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EXPANSIONAL IN BANACH ALGEBRAS

By Huzimiro ARAKI (*)

Research Institute for Mathematical Sciences
Kyoto University
Kyoto, Japan

—~—eE——

AsBsTrACT. — Properties of expansionals are discussed in connection with an evolution
equation and a cocycle equation in Banach space.

1. Introduction

The covariant perturbation theory for quantized field, which has first
been developed by Tomonaga [9], Schwinger [8] and Feynman [4], in inde-
pendent and different styles and has been united by Dyson [3], contains
a powerful computational tool which does not seem to be widely known
among mathematicians. We shall briefly discuss one aspect of this theory
in a context of Banach algebra.

The relevant computational algorithm has been suggested by Feynman [5]
and later formulated clearly by Fujiwara [6] as an Expansional : Let A
and B be two elements in a Banach algebra with a unit. Define

> 1 A [—
1.1 E, (A; B) =Zfdt1f dte...f dh At ... At),
=0 0 0

el 1 ly ln—1
1.2) E, (A; B) =Zfdt1/ dtg...f A, A(L) ... A,
0 0

n=0o o

where

(1.3) A({f) =eBAet

(*) Visiting Institute for Theoretical Physics, SUNY at Stony Brook, Stony Brook, N. Y.
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68 : H. ARAKI

If A and B commute, then A (t) = Aand E, (A; B) = E, (A; B) = exp A.

In the general case, we have

[A@I=IIAlexp2l] B,

1 4 [
f dt, f d. .. f dt, = (n ).
0 0 0

Hence (1.1) and (1.2) are absolutely convergent.
Important formulas are

(1.4) E,(A; B) = e\ +% P,

(1.5) E/(A; —B) = eV ed+h,

(See Theorem 3.) By rewriting A 4+ B and — B as A and B in (1.4)
and as B and A in (1.5), we obtain

(1.6) ete® =E, (A +B; —B) = E,; (A + B; A).

It is important that the expansions in (1.1) and (1.2) converge for
arbitrary A and B, which is in a sharp contrast with the Baker-Campbell-
Hausdorff formula

.7 e =¢, C=At+B4+ 2B

whose convergence is guaranteed in a general context only if both || A ||
and || B| are sufficiently small.

This comparison seems to provide a sufficient motivation for an investi-
gation of various mathematical properties of expansionals. An appl-
cation has been given in [1]. Another application will be given in a forth-
coming paper [2].

2. Definition and Simple Properties

Let M be a Banach algebra with a unit, and A (t) be a M-valued conti-
nuous function of positive reals ¢ >~ 0 satisfying

2.1) sup |[A(@)||=rr<o0 (T > 0).
0Lt =T
The continuity can be either relative to the norm in M or, if M is a

strongly closed subalgebra of linear operators on a Banach space H, then
relative to strong operator topology. In either case,

Al), ..., Al
is continuous in (¢, ..., t,) relative to the relevant topology.
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EXPANSIONAL IN BANACH ALGEBRAS 69

Define

@.2) Exp,.<f0,;A(s) ds> =i foldh"'fﬂ"

n=0

2.3) Exp1<f[;A(s) ds> =ﬁ] fldt, ...ftmdl,.A(h) A ()

By the continuity assumption, the integrals exist in M and by (2.1)
and (1.3) the series converge absolutely.

A A .. AQ),

Remark. — Let
@2.4) TA®) ... AL) =A®) ... AQ,),
@.5) TAW ... AW)=AC) ... A,
if (ps, ..., pn) 1s a permutation of (1, ..., n) and
> 1, >...> 1.

Then they are defined up to a Null set and satisfy

2.6) Exp,.<f‘;A(s)ds> Y fldtl'_.f‘dlnT(A(h),n-i.,A(tn)),

2.7) EXPz<f0t;A(S) d8> =§] foldn ...foldtnT(A (")’I;i"A(’")).

n=o0

For this reason, the following notation is used in physiecs :

Exp,<fl; A (s) ds> =TexpftA (s) ds,
Exp1<fl;A(s) ds> =TexpftA (s) ds.

