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SEVERAL-VARIABLE p-ADIC FAMILIES OF
SIEGEL-HILBERT CUSP EIGENSYSTEMS
AND THEIR GALOIS REPRESENTATIONS

BY J. TILOUINE AND E. URBAN

ABSTRACT. - Let F be a totally real field and G = GSp(4)/^. In this paper, we show under a weak assumption
that, given a Hecke eigensystem A which is (p, P) -ordinary for a fixed parabolic P in G, there exists a several-
variable p-adic family A of Hecke eigensystems (all of them (p,P)-nearly ordinary) which contains A. The
assumption is that A is cohomological for a regular coefficient system. If F == Q, the number of variables is three.
Moreover, in this case, we construct the three-variable p-adic family p\ of Galois representations associated to
A. Finally, under geometric assumptions (which would be satisfied if one proved that the Galois representations
in the family come from Grothendieck motives), we show that p\ is nearly ordinary for the dual parabolic of P.
© Elsevier, Paris

RESUME. - Soit F un corps totalement reel et G = GSp(4:)/p. Dans cet article, nous montrons, sous une
hypothese faible, qu'etant donne un systeme A de valeurs propres de Hecke (p, P)-ordinaire (pour un parabolique
P quelconque fixe de G), il existe une famille A a plusieurs variables de systemes de valeurs propres de Hecke
quasi-ordinaires en p qui Ie contient. L'hypothese est que A intervient dans la cohomologie d'un systeme de
coefficients regulier. Si F = Q (Ie nombre de variables est alors 3), nous construisons la famille p-adique a trois
variables de representations galoisiennes p\ associee a A. Enfin, sous des hypotheses geometriques (qui seront
satisfaites si 1'on montre que les representation galoisiennes de la famille proviennent de motifs de Grothendieck),
nous montrons que p\ est quasi-ordinaire pour Ie parabolique dual de P. © Elsevier, Paris
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0. Introduction

For the group of symplectic similitudes G = GSp^ over a totally real field F of degree d,
we develop Hida Theory in a manner similar to [16] and [17]. This means that we introduce
a big j9-adic cuspidal Hecke algebra h defined as the inverse limit of commutative algebras
of Hecke correspondences acting on the cohomology of Shimura varieties whose p-level
tends to infinity. In particular, the study focuses on the direct factor h"' -° of this algebra
cut out by the so-called ^-nearly ordinary idempotent. Hida theory seeks to establish

1. the independence of the weight for h^0,

2. the control of h^0 when localized at "arithmetic" codimension-one primes of the
relevant Iwasawa algebra A,

3. its finiteness over A and what is its Krull dimension (it is equal to that of A once
one has established the torsion-freeness of h71-0 over A),
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4. the existence of associated Galois representations over suitable local components
thereof.

Actually a more precise result is desirable for those Galois representations. Namely, their
restriction to the decomposition groups at primes above p should take values in some
parabolic subgroups determined by the type of near ordinarily imposed to the Hecke
algebra (i.e. to the corresponding automorphic forms). A Galois representation satisfying
this local condition is called nearly ordinary (see [36], Section 5). For GLa over a totally
real field, it is a theorem of Wiles [47] (see also Hida [15]) that if a Hilbert modular form
is nearly ordinary, then its Galois representation is nearly ordinary. In more general cases,
however, this fact is not known. Investigating this question has been our main motivation
(see Section 7 below). The method for dealing with points 1-3 is cohomological, using
the natural faithful representation of h on the cohomology of a Siegel manifold of level
divisible by p°°. This approach follows the ideas of Hida's recent works concerning the case
of GL(n) (see [17] and [18]). A good deal of our intermediate results, like independence
and control theorems for the full cohomology and probably for the boundary cohomology,
are very general; they (should) hold at least for split connected reductive groups of type
A, B, C or D over any totally real field. Our work is motivated by three reasons. The
first is that it allows one to speak of Hida families for nearly ordinary cohomological
genus-two Siegel-Hilbert cusp eigensystems A. Thus, it should provide new families of
p-adic ^-functions (although several variables p-adic Siegel-Hilbert Eisenstein measures
should be constructed first) and new Main Conjectures. Second, for F = Q it provides
big Galois representations

px : Gal(Q/Q) -. GSp,(Z,[[T^T^T,}})

