformations of Spec R is equivalent to
the standard conjecture on Res-^Def for determinantal singularities ([22]).

3.5.2. For the Theorem to be true, it is not sufficient that there be exactly one curve
not a ~2 (e. g., 5.7.3); but it is (necessary and) sufficient that the curve have multiplicity 1
in the fundamental cycle.

3.5.3. The converse of Theorem 3.4 is presumably true, but appears to require much
more work. However, we know it in some cases. We use the standard dual graph
notation (see [13]); • means a —2 curve.

COROLLARY 3.6. - Suppose R is a rational singularity of embedding dimension e in
char. 0, with reduced tangent cone (i. e., the fundamental cycle is reduced). Then R is
determinantal iff its graph contains a -0?-1) curve. In this case, the graph is:

(3.6.1) Vr • .
• • • • •———\__« • • • •
^ b i - ( e - 1 ) "Te-T"

where the b^ ^ 0 are the lengths of strings of -2 curves. The equations are:

(3.6.2) rk\ xl x2 • • • ^ ^l+l^<l
k1'1 a^+xr1 ... a^x^+x^1 ^ J——

for appropriate a^, ..., ^-2 in k, a^ a^Q (i ^7).

Proof. - First of all, by the discussion in paragraph 2 and a result of Tjurina [20],
the projectivized tangent cone is reduced iff the fundamental cycle Z = T F( E( has the
property that Z.E( < 0 implies r, = 1. Assuming this property of Z, we show all F( = 1.

Write Z == ^ L(+F, where the L( are reduced and connected cycles, L, n Ly = 0 (i ̂  j),

and F is the sum of those E( with r, > 1. For every E( c: | F |, we have Z.E( = 0, hence
Z.F = 0. One computes

-2 = Z(Z+K) = ̂ L,(L(+K)+Li.F+F.K.

But L, is the fundamental cycle of its support (an easy check), so L,(L(+K) = -2.
If F ̂  0, then L,.F ̂  2, all f, since L( n | F | + 0 and every component in F is counted
at least twice. So,

-2^ -2^+2^+F.K,

or F.K ^ -2. Since K.E( ^ 0, all i, this is absurd. So, F = 0, and Z = E is reduced.
Since the tangent cone has no embedded components (§ 2), it is reduced iff the projec-
tivized tangent cone is reduced, hence this is true iff Z is reduced.

So, since Z = E is reduced, we have E.E( ^ 0, all i; hence each -2 curve intersects
at most 2 other curves. Thus, the graph of R is as in (3.6.1). Such singularities are
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formally determined by the graph and the PGL (l)-equivalence class of the intersection
points of the —(e—1) curve with the non-empty strings (by [13], 4.1). It remains to
check, therefore, that (3.6.2) gives such a singularity, and the choice of the a^s allows
one to fix the isomorphism class of the intersection points. This is straight-forward,
except in the case that all b^ > 0; here, the projectivized tangent cone consists of e-1
lines through a point. It suffices to show that in P6"1, the intersections of x^ = 0 with
P1 c P^-1 defined by

rfep1 x2 • • • x-2 ^Ll,
L^e a^X^+X^ ^-2^-2+^ ^e-lj

yield, for variable a^s, all equivalence classes of e—\ points on P1. This is done by a
concrete "uniformization", via (assuming a^ = I):

e-2 / \

x^=uv(u-v) nf u+ —i-v}.
3 \ l-di )

x ^ ^ / n Y ^ + ^ A
3 \ 1-Oi /

(It is now easy to figure out the other jc^'s).

COROLLARY 3.7. — A quotient singularity (over C) is determinantal iff the graph
contains a —(e—l) curve.

(A) The cyclic quotient singularities Rn^(0 < q < n, (n, q) = 1) are determinantal
if and only if the terms a^ ..., a^-i of the continued fraction expansion of (nfn—q)
satisfy ^ = 2 (i ^ 2, ^-1). (See [17] for notation.)

(B) The quotient singularity < b; n^,q^\ n^, q^\ n^ q^ > (see Brieskom's list [5]) is
determinantal iff it is of the form

(i) < f c ; 2 , l ; 2 , l ; n , n - l > b^2
< f c ; 2 , l ; 3 , 2 ; 3 , 2 > b^2
< & ; 2 , 1 ; 3 , 2 ; 4 , 3 > b^l
< & ; 2 , 1 ; 3 , 2 ; 5 , 4 > b^2

(ii) <2; 2, 1; 2, 1; n, q > n, ^ as in (a).
<2;2,1;3,2;4.1>
<2;2, 1;3,2;5, 1>

(iii) <2;2 ,1;3 ,1;3 ,2>
<2;2,1;3,1;4,3>
< 2; 2, 1:3, 2; 5, 3 >
<2;2,1;3,1;5,4>
<2;2 ,1 ;3 ,2 ;5 ,2>
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The equations in (A) and (B) (i) with b > 2 can be read off (3.6.2); if b = 2, one has
rational double points. The equations in (B) (ii) are given respectively, by the matrices:

pi X2 ^ ... x,_2 x^1']
ix^ x^+xi X4 ... x,_i x, J'

pi x^ x^ Xs+xi^
\_X2 X^ Xs X^X4. ]9

[;x! X^ X^ Xs X^

_X2 X^ X4. X^+xi X ^ X s ] '

The equations for the triple points of (B) (iii) are found in [20].