T (A (t), ..., A(t) is called the time-ordered product (chronological
product, T-product) and plays an important role in quantum field theory.
It was denoted as P (A (), ..., A (t.)) when introduced by Dyson [3].

ProrosiTion 1. — Let A >0 :

@.8) Expr<f[; AA (O s) ds> =Expr<fh;A(s) ds),
t £t
2.9) Exp1<f CAAQs) ds>=Exp,<f CA (5) ds>,

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE 10



70 H. ARAKI

(2.10) Expr<fl; N ds>= Exp1< ft;A(s) ds>,

2.11) Exp1<fot;A(t —5) ds> =Expr<‘/ol; A(s)ds).

Proof. — The change of integration variables &, = A ¢, yields (2.8)
and (2.9), ¢, =t — t, yields (2.10) and (2.11). Q. E. D.

Remark. — It would be more economical to write everything in terms of
1 1
Exp, A () = Exp,.<f . A (5) ds> and Exp/A(.) EEXp1<f A (5) ds>.
0 0

However some formulas such as above are easier to remember when
integration symbol is written. For later formulas such as (3.5), (3.6),
(3.17) and (3.18), it is more natural to introduce

Exp,.<fl;A(s) ds>EExp,<flwll;A(t' +s) ds>,
Exp, (ft;A(s) ds>—_——Exp,<ft—tl;A(t’ +5) ds>.

However, we shall need formulas for

Exp,(f‘; A(s) ds> and Exp;(ft;A(s) ds>

in our application in [2] and hence we shall write out all formulas in
terms of them.

Prorosition 2 :

©2.12) d%Expr </~1;A(S) ds> = Expr<ft;A(s) ds>A(f),
(2.13) dﬂlExpl<ft;A(s) ds>=A(l) Expl<f‘;A(s) ds>.
Proof. — Immediate from definitions (2.2) and (2.3). Q. E. D.

Remark. — The subscripts r and [ indicate the direction (right and left)
in which A (f) comes out in Proposition 2.

Prorosition 3 :

2.14) Exp,.<fz;A(s) ds> Exp1<ft; —A(s) ds> =1.

4e SERIE — TOME 6 — 1973 — ~N° 1



EXPANSIONAL IN BANACH ALGEBRAS 71

Proof. — Consider

F) = Exp,‘<fl;A<s) ds> Exm(f’; —AQ ds> (=0).

By (2.12) and (2.13), we have

f’(t)=EXPr<f ;A<s>ds>{ A(t)—A(t)}Expz<ft;—A<s>ds>=o

Since f(0) =1,
fO=1+/fed-1

ProrosiTiON 4 :

(2.15) Exp1<ft; —A(5) ds> Expr<ft;A(s) ds> =1.

Proof. — Let n th term of (2.2) and (2.3) be E) (t; A) and E; (¢; A).
Due to absolute convergence, it is enough to prove

(2.16) ZEf( —AETF (A) =0 (ax1)

k=0

We have
(—DFEf (t; — A ErF (6 A) = <f:,¢ +f

Tpts

)dh N

for 0 Zk =n,n>1, where I;, 1 £k = n, denote

Li={(, .., ) t>xt>. .50, 5>.,.540),

while I,., and I, are empty set. (2.16) is now immediate due to cancel-
lations. Q. E. D.

Remark. — A similar proof holds also for Proposition 3. Propositions 3

and 4 imply that both Exp,< f ;A (s) ds> and Expl< f s A (s) ds> are
invertible.

If M is a x-Banach algebra, then

2.17) Exp, <fl; A (s) ds)* = Exp, <fz;A(s)* ds>,
2.18) Expl<ft;A(s) ds>* =Expr<ft;A(s)* ds>.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



72 H. ARAKI

In particular, if A (¢) is skew-hermitien [A (t)* = — A (t)], then both

Exp,.< f LA ds> and Exp1< f

L

) ds)

are unitary.

