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THE PLANCHEREL
FORMULA FOR GROUP EXTENSIONS II

BY ADAM KLEPPNER AND RONALD L. LIPSMAN (1)

1. INTRODUCTION. — In our previous work [7] we discussed the problem
of computing the Plancherel measure of a group in terms of the Plancherel
measures of a normal subgroup and the corresponding little groups. In
this paper we want to complete those results in several respects.

First, the methods we adopted in [7] led us in a natural way to consider
non-unimodular groups. For those, only the class of Plancherel measure
and not the measure itself, is uniquely determined. Though we were
able to compute the exact Plancherel measure within the class for certain
unimodular group extensions, we were not able to do so in general. We
remedy that here in Theorem 2.3 with the precise Plancherel measure
for a general unimodular extension.

It is worth nothing that the proof of Theorem 2.3 (although somewhat
disguised) is actually quite similar to the general argument presented
in [7, Theorem 10.2]. The main difference is the following : instead
of relying on unitary equivalences between the representations that occur
at various stages, we keep careful track of the functions and traces which
arise in the extension procedure. The key fact that makes it possible to
do this is the unimodularity of almost all the little groups {see Lemma 2.2) ;
the main tool for actually carrying out the analysis is the character for-
mula [7, Theorem 3.2].

In paragraph 3, we use Theorem 2.3 to compute the Plancherel measure
of several different types of unimodular groups : namely, the inhomo-
geneous Lorentz groups; the Cartan motion groups; a semidirect product
of semisimple and nilpotent Lie groups (in which the Well representation

(1) Prof. Lipsman was partially supported by NSF grant GP 33039.
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104 A. KLEPPNER AND R. L. LIPSMAN

arises); and certain kinds of type R solvable Lie groups. We also give
the Plancherel measure class of a non-unimodular, non-type I group which
was first described by Mackey.

The second topic we discuss is a natural consequence of ideas arising
from the non-unimodular Plancherel theorem itself. Specifically, we
shall describe the orthogonality relations for non-unimodular groups.
In addition, we obtain necessary and sufficient conditions for an irre-
ducible representation to be in the discrete series of a non-unimodular group.
In the spirit of [7, § 6] we work as far as possible with quasi-Hilbert
algebras. To a large extent (at least in the initial stages), our results
are an adaptation of RieffeFs results [11] on Hilbert algebras to the case
of a quasi-Hilbert algebra. However at the end, the results on groups
{see Theorems 4.8, 4.9) present some interesting differences from the
unimodular case. First, an unbounded operator, which appears in the
Fourier transform {see [7, Theorem 6.4]), also occurs in the orthogonality
relations. Second, not all the coefficients of a discrete series represen-
tation need be square-integrable.

Unless mentioned otherwise, all notation and terminology will be the
same as that established in [7]. However, we only assume our groups
are separable in paragraphs 2 and 3; it is not necessary for the results
of paragraph 4.

2. THE UNIMODULAR CASE. — We begin by generalizing [7, Lemma 4.3]
to the case of a unimodular group with multiplier. Let co be a normalized
multiplier on G. Consider the twisted group algebra Li (G, co), that
is the space Li (G) with the usual involution and multiplication

f * Ji (x) == fco (x, y-1) f(xy-i) h (y) dy, xeG, f, A€LI (G).
^G

[This is a change of notation from [7, § 8] where we denoted this algebra
by Li (G, co).] The co-representations of G correspond in the usual fashion
to non-degenerate -Ar-representations of Li (G, co).

Now let G (co) be the extension of T by G defined by co {cf. [7, § 7]).
For each /*€Li (G, co), we put ^ (t, x) = r1 f{x), t€T, x^G. It is easily
checked that f -> p is an isometric ^-isomorphism of Li (G, co) into
L, (G (co)).

We denote by C* (G, co) and C* (G (co)) the enveloping C*-algebras of
these algebras. They are respectively the completion of Li (G, co)
for the norm

f-. sup \\a(f)\\
(T€O
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THE PLANCHEREL FORMULA II 105

and the completion of Li (G (co)) for the norm

h -> sup || TT (h) I I ./\
'n€G((jO)

If cr is an co-representation of G, then a0 defined by a0 (^, ^) == (a- (a;),
^€T, rr€G, is an ordinary representation of G (co). The map o- -> cr°

/\
is an injection of G^ into G (co) which is an isomorphism for the Mackey
and topological Borel structures.

Since T is a central subgroup of G (co), each TieG(co) reduces on T
to a multiple of a character, i. e., there is n€Z such that ri (^, x) = r TI (1, x),

/\ ( /\ ) /\
(€T, ^€G. Let "G (co) = ) 7 i € G (co) : T. ((, x) = t71 r. (1,^)). Then G (co)

is the disjoint union of the sets "G (oo), and the image of G" under the map
/\

(T -> <7° is precisely iG (00).

For all creG^ and /'€Li (G, co), we have

^ W -ff^ ̂  x) ̂  (t, x) dt dx = ̂  (/•).

On the other hand, if ^^^((o), n ̂ - 1, then

TT (^) = f^-i 7: (1, x) f(x) dt dx == 0.

It follows from this that the map f -> f^ is also an isometry for the norms
induced by C* (G, co) and C* (G (co)). Because the closure of an ideal
is an ideal, we may identify C* (G, co) (by means of the extension to the
enveloping algebras of the map f -> /**) with an ideal in C* (G (co)).

Let OG((O) be the trace on C* (G (co))4^ defined by the point measure
at the identity. By restriction this defines a trace S^ ,w on C* (G, (o) ,̂
more precisely

^(f)=^)(^), /•eC*(G,c^.

We need an alternate description of this trace and for this it is convenient
to introduce the following terminology. A function f on G will be
called ^-continuous if f^ is continuous on G (co); and f will be called
^-positive-definite if f^ is positive-definite on G (co). Let P (G, co) denote
the space of co-continuous and co-positive-definite functions on G.

LEMMA 2.1. — (i) OG(^) is a lower semicontinuous, semifmite trace on
C* (G, co)-.

ANNALES SCIENTIFIQUES DE I/ECOLE NORMALE SUPERIEURE



106 A. KLEPPNER AND R. L. LIPSMAN

(ii) If^ € Li (G, CL)) is an ^-continuous function such that for every ^-repre-
sentation a- of G, a- (^) 15 a positive operator^ then ^peP (G, co)nC* (G, co)4'
and o^co (^) === ^ (e).

Proof. — (i) Since OG(^) is lower semicontinuous, so is the trace o^.
To show it is semifinite, it is enough to show it is densely defined [4, 6.1.3].
Let P : Li (G (co)) -> Li (G, co) be the projection defined by

Pf(t,x)=t-ifsf(x,s)ds.
lYm

P is an algebra homomorphism and may be extended to the projection
of C* (G (co)) onto C* (G, co). One sees easily that if m is the ideal of
definition of SG((O)? then P m is the ideal of definition of S^. Since m is
dense in C* (G (co)), P m is dense in C* (G, co).

(ii) By the hypotheses, ^eLi (G (co)) and is continuous. If Ti^G (co),
then Ti = a-0 for some aeG^ and TC (^ft) = a (^) is a positive operator.

/\
If Tie^co), n^l, then TI (^) == 0. Hence cr (^) is positive for all

/\
^eG(co) . But any representation of G (co) may be expressed (possibly
not uniquely) as a direct integral of irreducibles; hence Ti (^pft) is a
positive operator for every representation TT. By [7, Lemma 4.3],
^ € P (G (co)) n C* (G (co))- and S^ (^) - ̂  (1, e) = ̂  (e). It follows
that ^(G.^nC^G.co)- and 6\, (^) = o^ (^) = ̂  {e).

Remark. — Recall that the projective Plancherel Theorem [7, Theo-
rem 7.1] provides a decomposition of the trace S^^ into " characters 9?.
It says that under a certain type I assumption (which can be weakened —
see the comments after the proof of Theorem 2.3), there exists a unique
Plancherel measure p^ on G^ such that

^(Q- fTr(7d^o)(cr).
J^

Now we pass to a brief discussion of moduli of automorphisms and
relatively invariant measures. Let a be an automorphism of G.
In the following we define all ( < dual " automorphisms in a contra-
gredient fashion, and continue {see [7, § 1]) to write actions on the
right. So (no) {x) = TI {x a-1), iieG, (f a) {x) = f {x a-1), /•€ Li (G),
<( [j-.a, /*)> = <( p., /*a~1 ^>, ^ a measure, etc.