Proof. — Since the quotient singularities are taut [5], it is only a matter of checking
that the equations give graphs of the appropriate type. As for (A), use induction and [17]
to check that the singularity with graph:

•...•———•———•...• r.s^O, d^3;'""»
corresponds to

n=(r+l)(5+l)d-(2r+l)s-r,

^=r(s+l)d-(2r-l)s-(r-l),

so d2 = r+2, ^ = s+2, a^ = 2 (2 < i < d\
3.8. The simplest non-determinantal quotient singularity is the cyclic (8,3) quotient,

with graph
-3 -3*

However, the equations defining R may be expressed as

Xi x^ x^
rk x^ x^ x^ 5s 1.

|̂ 3 -̂ 4 X5_

Similarly, one can use Riemenschneider's equations [17] to write the equations of any
cyclic quotient of embedding dimension e as the 2 x 2 minors of an [(^?+1)/2] by [(<?+2)/2]
matrix, where [ ] means "greatest integer in". Of course, this is not what determinantal
means.

3.9. Note that the equations (3.6.2) are weighted homogeneous, where x^ has weight 1,
Xi has weight &,+! (1 ^ i ̂  e—1). In particular, one has equations for an algebraic
variety with G^-action, not just equations giving the analytic type.

3.10. We outline another proof of Theorem 3.4 in the case of reduced tangent cone.
If R is determinantal, so is its projectivized tangent cone C c: P6"1. If C is determinantal
and is not a cone, then

c = ijE, = p^1 n(p1 xp^2) <= p2'"3.
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An easy check shows that r^ the degree of E, in P6""1 (or p26-3) is the sum of the degrees
of the compositions E^P1 and E^P6""2. In particular, the image of E( in P^2

spans an ^ -dimensional linear space, with ̂  ^ r^ and s^ = ^ iffE, —> P1 lands in a point.
Also, ^ r < = = e - l .

But the image of C in both P1 and P**"2 must span the whole spaces, since otherwise C
would be defined by too few quadratic equations. Thus (since C is connected):

^ — 2 ^ ^ s , ^ e — l = ^ r ( , and some Si<r^
Therefore, Si = r^ for all but one i = j, whence Sj = / y — 1. Let Ei be a boundary curve
for which r^ = s^ (we may assume C is not one curve). One then shows that if r^ > 1,
then one could choose coordinates for the matrix of C with two zeros in one row, an
impossibility. Thus, r^ = ̂  == 1 (E^ is a line). If Ei n E^ ^ 0, and ^ = s^, one
derives a similar contradiction. The net result is that C consists of E^, ..., E(, E', where
the Ej are non-intersecting lines, and where s ' = r' —1. From this configuration of C,
one can show E is as in (3.6.1).

If C is a cone, one blows up, obtaining another determinantal singularity of the same
embedding dimension. Now continue as before.

3.11. The following example is a non-determinantal singularity with determinantal
projectivized tangent cone:

-3 -3

Its equations can be computed using the techniques of paragraph 4, and is defined as
in (3.8) by:

XQ X^ X3

rk xi x^ x^ ^ 1.
^3 -^4 Xo+X^-lxi+X^

3.12. Suppose R is a rational singularity whose projectivized tangent cone C is not
a cone. Then if R is determinantal, C is a local complete intersection (since C is cut
out on PlxPe~'2 by e -2 hyperplanes). Occasionally one may use this fact to show
an R is not determinantal (if one knows the equations). Furthermore, the singularities
of the first blow-up of a determinantal R have either the same multiplicity, or are
rational double points (clear from the Theorem or from the proof of 5.11 below).

4. The canonical cover of a rational singularity

4.1. Let R be a two-dimensional normal local ring, essentially of finite type over k
algebraically closed, with a rational singularity. Let X -^ Spec R be a desingularization,
with exceptional fibre E » (J E(. The canonical line bundle K == Q^ satisfies

(4.1.1) K.E,=d,-2,
where d^ = E(.E(.
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4.2. There is a smallest integer n ^ 1 and an integral cycle Zi = ̂  r; E( so that nume-
rically nK = —Zi . One has but to solve in rational numbers the linear equations:

-(Sr<E,).E^=^-2,

using the definiteness of the intersection matrix; then, clear denominators minimally.
If the desingularization is minimal, each d^ ^ 2, so Z^. E< ^ 0, all ?, hence Zi is 0 or an
effective cycle ([2]). Since R is rational, numerical equivalence of line bundles implies
isomorphism ([14], § 14), so K1* ^ 0 (-Zi). Letting U = X-E = Spec R- { m },
we have K/ = K |y is torsion, of order n.