3. Differential equation view point

Tueorem 1. — The differential equation
8.1 Fo=rOA@®, fOeM,
for a given initial value f (0) has a unique solution
6.2 F) =10 Exp,<f SA(5) ds>-
The differential equation
3-3) gO=A0g®, gOeM,
for a given initial value g (0) has a unique solution
3.4) 9@ = Expz< [ A ds> g (0).

Proof. — Consider

F () =f() Expz<f  —A() ds>.

By (2.13) and (3.1), F’' (¢) = 0. Since F (0) = f(0), we have F (t) = f(0).

By (2.15), we have (3.2). Conversely (3.2) satisfies (3.1) due to (2.12).
Similar proof holds for g (¢). Q. E. D.

t

Remark. — Theorem 1 and its proof hold also for the case where g (t)
is an element of a Banach space H and A (¢) is a bounded linear operator
on H. The expression (2.3) for the solution is the Neumann-Liouville
series (the iterative solution) of the Volterra equation

10=90+[ A070.

Being solutions of evolution equations,

Exp,.<fl;A(s) ds> and Expl<ft;A(s) ds)

4¢ SERIE — TOME 6 — 1973 — nN° 1



EXPANSIONAL IN BANACH ALGEBRAS 73
satisfy the following chain rule :

ProrposiTion D :

3.5) Exp,.<fl A (s) ds> Exp,.< f”;A(s + t)ds> =Exp,.<fl+t';A(s) ds>,
3.6) Exp1<fll;A(s +t)ds> Exp1<ft;A(s) ds> - Exp,<fl+t’;A(s)ds>,

Proof. — Exp,.<f ;A (s) ds> 1s the unique solution of (3.1) at ¢t ¢

for the initial value f(0) = 1. It is then the unique solution of
["G)=f@)AG+1, f(0)=EXPr<f ;A(U)d<’>

at s = ¢’ and hence is given by the left hand side of (3.5) due to (3.2).
A similar proof holds for (3.6). Q. E. D.

For B (s) €M, we define

G.7)  BxA)@)= Exp,~<fl;B(s) ds>A(t) Exp1<ft; ——B(s)ds>,

14

3.8 (BxA) (t):Exp,<f ;—B(s)ds)A(t) Expr<ft;B(s)ds>.

Obviously
3-9) (B k(@B xA)®=A0=Bx%B%xA))©

ProrosiTioN 6 :

(3.10) Exp,.( f LB xA)G) ds> Exp,1< f B ds>

(i@ +B ) as),

0 /

@3.11) Exp1<fl;B(s) ds>Exp,<fl;{ (—B) % A (5) ds>

- Expl<.fl;(A () + B () ds>.

Proof. — Consider

[ = Exp,.<./\‘;(B * A) (5) ds> Expr<fl;B(s) ds).

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE
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By (2.12), we have

/() = Exp, < / [

By (2.15), we have
B % A) (0) Exp,~< f LB (s) ds> — Exp,,< f B ds>A(t).

JB * A) ) ds) B % A) () Exp,v<, (B ds) +1OBQ.

Hence

fFO=fOAO+BQ).
We also have f(0) = 1. Therefore we have (3.10) by Theorem 1.

A similar proof holds for (3.11). Q. E. D.
We now introduce a further notation

(3.12) A(s) = A ( — ).
then
(3.13) (A, % BJ). (s) = Exp, f‘ A — o) da>B(s) Exp,< f o Ad— o)do-)

L—s

— Exp, f A(a+s)dc>B(s)Exp,<f {— Ao +9)do ),

(

( )
3.14) (A, % B, (s) = Exp1< f —A(t—o) da>B (s) Exp, < ' LA(— o) do)

e )

~A(a+s)dcr>B(s)Exp,< A(o'+s)da ,

0

where (2.10) and (2.11) have been used.

[We may also write Exp,<f ;A (9) d’J‘>B (s) Exp, <f i — A (9) dc>

for the last expression in (3.13) and

15

L

Exp, < f ;

for the last expression of (3.14).]