associated to a family A (Section 7 below). The specializations of p\ at almost all arithmetic
primes Pg (see Definition 6.2.4 in the text) are the Galois representations p\^ associated to
the Hecke eigensystem \e defined by A in weight 0. These representations p\^ have been
constructed by Shimura [32], Harder, Chai-Faltings [7], R. Taylor [34] and more recently
by Laumon [23] and Weissauer [46] independently. We have attempted in [36] Section 10
to formulate a generalization of the Langlands correspondence predicting for these Galois
representations a specific behaviour at p, namely, p{D^) c Py where Py is in the conjugacy
class of the Langlands dual of the parabolic giving the condition of near ordinarily on
the automorphic side. This we can prove, if we assume that the Newton polynomial at
p associated to crystalline p\^s is given by the p-Euler factor of the automorphic L
function of \e. Our proof then makes use of the observation that in an analytic family of
nearly ordinary forms, many have level prime to p. Such forms give rise conjecturally to
crystalline representations; for those, one can compare the Hodge and Newton polygons
and their ordinarily follows. Then we use a density argument to conclude it holds for
the family, hence for all its members. Actually, for F -^ Q, assuming that 4-dimensional
Galois representations associated to the \e exist one can still show p{D^) c Py despite
the fact the Newton and the Hodge polygons may never meet (cf. Remark at the end of
Appendix Bl); indeed, under a rather natural assumption, called ^-separability, we obtain
the ordinarily even for F ^ Q. The third motivation is to apply this ordinarity result to
the Galois representation associated by R. Taylor to modular forms on GL(2, K) where
K is imaginary quadratic, providing in this way a lacking ingredient in a paper by one of
the authors (see Conjectures 3.3.1 and 3.3.2 of [39]).
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502 J. TILOUINE AND E. URBAN

In order to state a striking particular case of the present work, we introduce some
notations. Let V be a finite dimensional complex vector space and p : (7*(2) —^ GL(V)
be an irreducible algebraic representation of the maximal compact real Lie subgroup of
5^(4, R); let pc '• GL(2,C) —> GL(V) be its complexification. Let / be a holomorphic
V-valued Siegel cusp form of weight p and level group F: f({AZ + B)(CZ + D)~1) =

pc(CZ + D)f{Z) for ( ) G F; assume / is eigen for all Hecke operators T^, R^,
\° L ) )

Si (see Def. 6.1) for all rational primes i prime to the level N of F. The eigenvalue of
/ for the Hecke operator T is denoted by A(T; /). Let OQ be a Dedekind ring finite over
Z containing the eigenvalues of /. The highest weight % = (01,03) ^ Z2 of p satisfies
^i > ^2 > 3 (note that classical Siegel modular forms correspond to a\ = 03 = k > 3).
Let \' = (a,b) = (ai - 8,02 - 3), and let B' be the standard Borel subgroup of Sp^
(see Section 1.1); put

LQ^; Z) = L(a, 6; Z) == {/ : Sj9(4, Z) -^ Z; / is regular, defined over Z and

f{gtu) = X^^'Wf^g) f01' ^ semisimple in B' and n unipotent in B ' }

viewed as left F-module by " y . f ( g ) = /(7~1^). For any ring A, let ^(^/; A) = £(;^; Z)0A.
It is known (see [33] p. 323) that the eigensystem associated to / occurs in
H^r^a^C)). We assume that ^' is regular: a - b > 0 and b > 0. This excludes
classical Siegel modular forms (for which a = b = k — 3).

Let p be a rational prime, relatively prime to TV and to the order of the torsion subgroup
of H^r, L(a, 6; Z)) (q = 2,3). Let v be a non trivial valuation of OQ such that v(p) > 0;
assume that v(\(Tp', /)) = 0 and v{\{Rp', /)) = b. Let 0 be the completion of Oo at v.

Let A' = 0[[Ti,r2]]. Let u = 1 +p. For any pair (a,b) with a > b > 0, we define
the arithmetic prime Pa,b of A' as the kernel of the homomorphism A —^ 0 given by
TI \—> v^ — 1, Ts i-̂  ZA6 — 1. Let ro(j?) be the subgroup of F consisting in matrices whose
reduction mod p fall in B ' .

