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THETA CHARACTERISTICS OF AN ALGEBRAIC CURVE

BY DAVID MUMFORD.

Let X be a non-singular complete algebraic curve over an algebrai-
cally closed ground field k of char ̂  2. We are interested here in vector
bundles E over X such that there exists a quadratic form (1) :

Q : E-^x

which is everywhere non-degenerate, i.e. for all .r€X, choosing a diffe-
rential (^ which is non-zero at x, Q induces a /c-valued quadratic form in
the fibre

S {x) : E(^) ->kc»)

which is to be non-degenerate. Our first result is that for such E,
dimr(E) mod 2 is stable under deformations of X and E. If E is a line
bundle L, then the existence of Q just means that L2 ̂  Ox- The set
of such L is called classically the set of theta- characteristics S (X) of X
{cf. Krazer [K]). S (X) is a principal homogeneous space over Ja, the
group of line bundles L such that L2^ (°x. Now on S (X) we have the
function

^ (L) = dimr (L) mod2 € Z/2 Z

and on Ja we have the well-known skew-symmetric bilinear form

e^ : JaX 3i-> { ± i }

(c/. Well [W], Lang ([LI], p. 178 and p. 189), or Mumford ([Ml], p. i83)).

(]) By this we mean the composition of (i) E -> E Cg) E, sh>s(g)s, and (ii) a sym-
metric linear homomorphism B : E 0 E -> L>^.
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Our second theorem is that ^ is a quadratic function whose associated
bilinear form is ^ (considered additively); more precisely, this means

(*) [ <(L) 4 -^ ( L (^a) -^(-^l3) +^ (L0a (g )p ) ==ln^(a , P) ,
1 L e S ( X ) , a^€J^

where
l n ( — i ) = = i , l n ( + i ) : : o.

This is proved by applying the first result to bundles L 0 CX, where
L e S ( X ) and OL is a quaternionic Azumaya algebra over X. Given J^
and ^2, it is easy to check that, up to isomorphism there are exactly two
pairs (S, ej consisting of a principal homogeneous space S under J^
and a function e^ on S satisfying^*). These two possibilities are distin-
guished by the Art invariant of e^ or more simply by whether ^ takes
the values o and i at s^-^+i) and ^-l{^— i) points of S respecti-
vely, or whether the opposite happens. The third' result whose proof
we will only sketch is that the former happens, i. e. e^ is more often o
than i.

All these results in the case E == L were proven by Riemann over the
complex ground field using his theta function (c/*. [R], p. 212 and 487).
In the general case, they follow easily by the results of ( fM2J , § 2) on
abstract theta functions and by Riemann's theorem that the multiplicity
of the theta divisor ©CJ^~1 at a point x equals dimr(L^), where L^ is the
line bundle of degree g — i corresponding to x. This last has been proven
by me in all characteristics (unpublished) and is a special case of the
results in the thesis of G. Kempt, soon to be published. The inspiration
of this paper came from several conversations with M. Atiyah in which
he asked whether there was a simple direct proof of these results not invol-
ving the theory of theta-functions. In particular, it was his suggestion
to look at all vector bundles E admitting a Q rather than only at the
line bundles.

1. STABILITY OF dimr(E)mod2. — Given (X, E, Q), the idea is to
represent F(E) as the intersection of two maximal isotropic subspaces Wi,
W^ of a big even-dimensional vector space V with non-degenerate
quadratic form q, where (V, q) obviously varies continuously when
(X, E, Q) vary continuously. But then it is well-known that in such
a case dimWi nW^ mod2 is invariant under continuous deformation
(c/1. Bourbaki [B], vol. 24, Fromes sesquilinearies, § 6, ex. 18 rf). We carry

N

this out as follows : let rt be a cycle on X of the form V P,, where N > o
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and the Pi are distinct points. Look at the commutative diagram :

o——>E(— a) ———>E - E / E ( — a) ->o

o — — ^ E ( — ( I ) ——>E(a) ——>E(a)/E(—n)

E(n) /E^——E((T) /E

Since r(E(-rt))-(o) and H l (E(a)
this gives rise to the diagram :

(o) for rt sufficiently positive,

o——>T(E) r(E/E(-a))—^^(-n))
t

o ——> r (E (ii.)) ——> T (E (n)/E (— n ) ) ——> H1 (E (— n ) ) —-> o

r (E(a) /E))===r(E(a) /E)

from which it follows immediately that F(E) is the intersection of the
subspaces :

W , = r ( E ( a ) ) ,
W,=r (E/E( -n) )

of the vector space :
V=r(E(a)/E(-a)) .