4.3. Assuming (n,p) = 1 (p = char. k\ choose an isomorphism a: K"1-^^. One
gets an w-cyclic etale cover:

V. = Speedy © K' © ... C K'"-1) -̂  U,

where multiplication is given via a. (See the Appendix for this and other facts on cyclic
etale covers.)

LEMMA 4.4. - The canonical line bundle of V, is trivial (i. <?., ^ d?v«)-

Proof. - Let n : V, -^ U. By etaleness,

ft^/u = 0 and H^ -^ Tc'11 ft^.

Taking second exterior powers gives Ky^-^n* Ky; but by construction, n* Ky ^ ffy •

4.5. V^ is smooth and connected (since n = order of Ky— Appendix A. 4), hence
Sa = r (^y.) is a normal local domain, finite over R = F (S^j) and etale off
the singular point. R is the ring of invariants for an action of Z^ on S,. Since
V<x == SPec sa- { singular point } and Ky, ^ Oy^ it follows that S, is Gorensteinf[8], 1.6).
If we change a, or use K1 instead of K (where (f, n) = (i, p) = 1), we get covers that are
isomorphic over the henselization of R (Appendix, A.1&). We will therefore speak
of the canonical cover R —> S. Note that if S is rational, it is a double point (2.5), hence
a quotient singularity, so R is a quotient singularity.

PROPOSITION 4.6. — Every rational singularity R in characteristic zero is an n'cyclic
quotient, etale off the singular point, of a Gorenstein singularity; n, the order ofK [u, may
be computed from the exceptional configuration o/R. The canonical cover is unique over
the henselization of R. In case R is a quotient singularity C \x, y~^°, G c: GL (2)
(as in [5]), then S = C [;c, y']°\ where G' = G H SL (2).

Proof. — Only the last assertion requires proof. We have exact sequences:

0 —> G' ——> G——> Z^ -^ 0,
n n n

0 ̂  SL(2) -> GL(2) -^ C* -^ 0,

where the last vertical map is by the subgroup of nib roots of 1. Then S == C [x, y~\°' is
a rational double point (hence Gorenstein), and S is an w-cyclic cover of R, etale off the
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singular point. The canonical cover, being Galois, is defined by a subgroup G' c: G;
being Gorenstein, G"c:SL(2 )nG=G' (the rational double points are the only
Gorenstein rational singularities). Letting n^ be the order of Ku (== [G : G"]), we have
n | n^. But K |u becomes trivial in Spec S — { singular point }, by (3.4), so, by (A.5)
in the Appendix, n^ \ n. Thus, n = n^ so G' = G\

4.7. If X—^Spec R is a desingularization, we construct a proper Y—^X,
inducing V —> U off E, with Y non-singular; then S = F (d?y), and we wish to determine
the exceptional configuration on Y. So, let Y' --> X be the normalization of X in the
quotient field of V. Y7 may be obtained as follows. Choose an isomorphism
K"-^ ^x(-^i) c: ^x- ^ 0'» ") = (.^P) = 1 ̂ d D is a divisor for which iZ^—nD is
effective, one has an isomorphism

(4.7.1) (K^D))^^- O'Zi-nD)) c ̂ .

Consider the finite flat X-scheme Y = Spec(0 © K'(D) © . . . © (K^D))""1), where
multiplication is given by the inclusion (4.7.1). Then Y' is the normalization of Y,
Y' —> X is a brached cover, and Y' has only rational (even cyclic) singularities (obtained
from z" = x" ^b, where x" yb is a local equation for i Zi -nD). Now, let Y -» Y' be the
minimal desingularization of the singularities.

4.8. If i Zi —nD = F is a reduced, disjoint union of some of the E(, then Y -^ Y' -^ Y,
and one can easily compute the exceptional configuration of Y. Let n : Y —> X. If
E, n [ F [ =0, then 7t~1 (E,) —> E; is etale, of degree n: thus, n~1 (E() is the disjoint
union ofn copies of P1, and each has self-intersection E;.E, in Y. If E, n | F | is a finite
number of points, then n~1 (E() —> E( is a branched cover of degree n, etale off E, n | F |,
with one point lying over each point of E, n | F |. Thus, n~1 (E,) is connected and
smooth, of genus 1/2 (n—1) (s^—l) (s^ = E, n | F |) by Hurwitz's formula, and with
self-intersection n E(.E, in Y. Finally, if E( c: | D |, then n~1 (E,) is one smooth curve
(aP1) of self-intersection 1/^E,.E,.

Example 4.8.1.
I -3

-• . Then Zi is 2 3 2, n == 3,

and one has (K^(Z))3 = <P(—F), where Z is the fundamental cycle and F is

1
1 0 1.

By (4.8), the exceptional configuration of Y is
• -i

or o ( o = elliptic curve).
-1 -6 -l -3

4' S^RIE - TOME 10 - 1977 - N° 2



EQUATIONS DEFINING RATIONAL SINGULARITIES 251

By construction, this elliptic curve admits a 3-fold cyclic cover of P1; there is one such,
and S is the cone over it. In fact, S = k |>, y, z]/z3 = x3+y3, and R is the ring of
invariants for the action (x, y, z) \-> (® x, ®2 y, co z), where co3 = 1. The equations
for R are easily written down, and may be expressed in the form:

rk
XQ
Xi

^i
X2

X2

X3 Xs ^1,
X^. X^ X^ X^ XQ + X^ J

where XQ = x3, x^ = x2 y, x^ = xy2, x^ = y3, x^ = xz, x^ == yz.