If a is an automorphism of G, we denote by A^; (a) its modulus, that is

(2.1) Ma) f ( f ^ ( x ) d x = T f ( x ) d x , /-eL,(G),
^G ^G

4° SERIE —— TOME 6 —— 1973 —— ?1



THE PLANCHEREL FORMULA II 107

or v .a = A^ (a) v for Haar measure v. If H is a closed subgroup of G
3uch that a [n is an automorphism of H, we write Aji (a) for A n ( a [ i i ) .
Suppose that G/H has an invariant measure. Then we may choose
Haar measures dx, dh on G, H and an invariant measure dx on G/H such
that

(2.2) ff(x)dx= f ff(hx)dhdx, f<=L,(G).
^G ^G/IT J \\/ G (y G/1I ty 11

Let a be the homeomorphism of G/H defined by passage to the quotient,
Let AG/H (a) be the modulus of a,

(2.3) AG/H (a) f f a (x) dx = f f{x) dx, feL, (G/H).
^G/ll ^G/II

It is a simple matter to verify from (2.1), (2.2), and (2.3) that

AG/H (a) = AG (a) An (a)-1.

In particular, we consider the special case where H is a closed normal
subgroup N and a is an inner automorphism ia., ^ (y) === x~1 yx, x, t/CSG.
As we observed in [7, § 10], A^ (^) === A^ (^). Also A^ (^.) == A^ (^).
Writing A^ (.r) for A^ (^), we have

(2.4) A^/^ (x) == AG (̂ ) AN (x)-\ xe G.

Assume now that N is unimodular and has a type I regular repre-
sentation. Let a be an automorphism of N. Since a acts on N, it also
acts on the Plancherel measure ^. We show ^ is relatively invariant.
First if /'€ Li (N), we have

(f a)- (y) == y (f a) == fy (n) /• (n a-Q dn
^N

= AN (a)-^ fy (n a) f (n) dn = A^ (a)-^ f(ya-Q = A^ (a)-i fa (y).
^N

That is
(/•ar-A^a)-^.

But then for feC, (N),

fll f(T) II-2 ^N (T) - fl /•(n) 2 dn == AN (a) f| fa (n) |^ dn
*y ^ €/-. tVN

= AN (a) f[| (far (T) ||i d^ (y) = AN (a)- f\\ fa (y) ||^ d^ (r).
t7^ ^N

That is
(2.5) ^.a ==AN(a)-1^.

ANNALES SCIENTIFIQUES DE I/ECOLE NORMALE SUPERIEURE



108 A. KLEPPNER AND R. L. LIPSMAN

We can use this now to prove

LEMMA 2.2. — Let N be a closed normal subgroup of a unimodular
group G. Suppose that N has a type I regular representation and that [1̂
is countably separated. Then for [^-almost all y, Gy/N is unimodular.

Proof. — [J-N denotes a pseudo-image of [̂  on N/G. It is unique up
to equivalence and the countable separability is independent of the repre-
sentative in the equivalence class. Then for [^-almost all y, there exist
a quasi-invariant measure v^ on the homogeneous space G/Gy such that

ff (T) d^ (T) = f f f (T. g) d^ (g) d^ (y)
^ "N/G J^

{see [7, Theorem 2.1]; as usual g and y denote respectively the images
of g and y in G/Gy and N/G). Now [̂  is relatively invariant under the
action of G, in fact by (2.5) :

^.g =^(g)-1^.

Combining this with (2.4), we obtain
^.g == AG/N(^N.

But then exactly as in [7, Theorem 2.1], we use arguments analogous
to [8, Lemmas 11.4, 11.5] to conclude that [J^-almost all the measures Vy
are relatively invariant with modulus A(^ (g),
(2.6) ^. g = A^ (g) ̂ , a. a. y, g e= G.

Finally it is a simple and well-known observation that the homogeneous
space G/H can carry a relatively invariant measure v if and only if the
map h -> A(, (h) Aji (/i)~1 extends from H to G as a group homomorphism.
In such a case v .g = A^ (g) A,( (g)-1 v, g€G. Combining this fact
with (2.6) and the identification

nr ^
^"G^

we obtain A^ (g) == A^ (g) A^/T, (g)~1, g€G, a. a. 7. In particular,
for [^-almost all y, the modular function A(^ ^ is identically one. That
completes the proof of the lemma.

Remark. — It is not true in general that every Gy/N is unimodular.
For instance, the stability group of the trivial representation, namely G/N,
need not be unimodular.

We come now to the principal result of this section.

THEOREM 2.3. — Let N be a closed normal (unimodular) subgroup of
the unimodular group G. Assume that N has a type I regular representation,

415 SERIE —— TOME 6 —— 1973 —— ?1
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that [J.N is countably separated, and that G^/N has a type I regular ^^-repre-
sentation for almost all "y. Then G has a type I regular representation and
the Plancherel formula is determined as follows : Fix Haar measure dg
on G. Let ^ be any pseudo-image of Plancherel measure on N. Then for
[^-almost all y, there is a uniquely determined Plancherel measure p-y === [^GV/N,M

/ /\ VT

on \G^/N/ such that

(2.7) f 9 (g) |^ dg = f f |[ 7:,,, (cp) ||i d^ (̂  d^ (y), ?eCo (G).JG ^'(c^
Proof, — We shall first prove (2.7) and then deduce that G has a type I

regular representation. First let dn be any Haar measure on N and
let [Ly be a pseudo-image of Plancherel measure on N/G. We begin the
computation exactly as in the special cases treated in [7, § 4, 5, 8]. Let
yeCo (G) and put ^ = y * 9*, 0 = ^ ^. Then by [7, Lemma 4.3 (ii)],
0€C* (N)^ and

(2.8) f| cp (g) \^ dg == ^ (e) = 9 (e) = ̂  (0)
^G

=fTrY(9)d^(y)=f f Tr (y. g) (9) d^ (^) d^ (y).
l/^ "N/G "G/G^

The last equality is justified by [7, Theorem 2.1]. Moreover, having
specified the choice of [^, the relatively-invariant measures Vy are uniquely
determined for almost all y. There is then a unique choice of Haar
measure on G^ so that

(2.9) ff(x) AN (x) dx= f f f(hx) dh dv^ (x)
^G ^G/GY ^G^

for almost all y. Next, since dn is already chosen, this specifies a choice
of Haar measure on G^/N. By Lemma 2.2 almost all the groups Gy/N

/ /\ Y
are unimodular. Therefore a choice of Plancherel measure [̂  on YGy/N/
is fixed as well. We shall maintain this choice of measures throughout
the rest of the proof.

Comparing (2.7) and (2.8), we see it is enough to show

(2.10) f Tr n,,, (^) d^ (̂ ) = f Tr (y. g) (9) dv, (g)
'(c^ JG/^

for all Y such that Vy is relatively invariant and Gy/N is unimodular. Taking
such a y, we apply the character formula [7, Theorem 3.2] to the repre-

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE 15



110 A. KLEPPNER AND R. L. LIPSMAN

sentation 11̂ . As we have observed already in (2.9), the q function
corresponding to the relatively invariant measure v^ is AN and so [7,
Theorem 3.2] yields

Tr 7 ,̂ ̂  (^) = f AN (g)-^ Tr ( f ^ (g-^ hg) (y' (g) ^ " ) (h) A^ (A)-1/2 dh) dv^ Q).
^G/G^ WG^ ' ]

We denote by A^ the integrand in this expression

A, (g) = AN (g)-1 Tr ( f ^ (g-^ hg) (/ 0 ̂ " ) (h) A^ (h)-^ dh\
VG^ • /

From the proof of the character formula [7, Theorem 3.2], we know
that Acr is a non-negative function, possibly assuming the value + °0?
which is measurable as a function of g. In fact, with the notation as
in the proof of [7, Theorem 3.2], we have