Next note that polarizing Q defines a non-degenerate bilinear form
B : E(g)E->^\

hence E ̂  Hom(E, ^i). It follows immediately by Serre duality that

dimH°(E) ==dimH° (Hom(E, ^1)) ^dimII^E),

so ^(E)=o. Therefore %(E(r t ) ) = Nr, and since H^E^i)) = (o),
dimWi== Nr, where r == rank (E). Obviously dimW2== Nr and
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dimV=2Nr. Next define a quadratic form q on V as follows : if
a,€E(it)p^ i ^ ^ f ^ N , define the section a of E ( d ) / E ( - — r t ) , then set

^ .
<7(^)=^Resp,Q(^),

where Q is here extended to a quadratic map E(rt) ->Q^ it). If a€Wi,
then the a, all come from one global section a of E(a), and q(a)=o
since the sum of the residues of a rational differential on X is zero. If
a€W2, then a.eEp^, so Q(a,) € (^x)p, so again q{d)=o. Thus Wi
and W2 are isotropic subspaces of V of half the dimension, i. e. are maximal
isotropic subspaces.

Now say (X, E, Q) vary in an algebraic family, i. e. we are given
(i) TI : 5C -> S, proper smooth family of curves of genus g;

(ii) & on X : a vector bundle of r/cr;
(in) Q : & -> ̂ /s a non-degenerate quadratic form.

THEOREM. — The function S->Z/2Z defined by

s \-> dimr (X^, Es) mod 2

is constant on connected components of S.

Proof. — After an etale base change S' -> S, we may assume that
locally aC/S admits N disjoint sections o-, : S — X. If 51 is the relative
Cartier divisor 2cr,(S) on X over S, then as above, we find three locally
free sheaves on S :

Wl=:7T^(^l)

^7Tj6(X)/6(-^)]=^

W2:=7:J6/<S(—X)]-

and a non-degenerate quadratic form q\ V -> (9g. Moreover, for each
5eS,("y, Wi, ^2, ^) induce, after tensoring with k{s), the previous
quadruple (V, W, W,'j q). In particular,

F(X,, E,) ^[^\(g)^A-(^)]n[^(g)^/.(^]

[U inside ^^A1^)]. But using the fact that q==o on Wi and ^2,
by the standard constructions in the theory of quadratic forms, one finds
that 3 locally isomorphisms :

V^Wi^W^
^^^2©W:
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taking q into the hyperbolic quadratic form on the right. Therefore 3
locally an isomorphism o : V —> -V such that <f^W^=W^ and qo^=q,
It follows that detyer(0^) satisfies (dety)2^ i, hence de to=+i
or — i on each connected component of S. But it is easy to check that
for all 5€S,

(detCp) (S) = (_i)Nr+dimP(E,)

(c/*. the exercise in Bourbaki referred to above).
Q. E. D.

2. APPLICATIONS. — Suppose we choose one line bundle Lo such that
L9; ̂  Ox. Then the map

E h> E (g) Lo

gives a bijection between vector bundles with non-degenerate quadratic
forms Q : E —> (9x, and vector bundles with non-degenerate quadratic
forms Q : E -> tlx* Now it is easy to see that locally in the etale topo-
logy, any (E, Q),where Q is (?x-valued, is isomorphic to (0x, Qo), where

Qo(^i, . . ., a,.) ==laf.