4.9. Blowing up points of a given resolution X will frequently simplify matters.
Let z! = E ri E» on X, and suppose Ei and E^ intersect. Blowing up that point
yields X' -> X, with proper transforms E'(, and a new -1 curve E'. One then
checks that:

^-^^(-E^E^^+r.-n)^),

by dotting both sides with E\, E^, E'. Also, note that one can compute Y locally in a
neighborhood of each E,; so, one can apply (4.8) when [ iZ^-n D | is a disjoint union
of non-singular curves.

Example 4.9.1.

-3

Here, n = 3, e = 6. Blowing up, and writing the multiplicities in the new Zi, we have

2»-3

30-1

4« -3

. . . lo

-1 -3
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Thus, Y is

J. M. WAHL

-3 -1
or

An example of such a Gorenstein S is k [;c, y, z]/z3 == x3+y6, and the others are
weighted homogeneous deformations of this. The action (x, y, z) h-> (o) x, (o y, (o2 z),
with (o3 = 1, will define an R with the desired graph.

4.10. In the general case, the preceding methods are not sufficient. It may still be
possible to reconstruct the configuration on Y by recognizing "known" canonical covers
on the connected components of some | iZ—n D |.

Example 4.11.
» -4

n=5, 6?= 5.

Blowing up, and writing the multiplicities of the new Z^, yields:
40-5

-3 -1 -1 -3

Over each — 1 curve is a rational — 5 curve. One must find the configuration on Y over
each end, i.e., over

2 4
(4.11.1) •———••

But Y over these components is equivalent to the canonical cover of the (5, 3) cyclic
quotient singularity (recall 2—1/3 = 5/3). There is one rational curve in Y over each
component, and a desingularization for z5 = x2 y4' (equivalently, z5 = xy2) connecting
them. But z5 == x2 y normalized and resolved (use x == s5, y = t5, z == s 2 t ) gives a (5, 2)
singularity. Thus, lying above (4.11.1) on Y is

-di -2 -3 -4a
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(One must check that it is —2, —3, not ~3, —2). But since this corresponds to the
canonical cover of the (5, 3) singularity, and since that cover is smooth, we must have
d^ = d^ == 1. Therefore, the configuration on Y is

-3 -5 -5 -3 -1

or
» -4

-3 -1 -3

This is recognized to be a minimally elliptic singularity; it is listed as Tr (2, 2, 3) in
Laufer's tables, and one such S is k [x, y, z]/z2 = x3+ys. R is the quotient by the
action (x, y, z) »-> (co x, CD y, co4 z), where <o5 == 1. R is determinantal (cf. Conjec-
ture 3.5.3), viz.

r~ 2 3 "

^rk\ xo xl x3 •?C4~"X2

L^l ^2 ^4 xo
1,

where XQ = x1 y3, x^ = xy^, x^ = y5, x^ = xz, x^ = yz.
4.12. In the previous examples, one was able to recognize S from its graph (at least

up to "equisingular deformation"). In the case of (4.9.1), one needed to know that S
was Gorenstein; for, a theorem of Laufer ([12], 4.3) states that only minimally elliptic
and rational double point graphs force the corresponding singularity to be Gorenstein.

4.13. One can start with simple singularities S (say, hypersurfaces) and try to construct
linear actions by groups of roots of unity, in hopes of producing rational singularities R.
It is easy to see, for instance, that if S is strongly elliptic (h1 (^x) == 1 for a resolution),
a cyclic quotient is either strongly elliptic or rational. For instance, let

S^feO.^zj/z^/Oc,^,

where all monomials of / have even degree. There is a natural Z^-action

(x, y, z)(-^(-x, -y, -z).

The invariants for this action on k [;c, y, z], i. e. XQ = x^, x^ = xy, x^ = xz, x^ = y2,
y^ = yz, Xs == z2, define the cone of the Veronese embedding P2 c? P5, and the equations
among them are given by

XQ X^ X^

(4.13.1) rk Xi jca X4 ^1.
^2 ^4 XS _

One could easily write down an explicit projective resolution for (4.13.1), a Cohen-
Macaulay singularity of codimension 3 (it is not determinantal). One gets equations
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for R, the ring of invariants of S, by specialization; since f(x, y) = g(xo, x^, x^) by
assumption, R is

XQ X^ X^

(4.13.2) rk jq ^3 x^ ^ 1.
^"1 ^ g ( X o , X ^ , X ^ ) ^

Of course, R is rarely rational (it is not absolutely isolated if deg g ^ 3). One can pro-
bably check that the only possibilities are those covered in the following proposition.