THEOREM 0.1. - Under the previous assumptions, the ordinary part h° of the cuspidal
Hecke 0-algebra is finite torsion-free over A7; moreover, there exists a finite flat extension
J of A' and a K'-algebra homomorphism \ : h° —> J such that for any arithmetic
prime P a ' , b' ^ith a' = a, V = b mod (p - 1), a' > 6' > 0, and any prime P in J
above P a ' , b ' , the reduction of \ mod P "corresponds" to a Hecke eigenclass C a ' ^ ' in
H^Fo^), L{o!, V\ 0)). For (a', b ' ) = (a, 6), this Hecke eigenclass is deduced from Ca,b by
the p-stabilization isomorphism:

Res : H^(r, L(a, &; 0)) ^ H^FO^), L(a, 6; 0))

(^^ Proposition 3.2 o/ Section 3.5 below).
Secondly, assume that multiplicity one holds for GSp4; then, there exists a finite extension

T of Frac(J) and a continuous Galois representation p\ : Gal(Q/Q) —^ GSp^^F)
associated to the K'-algebra homomorphism X; namely, it is unramified outside Np, and
for any prime i relatively prime to Np, the characteristic polynomial of p\(FTob^) is given
by \(Q^{X)) where

Q^X) = X4 - T,X3 + £(R, + (C + 1)S,)X2 - CT,S,X + ̂ SJ

4° SERIE - TOME 32 - 1999 - N° 4
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Comments: 1) In the case J = A', the p-adic analyticity of the family of Hecke
eigensy stems amounts to the Kummer congruences: if o! = o" and V = V mod (p - l)j/\
then the eigensystems \a',b' and \a",b" are congruent mod ^n+l.

2)_Roughly speaking, one can say that p\ lifts the Galois representation pf :
Gal(Q/Q) -> GL4(Q^) constructed by Laumon [23] and Weissauer [46]. Even without
assuming multiplicity one for GSp4, R. Weissauer has associated a Galois representation
PT, : Gal(Q/Q) —> GL^Qy) to any cohomological cuspidal representation TT on GSp4
(this result is only written up for 71-00 in the holomorphic discrete series). Then, in our
theorem, we can remove the multiplicity-one assumption and the irreducibility assumption;
the conclusion is then only that there exists a representation p\ : Gal(Q/Q) -^ GL^)
with the correct characteristic polynomials.

3) If one assumes multiplicity one, the main ingredient to show that p\ falls in GSp^J^)
is that all smooth irreducible representations TT of GSp4 (A) are autodual. This comes
by proving that for a given local constituent TT^ of TT, the traces of the Hecke operators
acting on the space of TT^ and that of TT^ (g) o;̂  o v are the same; this last point results
then from the fact there exists an element go e GSp4 such that tg~lf(g) = goggQ1, here

go = J = [ 2 2 ) works. We are grateful to Clozel for showing us this argument.
\~±2 ^2 /

4) If multiplicity one holds and if reduction of pf modulo the maximal ideal of Zp is
still absolutely irreducible, then, one can see that p\ takes values in GSp4(J).

5) Moreover, we can prove that the image by p\ of a decomposition group at p is
contained in B(J) (up to conjugation in GSp4(J) if the two statements Sl and S2 below
hold. Consider a Zariski dense set of arithmetic primes (Pa^b') with (a7, V) = (a, b)
mod (p - 1) and a' > b' > 0 and fix a prime P above (Pa^b') in J. We know from
Proposition 3.2 and from the comment following Conjecture 7.2, that p\ mod P is
crystalline at p.

51 For a Zariski dense subset of arithmetic primes (Pa', 6') as above, p\ mod P has
four distinct Hodge-Tate weights.

52 The slopes of the Newton polygon of the (^-filtered module attached to p\ mod P
are equal to the valuations of the eigenvalues of the roots of A^Q^X)). Here A^ = A
mod P is viewed as a character of the Hecke algebra of level group r (prime to p) and
Q/ (X) is defined as "Qp" since now p is prime to the level of the group F.

Sl is implied by the stability of the L-packets at infinity; this is known if A^ is
supercuspidal at some finite place and seems accessible to specialists even without this
assumption. S2 is harder. An evidence towards it seems more accessible, namely that
the slopes of the Newton polygon occur among the valuations of the eigenvalues of the
roots of \^\Qp{X)).

6) The continuity of the Galois representation p\ means that it preserves a lattice T in JF4

and p\ : Gal(Q/Q) —> GL(T) is continuous for the natural topologies; hence the theorem
implies that for a Zariski dense family of arithmetic primes Pa',b' (with (a', V) = (a, b)
mod p - 1), the reduction of p\ modulo Va'.b' exists and is the Galois representation
associated to the eigenclass Ca/,6/.