Therefore, if 0(r) is the full orthogonal group, the pairs (E, Q) are classified
by the cohomology set

H^X^O(r) ) -

Using the structure : 0(r)^Z/2Z. S0(r) (the product being direct or
semi-direct according as r is odd or even), and the standard isomorphisms
of S0(r) with Gm{r = 2), SL(2')/(- I) (r == 3) and SL(2) X SL(2)/(— I, -I)
(r = 4) it is easy to determine all (E, Q)^ if rank E == i, 2, 3 or 4. We get
the following bundles :

(1) E = = L a line bundle, L2^^.
(2) E == L Q) L~1, L any line bundle, Q hyperbolic.
(3) If ^ : X' -> X is an etale double covering, then for all line bundles L'

on X' such that (2)
N^x'/x^7) ^(9x.

Let E = TT^L'. Then the norm defines Q : E -> 0x.
(4) E = L^S2?, where

F is any vector bundle of rank 2; L is a line bundle such that

(*) (L^A2?)2^^.

(2) Nm of a line bundle L' means apply Nm to transition functions defining L' for an
open cover of the type Ua == ^(Va).
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There is a canonical quadratic function
Q : S^-^A2?)2

which is the classical discriminant of a quadratic form, and S plus the iso-
morphism (*) defines Q.

(5) E=Fi(g)F,, where
Fi, F^ are rank 2 vector bundles and

A^Fi^A'-F^^x.

The quadratic form comes from the composition

(Fi(g)F2) (g) (F^F.O-.A^^A^^x.

(6) E == a quaternion algebra over (9x, i. e. a locally free sheaf of rank 4?
plus a multiplication E (^) E -> E, making the fibres into isomorphic
copies of Ma^). The quadratic form is just the reduced norm

Nm : E -> 0x.

There are other rank 4 E's whose cohomology classes are not killed by the
map Hl(o(4))-e^ H^Z^ Z), but we will not write all these down.

In example 2, it follows easily by the Riemann-Roch theorem that

dirnH0 (E (g) Lo) == degL (moda)

so the stability is obvious in this case. In example 3, the stability is a
classical theorem of Wirtinger [WiJ. In fact let i : X'-> X' be the invo-
lution interchanging the sheets and let J, J' be the Jacobians of X, X'
respectively, then N^z defines a homomorphism

Nw : J'-^J

and it turns out that the kernel of Nw consists of exactly two components :

PO== locus of the line bundles M 0 ̂ M"1, degM == o
and

PI == locus of line bundles M 0 i*M~1, degM == i.

The result of Wirtinger is that the map

PoUP^Z/2Z

Lh>dimH°(L(g)7r*Lo) mod 2

is constant on Po and Pi and take different values on the two compo-
nents. We can prove this as follows :
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LEMMA 1. — If L is a line bundle on X' such that Nm L ̂  0x? then
L ̂  M 0 i*M~1 /or ^ome line bundle M on X'. Moreover, M COTZ fee chosen
of degree o or i.

Proof. — In terms of divisor classes, let L be represented by a divisor (Y.
Then NmL ̂  C?x means that TC^O = (f), for some function jfon X. Accor-
ding to Tsen's theorem, the function field A-(X) is C1 {cf. Lang [L 2]),
hence /= Nmg, some ge/c(X'). Therefore T^(a — (g)) = ( j f ) — ( N m g ) = = o .
Therefore the divisor it — (g) is a linear combination of the divisors
x—!,(^),^eX'. In other words, d - — ( g ) can be written b—i"1!), for
some divisor b. So if M = (9x(.b), L is isomorphic to M(g)L*M~~1.
Finally, we may replace M by M(^)TI*N for any line bundle N on X
without destroying the property L^M^i^M"1 . In this way, we can
normalize the degree of M to be o or i.

Q. E. D.

This proves that Ker(Nm) is the union of the two sets Po, Pi described
above. Clearly Po and Pi are irreducible. By our general result, the
number

dirnH0 (L (g) 7r*Lo) = dirnH0 (TT^L (g) Lo)

is constant mod 2 on Po and Pi. It remains to check that it has opposite
parity on the two varieties Po and Pi. We can see this as follows :

Step I : For some L € KerNm, H° (L (g) Ti*Lo) ̂  (o).