— A dcr>B(s) Exp1<fsl;A(c) dc;>

ProrosiTion 7 :

(3.15) Exp,.< f LA ds> Exp,.< f

_ Exp,,< /[;(A (s) + B (5)) ds>,

t

(= A) A B i (s) ds>
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EXPANSIONAL IN BANACH ALGEBRAS 75

(3.16) Exp, <j':t; (A: % B). (s) ds\) Exp;, <fl; A (s) ds>

- Exp1<fl;(A(s) +B(s))ds>.

0

Proof. — By using (2.10) in (3.11), we obtain

Exp,,<fl;13(t_s)ds>Exp,<fl;g(_B) * A} (s ds>
-——Exp,.(fl;(A(t—s)+B(t—s))ds>.

Substituting A, and B, into B and A of this equation, we obtain (3.15).
A similar proof holds for (3.16). Q. E. D.

ProrosiTion 8 :

y

3.17) Exp,.( f[;A(s) ds> Exp,.< j "B () ds>

:Exp,.<f';{(3 kA0 +B O s

0

/

:Exp,.<f s 1A () +{(— A, B}, (s)}ds>,

0

(3.18) Exp[<f/;A(s) ds> Exp1<fl§B(s) ds>

= Expg<fl;{(Bt;Az)z(3) +B($)}d3>

0

= Exn(fl;{A(s) + (= A)&B}(s)}ds>.

0

Proof. — Substituting B A into A of (3.10) and { (— A), % B, {, into B
of (3.15), we obtain (3.17).

A similar proof holds for (3.18). Q. E. D.

Remark. — If [A (t), B (s)] = O for all ¢ and s, then Exp, <f ;B (s) ds>
commutes with A (t) and hence Bx A = A by (2.14). 0

Hence we have

(3.19) Exp,.('/t;A(s) ds> Exp,,<f[;B(s) ds> =Exp,<<'f

N / 0 0

t

;%A(S)+B(S)}d8>-

ANNALES SCIENTIFIQUES DE L’'iCOLE NORMALE SUPERIEURE
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Similarly

(3.20) Exp1<fl;A(s)ds>Expz<fl;B(s) ds> =Expz<f

ProrosiTion 9 :
(3.21) B % C) % (B % A) = (C + B) % A,
(3.22) BxA)@O=e"A(e® if B(f)=B.

L

;{A<s>+B<s>}ds>.

Proof. — By definition, we have

{(BXxC)xBxA} (@)= Exp,~<fl;(B * C) (s) ds>Exp,.<fl;B(s) ds>A(t)

0

><Exp,<f0;—B(s)ds>Exp1(fol;—(B*C)(s)ds).

By (3.10) and (3.11), we obtain (3.21), where we use (3.11) with A and B
replaced by — C and — B. If B (¢) = B, then we have

‘ \ ¢
Exp,.<f ;B (s) ds) = e!'B and Exp, <f ; — B (s) ds> =e ‘P,

Hence we have (3.22). Q. E. D.

t

ProrosiTion 10 :

(3.23) Exp,~<ft;A(s) ds> - Expl<fl;(A * A) (5) ds>,

(3.24) Exp[<fl;A(s) ds> :Exp,.<fl;§(— A) kA (s)ds>.

0

4

Proof. — We set B= — A in (3.11) and multiply Exp, <f ;
from the left. By (2.14), we obtain (3.23).
A similar proof holds for (3.24). Q. E. D.

A (s) d.s'>

Remark. — 1f A (t) i1s defined for t€(—o0,00), sup [|A ()] <o
—TZlZT

and A (t) is continuous, then Theorem 1 and Propositions 1-10 hold
for A £ 0, t€(— 00, 0) and ¢’ € (— 00, 0).

4. Cocycle View Point

We consider a continuous one-parameter semigroup « (¢), t>>0, of
continuous endomorphisms of M and
“.1) s()A=A(), AeM

4°® SERIE — TOME 6 — 1973 — n~° 1
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TueorEM 2. — Given « (t),t>>0 and A€M. A unique differentiable
solution of the cocycle equation

4.2 fO{a@fO=f6+0D,

with the boundary condition

“4.3) fO=1  f(+0)=A4,

is given by

(4.4) f(s) = Exp,.<[s; a(s) A ds>.
A unique differentiable solution of

(4.5) {e@g@}gO =96 +D,

4.6) 90)=1, ¢ (+0)=A4,

is given by

4.7 g(s) = Exp1<f0x;a (s)Ads>.