7) In the text below, one can even study a bigger Hecke algebra \\n•o over a bigger
Iwasawa algebra, called the Hida-Iwasawa algebra A (see Section 6, Def. 6.2) obtained by
adjoining to the "semisimple variables " of A7 the "central variable(s)". The Hida-Iwasawa
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504 J. TILOUINE AND E. URBAN

algebra is isomorphic to the algebra of a finite group over a ring of formal power series in
3 = 2 + 1 variables if F = Q, and in 2d + 1 + 8 variables, if F is totally real of degree
d. Therefore, p-adic families of cuspidal Hecke eigensystems indexed by these variables
exist, as well as corresponding families of Galois representations (assuming Conjecture 1
of Section 7).

An important application of our result is currently investigated by one of the authors
(see [40]). Namely, one can use this theory to study congruences between families of
Eisenstein-Klingen series and families of Siegel cusp eigenforms in order to produce non
semisimple Galois representations with values in the Siegel parabolic. This basic idea can
be used to study Greenberg's Main Conjecture for the symmetric square of a ^-ordinary
elliptic curve (see [40] and [20]). An important step of this investigation is to prove that
the Galois representation p\ attached to an ordinary cusp eigensystem A is absolutely
irreducible, provided that A is not globally endoscopic and that the residual representation,
if reducible, admits an irreducible two-dimensional subquotient which is modular in Serre's
sense and satisfies the assumptions of the theorem of Wiles and Taylor ([48] and [35]).

We give now a short survey of the contents of the present paper. In Section 1, we recall
the standard notations and definitions used throughout this article. We give the definitions
of local Hecke operators and their action on flags in section 2. In section 3, we prove first a
theorem of independence of the weight for the ordinary cohomology of Fi-type congruence
subgroups with level p°° subgroups (Cor. 3.2); then, we establish control theorems for the
ordinary cohomology group of "bottom degree" (that is, the first degree of non-vanishing
for regular coefficients, namely, by Franke's theorem, the middle degree 3d). There are
two such control theorems: weak (Thm. 3.2) and exact (Thm. 3.3). Up to this point, it
appears clearly that the proofs work for any reductive group, after appropriate translation.
Then, after a study of the strata cohomology in Section 4, we show control theorems in
Section 5 for the boundary cohomology by studying the degeneracy of the nearly ordinary
part of the spectral sequences attached to the parabolic subgroups defining the Borel-Serre
compactification; there, restriction to genus two is required to insure the degeneracy of the
spectral sequences at E2 (th. 5.2 for F = Q and Lemma 5.2 in general). From these control
theorems, we deduce our main results (Corollary 5.1 for F = Q and Theorem 5.8 in general)
for the ordinary interior cohomology of congruence subgroups of Fi-type, of level p°° in
middle degree q = 3d. We apply these results in Section 6, to obtain their counterpart for
the nearly-ordinary cohomology of the p°° -ramified Siegel threefolds (Thm. 6.2 and Thm.
6.3). Then one deduces a control theorem for the nearly ordinary cuspidal Hecke algebra
for GSp4 (Cor. 6.3). This result is enough to insure the existence of a (2d+1 + (^-variables
Hida family interpolating a Siegel-Hilbert cusp eigensystem of given level and weight, as
well as the specialization at any arithmetic primes of such a family into such eigensystems
of given level, weight and central character (Cor. 6.7). Finally in Section 7, we construct,
assuming standard conjectures proved in some cases, the Galois representation attached to
a Hida family, and we discuss its near ordinarity (Thm. 7.1). It will be obvious to the reader
that our approach follows closely Hida's recent paper [17] devoted to the GL(n) case. We
learned his method in a course at Paris-Nord in March 1994. We are glad to acknowledge
our debt to him here. We also benefited from several conversations with R. Weissauer
whom we thank for his invaluable explanations. Part of this paper has been written during
visits of the first author at the Tata Institute of Fundamental Research in Bombay and at
Mannheim University; let these institutions be thanked for their kind hospitality.
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1. Notations and preliminaries

1.1. The symplectic group

Let J = ( ^ ^2 ) e GL4. Let G = GSp^ = [g e GL4; ' g J g = v{g}J} be the group
of symplectic similitudes of J; the character v : G -^ Gm is called the multiplier of GSp4:
The group G1 = Sp^ of symplectic isometries is the kernel of v. These groups are smooth
group schemes over Z. The symplectic module acted on by G is denoted by (TV, < , >) and
we write its canonical basis (over Z) as {ei ,e2 , fi, f^} with < 61,62 >=< /i,/2 >= 0
and < Ci^jj >= Sij . Consider the standard maximal torus T of G consisting of diagonal
matrices. We identify it to G^ by the isomorphism: r : G^ ^ T,

{ti,t^x) ̂  diag^i^^r1^^"1)'

Its character group X*(T) is then identified to the sublattice of Z3 consisting of the
(oi ,02;&) such that 01+03 = &mod 2. We write \ = (oi ,02;&) for the character \
defined by

X(r(t^x))=ta,ltyx^b-al-a^2.

