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LENGTH SPECTRUM
FOR COMPACT LOCALLY SYMMETRIC SPACES

OF STRICTLY NEGATIVE CURVATURE 0

BY DAVID L. DEGEORGE

Introduction

Let M be a compact, connected, locally symmetric space with negative sectional curva-
tures. The purpose of this paper is to study the function which assigns to each real
number x the number of free homotopy classes of loops in M which have a representative
of length less than or equal to x. We will denote this integer by E (x). We will also
study a related function n (x) which is the enumerating function for the lengths of closed
geodesies (parameterized by arclength) in M. These functions are important for the
study of the spectrum of M (see Berger [I], p. 129).

We will obtain asymptotic estimates for E(x) and n(x) together with error terms.
Both the estimates and error terms will depend on standard differential-geometric data
associated with M.

As is well known M is isometric to a double coset space r\G/K; where G is a rank-one
semi-simple Lie group with trivial center, r a discrete torsion-free co-compact subgroup,
and K a maximal compact subgroup. Our approach to the problem will be through
the harmonic analysis of G.

The problem appears to have been first studied by Huber [7] for the case G = SL (2, R).
A paper of McKean [11] considers this same case using a somewhat different technique
of proof. Berard-Bergery [2] examines the problem when M has constant curvature.
Margulis [10] has announced a result for all negatively curved manifolds. His proof
uses ergodic theory. Our result is better (the error is less) and more specific in the case
at hand. All the previous authors except Huber do not have error terms. Their proofs,
except for Margulis, use the Selberg trace formula and a Tauberian theorem.

(1) The results of this paper are part of the author's thesis submitted to Yale University.
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134 D. L. DEGEORGE

Our approach also will use the trace formula. However by following (and generalizing)
a method used by Langlands [9] for G = SL (2, R), we will be able to obtain the error
term for the asymptotic estimate.

A brief outline is as follows: In Section I we state the main theorem and its corollaries.
In Section II we obtain the necessary geometric information and in Section III we assemble
those theorems and facts from the theory of group representations we will need. In Sec-
tion IV we make the trace computation and prove most of the main theorem. Section V
is devoted to a calculation of curvature which completes the proof.

I would like to thank my advisors R. Szczarba and J. Arthur for suggesting the problem,
their help and encouragement, and making available Langland's manuscript.

L Statement of the Main Theorem

From this point on we shall consider M as P\G/K with r acting as isometries on the
universal Riemannian covering space G/K.

Since the free homotopy classes of loops in P\G/K are in one to one correspondence
with the conjugacy classes of r, we may define the non-negative real number L ({ y })
for each conjugacy class { y } by L ({ y }) = L (a^), where o^ is the minimal represen-
tative in the free homotopy class determined by y, and L(.) is the Riemannian length.
Such a minimal representative exists and in fact:

L ( { y } ) = inf d(x,yx).
xeG/K

Here d ( . , .) is the Riemannian distance function (see Dieudonne [4], p. 396).
Thus L is a function defined on the conjugacy classes of F and E (x) is given by

E M = c a r d { { Y } | L ( { Y } ) ^ x } .

Here card denotes cardinality. We will see that the conjugacy classes of r are given by
00

U U { ̂  }» where P is a maximal set of non-conjugate primitive elements. An ele-
Y 6 P k==l

ment y is primitive if Tk = y for T e F implies that k = ± 1. (P is also the set of periodic
geodesies.) It is also true that if y is a primitive element then L ({ Yfe }) = k L ({ y }).
[From now on we will abuse notation and write L ({ y }) = L (y).]

We consider the following functions: (N = 1, 2, ...)

^W= S L(Y),
yeP
k € N

fcL(Y)^x

e(x)= S L(Y),
yeP

L(y)^x

n(x)=csird{y: yePL(y)^x}
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LENGTH SPECTRUM 135

The definitions of these functions are motivated by the definitions of similar functions
in the elementary theory of numbers. The function n (x) is the enumerating function for
periodic geodesies.

The Riemannian metric on r\G/K is a positive multiple of the one induced by the
Killing form of G. We shall prove our theorem for r\G/K when this multiple is 1,
and then in the last section connect our result to other multiples. The main theorem
will be stated for the general case.

Consider the following numbers:
n, dimension of r\G/K;
^, sup of the sectional curvatures of P\G/K;
8, inf of the sectional curvatures of r\G/K;
S, scalar curvature of r\G/K.
We define a as follows

a^n-lX-S)172, if ^ = 8
and

4n(n-l)(^)+S 2n(n-l)(-5)+S .. ,,.
a= 6n(-^2 = 3n(-5)^2 ) rf ^8-

We are now able to state the main theorem.