Proof. — Choose (oer(Qx) and le t (X=(co) .
For each point x occuring in a, choose an x € X' over x, and thus find

a positive divisor a' on X' such that T^a '=a. If L'== 0x(rt'), then
H^L') ̂  (o) and NmL' ̂  0^{a) ̂  Ox. Therefore

N/n(L'(g)7r'L^1) ^NwL^Lo^^x,

and hence L==L/(g)^L^1 has the required properties.

Step I I : If LeKerN^ is such that H°(L (g) 'K*Lo) ̂  (o), then for
almost all ^eX',

d i m H o ( L ( ^ — ^ ) (g) 7:*Lo) = dirnH0 (L (g) 7T*Lo) — i .

Proof. — Let r = dimH°(L 0 Ti*Lo). Then provided ix is not a
common zero of all the sections of L0ii*Lo,

d i m H ° ( L ( — i ^ ) (g)7T*Lo) = r — i ,
hence |

d i m H ° ( L ( ^ — i ^ ) 0 7T*Lo) ==/' or r — i .
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If it equals r, then

dimH^L^--^) (g)7:*Lo) == dimH1 (L (— ^>) (g)7T'Lo),

hence by Serre duality

dimH^L-1^—^) (g) 7T*Lo) == dimH0 (L-1 ̂ x) 0 7:*Lo),

hence ^ is a common zero of all the sections of L-^^x) (g) r^Lo, hence ^
is a common zero of all the sections of L"1^)^*!^. But by Riemann-
Roch

dimH0 (L-1^ 7r*Lo) == dimH1 (L-^ 7r*Lo)
== dimH0 (L (g) 7r*Lo) > o

so for almost all x, this is false.
Q. E. D.

Step I I I : If L€P,, then L(.r - i.r) ePi-,.

Proof. — Clear.

This proves all of Wirtinger's results in all char. 7^ 2.

3. THE IDENTITY BETWEEN ^ AND ^3. — We begin by the observa-
tion that in view of Tsen's theorem all Azumaya algebras (3) over X
are split, i. e. equal Horn (E, E) for some vector bundle E over X
(cf. Grothendieck [G]). In particular, this means that example 6 of
quadratic bundles in paragraph 2, the quaternion bundles with reduced
norm, are special cases of example 5. Now if I^MeJs, let

A. == (9x 4- L + M 4- L (g) M

and make A into a quaternion bundle by fixing isomorphisms L2 ̂  (9x
M 2^^ to define ^,L, and m, .m, [if ^er(U, L), m,er(U, M)] and
by the rule

l.m=-m.l, / ( = r ( U , L ) , m e r ( U , M ) .

It follows that
A^ Hom(E, E)

for some vector bundle E of rank 2.

LEMMA 2 : ^(L, M) = (- i)^-^.

Proof. — Let L == 0(d), M == (9(b) for suitable divisors rt and b with
disjoint support. Then 2ii==(/1) and 2 b = ( g ) for some /, g€/c(X) and

(3) This means a locally free sheaf of <9x-algebras whose fibres are isomorphic to Mn(0\).
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by definition ^(L, M) =/'(li)/g(ii). Let r.: X' -> X be the double
covering defined by L and let L : X' -> X' be the involution, so that
V/'^A^X'). Now the vector bundle E is unique up to a substitution
E \—^ E (^) N, N a line bundle on X and this substitution does not affect
the truth of the lemma. We will prove the lemma by constructing one
of the possible E's. By lemma 1 in the previous section, since

Nm(7T*M) ^M^^x,

it follows that there exists a line bundle P on X7 such that

^P^P^TT^M.

Choose a such that the composition

P == l*^P ̂  l*P (g) ̂ M^ (P (g) 7l*M) (g) TT'M =: P (g) 7:*M2^ P
t* OC 01

is the identity. Let E == ^P. Then (a) E is a T^0x,-algebra, and since
i^0x.^ <9x + L, we are given an action of L on E; and (&) the isomor-
phism a defines an action of M on E. It is easy to check that altogether
these actions make E into an A-module. Then it follows automatically
[since M^/c) has a unique module of dimension 2 over /c, up to isomor-
phism] that A ̂  Hom(E, E).