We denote by B the standard Borel of G consisting in matrices of the form

/^ ^ ^ ?i<\
* * *

*

\ * */

Its unipotent radical is denoted by B^~. The roots associated to (G,B,T) are (^i/^)^
and (x^titj)^ for 1 < i < j < 2; we denote their set by Rz, and these are characters
defined over Z. The positive roots are the four ones given by the exponent +1; their set
is R^\ the simple roots are ai = ti/^ and 0:2 = ̂ ~4| (the long root). Each conjugacy
class in G of parabolic subgroups (over Z) has a unique representative containing 5; there
are exactly three such parabolic subgroups:

• the Siegel parabolic:

^W--
the conditions on the 2 x 2-blocks are that tAD = ̂ .12 for some scalar v and A~1B
is symmetric. The standard Levi subgroup is:

M={9=^ ,°i-i);AeGL,.eG.}

It is therefore isomorphic to GL2 xG^. We write {A,x) e GL2 xGm ^-> ^{A;x) for
this isomorphism; it maps the center G^ of GL2 x Gm onto the center ZM of M.
Let M1 be the derived group of M and CM = M/M1 be its cocenter. The natural
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506 J. TILOUINE AND E. URBAN

map ZM —^ CM is an isogeny of degree 2 which we identify to ( z ^ x ) i—^ (z2^).
The unipotent radical of P is

P+ - JY12 5 V^ - ^— 1 I n 1 p ° — ^I \U2 l2/

• the Klingen parabolic:

P* =

(a * * * \
0 a * /3 C n 7 I ^

0 0 6 0 ;^-^=^ HG;

t \ 0 7 * <V

The standard Levi subgroup is:

f / a
a ftM* = ; a6 - /?7 = ab + 0 >;

\ -y
It is therefore isomorphic to Gm x GLa. We write

/a
. ( (a f3

^ : [a- ̂  8
a f3

b
7 8 ,

with ab = a6 — /?7. By this isomorphism, the center G^ of Gy^ x GL2 is mapped to
the center ZM* - The natural isogeny from the center to the cocenter of M* becomes
(re, z) i—^ (rr,^2). The unipotent radical is

?*+=

/3 7'
7 O

<1 a
0 1
0 0 1 0

<0 0 -a 1

^/^^bitrary

• the Borel subgroup B = TB~^~, which has been already described.

Note that P and P* are maximal and that B = P D P*. For Q = P or P* with Levi
subgroup MQ (often abbreviated as M when the context is clear) and Levi decomposition
Q = MQ+, we put Q = M^Q-^ and C = M/M1. Consider the natural map T —> C
induced by the inclusions B C Q and B^ C Q. It identifies the group X*(C) of characters
of C to the sublattice of X*(T) C Z3 consisting of

• the (a ,a ;&) C Z3 such that 2a = bmod 2, if Q = P,
• the (a,0;6) e Z3 such that a = bmod 2, if Q = P*.

Let Q be any parabolic subgroup with Levi subgroup M and unipotent radical Q~^. We
denote by AQ the set of roots of (M, T) and A^ the set of positive resp. negative roots
for (M, B H M, T); similarly, we write ̂ ± the set of roots for T acting on (^±. We denote
by W the Weyl group of (C?, B, T), WM that of (M, BUM, T). The set of positive (resp.
negative) roots of {G,B,T) is then decomposed as R^ = A^]JP^.
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1.2. Local systems over Siegel-Hilbert modular varieties

Let F be a totally real field of degree, say, d; let r be its ring of integers, with
discriminant D. We note I p the set of embeddings of F in Q. For / : Specr -^ Spec Z,
we consider the scheme H = /*/*G, restriction of scalars of the base change of G to r;
for any ring A, H(A) = G(A 0 r); H is a group scheme over Z, smooth over Z[1/P].
The multiplicator v induces a natural morphism from H to /*/*G^. Its kernel is denoted
by H1; for any ring A, we have H^A) = G^A 0 0^). In this paper, we denote by Q
a parabolic subgroup of G and Q' = Q D G1. We know that there are three conjugation
classes of parabolic subgroups in G containing respectively P, P* and B. Let us fix
Q G {B,P,P*}. We write the Levi decomposition of Q as MQ+. Let M' = M D C?1,
M1 = M'1 the derived group of M and Q = M^Q^.