THEOREM 1. — There is a constant T| (depending on T) such that [1 —(1/2 w)] a ^ T| < a,
and

(i) ooo^+oo^;
a
ax

(ii) 9(x) =e—+0(e^,
a

(in) n(x) == \xew-du^0(ex{x)\
Ji u

(iv) E(x)= \xe^du+0(e^
Ji u

[Here we are using the convention that 0 (/) is a function such that \ (0/)//| is bounded.^
The remark that T| depends on F is significant because a depends only on G/K.

Integrating (iv) by parts one easily deduces Corollary 2. (Compare Huber [7],
McKean [II], Berard-Bergery [2], Margulis [10].)

COROLLARY 2:
<xx ox

EW-^-; TCM-^-.
ax ax

(Here f ^ g means lim [_f(x)/g(x)~^ = 1.)
x-»+oo
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136 D. L. DEGEORGE

If we define GE (n) (G, (n)) as the nth L (y), { y } e F (y e P) in increasing order and
counted with multiplicities, then using standard techniques one can prove:

COROLLARY 3:

GE (n) - log n17", G, (n) - log n^.

Remark. — The formula for a above involves only metric data and does not use the
classification theorem. Simpler possible expressions are:

1. a = 2 [| p |[, when r\G/K has the metric from B the Killing form of G. Here p
is as defined in Section III and [|. || is the norm induced by B.

2. a = (n+q-l) (-^1/2, where q = 0, 1, 3, 7 according to whether G/K is a real,
complex, quatemionic, or Cayley hyperbolic space.

The first step in proving Theorem 1 is to show that the estimate for 0 implies the
remaining estimates.

PROPOSITION 4. - In Theorem 1 (i) implies (ii), (ii) implies (iii), and (iii) implies (iv).
Proof of (i) implies (ii). - Clearly 0 (x) ^ 6 (x), and 9 (x) is an increasing function.

Let M = inf L (y), then M > 0 (see Prop. 17). Fix x and let h = [x/M]. Then
yep

<»(x)=E E MY^^e^Y
k=l yeP k=l V ^ /

kL(y)^x v '

Thus

0 ̂  <^(x)-9(x) ̂  t 9 f?) ̂  ̂ ef^Vfc=2 \fe/ M \2/

If we assume (i) then 9 (x) = 0 (^x). Thus 9 (x/2) = 9 (^(a/2)JC).
The proof that (iii) implies (iv) is similar.
In view of Proposition 18 we may write n (x) as the Stieltjes integral

r<i
n(x) = - d9(f)+const.

Ji t

If we integrate the right hand side by parts we obtain

(1) ^(x)=9(;c).+|9^)A+const.
x Ji t2•J:

Similarly we obtain
f-» ̂  ^x rx at

— dt = — + —df+const.
t ax J i ar

rx ctf cue ^x at

"-A-^ -̂J i t ax J i ar

Proof of (ii) implies (iii). — Assuming (ii) we obtain from (1) that

• f"4*+ fJ 1 Oit2 J ]

e- 0(e^ ^e^ [^(e^)
•• — + ———— + —T^+ ——2ax x J i ar J i r

,r0c)=-+———+ —^+ -^dt+consi.
/W •V I •< Af^ I * *—
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LENGTH SPECTRUM 137

Thus we have

n(x)^ fx^dt=0(enx)+ fxo(e^dt=0(e^x).
Ji t Ji t2

Thus we need only show (i), this will occupy most of the rest of this paper.

H. Setting the Stage

The basic reference for this section is Wallach [14^], especially Chapter 7. We have
tried to keep as close to his notation as possible.

Let t © p be a Cartan decomposition for 9, the Lie algebra of G, with I a compact
Lie algebra. Let K be the connected subgroup of G corresponding to I, since we have
assumed G has trivial center K is compact. We will identify the tangent space of G/K
at eK with p. If B is the Killing form of G, then B is positive definite on p and defines
a G invariant Riemannian metric on G/K. With this metric the following facts are true:
(see Helgason [6 a], p. 173, 205).

(1) The Levi-Civita connection has strictly negative curvature.
(2) Each pair of points in G/K is jointed by a unique geodesic.
(3) If X e p the geodesic in the direction of X through eK is given by t —> (exp t X) K.