A<, (g) === Tr ̂  (g, g\
where

^ (̂  9) = ( ^9 (^ 9i) ^y (^ ^i)* d^T (g^
^G/G^

and <&y is the measurable operator-valued function

^ (̂ , ^0 = AN (^)-^ f 9 Ori A^O (y' (g) ^//) (A) AN (/^)-1/-2 d/!.
^G,

By Tonelli's theorem, we may write the left-hand side of (2.10) as

f f A, (g) d^ (g) d^ (^) = f f A, (g) d^ ^) d^ (g).
'(c^n'G/^ '^^(G^P

Therefore our proof is reduced to showing

( A, (g) d^ (̂ ) = Tr (y. g) (9), ^ € G.
^//x^-/

\G^/N^ •

Now let { ^ } be an orthonormal basis for <?£p and { Y]^ } an orthonormal
basis for 3€^ Then

A^ (g) = AN (^y f ^ (g-1 hg) ((y' 0 ̂ //) (A) .̂ (g) r ,̂ ̂  0 ̂ ^) AG, (/i)-1/2 d/i
./ ^T

= AN (^y f f^ (^-1 nhg) (Y (nh) ̂  ̂ ) (̂  (nh) ̂ , ̂ ) ̂  (nA)-v2 dn dh.
^ . ^G^/N ^N

Let

^ .̂ (A) = AN (^)-1 f^ ^-1 nhg) (y' (nA) ,̂ ^) A. (nA)-1/2 dn.
JN

4° SEBIE —— TOME 6 —— 1973 —— ?1
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Then we have

f ^ (9) d^ (^ == f ^ f ^,,. (A) (^ (h) Y^, -nj) dhd^ (a).
(^ (O)̂  ./ J^

Since

^ f 12^ (A) (^ (h) r^ ̂ ) dh = Tr ^ (̂ )̂
-̂ ^G^N

we then have

f A, (g) d^ (a) = f ^ Tr (T (i2, ,) d^ (^.
(ON)̂  '(o^N)'^ -

Thus it remains to prove

f ^ Tr a (̂ ,,) d^ (cr) = Tr (y. ff) (9).
(G>r^ -

Suppose for the moment that Q^ satisfies the hypotheses of Lemma 2.1,
that is H^eLi (GY/N, ^) and is an co^-continuous function such that
o-i (^i,g) is a positive operator for every ^-representation 04 of Gy/N.
Then by that lemma, and by the projective Plancherel theorem [7,
Theorem 7.1], we would have

f ^ Tr a (P., ,) d^ (̂ ) =2 f Tr ^ ̂ ' ̂  d^ (CT) -2 ̂ "- (e)(o^r^ - - '(oy
=^ A^ (̂ -1 f^ (^ n )̂ (y (n) ̂  ̂ ) dn

t7N

-2 ^(^(T^^-OS.^^
. J N

= Tr FO (7z)y(n.i^)dn = Tr(y.^)(0).
«/N

It remains to show that 12̂  satisfies the conditions of Lemma 2.1.
Using the notation employed in the discussion preceding that lemma,
we have

,̂, (/, h) = A, (g)-^ t-^ f^ (g-^ nhg) (Y (nh) ̂  ̂  ̂  (nA)-v2 dn
^N

= ̂  (g)-^ ̂  (^ nhg) (y'oo (t, nh), ̂  ̂  ̂  (nh)-^ dn,
^N

where
y'oo (t, h) = t-^ Y (A).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



112 A. KLEPPNER AND R. L. LIPSMAN

Note that since Y is an co^-representation of Gy, Y°° is an ordinary repre-
sentation of GY (^y). In particular, the matrix coefficients of y'°° are
continuous functions on G^ (coy). Thus it follows that Qf^ is a conti-
nuous function on Gy (^y), constant on the N-cosets, and compactly
supported modulo N, i. e.y

^LeCo[(G,/N)(^)].

Therefore t2^€Li (G^/N, co^) and it is oo^-continuous.
Finally, let 0-1 be any co^-representation of G^/N, T] € ^C^. Then

(̂  (̂ ) Yi, vQ = f ^ (h) (^ (A) vi, vi) dh
^G^N

= f Ap, ((̂  ̂  (^ n )̂ (y' (n/i) ̂ , ̂ ) Ae.^ (n/0-v2 dn (̂  (A) r^, ^) ̂
^G^/N ^N

= ̂  (g)-^ f ^ (g-^ hg) ((y' (g) ̂ ) (/i) ̂  (g) ri, ^ 0 ̂  ̂ , (h)-^2 dh.
J^

But as we have seen

AN (9)-1 f ^ (g-1 hg) (y' (g) a,) (A) A^ (A)-v^ dA
^Gy

is precisely the kernel ̂  (g, g) of the positive operator

^T, o, W = Indg^ (y' (g) ^) (^), ^ = cp * ?*.

Hence c7i (^i,^) is a positive operator on ^C^. That completes the proof
of formula (2.7).

Let [J^ denote the image of the measure f [^ dp.^ (y) under the map
^ y^

(T? (J} -> ^T^- Then ^ is a measure on G and we may rewrite (2.7) as

f l? (^1 2 ^=f l |7^(?) | ] I^G^) .
^G ^e

From this, it follows that ^ is concentrated in the set G^. Indeed for
fixed non-zero y € C o (G), the set •} T C € G : [| ^ (<p) || 2<< oo j has complement
of measure zero. But by [4, 6.7.2], [| TI (y) H a < oo guarantees that ^eG^.
Therefore [̂  is canonical [7, Lemma 6.3], and the corresponding decompo-
sition of the left regular representation

/-»y? /'*\i? /"* y?
^G = / ^®1^ ^G (^) = / / ^Y, (7 ® ly, o ^Y (<7) d^N (?)

^ '^'(GON)^

is the central decomposition. Hence X^ is type I. This finishes the
proof of Theorem 2.3.

46 SERIE —— TOME 6 —— 1973 —— ?1



THE PLANCHEREL FORMULA II 113

Remarks 1. — It is clear from the proof that if jZ^ is replaced by an
equivalent pseudo-image c (y) d^ (7), c (y) > 0, then almost every [̂

is altered by c (y)""1. Thus the Plancherel measure ^ = \ ^ d\^ (y) is
^G

uniquely specified as a " fibered measure 9?.

2. We would like to comment here on the questions raised in [7, end
of §10]. Theorem 2.3 provides the precise Plancherel measure in the
case of a unimodular group extension. This settles completely question 5.
Theorem 2.3 also settles question 3 in the unimodular case. A somewhat
similar result addressed to question 3 has already been stated by Mackey
in [10, p. 323]. E. Carlton has shown that the assumption that G (co)
has a type I regular representation in the projective Plancherel theorem
can be replaced by the assumption that G has a type I regular oo-repre-
sentation. In fact we have used that in Theorem 2.3. This handles
question 2. Question 1 is still open; but there is increasing evidence
that in fact a CCR group must be unimodular. Finally we have not
considered question 4 any further.

3. It often happens that there is a finite disjoint collection { t2i, . . ., iln}

of [^-measurable, G-invariant subsets of N such that U t2y has comple-
/

ment of measure zero, and sections Sj : H//G — ilj along which the stability
groups and multipliers are constant, G^.(^) == Hy, .̂(7) = <^/, yG^/G.
Then in the disintegration of measures, we can write

ff (T) d^ (T) =^ f f f^' ̂  • ̂  d^ ̂  d^ ̂
^ j "Qy/G^G/Hy

because we can absorb any difference in the relatively invariant measures Vy,
'Y€^y/G, into the pseudo-image p^. Thus we also have that the projective
Plancherel measures p^y? ye^y/G, are constant along the section, [^ = p-y
say. Then the Plancherel formula takes the form

f| cp (g) p dg =V f f || TT^ (cp) \\l d^ ̂  d^ (y).
JG / '^'(O)^

For each j, the pseudo-image p^ IQ /G ls now uniquely determined to
within a constant.

3. EXAMPLES. — In this section we use the results of paragraph 2 to
compute explicitly the Plancherel measure of several different kinds of
unimodular groups. We shall also discuss a non-unimodular example

ANNALES SCIENTIFIQUES DE I/ECOLE NORMALE SUPERIEURE
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which we feel is interesting, even though the discussion does not depend
on paragraph 2.