Let us fix an odd prime p\ let Sp = {?; place of F; z>|p}. Let J be a subset of Sp.

DEFINITION 1.1. - A J-proper standard parabolic subgroup Q of H ^ Tip (abbreviated
as J-proper SPS) is a product Q = Y[^ Res^ Qv of parabolic subgroups Q^ of G 0 r^
such that for each v e J, Q^ G {P,P*,P}, ̂ /or v ^ J , Q^ = G. Let Q' = ]~[d 0^
M ^ ]"L|p M^ its Levi subgroup and Q+ = J^p 0^ ^ unipotent radical system; Q
is a semi-direct product MQ+. Let M1 = Y[^ M^ be the derived group of M and
Q = M1Q^ = Y[^pQv. For any Zp-algebra A, let Ay = A 0 r^ for each v\p; then
QW = Ilv\p Qv(Ay) via the canonical isomorphism H{A) ^ fj^i G(A^). Similarly for
Q\A\ Q+(A) and Q(A).

We fix an arbitrary J-proper SPS Q with Levi components (M, Q~^). Most of our results
will be valid without further assumption on Q, although results of Section 6 will require
that J = Sp and Q is of the form Q = Tin = A/*n for II <E {B, P, P*}.

Let A be the ring of rational adeles and Qf resp. Qoo be its finite, resp. infinite part. Let
HA, resp. Hf, Hoc be the group of A-points of H, resp. of Q^-, Qoo-points. Let U^, be
the stabilizer in H^ = fl^oo G(Fy) of the map h : Cx —> H^ whose ^-component is

^+..)=(;^ ^)e<W,).

Let us fix once for all a compact open subgroup U of H(Z) of levelprime to p. For any
r > 1 We denote by UQ^) the compact open subgroup of Hf defined as

UQ^) = [g G U ' ^ g mod pr G Q(Z/jfZ)}

Remark: Despite the Notation, the level of these subgroups is concentrated on the
J-part of Sp since the condition is void at places v ^ J. If J = 0, these groups are
of level trivial at p.

We form the Shimura varieties:

S^U) = H^HA/UQ^U^

Their connected components are Siegel-Hilbert modular varieties of dimension 3d. For
s > r, there is a natural finite morphism Ss(U) -^ Sr(U)', the varieties Sr(U) together
with these transition maps form an inverse system.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



508 J. TILOUINE AND E. URBAN

Let 0 be the valuation ring of a finite extension K of Qp. Let LK be a finite dimensional
AT-vector space with a rational action of Hp = H0 Qp; we assume it is "adapted to Q" , L^
it is (algebraically) induced from Q to G by a rational representation p of M. Note that this
condition is automatic if LK is induced from BH to H by a character of T^, by transitivity
of the induction (BH to Q and Q to H). Let Jg = {p G H(Zp);^ mod. j? G Q(Z/pZ)}.
In the text, we shall consider a suitable lattice L of LK, stable by JQ, hence by the
^-component of ideles in UQ^) for any r > 1; let us put R = L K / L ' , it is a discrete
0-module with a continuous action of UQ^) (through its ^-adic component); we consider
the sheaf R of locally constant sections of the covering

HQ\HA X R/UQ^U^

I
H^HA/UQ^U^ = S^U)

where the action defining the covering space is given by

^(h,v)uuoo = (^huUoo.Up1^) for 7 e HQ, uuoo G t/g^)^ and v C R.

2. Flags and Hecke operators

In this section, we view H1 and its subgroups as group schemes over Zp; G1 is viewed
over rv for each v\p.

2.1. Parahorics and flags

Let Q be a J-proper SPS; let M' be the Levi subgroup of Q' = Q H H1. In the case
of the standard Borel subgroup Q = f^f*B of H, we write Q' = B^. We have a Levi
decomposition Q' = M'Q^\ let ZM and CM = M/M1 be respectively the center and
the "cocenter" of M, and ZM' and CM' = M' /M1 be respectively the center and the
"cocenter" of M'\ we put Q =Q/ = M1Q^. Let us put, for each v G Sp, X^ = G1/^
and Yv = G1 I Q ~ ^ . Let Tr^ : Yy —^ Xy be the structural map; it is a morphism of r^-scheme.
Note that Xy is a project! ve scheme and Qv is an M'^ -bundle over Xy. We write 0^ for
the marked point on Xy given by the trivial class. Put Yqi = n^p^' ^Q' = FLip^'
^Q' = n^ej^a n d ^o' = ru0.-

Let Q" = H . Res^ Q^ be the unipotent subgroup opposite of Q^ (hence Q~^ = 1
for v ^ J). For each r >_ 1, we set

Ir = {h e H(Z^); /i mod jf G Q(Z/^Z)}

and
J; = J, n H )̂ = J; = Q'-^z^Q^z^).