Let r c G be a discrete co-compact subgroup such that F acts without fixed points
on G/K. Then G/K —> F\G/K is the universal Riemannian covering (with the induced
metric on P\G/K). As was mentioned in Section I, if y e T then

L(y)= inf d(x, yx).
x 6 G/K

Since d is G invariant, if T = g y g ~ 1 for any g e G then

L(y) = inf d(x, rx).
xeG/K

We choose a maximal abelian subalgebra a of p. Then din^a = 1. We choose
a fixed set of positive roots A4' for the pair (9, a). Let Ho e a be such that B (Ho, Ho) = 1
and ^(Ho) > 0 for every XeA 4 ' . We denote by A the subgroup corresponding to a.
Exp | a is a diffeomorphism and its inverse we denote by log.

We let I)_ be a maximal abelian subalgebra of I such that [l)«, a] = { 0 }, then
1) == t)_ © a is a Cartan subalgebra of g. If C = { g | g e G Ad (g) |c = id } is the
associated Cartan subgroup then it can be shown that C = (C n K) A. It is clear that C
centralizes A.

Because G/r is compact, every element of r is semi-simple. Since G has real-rank
one every semi-simple element of infinite order is conjugate to an element of C with non-
trivial A component. Thus if y e F then there are u e G, m^ e C n K and a e A- { e },

ANNALES SCIENTIFIQUES DE I/6COLE NORMALE SUP^RIEURE



138 D. L. DEGEORGE

such that m^a^ = uy M~1 . Since there is an m* e K such that m* am*~1 = a~1 we may
assume

log fly =t Ho, with f > 0 .

This is related to the geometry of r\G/K in the next proposition.

PROPOSITION 5. — If y e F wzrf WyOy = uyu~1 (as above) then log fly = L(y)Ho.
Before proving this proposition we state a lemma which can be found in Mostow

([12], p. 39).

LEMMA 6. - Let g e G and Y c G/K &(? such that:
( 1 ) ^ Y = Y .
(2) If p, qeY and a is the geodesic joining p and q, then a c Y.

Then inf d (x, gx) = inf d (y, gy).
x e G/K y e Y

Proof of Proposition 5. — Let Y = { (exp t Ho) 1 1 e R }. Using our description of
the geodesies though e K and the fact that m^ a^ e C, it is easy to see that Y and m^ ay
satisfy the hypothesis of Lemma 6. Thus we have

L(y) = infd((expfHo)K. m,a,(expOHo))K).
teR

Using the invariance of d we obtain

L(y)=dO?K,^K).

The next proposition gives the structure of the conjugacy classes of F.

PROPOSITION 7. — Let P be a maximal set of non-conjugate primitive elements, then:
00

(i) (J (J { Y " } is a complete set of non-trivial conjugacy class representatives.
y e p n=l

(ii) I f y e P then the centralizer ofy (in F) is equal to the centralizer of Y for every r.
(iii) If y e P , then L (yQ = rL (y). r ^ 1.

To prove Proposition 7 we need the following lemma of Preissmann [13].

LEMMA 8. — Each y e r leaves invariant a unique geodesic in G/K.
We mil use the following notation: If h e G, then

G,,={g:geG ghg~1 =h], if yeF, then r^=G^nr.

LEMMA 9:
(i) For each j e r - { e ] , Fy is infinite cyclic.

(ii) If r^ = (r) r/^/z T ^ primitive.

4® S^RIE — TOME 10 — 1977 — N° 2
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Proof:
(i) Imbed Fy in the isometry group of R1 via Lemma 8. By using the compactness of G/F

it is easy to see that the image of Fy in Iso (R1) is discrete. Since F has no torsion this
implies Fy is infinite cyclic.

(ii) If Fy = (r) and T = ^s, then ^ commutes with y thus ^ = T". Since r is torsion-free
M = ± I .

Proof of Proposition 7:
(i) Clear.
(ii) Clear, since a^ = exp r L (y) Ho, for every r ^ 1.
(iii) 5^ McKean ([II], Section 2.4).

in. Representation Theory and the Trace Formula

In this section we shall assume basic representation theory and facts which may be
found in Wallach [14 a, 6], and Borel [3]. For information about the trace formula
see Wallach [146].

Most of the trace formula manipulations can be found in the preceding reference,
however since we are obtaining a numerical result the normalizations chosen are important.
Thus in this section we make explicit which facts and theorems we are using.

We denote by C^° (G) the complex-valued C°° functions on G with compact support,
y\

and by G the set of equivalence classes of irreducible unitary representations of G./\
If co e G, we denote by 9^ (/) the number tr n (/), where (n, H) e CD and

^(/)=f/feMg)^ /eC^G).
JG

[n (f) is known to be trace class.] We shall give G/r the invariant measure determined
by Haar measure on G and counting measure on F. We will denote by p, the (left) regular
representation of G on L2 (G/r).