Proof. — Due to (3.5) and

Exp,.<ft;a(o'—|—s)Ada> = a (5) Exp,1<f ;a(a)Ada),

f (s) given by (4.4) is a solution of (4.2). It also satisfies (4.3).
By differentiating (4.2) by ¢t and setting ¢ = 0, we obtain
FE @) A} =] ()
By Theorem 1, (4.4) is the unique solution.

A similar proof holds for g (¢). Q. E. D.

Remark. — If a(t), —o0 <t <00, is a continuous one-parameter
group of automorphisms of M, then Theorem 2 holds with — o0 <'s << o0
and —o0 <t < 0.

Prorosition 11. — If a (1), — 00 < t << 00, is a conlinuous one-parameter
group of continuous automorphisms of M, then

t

4.8) Exp,.<f';a(s)Ads> — a(l) Expl</
4.9) Exp1<fl;a(s)Ads> - a(t)Exp,.<f

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE 11
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Proof. — In the cocycle equation (4.5), we set s = — ¢, substitute

g (t) = Exp, <fﬂl; —a(s) A ds> [namely g (¢) with g’ (4 0) = — A] and

multiply Exp, < f
to (2.15).

t

ja(s) A ds) form the left. We then obtain (4.8) due

A similar proof holds for (4.9). Q. E. D.

Remark. — We use the definitions (2.2) and (2.3) also for negative ¢.
The right hand side of (2.6) and (2.7) have to be interchanged for ¢ < 0
according to this definition. Proposition 11 can also be proved from (2.10)
and (2.11).

Proposition 12. — Let « (t), t > 0, be a coniinuous one-parameter semi-
group of continuous endomorphisms of M and BEM. Let

4.10) SOA={(@()B) % (x(.)A) | ® ;
:Expr<ft;a(s)Bds>{a(t)A}Expg<f[;—oc(s)Bds\), AeM.

Then 3 (t) is a continuous one-parameter semigroup of continuous endo-
morphisms of M and

@ GG 0—a0)|_ =

where ¢, denotes the inner derivation

o A =BA — AB.

t

Proof. — By Propositions 3 and 4, Exp, <f ;o (s) B ds> 1s an invertible

14

element of M and its inverse is Exp, </ ;s —oa(s)B ds>. Hence B () is a

0
continuous endomorphism of M.

By cocycle equations (4.2) and (4.5), we have
P+ L) =3)B 1)

Since Exp, <f0/; « (s) B d3> and Exp, (f

;—a(s)B ds> are differentiable

int, 3 (t) Ais continuousint. We also have 3 (0) = « (0) = 1. Hence § (¢)
1s a continuous one-parameter group of endomrophisms of M.

l

4¢ SERIE — TOME 6 — 1973 — ~N° 1
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Due to (2.12) and (2.13),
tlir—?o — <Exp,.<f0[; a(s)B ds> — 1>
llirfot—i <Exp1<fol; —a(s)B ds> — 1> = — B.

T
Since Exp,.< f ;o (s) B ds> is uniformly bounded by exp f o (s) B| ds,

0

for 0 —Zt T, we have (4.11). Q. E. D.

B,

Remark 1. — 1f we assume a condition, which guarantees the uniqueness
of a semigroup of operators with a given generator, such as the norm
continuity of « (¢) A in ¢ for each A €M, then (4.10) is a unique continuous
semigroup of continuous endomorphisms satisfying (4.11).

Remark 2. — (4.10) can be written as

(4.12) EXp,,< f

4.13) {a()A | Exp1<fl; —a(s)B ds>=Exp,<fl; —a(s)Bds)B(l) A.

0

t t

;a(s)Bds)a(t)A:{ﬁ(t)A}Exp,.<f ;a(s)Bds),

t 12

Namely, Exp,(f ;a(s)B ds> and Exp,(f ; —a(s)B ds> are invertible
intertwining operators of two endomorphisms « (¢) and {3 (¢).