(a) The inhomogeneous Lorentz groups. We computed this example
in [7, § 10], although at that time, we could only specify the equivalence
class of Plancherel measure. Recall that (in the notation of that section)
the irreducible representations of G,, == K1^. Hn fall into four classes :

(i) ^O,(T, creH^, the representations which are trivial on R"^;
(ii) ^,,, ae(MN)',

^-^ ae(Mvr;
•A

(ill) Tt=hr,a, ^GK, r > 0;

(iv) n^^ reH^i, p > 0.

In particular, within each class the stability groups are constant. The
first two classes have Plancherel measure zero. It follows from the
computations in [7, §10, Example 2], Theorem 2.3, and Remark 3 of
paragraph 2 that the Plancherel formula for G,, is

f \ ? (ff) I 2 dg === c, r ̂  (|| 7^, (cp) [|| + [17:_^ (cp) |lj) dim cr r- dr
J Gn ^O .

(re^

+ ̂  f f II 7^ P (?) Hi ^H,_, (T) p71 dp.
0 fin-l

The constants Ci, €3 depend only on the dimension n and the normali-
zation of Haar measure dg.

(&) Cartan motion groups. Let G be a connected semisimple Lie group
having finite center. Fix a maximal compact subgroup K and let
S = f + V be the corresponding Cartan decomposition of the Lie algebra.
Then K acts on p via the adjoint representation. Considering p as a
vector group, we define the Cartan motion group to be the semidirect
product H = p . K . We apply the extension theory to the pair (H, p).
First identify p with its dual via the Killing form. Let rt be a maximal
abelian subalgebra of p. Choose a system of restricted roots A for (g, a)
and let 2 denote a choice of positive roots. Finally, let flT^ denote the
corresponding positive Weyl chamber o^ = { Y€ d : a (Y) > 0, all aeS }.
Then it is known that ii-4- = { Y€ a : a (Y) ̂  0, all a e S j is a funda-
mental domain for the action of K on p. Moreover we have the integral
formula

(3.1) /7(X) dX = 1 f C f(M k Y) ] noes a (Y) | dk dY,
^V a/- /K/M^a+
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where M is the centralizer of a in K (M is also the centralize? in K of any
Y€(l4"), 6?X, rfY, dk are invariant measures chosen in a canonical fashion,
and w is the order of the Weyl group W = [Norm (rt) n K]/M. The reader
can find this proven in [6, p. 380, 381]. By Theorem 2.3, the Plancherel
formula for H becomes

fl 9 W I 2 dh - c f V|| 7T^(9) Hi dim^ I II^s a(Y) | dY
+ <T

where c is a fixed constant computable in terms of the normalizations
of dh and the measures in (3.1). Actually this result could have been
obtained from [7, Theorem 4.4] which is of course a special case of
Theorem 2.3. We apologize for omitting it at that time and we thank
Cary Rader for bringing it to our attention. Note also that it is another
specific example of the general situation considered in paragraph 2,
Remark 3.

(c) Weil representations. Let H = H,n be the group of {m + 2) X (m + 2)
matrices of the form

1 Xi ... Xjn Z

i 0 ^

0 * l y'm
l-

with real entries. H is a two-step nilpotent group called the m111 order
Heisenberg group. The center of H is the subgroup Z in which all entries
except the z-component are zero. If Z is identified to R, then the commu-
tator operation induces a symplectic form B on H/Z. Using this form,
H may be realized as R^XR with multiplication

(v^ z,).(u^ z^ = (u, + v^ z, + z^ + ̂  B (d, 1:2)).

Now consider Sp (B), that is the group of linear transformations of R2^
leaving B invariant. This is a connected semisimple Lie group. Sp (B)
also acts as a group of automorphisms of H ̂  R^ X R by leaving fixed
the second component, that is the center of H. We wish to apply the
Mackey theory and Theorem 2.3 to the group G = = H . S p ( B ) .

It is well-known that the irreducible representations of H fall into
two classes : those trivial on Z, i. e., the characters of H/Z ^ R2^; and a
one-parameter family rip^CR*. TC^ is the unique infinite-dimensional
irreducible representation whose restriction to Z acts via the non-trivial
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character z -> e^\ Note that since Sp (B) leaves Z invariant, it follows
that r^.h and ^ are equivalent for AeSp(B). In [5] (2) Duflo shows
explicitly how to construct the extension T^ of ^ to G. It is a protective
representation [whose restriction to Sp (B) is the so-called Well represen-
tation], and the order of the multiplier is 2. In fact, let Mp (B) be the
metaplectic group, that is, the two-fold covering of Sp (B). Let
^ : Mp (B) -> Sp (B) denote the covering projection, D = ker ^, ft (D) = 2,
and denote by ^-1 : Sp (B) -^ Mp (B) a Borel cross-section. Then Duflo
constructs an ordinary representation 11̂  of Mp (B), non-trivial on D
so that 71, {h) = Tl^ (^-1 (A)), AeSp (B). Let T be any irreducible repre-
sentation of Mp (B) which is not trivial on D. Then the collection of
all irreducible representations of G whose restriction to H gives a multiple
of TT^ is precisely

^,(7 = 7;Y ® 0-"

where ^ {nh) = a (A), n€H, heSp (B) and cr {h) == T (^-1 (A)), AgSp (B),
The Plancherel formula is then

f l ? (^) I 2 dg== F f || TT^ (9) H I d^ (a) | y |- dy
^G ^—— 00 ^ /\

Mp(B)'

where Mp (B) '=== { reMp (B)" : T „ ̂  1 } and ^ is the restriction of

Plancherel measure on Mp (B)" to Mp (B/. Note that the irreducible
representations of G trivial on Z, i. e., the representations of R^.Sp (B)
form a set of Plancherel measure zero here. Finally, we note that this
example can be generalized to a great extent to the case of other locally
compact fields.

(d) Certain semidirect products. We give a result which has appli-
cation to certain kinds of solvable Lie groups.

THEOREM 3.1. — Suppose G is a semidirect product G == N.H where :
(1) N is normal, unimodular, and type I;
(2) H is abelian'y
(3) H -> Aut (N) has co-compact kernel.

Then N is regularly embedded in G, G is unimodular and type I (actually CCR
if N is CCR) and the Plancherel formula is

(3-2) flpQ/)!2^^ f ll^.(?)lli^T^)^N(T)
^ N •^/H <^7N •"N/H t/^

(2) The referee has reminded us that Duflo's work is a generalization of [12], especially
in this context,
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where ^ may be taken to be the image of [^ and the projectile Plancherel
measures [̂  can be specified explicitly.

Proof. — Let D be the kernel of the homomorphism H -> Aut (N).
By assumption H/D is compact. The group Gi = N.(H/D) is well
defined and is an extension of N by a compact abelian group. Thus N
is regularly embedded in Gi. Since N/G === N/Gi, it follows that N is
also regularly embedded in G.

It is obvious that (H/D),^ == Hy/D. Let co^ be the Mackey obstruction
to extending y to a representation of N.(Hv/D). We also write co^ for
the lift of co,. from Hv/D to H^ via the canonical projection p : Hv ->- Hy/D.
Now let ^\ be the extension of y to N.(Hy/D) as an co^-representation.
Setting Y (nh) === ^\ (np (h)), n€N, A€H^, we see that y7 is an co^-repre-
sentation of N.H-p Applying [9, Theorem 9.3] to the group extension
D £ H with multiplier cop we see (because the little groups are compact
and D°^ = D) that Hv must have a type I co^-dual. Therefore G is a
type I group (again by [9, Theorem 9.3] applied to N^G).

Regarding the unimodularity, we have by (2.4) :

A(, (n/i) = An (h) ̂  (nh) = An (h) ̂  (n) A^ (h) = A^ (A).

But the homomorphism h -> A^ {h), H -> R* has a kernel at least as big
as D. Hence A^ (H) == A^ (H/D) is compact, and so trivial. Therefore G
is unimodular.

The irreducible representations of G are given by

7^, ̂  = Ind§.H, T' ® ^'» T e N/H, ^ € ftfr.