Since G/r is compact [i(f) is trace class for/eC^°(G) and moreover L2 (G/F)
decomposes over G as a direct sum of Hilbert spaces.

L^G/F)^ © Nr((o)o).,/\
coeG

Each Nr((o) is a non-negative integer. Thus we have

trn(/)= £^Nr(co)9,(/).
(oeG

Furthermore following a standard manipulation (see Wallach [156]), and using Propo-
sition 7 we may write

trH(/)==/OOvol(G/F)+ £ £ vol(G^/(y))f /(gY'g-1)^.
y e P k=l jG/Gyk

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUP^RIEURE



140 D. L. DEGEORGE

To further analyze the terms in the trace formula we note that if y e r is conjugate
in G to Ay = Wy ̂  Wy e C n K, ̂  = exp (L (y) Ho), then we may transport the measure
from G^ to Gy without affecting the product

vol(G,./(Y))f fdgy'g-^dg.
J G/Gyk

Thus we obtain

trn(/)=/OOvol(G/r)+ E f vol(G,./(^))f /(gh^^dg.
yeP Jk==l Y JG/G^

We have assumed G has trivial center and therefore is a linear group. Hence C is
abelian (see Wamer [15fl?]). Thus we have (Ay) c C c G^ c G. Using standard
techniques we obtain

W f AA'^-voKG^/Qf Kgh^dg,
J G/C J G/Gfcfc

and

(2) vol(G )̂) = vol(G^/C).vol(C/(ft,)).

Combining (1) and (2) we obtain

vol (G /̂(ft,)) | /(g^ g-1) dg = vol (C/(A,)) f f(gh^1) dg.
J G/Gh^ J G/C

This last equality is quite significant as we shall see shortly. However, we first make
a digression concerning the Haar measure on G. As mentioned previously, the action
of a on g may be diagonalized. For 'k e A4' let ^ = { X [ X e 9 [H, X] = K (H) X for
every H e a }, let n = ^ (^, and let N be the connected subgroup corresponding to n.

X e A

We denote by p that element of a<t = Hom^ (a, C) defined by p (H) = 1/2 tr (ad H [ n).
The Iwasawa decomposition for G says that G = KAN. We shall take for Haar measure
on G the measure dg such that for /e C^° (G),

f f(g) dg=\\\ f(kan) e^(log a) dn da dk.
JG JjjKAN

Where dn is any Haar measure on N, the measure on K has volume 1, and da is such that

f(a) da = /(exp t Ho) dt. (dt = Lebesgue measure.) We shall give discrete
JA J —00

groups counting measure and the measure on C == (K n C) A will be the product of
the Haar measure on K n C with volume 1 and da. With these normalizations we have
the next proposition.

PROPOSITION 10:
vol(C/(^))=L(y).

4° S^RIE — TOME 10 — 1977 — N° 2



LENGTH SPECTRUM 141

Proof. — Let U be a fundamental domain in A for Oy (Ay = Wy a,y), then it is easily
seen that C n K x U is a fundamental domain for m^ a in C. But

vol(C n K x U) = vol(C n K).vol(U)

and we may take for U exp ([0, log a]).
Combining this with (3) we obtain

trn(/) = vol(G/r)/00+ $; L(y) f f /(g^g'1)^.
yeP k=lJG/C

For our problem only a special kind of/need be considered. We denote by C^° (G//K)
the K bi-invariant functions i. e.

C^(G//K) = {/:/eC,°°(G)/(fe,gfe,) =/(g), for geG k,, fe.eK}.

If /e C^° (G//K), and (TI, H) is a representation of G then n (/) is particularly nice.
Let

^ = {u : veH n(k)(v) = i?, for every feeK}.

PROPOSITION 11. - LetfeC^ (G//K) W Oc, H) be a unitary on representation of G,
then

(i) TC (/) (H) s ̂  W n (/) (H^) = (0).
(ii) If n (/) ^ of trace class then tr n (/) = tr (TC (/) Inio).
The proof is straightforward. Thus if G1^ = {co : (n, H) e® and ̂  ^ (0) } and

if/e C,00 (G//K) we have

trp(/)= E Nr((o)9,(/).
<oeGK

Now for rank one groups, 9^ (/) [for 0 e G1 )̂ have been classified and this is what
we will discuss next.