PROPOSITION 4.14. — Let R be a rational singularity (char k = 0)for which K2 ̂  0 (-Z)
on the minimal resolution (Z = fundamental cycle). Then R is either a cyclic quotient
with graph:

-4 ~3 -2 -3

or R is of type (4.13.2), where we list graphs for R and S and an equation for S.

-3

0
-2

z^x^4,

w
> -3 - • -3

•——•- •——•
-3

z^x^+y6,

w
•-3

•

•——•-
-3

zl^x(x3+ys),

(C)

> -5

-•——• z2=y(x3+ys),

00

—4

(<0

z2=y(x3+y7),
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-• —•— • •—•— • z2 = xy (x2 + y4),
-3 -4

(/)
-4
^•^

-•—•... •—•—

2r+l

z2 =x(y+x)
x(y2-^x2r+4)

(g)

9 • •

-•—•... •—•—• ... •—r—>...•-
5

Proof. - Since 2 K = -Z and Z (Z+K) = -2, we have Z2 = -4, whence ^ = 5.
Writing Z = ^ r, E,, we deduce:

Z.E,=2(2-d,),

£r^-2)=2.

It is then a direct matter to verify that only the graphs above can occur. The equations
for S are from [12], Table 5.2.

Remark 4.15. The equations on the right correspond to only one analytic type of
singularity with the given (for S or R). In fact, types (a)-(f) are not taut [13]. For
instance, more general S of type (/) may be written z2 = xy (x2 + y4 + axy3), a e k, and
the corresponding R accordingly. Also note all types except (g) and (A) have G^-action.

5. Problems and Conjectures

5.1. The fact that the Betti numbers of a rational singularity depend only on the
multiplicity suggests the following:

CONJECTURE 5.2. - Every rational singularity R is a normally flat specialization
of a cone.

That is, there is a one-parameter family { Spec R( } of rational singularities which
is normally flat ("equimultiple") along some section, Rg ^ R, and R( is (for t + 0) a
cone over a rational curve.

5.3. The Conjecture should be thought of as having two parts. Let C c= P0"1 == P
be the projectivized tangent cone of R; let Hilb be the (infinitesimal or formal) Hilbert
scheme functor for C; and let E be the functor of isomorphism classes of deformations
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of R plus normally flat sections ([4] or [21]). (Recall that one must consider the sections
as part of the data of E in order that E have a good deformation theory.) There is a
natural morphism

a: E-^Hilb,

(see Bennett [4]) because one can trivialize the section to get a well-defined projective
deformation of C (1). It is a problem for general singularities to determine whether a is
smooth; one knows this for strict (i. e., tangential) complete intersections. Note that (5.2)
would follow if one could prove:

5.3.1. a: E—>Hilb is surjective;
5.3.2. C is a smoothable scheme.

For, if C is smoothable, then it is smoothable in P; for, H1 (Oc(l)) = 0, so
H1 (C, ©p ® Oc) = 0, whence all deformations of C can be realized in P. But the only
smooth curve which can specialize to C is (for Hilbert polynomial reasons) a non-singular
rational curve of degree (e -1). Thus (5.3.1) and (5.3.2) together imply the Conjecture;
of course, the Conjecture also implies (5.3.2). It appears that the surjectivity of a is
quite subtle. Our partial results are:

PROPOSITION 5.4. - Conjecture 5.2 is true for determinantal rational singularities R.
If, furthermore, C is not a cone, then a : E —> Hilb is surjective.

Proof. - The key point is that one can deform arbitrarily the entries of the 2x(e-l)
matrix defining R and still have a flat deformation; this is because all relations can be
read off the matrix by doubling a row, and noting all 3x3 subdeterminants are zero.

If C is not a cone, then we can view C c: X = P1 x y2 c: P2^1, and C is a complete
intersection on X defined by (e-2) linear forms on P28-1 (cf. 3.10). Thus, one can
write an explicit projective resolution for 0^ —> Oc (a Koszul complex), and compute
that H1 (©x (g) Oc) = 0 (recalling X = P1 xP6-2). Therefore, every small abstract
deformation of C lives on P1 x P8"2; we conclude that nearby deformations of C <= P*""1

are also determinantal. Combining this with our first remark, a : E —^ Hilb is surjective.
Also, the smoothability of C follows from repeated use of BertinTs Theorem, since C
is cut from P^P6"2 by e-2 linear hyperplanes in P26"1.

If C is a cone, then we may assume the matrix defining C is missing some homogeneous
coordinate, say x^, of P6"1. But it is easy to see that adding tx^ to an appropriate entry
of the matrix gives a determinantal deformation of C for which the general fibre is not
a cone. This lifts to a normally flat deformation of R, by the first remark. Now one
can use the preceding argument to find a cone specializing in a normally flat way to R.

Example 5 . 5 . — There exist determinantal C which are cones and are specializations
of non-determinantal curves. For instance, the family:

rk
XQ X^ X^
X^ X^+tX^ X3
X^ X^ XQ + ̂4

^1,

(1) a maps to Hilb/PGL, not to Hilb.