Since D^Hp G/N.H^ H/H^, is compact. If /^(^(N.H.), then

(T' ® ^ " ) (f) = ( T' (^) ^ W f (^) dn dh = f f^(n)f {nh) dn y' (h) a (h) dh.
^NH^ J^ J^

If Y is CCR, then K/ (h) = j 7 (n) f (nh) dn is a compact operator.
^ N

Then h -> K/ (h) Y (h) a" (h) is a continuous compact-operator-valued
function on Hy having compact support. Therefore (y' 0 a " } (f) is a
compact operator. Since inducing from a co-compact subgroup preserves
the CCR property, we see that N CCR ensures that G is CCR.

The Plancherel formula (3.2) follows immediately from Theorem 2.3. In
addition, Theorem 2.3 and [7, Theorem 4.4] show that ̂  is the image of ^
and the measures [̂  are obtained as follows. Fix Haar measure dy on D.
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For each y, choose normalized Haar measure on H^/D. Then there is
a unique Haar measure v^ on Hy such that

f /^T-f f f ( y x ) d y d x .ttV^
H.. ^II^/D^D^Hv ^IIv/D ^D

This choice of v^, uniquely specifies the projective Plancherel measure [ .̂

Remarks. — (1) This theorem applies in particular to the collection
of simply connected almost algebraic solvable Lie groups which are type R
and whose nilradical is regularly embedded. If the stability groups H^
happen to be connected, the obstructions are trivial — since then the
compact connected abelian groups H^/D can have no multipliers. In the
general case, the obstructions are computed in [1].

(2) An interesting solvable Lie group considered by many is the so-
called oscillator group [13]. We note that using (rf), or a slight variant
of (c), the Plancherel measure of this group can be computed easily. We
leave the details to the interested reader.

Lastly we come to the non-unimodular example.
(e) A non-type I group. Mackey [10] has given an example of a non-

type I group with a type I regular representation. We shall compute the
Plancherel measure class of that group. Let H be the Mautner group,
H == C^R where R acts on C2 by

(2, w). x = (e27^ z, e^1^ w), x e R, z, w €. C,

X a fixed irrational number. H is a simply connected type R solvable
Lie group in which C2 is not regularly embedded (and so not type I [1,
p. 129]). Let 6 : H -^ H/C2 == R be the canonical projection.

Now H acts on the real line by : y . h = e Q ( h ) y , y€R, A€H. Let
G == R.H be the corresponding semi direct product. G is not unimodular
and not type I, while the normal subgroup R is of course type I. There
are three orbits for the action of H on ft ̂  R, namely { ( — oo, 0), { 0 },
(0, oo)}, so R is regularly embedded in G. At this point we choose a pseudo-
image of [J-n on R/H be assigning measure 1 to the two intervals and 0 to
the remaining one-point orbit. For the stability groups, we have

Ho == H, H±i = Ker 9 === C2,

and the multipliers are trivial. The first above occurs on a set of ^-mea-
sure zero. Hence G has a type I regular representation and [7, Theo-
rem 10.2] gives

<T) /T\
/t \D /"»Vl7

^G ^= \ 771,00 lo dff Q) 7T_i.cr® Icr^O-
^c2 ^c2
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where 1^ is the identity on ff€±i^ = space of the induced representation
Ind^.ii^ =L 1 cr? and do- is Haar measure on 62.

4. ORTHOGONALITY RELATIONS. -— All unexplained terminology and
notation in the following can be found in [7, § 6]. However we observe
that the results on quasi-Hilbert algebras from [7] which we use here are
valid without any assumption of separability.

Let .31 be a quasi-Hilbert algebra with a semi-finite left ring. Let (be
a faithful normal semi-finite trace on 1L (51); set n = n<, the Hilbert-
Schmidt operators with respect to t; and let M be the corresponding tracing
operator, n is a full Hilbert algebra [3. I, § 6, Theorem 1]. We denote
by 05^ the set of left bounded elements a in the domain of M for which
Uo € n. Then M is the closure of its restriction to CO^ and the map M a -> Va
of (®M into tl extends to a unitary map Y of ^€^ onto S€^ which carries "U (51)
onto 11 (n).

In the following, if JC is a subspace of 9€^ (or of ^CJ, then JC^ and 3V
will denote respectively the left and right bounded elements in JC. Our
first order of business is to show that <PM = d?^.

LEMMA 4.1. — ^ === ^?M; that is, if aG^i is left bounded then ILen.

Proof. — Let a€^. Assume for the moment that we can find a^€<®M
such that an -> a, M On —^ M a and sup [ ] U^ || < oo. Suppose that

n

t (U^ Ua) = + oo. Since M On -> M a, it must be true that Y M On -> Y M a
in .̂ This implies in particular that there is a constant c > 0 such
that ((U:, UJ = || Y M an |[2 < c, all n. Now by [3, Proposition 2,
Corollary I, § 6], we can find { xi }^i in S€^ such that

^(T*T) ==:^|[T^[|2, Te-llW.
^e i

Hence there is a finite subset Io $= I such that

WU.)^[|U^.[p>c.
?eio

Next if ye^, then
U^ y == Vy ̂  -^ Vy a = LL y.

By the uniform boundedness of the U^, we conclude that U^ -> Ua strongly
on ^C^. Hence from the finiteness of Io, it follows that for all sufficiently
large n,

2 I I U^. IPX*.
^-elo

This is a contradiction.
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It remains to show that for a € ̂  there exists On € ̂  such that On -> a,
M an -> M a and sup || U^ || < oo. Consider the set

n

s = [ U^: ae^An^A1-1 i-

While $ is not an algebra, it does follow from [2, Lemma 6] that $ = = $ * .
Next consider the algebra

q=[Ua:ae^}.

Letting r be the subalgebra of n generated by e, we see that $^r£il[
and so r is a Hilbert subalgebra of n. By [2, Lemma 18], r is dense.
Hence by [2, p. 299], r contains a bounded approximate identity { E, }^i.
Then E, = U^, ^G^ti? and we set a, = U^ a. Clearly ai -> a. Also,
since M is affiliated with V (51), we have M a,;= U^ M a -> M a. Finally

I I U., || = [ I U,, U. || ̂  sup || E, ||. || U. I I < oo.

This completes the proof.

Remark. — This lemma (together with the fact that A'^yeLi
guarantees that f is left bounded [7, 6.2 a]) is required for the inclusion
^©M^^M that appears in the proof of [7, Theorem 6.4].

We continue the discussion with a

DEFINITION. — A net \ Ci} in 51 is called a traceable approximate identity
if:

(1) U^ -> 1, VA-^ -> 1 strongly;
(2) sup || U^ || < 0), sup || VA-.., || < oo;
(3) { ^ } i ^ M .

LEMMA 4.2. — (i) 51 has a traceable approximate identity if and only
if (S^r\3^ is dense in 9€^.

(ii) If [ Ci ] is a traceable approximate identity, then { U^ } is a bounded
approximate identity for n {in the sense of [11, 2.11]).

Proof. — We first observe that ^H^S^i === ^M- Now suppose
that ^H^ is dense. Because M is invertible and self-adjoint, it follows
that { M a : aE^iU^ } ls dense. Applying Y, we see that

y = {IL: ae^M^^}

is dense in 3€^. If IL, U^€p, then Vab = Va U^€n which implies afce^r
Thus p is an algebra. Also U^ == UAja€n and AJa€^ l , hence U^Gp.
Therefore p is a dense Hilbert subalgebra of it. By [2, p. 299], p contains
a bounded approximate identity; that is, a net { E ;} such that
E,T -^ T and TE, — T, for all Tey, and such that sup || U (E,) || < oo,
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sup [ I V (E,) [| < oo. From the uniform bounds on the norms of U (E,)
and V (E,), we conclude that U (E,) -^ 1, V (E,) -> 1 strongly on < .̂

Now we may write E, == U^, for some ^e^MO^^^. By [7, Lem-
ma 6.2 (i)], we have U ( U J = Y L ^ Y - 1 . Hence U,, -> 1 strongly
and sup || U^ || = sup [| U (E,) || < oo. By [7, Lemma 6.2 (ii)] and the
equations U*^ = UAJ^, J A J = A~1, we have

v (u,,) = v (U\^) = r (VjA^)r-1 = r VA-^ r-1.