Let v e a^ then C' is the set of continuous functions / on G such that

/(gman)=^-<iv+p)<logfl>/(g)

for every geG, weM, aeA, and w e N . Here p is as before and i = ^/—l. We

define an inner product on C^ by < /i, f^ > == /i (A:)/^ (fe) rffc, and we let IT be the Hilbert
JK

space completion with respect to < , >. We let G act on C" by n^(g)f(x) ==/(g~1 x),
this action extends to a representation (Tiy, IP) which is unitary if Im v = 0. The collec-
tion (7^, IP) is called the non-unitary principal series (corresponding to the trivial represen-
tation on M). It is easy to see that (IP^ = Span^(^\, where ^(kan) = ^-(^P)10^).
It is known that if/e Cf (G//K) then ̂  (/) is trace class (see Wallach [14 a]) and one
easily shows that

tr^(/)= f /(g)f ^^^dfedg^SaKv).
Jo JK

ANNALES SCIENTIFIQUES DE L'^COLE NORMALE SUP&IIEURE 19



142 D. L. DEGEORGE

Here J is the function on G given by J (kan) = log a. The right-hand side of the above
equation defines a function on a^ known as the spherical transform of/, denoted by S (/).
For this transform there is a Paley-Wiener theorem (see Helgason [66]).

PROPOSITION 12. - Let \|/ e C°° (a^), then a necessary and sufficient condition that there
is an fe C^ (G//K) so that S (/) = v|/ is the following:

There is an even C00 function with compact support a, such that a = \|/, where ? is the
Euclidean Fourier transform.

We can use S (/) to find tr n (/) with the following theorem of Kostant.

PROPOSITION 13 (Kostant). - Let coeG^, then there is a vea^ such that
(i) 6<o (/) = S (/) (v) for every fe q° (G//K).
(ii) If v is as in (i) then either Im v = 0 and v (Ho) > 0 or v = i T p with 0 < T ^ 1.

(iii) The only representation with T = 1 is the trivial representation (see Kostant [8]).
Thus there are {v, } c a^, { T, } c (0, 1), integers N, and M( so that

trn(/)= E N^S(/)(v^)+ f M,S(/)(^p)+S(/)(ip).
y=i (=1

Here Ny and Mj have the obvious meaning, if co corresponds to Vj by Proposition 13
then N, = Np (®).

The term S (/) (i p) arises from the trivial representation of G which has multiplicity 1
in H, and the fact that

f/00^=S(/)(fp).
Jo

The growth of the N, and M( will be important to us later so we record here a theorem
of Gangolli.

PROPOSITION 14 (Gangolli). - (see Gangolli [5]):
(i) The set { / : M( ^ 0 } is finite.

(ii) If N (r) = E N,, then N (r) = 0 (r").
1 | V . / | | ^r

Here n = dimG/K W |[ v, || = | y,(Ho) [ (see Gangolli [5]).
The function/may be recovered from S (/) by the next proposition (the Plancherel

Theorem).

PROPOSITION 15. - (see Helgason [66], p. 115).
There is an even continuous function C(k) mapping a* into R+ such that if

/eq°(G//K) then

1-!../(<')= S(/)(X)CWdX.

4' SfiRIE — TOME 10 — 1977 — N° 2



LENGTH SPECTRUM 143

Moreover, there is a polynomial p ( s ) of degree n—\ (without constant term), and an
w e { 0 , l , — 1 } such that C (s a) = tan^s p (s), Here a e a* is such that a (Ho) = 1,
and a*4' = { X : X e a* A- (Ho) > 0 }.

The trace formula can be simplified further with the aid of the next proposition (see
Wallach [14 a], p. 182).

PROPOSITION 16. - Let D (ma) = ^-p (logfl) | det (Ad (ma) -I )„) |, wa e MA, then
if D (ma) ^- 0 we have

f ^ oog a) f
| f(vmav~~ ) dv = ——— | f(an) dn.

JG/C D(ma)jN

Remark. — Wallach leaves the measure on C undetermined, however, it is easy to
see that the correct measure to insure Proposition 16 is the product of the measure on A
and a measure on K so that vol (K n C) = 1/| Z |, [ Z | = cardinality of the center. Thus
our choice of measure is correct.

By diagonalizing Ad (m^ a^) (on n) over C and using the fact that the eigenvalues of
Ad (w,y) must lie on the unit circle it is easy to see that D (m^ a^) •f- 0, for y e r— { e }.
The right hand side of the equation in Proposition 16 is related to S (/) in the next
proposition.