But now
TT^E ̂  TT^P ̂  P + l*P,

hence
TT^A^) ^P(g)l*P,

hence
adegA^E == degT^/VE) == degP -+- deg^P == adegP,

or degA2E == degP. Moreover, if P=(9(c) for some divisor c on X'
disjoint from ^(d) and ^""^h), then the existence of a means that there
is an A^A^X') such that

(A) + i"1^ — ^ == 7r~1 b.
Then

(NmA) = 2 b = = (^-),

so Nmft == ^.. g, X € /c*. Therefore :

^(rt) = NmA (a) =: A (7r-1 a.) == h{^f))

=z \ff ( (h ) ) , by reciprocity

= \/7 (^-^) • ^(c), =/(^) • (-1)^^u^ c)
==/(b) . (—I) d es•A 2 E .

Q. E. D.
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Now fix Lo such that L^ ̂  Ox. Then

^(Lo) -}-<°,(Lo(g)L) +<°,(Lo(g)M) -r-^(Lo(g)L(g)M)

=dimH°(Lo(g)A)

== dim H°(Lo(g) Horn (E, E ) ) .

But it is well-known that all vector bundles of given rank and degree
form a connected set, i. e. any 2 can be found as fibres of a family of such
vector bundles over a connected and even irreducible base S (cf.
Seshadri [S]). Therefore by our stability theorem, if r r€X is any point
and r = degA^E, setting E,== 0x(B <9x(ra), then

dim H°(Lo(g) Horn (E, E) ) ̂  dim H° (Lo(g) Horn (E/,, E,.))

=dimH°(Lo(g)0x(r^)) -4-2dimHo (Lo)

+ dimHo (Lo(g) 0x (— rx))

E=EdimH°(Lo(g)0x(r^)) — dirnH0 (Lo(g) 0x (— rx))

= ̂  (Lo(g) Ox (rx)), by Serre duality

= In ^.2 (L, M), by lemma 2.

This completes the proof of identity (*) stated in the Introduction.

4. FINAL COMMENTS. — The third theorem mentioned in the introduc-
tion is that ^ takes the value o (resp. i) 2^-l(2&'+ i) [resp. ^~i{^— i)]
times. This can be proven as follows : by the stability theorem in para-
graph 1, if two curves Xi, X., lie in a family over a connected baseS, then
to prove it for Xi it suffices to prove it for X2. Since the moduli space
of curves of genus of g is connected (Deligne-Mumford [D-M]), it there-
fore suffices to prove this for one X. Now for hyperelliptic X the result
is very elementary. In fact, let

7T : X->P1

be the double covering, with ramification points Pi, . . . , P^+aG X.
Let a be the divisor class 7i-1 (one point) on X. We have the relations

2 Pi == . . . FEE 2 Pa^+2 == tt,

Pi+. . .4-P^+2===(^+i)a ,

(^ — i) ft == Kx, the canonical divisor class on X.
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Then the elements of S(X) are represented by the divisor classes

^=SPa+ ,̂ 1=0^ I, ...l^-1],H s — ^ Jba+ ^.d, ^==0,

aes
SC •I I , 2, . . ., 2^+ 2 (,

7 ^ S = = ^ — I — 2 ^

and

bs-^^Pa-n, S c ; i , 2 , . . . ,2^+2; ,
aes

^S=^4-i ,

where bs"^ = b^ if { i , 2, . . ., i g + 2 } = SuT. It is easy to check
that

dimH°(X, 0x(bs^)) ==^4- i

and then adding up the number of b^ with I odd and I even, the result
follows.

A natural question to ask is what happens in char. 2 ? Strangely, it
turns out that in this case there is a natural line bundle L such that L2 ̂  t2x
In fact, for every f^k{ X) — k (X)2 , |it follows immediately by expan-
ding f locally as a power series that the differential df has only double
zeros and double poles, i. e.

(6 / / )=2r t , for some divisor ft.

Moreover, if /i, /sCA^X) — / c ( X ) 2 , then { i, f^} is a 2-basis of A-(X), so

/i == a2^ 4- b2, some a, b e k (X).

Therefore dfi = a^df^y hence if {dfi)=2.a^ we find

n, == (a) 4- a.^

Therefore the divisor class rt is independent of /*, and L==0x( r t ) is a
canonical square root of ^x*
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