We also introduce

fr = [h G H(Zp);hmodjf G Q(Z/^Z)l

and
J^J.nH^).

For r = 1, we drop the index 1: I = Ji, I ' = I[ and J = Ji.
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Terminology: We refer to the subgroups Ir and 1'^ (resp. Ir and 7^) as to the level-
p7' parahoric subgroups of H(Zp) resp. H^Zp) associated to Q. We call them Iwahori
subgroups when Q is the standard Borel subgroup BH of H.

For v\p, let

I^r = [g e G^^modj/ G ̂ (r,/^))}

and 1^ = 1^ H G\F^. Then, J; = FLip^- Similarly, we have J; = 0^^
We set

,̂r = ^v.rlQ'v^v)

and
XQ,,,=W(Z,,) and XQ,=X^;

thus, XQ,^ = FLip^r; similarly:

V^r = I^r/Q^^) = Q.-^r,) x A^(r,).

Let
%. = W^Zp) and y^ = y^;

hence, y^ = n.|p^.
For any r > 1, Y^, ^ is the inverse image by TTQ/ of XQ,^', these sets are p-adic open

in VQ/(Qp), resp. in Xo/(Qp).
They can be viewed as Zp-points of schemes whose functorial description is as follows:

for any Zp-algebra A, let Ay = A 0 r^ for each v\p.
• for Q^ = P', X^(A^) is the set of maximal isotropic direct factors E in W (g) A^

whose reduction modulo pr is the standard lagrangian (61,62); Y^^(Av) is the set of
pairs ( E ^ ( / ) ) of a maximal isotropic A^-submodule £', direct factor in IV 0 A^, and
an isomorphism ( f ) : E ^ A^ whose reduction modulo ̂  is the standard isomorphism:
ei ^ (1,0), 62 \—> (0,1). The morphism 7Ty consists in forgetting (f).

• for Q^ = P'*, X^^(Av) is the set of rank 1 free direct factors £'1 in W 0 A^ whose
reduction modulo ̂  is the line (ei); yj\.(A,;) is the set of pairs (Ei.^i) of an E^
as above and an isomorphism (^i : E^ ^ A^; such that <^i mod j^ coincides with the
standard isomorphism e\ \—^ 1. The morphism 7Ty consists in forgetting <^i.

• for (% = B', X^y,(A^) is the set of flags ( E ] _ , E ) of isotropic submodules which
are free direct factors in W 0 Ay and whose reduction modulo p " is the standard
flag ((ei), (61,62)); y^(A^) is the set of pairs ((£'i,E), (^i,(/))) consisting in a
flag (£'i,i?) as above, and isomorphisms ^i : Ei ^ A^ and (f) : E ^ A2, such that
(^ restricted to £'1 coincides with <^i and (^ modulo pr coincide with the standard
isomorphisms: e\ i—^ (1,0), e^ \-^- (0,1). The morphism TT^ consists in forgetting
(<^i^).

• for Q^ = G, X^^(Av) = {.} and V^(A^) is the set of symplectic bases of W (g) Ay.
It is in canonical bijection with (^(r^).

Then, we have YQ.^A) = T[^Y^{A,) and similarly for XQ, ̂ (A).
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Using these j?-adic open subsets, we can define lattices stable by our parahoric subgroups,
as follows.