PROPOSITION 17. — (See Helgason [66], p. 117):

S (/) (v) = ff ^-iv) oog ̂ (an) da dn, fe C,°° (G//K).
J jAN

By using this proposition and the Fourier inversion theorem on R1 we obtain

^p(ioga) f f(an)dn = -L f°° eistS(f)(sQL)ds.
JN 27cJ-oo

Where a = exp tHo, a (Ho) = 1.
Combining this equation, (4), and Proposition 15 we obtain

(5) E N,S(/)(v,)
j'=i

+ £ M,S(/)(iT,p)-vol(G/r) f S(f)WC(K)d^S(f)(ip)
1=1 Jo*-*-

= Z L(Y) Z -_———, -L^ e^ S(/)(5a)d5.
v e p k = i D(mya? 27cJ-oo

We shall use this formula to solve our problem in the next section.

ANNALES SCIENTIFIQUES DE I/ECOLE NORMALE SUPERIEURE



144 D. L. DEGEORGE

IV. Trace Computation

To facilitate our computation we use the various terms in the trace formula identifying
letters. Let /r e C^° (G//K). We define:

AT= Z N^S(A)(vy),
j^i

BT=SM,S(A)(^P),
!==!

CT=S(A)O-P),

DT= E L(y) f J , [a? e^SCA)^)^
yep k= i 27i;D(m^)J-oo

and

>I:ET=vol(G/r) f^SaTKsoOCCsoOds.
Jo

Suppose for heuristic purposes that there was a function /r e C^° (G//K) so that

1 [°° ^^(AKsa)^ = D(m^^)xT(feL(Y)).
27Cj-oo

Here /T denotes the characteristic function of the interval [-T, T]. Then Dj. would
be 0 (T) (see Section I), thus we could estimate 0 (T) from AT, BT, Cy, and Ey. Unfor-
tunately such a/T does not exist since ̂  is not C°°, moreover it is not clear how to include
the dependence of D(Wyfly) on m^. We can approximate ^'D (m^ a^), and the diffi-
culties with D (m^ a^ will "disappear asymptotically".

It is easy to see that

D(ma)== n \det(e~•^2(losa)l-ew(losa)^(m)\
XeA- 1 -

where p^ (m) = Ad (m) \^. Let Ko e A'1' be such that 1/2 ^o ^ A4', then it is well known
that A4' s { ^o? 2 ^o }. Let p = dim g^, ^ === dim g^xo- ®Y diagonalizing Ad (Wy)
on ft^ (g^xo) we may find complex numbers {jZ^ } 1 ̂  j ̂  p+q of modulus 1 so that

with
D (m )̂ = Pi (m )̂. P, (m )̂,

p, (m^ ̂ ) == n i ̂ (Y) xo (HO)/2 -^ ̂ tL (Y) xo (HO)/21
j^i

and
p+e

P2(m?^)= ]"[ I^^^^-.Z^-^^7^0^,.
j-p+i
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We now turn our attention to a point that was left hanging in the proof of Proposition 4.

PROPOSITION 18. — { L (y) }yes.c. ^las no fi^e point of accumulation.

Proof. — Suppose not and let (p be a C°° positive, even, compactly supported function
which is 1 on a neighbourhood of the accumulation point. By the Paley-Wiener Theorem
(Prop. 12) there is a function /y e C^° (G//K) such that

( p ( 0 - r ^S(/,)(sa)^.
2uJ -oo27CJ-00

This implies Dy is infinite, which is a contradiction.
We now begin our computation. Let (p be a non-negative C°° function of a real variable

such that
(1) support of (p c [—1, I],
(2) (p is even,

(3) f°° (p(;c)^=l.
J-oo

Let T > 0 and fix e, 0 < e < 1. (We shall choose e precisely later.) Consider the
family (p-rG^) = e€t V (eer x)) T > 0; it is easy to see that

r°°(<PT*XT)OO = ^(y)%T(x-y)dy(<PT*XT)OO= _

is an even C°° function with compact support. Let

gT(0=(<PT*XT)(OPl(OP2(0

with

MO^cQ^f^^V
V 2 )

and

P2(t)= l^osh^t^ (Ho)),

then g-r ( t ) is also even, C°°, and has compact support. Thus there is a function
/T e Cy (G//K) such that

and

^-r ^S(A)(soc)d5=gT(0,2nJ -oo

S(A)(v)=f00 e-^^g^dt.
J-oo

Our first task will be to estimate B-r and C-r. We will do this with the following lemma.
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LEMMA 19:

f^*x,)(».>- ^oc""'-"). ^».
0(1), a=0.