Hence VA-^, -> 1 strongly and sup [ ] VA-^ || == sup [| V (E,) [| < oo. The
conclusion is that [ d ] is a traceable approximate identity.

Conversely, suppose { d } is a traceable approximate identity. Then for
all a€5l, Cia -> a. Since U^ = IL, Va € n, we conclude that ^ae^r
Therefore CO^n 51 is dense in 51, and so also in 3€^ That completes the
proof of (i). In the course of the proof we saw that if { e i } is a traceable
approximate identity, then by setting E, = U,,; we have

U (E,) -^1, V (E,) -> 1 strongly on ^n

and sup [| U (E,) || < oo, sup || V (E,) || < oo. Since E.ep^n, this says
in particular that { E, j is a bounded approximate identity for p or n.

In what follows we shall always assume that 51 has a traceable approxi-
mate identity. If 51 is full, that is automatically the case [7, § 6].

DEFINITION. — A representation Ti of 51 is an algebra homomorphism
of 51 into G (^) such that :

(1) T. ((^H = T: (a;)*, a;e5l;
(2) there is a traceable approximate identity { d } such that TI (^) -> 1

strongly.
Set 5li = ̂ 051 and p == {Va : a€5li } as above. If TI is a represen-

tation of 51, then we set

7:°(U^ = TT (a), ae^li.

It follows from Lemma 4.2 and the above definition that TI° is a represen-
tation of the Hilbert algebra p (in the sense of [11, 4.1]).

LEMMA 4.3. — Let Tii, r.2 be representations of 51 which map the same
traceable approximate identity into a net converging strongly to 1. Then an
operator T intertwines r^ and T^ of and only if it intertwines r^[ and T^.
In particular :

(i) 7ti is irreducible if and only if T^ is irreducible;
(ii) T-ii ^ Ti.j if and only if ^ ̂  ̂ ;
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(111) Tii is a subrepresentation of the left regular representation a -> LL
of 51 if and only if r^ is a subrepresentation of the left regular representation
of p.

Proof. —• Note that 5li is a right (even two-sided) ideal in 51. Let { ei}
be a traceable approximate identity such that Tiy (^-) -> 1, j = 1,2.
If a€5l, then r.y (a a) = r.j (e,) r.j (a) -^ TI/ (a), strongly for j = 1, 2.

Now suppose T intertwines ri; and <, T T̂ ° (U,/) == r^ (LL) T, ae5li.
Then

T TTi (a) = lim T TTi (e, a) == lim T TT; (U^)
== lim ̂  (U^) T = lim ̂  (d a) T == n, (a) T, a € X

Conversely, if T intertwines ^i and 713, then

T TT; (U,) = T TTi (a) == T:, (a) T == 7r,° (U^) T, ae ̂

Statements (i) and (ii) follow immediately from the preceding. State-
ment (iii) follows once we observe that if U is the left regular representation
of 51, then U° is equivalent to the left regular representation of p. This
is because, U° (U,) = U, = Y-1 U (U,) Y, a€^i [7, Lemma 6.2 (i)].

Let TI be a representation of 51. To continue with the program of
adopting RieflePs results [11] to quasi-Hilbert algebras, we introduce
the following notion.

DEFINITION. — ^€9€^ is called quasi square-integrable if there exists
^€51^ such that (r. (a) ^, ^) = (M a, r^), a€5li == (̂ ^51.

By the definitions of ^° and Y, we see that ^€^71 is quasi square-inte-
grable for Ti if and only if

(7:° (U,) S, 0 == (n (a) ̂  ̂  == (M a, rQ = (U,, T rQ, U, e y,

that is, if and only if ^ is square-integrable for T.° [11,4.3].
We shall also say that Ti is in the discrete series of 51 if it is equivalent

to an irreducible subrepresentation of the left regular representation of 51.

LEMMA 4.4. — (i) Let Ti be a cyclic representation of 51. Then r\. is equi-
valent to a subrepresentation of the left regular representation if and only
if it has a quasi square-integrable cyclic vector.

(ii) Let TI be an irreducible representation of 51. The following are equi-
valent :

(a) ^ is in the discrete series^
(&) TI has a non-zero quasi square-integrable vector^
(c) every vector in 3€^ is quasi square-integrable.
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Proof. — Because there exists an approximate identity in 3^i = ̂ iH-31,
it follows as in the proof of Lemma 4.3 that TZ (51)' === TT (-Sli/. Therefore
we obtain TT (.31)// = r. (-311)^ = r.° (p)^. This implies that a cyclic vector
for n is a cyclic vector for TZ°, and conversely. Therefore (i) is a conse-
quence of Lemma 4.3 and [11, 4.6]. Statement (ii) follows from RieffePs
result [11, 5.6] applied to Ti° and then transfered to Ti by Lemma 4.3.

Consider next a representation Ti in the discrete series of .31. Then TL° is
in the discrete series of p. Rieffel [11, 6.3, 6.4] has shown that for each ^,
^e^Ti? there exists a representative element R^€^ such that

Or0 (U,) ̂  vi) = (U,, R^, r), a e Xi.

Let r^ = Y~1 R^. Then we have

(TT (a) ̂  ri) = (^ (U,) S, y0 = (U,, R.,.,) = (M a, r^, r), a e X,.

The r^,r, are called representative elements^' note r^ = r^ defined previously.

LEMMA 4.5. — (i) //' r and r' are representative elements belonging to
inequwalent discrete series representations^ then (r, r'} = 0.

(ii) If r^^ and r ^ ' ^ ' care representative elements belonging to the same
discrete series representation Ti, then

(^^r/) =^(S7?) (r),r/)

where d > 0 is a constant depending only on IT (and on M).
In view of Lemma 4.3 and the definition of representative elements,

this follows immediately from [11, 6.6 and 6.8].
Although we shall not have explicit use for it later, we feel it is of

interest to see more precisely how the « formal degree » d depends on M.
The following result is addressed to that question.

LEMMA 4.6. — Let Ti be a discrete series representation. Then there
exists a minimal closed left invariant subspace 3^^2€^ and an element e^(33§
such that :

(i) 71 is equivalent to the subrepresentation of the left regular representation
on JC;

(ii) V^* is the projection of 9€^ onto JC;
(iii) d = \\ M e ||2.

Proof. — By definition we know that there is a minimal closed left
invariant subspace JCo of 3€^ such that n is equivalent to the subrepre-
sentation of the left regular representation on JCo. Let (13 be the closed
bi-invariant subspace of 9€^ generated by JCo. Because Y maps ^L (51)
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onto 01 (n) and V (51) onto V (n), it follows that Y JCo (respectively Y c%)
is a minimal closed left (respectively bi") invariant subspace of Q€^ In
fact Y JCo is a minimal left ideal in n [11, 5.2 and 5.5] and Y r8 is a minimal
two-sided ideal in n [11, 5.7 and 5.14].

Define fl^tl by

4 ^ {I-L : a e (^f

It follows from [2, p. 293, 294] that q is a left ideal in n. Now let P be
the projection of ^ onto Y (%. Clearly, P n^n. In fact, we have
Pi(£(I. For if ae^g, then P (U,) = P Y M a = Y P, M a, where Pi
is the projection of 9€^ onto (^3. Since Pi €'U (51) and M is affiliated with
^(51), Piae^i and P i M a = M P i a . Also, by [2, p. 293, 294],
b = Pi a€^. Therefore P (U,) == Y M b = U^e5l.

Next we claim that P q is a left ideal in n. This follows also from [2,
p. 293, 294], for if Ten, a€^i, then TP (U,) = TU, = U^€H,
b == Pj a€^. By [11, 2.3], P f l contains a non-zero self-adjoint idem-
potent E of n. However since P fl is contained in the minimal two-sided
ideal Y 6b [11, 5.9] guarantees that E is a finite orthogonal sum of minimal
self-adjoint idempotents, E = Ei + . . .. Then Ei = Ei E eP AT. The
minimal left ideal containing Ei, namely n Ei is therefore contained
in P q S q . Hence Ei = Ue, e^CDf^

Let JC be the minimal closed left invariant subspace of ^Cc^ such that
Y JC == n Ei. Since Y JCo and n Ei are minimal left ideals of n contained
in the same minimal two-sided ideal, the corresponding subrepre-
sentations of the left regular representation of u are equivalent. State-
ment (i) follows easily from this. Next according to [11, 6.1], we have
d = || Ei [|2 = U, ||2 = || Y M e ||2 == |[ M e [|2, thus proving (iii). Finally,
V (Ei) is the projection of 9€^ to n Ei. Therefore by [7, Lemma 6.2 ii]
Y-1 V (Ei) Y = Y-1 V (E*) Y = V,* is the projection of ^ onto JC.
This proves (ii).