4* S^RIE — TOME 10 — 1977 — N° 2



EQUATIONS DEFINING RATIONAL SINGULARITIES 257

consists of a determinantal singularity

-4

for t == 0, and a non-determinantal singularity

-3 -3

for t ^ 0. Of course, this does not imply that a is not surjective; it appears that both E
and Hilb are obstructed. Note also that this normally flat deformation is not on the
Artin component ([1] or [22]) of the moduli space of R.

PROPOSITION 5.6. — If the projectivized tangent cone C is reduced, then C is smoothable.

Proof. — Since C is a reduced curve, local deformations can be patched globally, so it
suffices to show each singularity is smoothable. However, it follows by construction
of C from the fundamental cycle Z ([20]) that the only singularities are analytically equi-
valent to r lines (in general position) through the origin ^-space (t ^ r), e. g.,

rkPx, .. . 1̂
L î ... a.xjL^i ... a^x,

where a^ ^ aj (i ^ 7). It is easy to check (e. g., using the Jacobian criterion) that

j^+f ... x^n
L^iXi ... fl.^J1-La iXi ... a^

is a smoothing deformation.

Remarks 5.7.1. — It follows from Hartshome's Theorem that any C as above lies
on the same connected component of Hilb as a non-singular rational curve; the question
is whether they lie on the same irreducible component, since the non-singular curves
are dense there.

5.7.2. Riemenschneider has shown explicitly [17] that Conjecture 5.2 is correct
for cyclic quotient singularities.

5.7.3. The following are both weighted dual graphs of rational singularities with e = 5:

Perhaps surprisingly, both are specializations of "^4 singularities. This is obvious in
the second (determinantal) case. Writing an example of the first as a Za-quotient of

ANNALES SdENTinQUES DE L'̂ COLE NORMALE SUP^RIEURE



258 J. M. WAHL

z2 == x^^y4 (4.14 a), we get a deformation m the Z^-invariants of the family
z2 == x^+y^+txy. This is easily checked to be of the desired type.

5.7.4. What is really wanted to prove (5.3.1) is a representation of the equations
of R in a "weakly determinantal" form, so that all relations may be read off the matrix,
and there is sufficient freedom in deformation of the entries to be able to generalize to
a cone.

5.8. D. Kirby ([10]) originally identified the rational double points as those double
points in C3 that are absolutely isolated, i. e., resolve by successively blowing up points,
without normalization. Now, all rational singularities are absolutely isolated, and
Theorem 2.1 gives a generalization of double point in 3-space. One is therefore tempted
to make the:

CONJECTURE 5.9. — Suppose R is a complete two-dimensional normal domain over k,
of embedding dimension e, and suppose the tangent cone R admits a projective resolution
as in (2.1) (in particular, R is Cohen-Macaulay, with Hilbert function n(e—1)+1).
If Spec R is absolutely isolated, then R is a rational singularity.

5.10. If R as in (5.9) resolves in one blow-up X—> Spec R, then the result is true.
For, WR (Px = ^x (~^0 ls invertible, where V is isomorphic to the projectivized tangent
cone; as divisors, V ^ Z (the fundamental cycle), since V.E, ^ 0 for all f(e. g., [14], § 18).
Since H1 (d?y) = 0 (follows from the projective resolution for R), H1 (0^ = 0, so R is
rational (Artin [2], Theorem 3). The same proof works if the first blow-up of R has
only rational singularities. Finally, it is not hard to show that if the singularities of the
first blow-up have the same multiplicity as R, then these singularities have the appropriate
kind of projective resolution (and of course are absolutely isolated). Our only general
result is

THEOREM 5.11. — Suppose R is a complete two-dimensional determinantdl domain over k,
of embedding dimension e ^ 4 defined by

rk^ • • • ^-Ll,[A ... /.-q<
igl . . . Se-l]~

and suppose the projectivized tangent cone is 2-regular as in paragraph 2. IfR is absolutely
isolated, then R is rational.

Proof. — We will show that the singularities of the first blow-up g : B —^ Spec R are
either rational double points, or determinantal singularities of the same embedding dimen-
sion with 2-regular projectivized tangent cones. Thus, by induction, if /: X —» B is a
resolution, then R1/^ ^x = 0 (Bhas only rational singularities); of course, ^B"^/* ^x.
On the other hand, writing m^ 0^ = 0^ (—V), we have that V is the projectivized tangent
cone, with very ample line bundle Ov(-'V). By 2-regularity, H1 (^v(-n'V)) = 0 for
all n ^ 0; the usual exact sequences give H1 (O^y) = 0, n > 0, hence

HlW=Rlg^^=0.

The Leray spectral sequence then yields H1 (O^) = 0, whence R is rational.
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Write the tangent cone of R as

r fc l^ • • • Le~l^^l,LMi . . . M^-J1

where the L(, My are linear forms. The spaces of linear forms (L() and (My) have
dimension ^ e—2, by the usual remark on the number of equations defining R. The
dimension of (L,, My) is ^ e—1 by the absolute isolatedness of R (proof of Propo-
sition 2.3), and is e—1 if Proj R is a cone, e otherwise.