The proof of the lemma is straightforward.
We estimate B^ first, recall

M

BT= E s(A)(^p), O < T , < I .i=i
LEMMA 20. - Let T = max { r , }, ̂  BT == O^"^ ! I P ! I T) .

j
Note. - We use the convention that if ^ e c^ then | ̂  |[ = | ^ (Ho) |.
Proof. — It clearly suffices to show that

SC/TK^^OO^^I^).
Now

S(/T)aT,P)= f" ^^^^itO^OXcPT*/^^)^.
J -00

Also Pi (0-P2 (0 is a polynomial in (?t and e~t say pi (O.P2 (f) = ^ Cy e<^<
j » l

It is easy to see that

|a^p^+,MHo)=^Xo(Ho)=||p||.

Thus the lemma follows from Lemma 19.

LEMMA 21. - If s ^ Xo (Ho)/2, rA^
p2||p|lT

CT^-^+O^2^^

^IIPlI

Pwo/. - If we expand pi (Q-Pa (r) as before, the largest positive exponent of^is | |p | |
and the smallest negative exponent is -[[ p ||. Moreover each of these occurs with
co-efficient 1. Thus we have

Cr= f00 ^llpllt((pT*XT)(0^+ E cS' e^^^dt.
J-oo j=2 J-oo

Applying lemma 19 again we have
^||p||T

^ -^N-Tr +0(^NPII -e)T)+0(e9T).
^llpll

Where 9 = max) ||p[|+^|.
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Now it is easy to see that

IPll^^llpll^^^^^^llpll-^^)
2 "• " 2

Thus if s ^ ^o(Ho)/2:
O^^o^211'511-6^).

Next we will estimate Aj. and Ey; recalling Propositions 14 and 15, we see that both AT
r00

and ET are of the form S (/r) (s a) d F (.$•). Where F (^) is a non-negative function of
Jo

bounded variation such that F (0) = 0 and F (s) = 0 (s").

LEMMA 22. - IfL^= S(/r) ( s y ) d ¥ ( s ) , F(0)=0, F (s) == 0 (^), F a non-nega-
Jo

live function of bounded variation, n = dim G/K, then

L^O(g(l|PH+(n-l)e)T^

Proof. — A simple calculation shows that

S(A)(sa)=^ -^<p^(^+s)xTO'^+s),
^=1 V27I;

with { Cj }, {<jj} as before, ? the Euclidean Fourier transform. Since

sin2TM- , . ————, u ^0,
XT(M)= u

2T, u=0,

and (pi-OO = y^"811^, obvious estimates show that there are constants Mi, and M^
such that

and

| x-rO* ̂ +s) | ̂  le , for every s, T > 0
1+ |5|

1 ̂ (iGj+s) I ^ M.2 ̂ (e^s) | ^ M^.

Moreover since (p is in C^° (R) there is an M3 so that [ $ (u) \ ^ M^ (1 + [ u l)"^^.
Thus there is an M4 such that

^lal+s)iTva•+s^^^&rl•
Uniformly in [ aj |, T, and s (s > 0). If we observe that max | Oj | = |[ p |[, we obtain
a constant M^ so that j

ii^M^iMi^r^+r dF^ \.
' '" IJo 1+s J^O+s^l+e-^s)^1;
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Integrating by parts and using the hypothesis on F we obtain

rrfF(5) ^»-l)e1\^O^-^").
10 1+S

Using the fact that e"^ ^ (1 +^)"1 for s ^ ^eT, integrating by parts, making the substi-
tution M = e~^ s, and using the hypothesis on F, we obtain

o£}:o^^^-<t••-l>^t-•T<^^
thus Lr= O^^11-^"-1^1).

A summary of our estimates is:

B^OO^^^), T==max{T,},

CT=-————+0(e< 2 ' '< ) l ' - e)T) , if s^-lM
g2| |p| |T

AT and ET are

O^IIPlI4'^-1)6)1').

Now 0 < T, < 1 and thus (r+1) || p || < 2 || p |[.
We next choose e, the choice of s depends on whether q = 0 or ^ ^ 0. If ^ = 0, a

routine verification (^ the curvature calculation) shows that if 8 = |[ p \\/n then
e^ | [Xo[ | / 2 . Moreover this choice minimizes both 2[ jp | | -e and [[ p ||+(w-l) e.
If q ^ 0, we choose e ^ || ^o |[/2. We need to verify that (n-1) e < || p |[. Now
|| p || = (p+2 q)121| Xo ||, and n-1 = ̂ +^, thus [| p ||+(w-1) e < 2 || p [[. Thus letting

we obtain

i1=max{T,2||p||-e,i|p||+(n-l)e},

g2||p| |T

"-^^^
and 11 < 2 || p ||.