Remark. — We know that M is uniquely determined up to multipli-
cation by a positive invertible self-adjoint operator affiliated with
1L (51) r\V (51). Therefore M is uniquely determined up to a scalar

on d3 (and so on JC). Lemma 4.7 shows that —= is uniquely specified
V a Ob

(independent of the choice of M).

In order to proceed, we now fix a minimal closed left invariant
subspace JC of ^C^ and the minimal closed bi-invariant subspace d3 it
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generates. For x, y€^C, we have seen that there is a unique (represen-
tative) element r^r€^C^ satisfying

(Va x, y) = (M a, r̂ , r), a € Xi = (̂ i n ̂ .

But the left side of this equation makes sense for x , y e 9 € ^ ' , and so we
wish to see if r^,y can be defined for more general x, y. Let x€:3€^ be
such that Y r rGn (for example if x^^). Since n is full, Y ^ is then right
bounded. Then for y^9€^ ae^i? we can compute.

(U, x. y) = (F U, x, y) == (U (U,) T x, T y)
== (V (T x) U,, T y) = (U,, V (F x)* r y)

== (F M a, V (F a-)* T y) = (M a, Y-1 (V (T rr)* r y)).

Thus for ^, ?/€^e^, Y^Sll, if we set

(4.1) ^ ,y=T^(V(r^*Tz/) .

then we have

(U^ x, y) = (M a, r^, ̂ ), a € ̂ f.

Now let ^€^, y€^^. Then Y ^ e n and so rx,y is defined. Note
also that since M' is affiliated with 1L (51), M' commutes with the projection
onto cB. Hence ^'H^ is dense in d3 and M' (^H^)^^. With this
in mind, we state

LEMMA 4.7. — Let a;€^3, y€^C^.

(i) If x is right bounded, then r^G^i and Mrx,y= V^ y.

(ii) J/' rre<% ^n

^M^,r = M 7-^y.

Proof. — (i) If ^ is right bounded, then by [2, Lemma 24] we have

(M a, r^ y) = (U,, x, y) = (V^ a, y) == (a, V.̂  y), a € ̂ .

Since M is self-adjoint and equal to the closure of its restriction to c13 ,̂
the conclusion of (i) follows.

(ii) This is somewhat more delicate. First of all, by the comments
prior to the statement of the lemma, r^p.^ exists. To begin, we assume
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in addition to XGO^M' that xG(J?\^ M7 ^ is right bounded and y is left
bounded. By (i) M r^^y = V^ y. Then by [2, Lemmas 6 and 24];

^M'^y === M-1 V?i^?/

-M-^VjAM^y
=== M-1 U, J A M' x
== M-1 \Jy MJ A a;
== \Jy J A X

=v,A.y
-v^z/
-M^,.

We have also used here the facts that M7 and A commute, JM' J •== M,
and that M [which is affiliated with V (.31)] commutes with Uj.

In order to finish we have to remove the restrictions : y left bounded,
x^o?\ and M7 x right bounded. If y is arbitrary, we choose yn left
bounded such that yn -> y ' It is obvious from the definition (4.1)
that r^^y^ -> ^I'.r.v Moreover since M r^^.n = ̂ * Vn and M r^,y == V* y,
it is clear that M r^y^ -> M r^y. Hence we have r^^y •== M r^,y for
any y^9€^ Next let

(4.2) ^e' = { a-e^n^A ; M' x is right bounded }.

Suppose we knew that M7 is the closure of its restriction to 9€ ' . Then
for ^€<®M' we could choose Xn^SC1 such that Xn -^ x and M' Xn -> M7 x.
Then

(M a, r^^y) == (\Ja M' x, y) = lim (LL M' Xn, y) = lim (M a, r^^y), a e ̂ .

Since the set MCD^ is dense in 9€^ we conclude that r^,^y -> r^y^..
Also

(a, M r^ y) = (M a, r^ y) == (Ua x, y) == lim (IL rrn, y)
= lim (M a, r^y) == lim (a, M r^), ae^^.

Hence it also follows that M T^y -> M r^y. Since for Xn^^ we know
that

fwx^y = Mr^^,.

the proof would be complete.
It remains to show that M' is the closure of its restriction to <%". Now by

[2, Lemma 20], M is the closure of its restriction to (©^nd3\--i. Therefore
M' = JMJ is the closure of its restriction to J (d^n^A-0 == ^M'H^A [2,
Lemma 5]. That is, given x^CQ^. we can find Xn^<3^^C\(Q\ such that
Xn -> x and M' Xn -> M' x.
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Finally let M' == \ a rfFa be the spectral resolution of M'. Consider
^0

y^ = F,,, Xn. Since Fa commutes with M' and A, we have that yn^^w H^A-
By [2, Lemma 7 b] the elements yn and M' yn are right bounded. That is
Vu^SC'. Also y,< -> x and M' y,, -> M' cX-. This completes the proof.

At last we are going to apply our results to groups. Let G be a locally
compact group having a semifinite left regular representation X = A^..
Recall that Co (G) is a quasi-Hilbert algebra with the operations

(f-kh)(x)= f f ( x y ^ ) h ( y ) d y ,
^G

f*(x)=^(x)-lftf(x-l),

/-(^Ma-)-1/2/-^)

and inner product
(f,h)= ff(x)h(x)dx.

^fir

Let ̂  (G) be the fulfillment of Co (G); 5ly (G) = { /•€ La (G) : A^2 /•€ La (G)^
for all n € Z } . Since it is full, 5l/ (G) has a traceable approximate identity.
It is clear that the left (respectively right) G-invariant subspaces of La (G)
correspond precisely to the left (respectively right) 51̂  (G)-invariant
subspaces of La (G). Moreover if JC is a (minimal) closed left invariant
subspace of La (G), then the subrepresentation of the left regular repre-
sentation of 5l/ (G) on JC is a representation of the quasi-Hilbert algebra
in the sense that we have defined.

THEOREM 4.8. — (i) Let JC be a minimal closed left invariant subspace
of La (G). Then there is a constant d > 0 {depending only on JC and M)
such that for /',€JC, /i,€JCn^M'? i = I? 2,

f (?. (x) /•„ h,) (r^TCT) dx == 1 (f,, /.) (M'/^M'/h).
^G

(ii) L^ JCi, JCa fce two minimal closed left invariant subspaces
of La (G) which generate distinct bi-iwariant subspaces. Then for /*,€JC^
^eJC.rWM, i= 1,2,

f (^ (re) f,, h,) (F^CT) Ar = 0.
^G

Proof. — We first remark that since M' is affiliated with ^L (51),
M' commutes with the projection onto a minimal closed left invariant
subspace JC. Hence JCnc^i' is dense in JC and M' (JCn(X^p)^JC.
Suppose / '€La (G) and /^e^nc^i (here dS is the bi-invariant space
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generated by JC.) Then by Lemma 4.7 :

rM^,/=W

But in an addition h^CD\, then

v?J-f*(/iT
and

[ f * (ATI (̂ ) ==/ f (a'!rl) (/r)* (y) ̂ =/ f ̂ y"1) ̂ ^^ A <^/)~l/2 dy

= ff (^-1) MF1)A Q/)"1 ̂  =/ f (̂ ) W ̂
== A (.r)-1/3 (^ (.r-1) ^ A).

Thus for /*eL,(G), / le^ncOMn^A? we have

^^f(x)^^(x)-lft(}.(x-l)f,h).

We have already seen that M' is the closure of its restriction to 9€ {see 4.2).
Since the projection onto (K commutes with M' and A (the latter by [2,
Proposition 1]) and since that projection preserves right boundedness,
it follows that M' |̂  is the closure of its restriction to ^n^H^A. That
is, for 7i€^n^/ there exists ^e^H^M'H^A such that hn — h and
M' hn — M' h. Reasoning exactly as in the proof of Lemma 4.7, we
conclude that

r^' h,, / -> ^M^, f in La (G).