Remark 3. — If a (t), — o0 <<t << 00, 1s a one-parameter group of conti-
nuous automorphisms of M, then (3 (f) is a one-parameter group of
continuous automorphisms of M satisfying (4.11).

Remark 4. — Define

“.14) o) A = Exp,4<fl; x(s)B ds>oc ® A.
Then

5. Perturbation View Point
Prorosition 13. — Let A (t), BEM and
6.1) B A @) = e A (e
Then

G.2) Exp,<ft; (A (5) + B) ds> - Expr<f

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE

t

; 2B A(s) ds> e's,



80 H. ARAKI

(.3) Exp:(fl; A +B) ds>=ewExpz<fl; 1A G) ds>.

Proof. — In (3.10) and (3.11), we set B (t) = B and use (3.22) as well as

12 t
Exp,.<f ;B ds> = Exp1<f ; B ds> = ¢'P.
0 0

We then obtain (5.2) and (5.3). Q. E. D.
Tueorem 3 :

6.4 er+B B = Exp,.<f josB Ads>,

G.5) B A+ — Exp1<f ; a—“’Ads>.
Proof. — We obtain (5.4) and (5.5) by setting A (¢) = A in (5.2)

and (5.3). Q. E. D.
ProrosiTion 14 :

(5.6) et eb e~ A+b = Expr<f ; Ci(8) ds>

G.7) e~(A+B A ¥ — Exp, < f P ds>,

where

(5.8) C,(f) = ed+Bte D (A 4 B)eble—(+Pl _ (A 4 B) = (ald+® 5~ — 1) (A 4 B),
(5.9) Cy(f) = e-A+PBiedl (A 4 B) e-A ed+Wt _ (A 4 B) = (a—w+gdt — 1) (A 4+ B).
Proof. — By (5.4) and (5.5), we have

1

(.10) eAe“=Exp,<f1; =B (A +B)ds>=Exp1<f C oA (A -|—B)ds>.

0 0

By substituting «** (A 4+ B) — (A 4+ B) and A + B into A (¢) and B

of (5.2), we obtain
er b = Exp,.<f Ci(5) ds>et‘+B

which proves (5.6). A similar proof using (5.3) yields (5.7). ¢. E. ».
Remark. — Due to

(6.11) alb A = e/® A e='" = (exp { 3y) A,

both C, (t) and C. (t) are sums of multiple commutators of A and B
(1. e., they are in closed Lie algebra generated by A and B).

4¢ SERIE — TOME 6 — 1973 — nNo 1
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ProrosiTion 15 :

(5.12) er ... e\n = Exp, <f 2 amAns g Ant A ds>
(5.13) = Exp; j Z ats Lot Ay, d8>

(5.14) = Exp, <f Z ahilt=s) | gAm—all—9) A ds>

m=1 /

(5.15) = Exp, A=) | oAt A ds>.

m= 1

Proof. — By (5.2) and (5.3), we have

1 1
Expr< / 3 Coner (5) ds> eAm — Exp,m< f 3 Con (5) ds>,
0 0

C"l (S) = O‘_A"'s Cm—l (S) + Am,

1 1
eAm Exp1<f 3 Dot (5) ds> = Exp, <f 3 D (5) ds>,
0 0

D, (s) = a* D,y (5) + Ase

Starting from C, (s) = A, and D, (s) = A,, we obtain recursively

m
Cn () =Z o~ AmS g AR A
k=1

n

Dm (S) =Z oAms | gAk—1S Ak-

k=m

Thus we obtain (5.12) and (5.13) from

1 1
eri ... et = Exp,.<f ;3 Ca (5) ds> = Exp; <f ; D1 () ds>.
0 0

By using (2.10) and (2.11) in (5.12) and (5.13), we obtain (5.14)
and (5.15). Q. E. D.

Remark. — Proposition 15 can also be proved from Proposition 8.