We are now going to estimate Dj.. Let

^.SLfr)fM»^^»^Lfr),
Y e P k=l D(m.yfl!y)

LEMMA 22:
^HPIIT

^-^CT"0^
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Proof. - The idea is trap XT between (p-pi * Xi-i and (p^ ̂  x^ without changing
the estimate. Elementary considerations show that if we choose 1\ such that
Ti+6?-^1 == T then (p^ *XT, ^ XT. and T^ such that Ta-^-6112 = T then

XT^<PT2*XT2-

Thus DT^ ^ ^ (T) ^ D^. Hence it suffices to show that

^||p||T

Now
g 2 j | p j | T 2

"-^^-T^.
thus

^IIPlIT ^||p||T2DI•-^^-o(^+W-t""""•""")•
It is clear that I - ^ H P I I ^ - ^ = O^"^),
thus

g2| |p| |T^-^OT-0^
since T| ^ 2 [| p |[-e. Because Ta ^ T+l we have e^1112) = O^11'1). A similar
argument works for Dj.^

We next observe that if z e C and | z | = 1, then

e^+e"9
1 ̂  ———^—^ ^ for every real a > 0.

\efl—e " z ]

Thus ^ (T) ^ 0 (T), (0 as in Section I).
Let

A(T)=f\^^iMfVan^(j|Xo||Od^

Integrating by parts obtains

A(T)=^(T)^n^lMT^an^(||Xo|iT)+ [^(OWO)^

Here we have set

W(Q = ̂ ^nft^JM ̂ an^(||Xo||Oy
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An easy estimate shows that if a > 0 and k e N, then ian^ at = 1+0 (e~2^). Using
this and the fact that 11 ^ 2 || p ||-(|[ Xo ||/2), we obtain

^Hpl lT pTA(T)==^-^^^+O^T)+ ^(OW(OA.2||p|| Jo

Now it is easy to see that

FT /»T
^(t)W(t)dt=\ 0(e^\\^\-\\^\\^)dt.

Jo Jo

This uses the estimate for ^ and the fact that sech2 ^t = 0 (e'2^). By our choice of T|
we obtain

^2| lp| |T

^-^^^^
Computing A (T) from the definition and using the fact that if | z [ = 1 and a > 0 then
j ^ — z ^ " " ) ^ e<t—e~a we obtain

A(T)^<D(T)^i;(T).

This completes the proof of the estimate and the main theorem.

V. Some Calculations

In this section we calculate the sectional curvatures of F\G/K. Clearly it suffices
to calculate the sectional curvatures in T^ (G/K) = p. Let X, Y e p be orthonormal
with respect to B. If S = Span { X: Y }, then the sectional curvature of S, K (S) is given
by K(S) = B([X, Y], [X, Y]) (see Helgason [6 a] p. 206). Let ^ = sup K(S), and

let 8 == inf K(S). s£p

ssp
Now B ([X, Y], [X, Y]) = -B (ad (X)2 (Y), Y). Fix X e a so that B (X, X) = 1,

since K is transitive on p this is sufficient, then ad (X)2 leaves p invariant and is semi-simple.
Thus ^ = sup - B (ad (X)2 (Y), Y) = - T where T is the smallest non-zero eigenvalue

Yeal
1 | Y | 1 = 1

of ad(X)2 on p, similarly 8 = -L where L is the largest eigenvalue of ad(X)2 on p.
By using the Cartan involution on 9 it is easy to see

T = min X(X)2 and L = max X(X)2.
^.eA+ X e A +

Case 1 (q == O):

B (X, X) = 1 implies ^ (X)2 == 1 p.
2

Thus in this case the sectional curvature has constant value —(1/2) p.
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Case 2 (q + 0). - In this case 2 Ko is the largest root, thus ^ = -[1/(2/?+8 ̂ )], and
5 = -Wp+Sq)].

We next compute 2 || p ||. If q == 0 then || Ao || = (2^)-1/2, thus 2 || p || = (p/2)112.
The dimension of r\G/K is p+1 thus putting things together

a = (dim F\G/K -1) ̂ /-curvature,

(see Theorem 1).
When q ^ 0, then

2||p||=—p±2i—
" " (2p+8^21

Now for a rank-one locally-symmetric space of negative curvature with Riemannian
metric Q, we have Q = K B for X > 0. If SQ is the scalar curvature for Q, then
SQ = W/A, where n = dim r\G/K. When Q = B one checks directly that

Q||F||_4(n^l)n(^)+l
""1 6n(-01/2 •

By using the fact that X, = n/S^ and the way a and ^ depend on K one obtains the formulas
for a in Theorem 1 and the remark following Corollary 3.
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