Blow up by inverting the coordinate Li == ;q, say; we may assume in fact that/i = x^
(if Li = 0, try another one). Assume a singularity exists in the first blow-up at
x\ = x^x^ = di, (i > 1) and x^ = 0 (otherwise, there is nothing to prove). Make a
linear change of variables with new x, equal to old x.—a; x^ (i > 1); thus, we may assume
all Oi = 0. Next, adding multiples of the first column of

?! /2 ... /e-l1

i8l 82 ... ge-l]9

to other columns, and the same with the first row, we may suppose the linear terms of
^2» • • •»/e-i» and gi contain no x^ terms. But since jq = 0, x[ = 0 (i > 1) is a point
on the first blow-up, it follows that g^, ..., gg-i contain no linear terms in ;q. By the
span conditions above, we may assume g^ = x^, ..., Se-z = xe-^^ without affecting
any of the previous choices. Thus, R is given by

rfep1 f2 • • • fe-2 /e- l1<l.T^CI S-1 . . . fe-2 fe-l~\

[_gl ^2 • • • ^-2 8e-l]_gl ^2 • • • ^-2 8e-l

Again, set x\ = xjx^ (i > 1); we obtain a singularity R" defined by

4','' •- /-/-Li.
Lgl X2 . . . ^-2 ge-l]~~

Since jc, =/,' ̂ , 2 ^ f ^ ^-2, is in the maximal ideal squared, we may eliminate these
equations; so, R' is the hypersurface singularity ^_i =/e-i^i» where we have now
expressed everything in terms of x^ x^_ p and jCg. It suffices to show R' is a double point;
being absolutely isolated, by Kirby's Theorem, it will be a rational double point.

If Mg_i ^(^"2» • • • » xe-2)9 ^en ge^i and g'e-\ are regular parameters, hence R' would
be non-singular. Otherwise, adding combinations of the columns to the last column, we
may suppose M^i = 0. By the span condition. Mi ^Qq, . . . , ^-2) (remember it has
no x^ term); we may suppose in fact g^ = JCg-i. Since M^_i = 0, we have Lg_i =^ 0
(by the number of equations defining R), and there is no x^ term in Lg_i. Thus,/g»i
has a non-0 linear term involving x^, ..., jCg. This means /g» i ̂ / contains a term x\ x'^»i,
some f > 1. Since jq |^-i, it follows that ge-i~^fe-i8i is a double point.

There remains to consider the case that some variable x^ does not occur in any L( or My.
Blowing-up Xg gives a new determinantal singularity of the same size at the origin; one has
the same equations as before in x[, . . . , ̂ -i, x^, except that some Xe.g(x[, ..., Xg)
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terms art added. Note that since x^ does not occur in the equations for R, there is no x^
term in the equations for R (look at the matrix); thus, the embedding dimension stays
the same after blowing up. Therefore, R' (and its tangent cone) satisfy the conditions
of the TheorcBB» and we may induct.

This completes thr proof.

COROU.AIIY 5.12. — Let R be an absolutely isolated (normal) triple point in 4-space.
Then K is a rational triple point.

Proof. — We prove directly that R is determinantal. We assume R is complete.
Let u, v be an R-sequence. Then (2.6):

R/(M^)^k[^^]/(/,^,z2).

Thus, R is the quotient of k [[«, y, y, z]] by

;^+^+^+^i=0,

yz-^m^y+m^z+q^^Q,

z2•^n^y+n^z+q^ ==0;

where /<, m^ n^ q^ e k [[u, vj] (R is a free * [[«, vj] module, with basis l,y, z). Repla-
cing y by y—m^ and z by z—m^ we may suppose m^ = m^ = 0. The 2 relations arising
from the associative law (e. g., z.y2 = y.yz) give:

(li^li^, ^2=-wi;2, q^^n^h.

We may therefore write the 3 equations as

I- y n, z+n.1
L l2 -Z ^+(iJ-

one can now apply Theorem 5.11.
5.13. Presumably one can replace "2-regular resolution" in (5.9) by "multiplicity

is one less than embedding dimension".

APPENDIX

A.I. We recall some facts about ^-cyclic 6tale covers. Let X be a scheme over k,
where k contains the nth roots of 1, and (n,p) = 1 (p == char. fe). Let L be a torsion
invertible sheaf, and a : L" -^ 0^ an isomorphism (write L-^ = L®^). One may use a to
define multiplication in (Px ® L © ... © L"~1, forming a finite flat morphism:

Y,=Spec((Px©L©--- ©L^)\-
x
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Straightforward arguments show
(a) n^ is an ^-cyclic etale cover [^recall (n,p) = 1].
(b) If a' : L" -^ 0^ is another isomorphism, then Y, and Y,, are isomorphic covers

iff a 'o a~ 1e r (6?x)* has an nth root.
(c) Using U and a01 : (L1)"-^ 0^, where (f, w) = (i,p) = 1, yields a cover isomor-

phic to Y,.
( d ) ^(L)S^Y-

A. 2. Conversely, every w-cyclic etale cover arises in this way. Given one, n : Y —> X,
choose (3, a primitive nth root of 1 in k. Define a sheaf L on X by

L(U) = {/erXTr^U), ̂ l^/- ̂ /},

where a* is the induced action of a fixed generator a of Z/w. Then L is invertible, comes
with an isomorphism a : L" -^ 0^ and Y —> X is isomorphic to Y, —^ X. This is checked
locally and on geometric points. One could also examine the cohomology sequence for

{1}-^^G,^G^{1}.