Prorosition 16. — Let H, be a selfadjoint operator and V be a bounded
linear operator on a Hilbert space H. Let D (H,) denote the domain of H,.
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Let W (t)eH, — o0 <t < 00, satisfy the following conditions.
(1) W (t) is bounded over a compact set of t.
(2) (@, W (1)) is differentiable in t for every ® €D (H,).
(3) d%(@, W (1) = (— i (Hy + V*) ®, W (t)) for every ®€D (H,).

Such W (t) exists and is unique for a given initial value W (0). It is
given by

l
(5.16) IF(t)=EXpr<f ; ioz“'o‘Vds>ei"u“F(O)=e"“°‘Exp1<f
0 0

where
(5. 17) aits V — eillos Y g—iHos,

t

; ioc—“'osVds> ¥ (0),

Proof. — By taking « () = '™’ and A = ¢ V* in (4.8), we obtain

—1 t
(5.18) €™t Exp, <f 3 — 1 alllbs V¥ ds> = Exp, <f 1 allhs Y ds> eilht,
0 0

By (2.12), we have

t t
%{Expr<f ; 1 gitles % ds> eiHot}d) ={Expr<f ; 1 aitles ¥ d8> 61“”%{ i(H0+V*)}(I)
0 0 /

if €D (H,). We also have

—t —t
dﬂtExpl<f . ol V* ds>c1> — Qo) Exp1<f ;i aifes V¥ ds> ®
0 0 '

by (2.13). As we have seen

—1
(5.19) @, () = ™ Exp1<f R L ds>(l>
0

is strongly differentiable in ¢ and hence e'™° ®, (¢) is strongly differentiable
in s at s=0 if €D (H,). Therefore ®, (t) is in the domain of H,
if €D (H,) and

d

(5.20) SO0 =i(H + V9 0,0

in the strong topology.
Let ®€D (H,) and

v, () = e—“*o‘Expl<f
0

By (2.14), we have
(.21) v () = EXp,.< f ; iou'ﬂosVals>efﬂut11f1 o.

t

s — @ alls V ds>qf .
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By (2.18), we have
(w,wu®)=<fxn(;[@iwmxv*¢>amz@,ww§)=<mwonva»

by (5.18) and (5.19). Since @, (t)€D (H,), we have
glftl (@), W) =T O — )} =(—i(H + V¥) @, (1), ¥ (1))

by assumption (2).

By assumption (1), W (¢) is locally bounded and by assumption (2),
(®, W (t)) 1s continuous in ¢ for ® in a dense set D (H,). Hence W (¢)
1s weakly continuous in ¢ and

w—lm ¥ (5) = ¥ (.
Together with (5.20), we have

11;1} {(@ () — @0, YO — D} =(EH + V¥ @), ¥ (@)
Hence

d
L@ w0 =0

for all e D (H,). This implies
‘ (@ W) —-"(0)=0
for ® in a dense set D (H,) and hence
W, (1) = W, (0) = ¥ (0).
By (5.21), we have the first equality of (5.16).
By (5.18) where V* is replaced by V and by (2.9) with A = —1,

we obtain
t

t
Expr<f ioz“‘o-*Vds)e“‘ol =e""»‘Expz<f ;
0 0

the use of negative % in (2.9) is allowed for a group of automor-
phisms «'™°. Hence we have the second equality in (5.16).

i ot Y ds),

Conversely, the last expression in (5.16) implies

L@, W @) = (i (H + V5 @, ¥ ()
for €D (H,) and hence satisfies the assumptions (2) and (3). W (¢) is
obviously bounded for any bounded ¢ and satisfies assumption (1).
Q. E. D.
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Remark. — If V* =V, then H, + V is selfadjoint and
4 l
expi(Hy + V)t = Exp,.<f’- ;1 alths V ds> et = giflo! Exp1<f jlamihsy ds),
0 0

where the right hand sides can be directly proved to be a continuous
one-parameter group of unitaries by cocycle equations, the domain of the
generator 1s exactly D (H,) and the generator is ¢ (H, 4+ V) on D (H,).
The selfadjointness of such H, 4 V 1s a very special case of the Kato
perturbation theorem.
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