Replacing hn by a subsequence if necessary, we may also assume that

r^,^^-^r^h,^ pointwise a. e. on G.

But since
^^^^x)=^(x)^^(x-l)f,hn)

clearly converges pointwise to

A (re)-1/2 (^ (x-1) f, h),

we conclude that
(4.3) r^^f{x) - A (x)-^ Q. (a-1) f, h\ feL, (G), 7i€^n^,

We can now prove the statements of the theorem rather easily.
(i) If f,€X. and ^eXncOM, then we know that the correspon-

ding representative elements satisfy the orthogonality relations (ii) of
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Lemma 4.5. Therefore

^(f,, ̂ ) (M' A,, M' A,) == (r,r/.,./.. /M-A.,/,)

= f A (.c)-1 (?. (ar-') /•i. A,) (7 (re-1) f,. A.) da;
^G

= f ^ (x) /•„ A,) (>. (a;) /,, A,) dr.
fc/f-

(ii) This is an immediate consequence of Lemma 4.5 (i), equation (4.3)
and essentially the same computation as in (i) above.

For our final result, we will characterize the irreducible subrepresen-
tations of the regular representation of G, that is the discrete series.
The algebra 51 / • (G) has a traceable approximate identity; so we could
perhaps make use of our earlier results (e.g., Lemma 4.4) if we knew
the relation between representations of G and representations of ^(G).
Failing this, we consider the smaller algebra

^ (G) == { /•6L, (G): A^feLi (G)nL, (G), all neZ }.

3li (G) is a sub quasi-Hilbert algebra of 5l/ (G).
Now let TC be a representation of G. For /*€5ti (G) we put

n ' (f)=7: (A- v9-/-).

It follows easily from A-172^*^) == (A-172 f) * (A-172 h) that ^ is multi-
plicative, 7i' (/•* h) === n' (f) TT' (A), /*, Ae^ti (G). Next set

ft(x)^^(x)-lT(^T),

the usual involution on Li (G). Then using the computation

(A-v2 f)+ (̂ ) = A (x)-1 A-v2 (ar-1) /̂ ::T) = A (.r)-v2 T^) = f* (a;),

we see that
7:' ((/•*)-) = 7:' (AV2 f*) == 7: (f*) = TT ((A-1/2/-)!) = TT (A-1/2^)* = 7:' (/*)*.

Summarizing, we have shown that T/ satisfies property (i) of the definition
of a representation of the quasi-Hilbert algebra 5li (G).

We assume now that 5li (G) has a traceable approximate identity.
By Lemma 4.2 that is tantamount to assuming that d^n^i (G) is dense
in La (G). We cite two instances where this is the case. If G is uni-
modular, 5li (G) == Li (G) 0 Ls (G) and it suffices to take a net which
is an approximate identity for both Li (G) and L2 (G). If G is a connected
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solvable Lie group, then (3^nCo (G) is dense in La (G) and so there is
a traceable approximate identity.

Now let 3li (G) have the traceable approximate identity { d ] and
suppose Ti is a representation of G. We say n is extendible if n/ (e;) -> 1
strongly, r/ is then a representation of 511 (G). In the two cases mentioned
previously, every representation is extendible.

Before stating the theorem we make one more observation. It A = X^
is the left regular representation of G, then for f€z5^i (G), A e L a ( G ) ,

V(f)h=t(^-^f)h=f^h

[7, equation (6.2 a)]. Thus A' is the left regular representation of 5li (G).

THEOREM 4.9. — Let G be a locally compact group with a semi-finite
regular representation. Assume that 5li (G) has a traceable approximate
identity and let TC be an irreducible extendible representation of G. Then n is
in the discrete series of G if and only if there exists a non-zero sector ^ € 8^r. such
that x -> (r: (^-i) ^, E) is in the space (l^'n^M'-r If this is the case there is
a positive iwertible self-adjoint operator M^ on Si^ such that for all ECS^CT:,
^e^^ ̂  matrix coefficient x -> (ri [x) E, ^) is in La (G). For all ^€^£7:?
^€^MI? i = I? 2, we ha^e

^ _____ i ______
/ (7r (̂ ) Sl» ^l) (7r (a;) ̂ , ^2) ̂  = ,(^i, ^2) (M^ Yii, M,, 71,)

^G

where d > 0 is a constant depending only on T. one? M^.

Proof. — Suppose 11 is in the discrete series. Then r. is equivalent,
by a unitary operator T, to the subrepresentation of X on a minimal
closed left-invariant subspace JC of La (G). We claim that there exists
a non-zero element f€ SC such that /*€ <% and M' f is right bounded.
The argument is reminiscent of the proof of Lemma 4.7; it goes as follows.
Set

^" == [ /•€<% : M' f is right bounded j.

As a consequence of what we proved in Lemma 4.7, SC" is dense in La (G).
Let P be the projection onto JC. It suffices to show that P Wi"^Qi".
But this follows immediately from the fact that P commutes with M'
and [2, Lemma 1]. Thus the set of vectors f in JC which are in (S^, and
for which M' f is right bounded is actually a dense subspace of JC.
Let /"T^O be any such vector. Then by Lemma 4.7, y*M'/,/€<®M ^d
r^,^^= M r^/e^M-r However by the proof of Theorem 4.8, we
know that

r^(x) == A (x)-^ ̂  (x-1) f, f) = A (x)-^ (AT^VT).

4® SERIE —— TOME 6 —— 1973 —— ?1



THE PLANCHEREL FORMULA II 131

Set Cf (x) = (/*, \ (x) /*). Then c^ = y^y. This implies in turn that
Cf € J (^M H ̂ M-O ^ ^M' n ̂ M'-r Finally if ^ € <?^ is chosen so that
f = T ?, then

cy (re) = (^ (r̂ ) /•, f) = (TT (rr-Q ^, 0.

The operator M^ is just T~1 M' PT and the assertions about the ortho-
gonality relations follow from Theorem 4.8.

Conversely, suppose there is a non-zero vector ^ € ̂  such
that x -> (TC (a;"1) ^, ^) is in 0)31,0^-1. We shall show that ^ is a quasi
square-integrable vector for the representation r/. Then by Lemma 4.4,
TC' is equivalent to a subrepresentation of X', and so n is equivalent to
a subrepresentation of X. In fact, for any f^^i (G), we have

(^mo-^A-^/uc)
= r A (rr)-1/2 /• (rr) (T: (x) E, Q ̂  = f A (rr)-v2 /• (rr) (7: (̂ ) ̂ ^) dn;.l-» ^.

^ ^G^(i tyC

The function c; (x) = (TC (^~1) ^, ^) is by assumption in ^p-r Therefore
c| € ^M-i. But

c? (re) = A (x)-^ c^) - A (rc)-v2 {T^X^I) = A (rc)-V2 (T: (x-1) ̂  0.

Since cl € ̂ i-i? there exists ^ € ( î such that c^ = M r^ But then

(T:' (/•) S, 0 = (/-, M r0 = (M f, r0, /• € ̂  n ̂  (G).

This says precisely that ^ is quasi square-integrable.

Remarks. — (1) Suppose G is the « ax + b » group {see [7, § 10,
Example 1]). G has a single irreducible infinite-dimensional represen-
tation 7i and by [7] it is in the discrete series of G. Ti may be realized
in La (R*) and in that realization M^ is given by

M'^f(x)=\x -^f(x).

It can be shown fairly easily that for /*€ La (R*), the function x -> {^ (x) /*, f)
is square-integrable if and only if f ^CQ^

(2) It seems likely that the operator M^ is uniquely determined up to
a scalar, although we have not been able to substantiate that.

(3) It is interesting to surmise as to whether the conditions of
Theorem 4.9 are best possible. Is it enough for x -> (n {x~1) ^, E) to be
in La (G) in order to guarantee that TI is in the discrete series; or do there
exist representations n which have square-integrable matrix coefficients
but which are not subrepresentations of the regular representation ?
At this point we do not know the answer.
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