THEOREM A. 3 (Krull-Schmidt). — Suppose X is a k-scheme with r(0^) a local ring,
Li, . . . , L,, Mi, ..., My are indecomposable locally free sheaves, and

(p : Li © ... ©L^-^Mi © ... ©My.

is an isomorphism. Suppose further that either:
(a) the L, are line bundles; or
(b) r (d?x) is henselian.

Then s = t, and after reordering the M('S, L,-^M,.

Proof. — We copy the argument in Jacobson, Lectures in Abstract Algebra, Vol. 1,
p. 157. Letting M,' = (p~1 (M,), we may as well assume the L, and Mj are subsheaves
of a fixed locally free F. Suppose inductively we have isomorphisms L( -^ M^,
i ^ r—1, so that

(*), F = M i © . . . © M ^ i © L f c © . . . ©L,, al lfc^r-1.

(Here, r = 1 at the start.) Let X; : F —> L(, r|y: F —+ Mj be the projection maps. Then:

^r==5lr[Z^i).

where X,. T|( : F —> M< c: F -^ L^. But (^)r-i implies
t

^^==0, l<r, SO ^r=E^rTh-
r

Now restricting Xy and \ T|( to Ly, we may consider )iy = 1 and "ky T|( e Horn (Ly, Ly).
We show below that (a) or (6) above implies that some ̂  TI, (say for i = r) is an automor-
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phism. Since ^ T|y: Ly —> My —> Ly, Ly is a direct summand of My; by indecomposa-
bility, T^y : Ly -^ My, and Xy : My -^ Ly. Now, the intersection in F:

Myn(Mi © ... ©My_i ©Ly+i © ... ©L,) = (0),

since Xy is an isomorphism on My and the 0-map on the components of the second term
(use C)tr),-i). Therefore, the natural map on

M i © . . . © M y _ i © L y © . . . ©4,
sending all M< —> M(, Lj —> Lj (j > r), and Ly —> My (via T^y) is a isomorphism onto
Mi © ... © M, © Ly+i © . . . © L,. This proves the induction step.

Assuming (a), we have Horn (Ly, L,.) = r ((P^), a local ring; so, if a sum of two things
is a unit, one of them is a unit (hence an isomorphism of Ly). In general, for indecompo-
sable Ly, Hom(Ly, Ly) is an associative r (^x)-algebra with Oand 1 as only idempotents
(since Ly is indecomposable). If S, T e Horn (Ly, Ly), and S+T is invertible, we claim S
or T is invertible. It suffices to assume S+T = 1. The subalgebra R of Horn (Ly, Ly),
generated by r (^x) and T is commutative and r (^x)-finite (since a local argument shows T
satisfies its characteristic polynomial p (K) = A" (T-X I) e r (0^ M)- But since T (6?x)
is henselian, R is a direct sum of local rings. Since R has only 0 and 1 as idempotents,
R must be local; thus, T or 1—T is invertible.

COROLLARY A. 4. -- Suppose L is a torsion invertible sheaf on X of order n, (n, p) = 1,
and r((Px) is local. Then any Y, = Spec ((P © L © ... © L""1) is connected.

Proof. - Suppose Y<, = Y = Yi [J Y^, Y, ^ 0. Then n,: Y, -^ X is finite, etale,
and cyclic, of order dividing n; hence, via the trace map, 0^ is a direct summand of
TC,* (Py^. Since:

^r^Yi © 7i;2*^y^ TT^ d?y = ^ © L © ... ©L"~1,

and since there are two O^s on the left side, by A. 3 (a) we haveL1 ^ (?x» som^ i < n;
this contradicts the fact that L had order n.

COROLLARY A. 5. - Suppose r (0^) is local, a : L" -^> 6?x, TT = TC, : Y —> X the asso-
ciated cover, and (n, p) = 1. IfM is an invertible sheaf on X such that TI* M ^ 0^, then
M = L^, some i. In particular, we have an exact sequence:

l-^L^PicxXpicY.

Proof. — n* M ^ (Py implies n^ n* M ^ n^ ^Py. But by the projection formula,
n^ TC* M ^ M ® ̂  (Py. Thus,

n-l n-1

M® © L^ © L1.
i=0 i=0

Since an 6?x occurs on the right side, M ® L^ = <Px? some f? by A. 3 a), so M ^ L"~1.
Remark A. 6. — Note TT* in (A. 5) is rarely surjective. In fact, rational singularities

are characterized by having finite Pic ([14], § 17), yet the canonical covers of paragraph 4
are rational iff the original singularity is a quotient singularity.
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