Let 0 be the valuation ring of a finite extension K of Qp containing the Galois closure of
a compositum ]^[i Fy (and sufficiently big when necessary); we fix a family of finite free
0-modules (Vy)v\p and a family (pv)v\p of group scheme morphisms py : My —> GLo(Vv)
defined over Zp as an algebraic representation such that py 0o K is absolutely irreducible;
let us put V = (^^\pVv\ p = ̂ ^\ppv '' M —^ GL(V) is an algebraic representation of
M over Zp; it is absolutely irreducible. Note here that we have fixed representations of
the Levi subgroups My of G\ that is, we have prescribed the central action (instead of
imposing only their behavior on M'^ = My Fl G?1). This will be necessary for the control
theorem for the Hecke algebra, although throughout the study of group cohomology this
does not play any role. The maximal torus of My is unchanged, equal to the maximal torus
T of B, hence pv (g) K corresponds to a character 6y C X*(T) = Hom^Res!^ T, Gm)
which is dominant for the ordering defined by B n My (actually the ordering is on X * ( T ' )
hence we mean the restriction of &y to T'\

DEFINITION 2.1. - We say that p is H-compatible if the characters Sy are actually dominant
in X*(T") for the ordering defined by B. This means that the induced representation of Sy
over K from B to G is absolutely irreducible.

From now on, we fix such a representation p = (^y\ppv- Note that a character \v of
CM, = M^M^ = Q^/Q^ can be viewed in X*(T) via T = B / B ^ -^ C^ Recall that
we have fixed a J-proper SPS Q.

DEFINITION 2.2. - An algebraic character ^ = 0^, ^ of CM = fj^i ^v is called
dominant with respect to p if 6y 0 ̂  is dominant in X*(T) for each v\p. For each place
v\p, the representation of My associated to 6y 0 \v restricted to T is pv ^ Xv- For each
such ^, we form the representation p 0 \ : M —> GL(V).

Then we form a representation of H^ = H^Qp) by parabolic induction:

L(p', K) = [f : YQ, -^ V 0 Qp; / polynomial , f(ym) = ̂ m"1)/^) for m G M}

For each system \ G X*(CM), we can form the representation L(p0^; K). It is easy to see
that \ is dominant with respect to p if and only if L(p^\\ K} is an irreducible H^module.

In it, we fix the following sublattice:

L\p 0 ̂ ; 0) = {f e L(p 0 ̂  ̂ ); /(VQ,) c V}

One lets J' act on this module by left translation: (g.f)(y) = /(^-1^/). This representation
of I ' will be called in the sequel the algebraic induction from M'(Zp) to I ' of p (g) ^.
These lattices tensor with K / 0 will be used as coefficients of our cohomology groups.
Before defining global Hecke operators on these cohomology groups, we study the local
Hecke algebra.
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2.2. Local Hecke algebra

For each v\p, we choose a uniformizing parameter Wy of Fv. Consider the subset
A^y. = 1^ ^Dyl^ y, of G(Fy) where Dy is the set of matrices

• ^(diag2(^S);^) for 0 < 2a ^ b if Q1 = P',

• ^*(^,diag2(^)) with 0 < a < 6, if Q' = P'*,

• r(^1,^2;^) fof 0 ^ ai < 02 < j6, if Q' = B ' .

When r = 1, we simply write A^ for A^i. Let (7 be any subgroup between 1^ ^ and 1^ y..
Remark: The local Hecke algebra

H^C) = 0[C\^r/C]

depends on the choice of Wv\ however the main object of interest to us, the nearly ordinary
idempotent, will not depend on that choice.

We use Shimura's notation [C^C7] for an element of the canonical basis of 'hv(C) . The
multiplication is given by [C^C]. [C^C] = ̂  c^CrfC] where C^C^C = \J^ CrjC is a
disjoint union, and c^ = t t { (^ j ) ; C^^ = Crj} (it depends only on the double class of 77).

PROPOSITION 2.1. - A^ r is a semigroup; the ring T~iy{C) is isomorphic to a polynomial
ring over the 0-algebra of a finite abelian group:

WJC^T^ieA]

-where

• the group 1^ ^./C acts through the double classes [CgC]^ g € 1^ ̂

• A is a subset of {0,1,2}; J = {0,1} for Q = P, A = {0,2} for Q = P*, and
J = {0,1,2} ifQ = B,

• T,,o = [Cw^C\ T,,i = [C^(l2;^)C7], andT^ = [C^{1^A^)C\

In particular, this algebra is commutative.
Proof: The key is to establish the formula [C^C}.[C^'C\ = [C^C] which relies on

the multiplicativity of the degree map: ^ \—> d(^) = h where C^C = U?=i ^%- ^e

computation is similar to that of [17].
Let Q' be a parabolic subgroups of H1. Consider its associated parahoric subgroup

1^ and 7^ of level ;/\ For Ay. = Tlv\p^v,r (or simply A if r •==- 1), we consider
the p-semilocal Hecke algebra "Hp^r = ^Vr\^rll'r} (or ^p when r = 1); there is
a canonical isomorphism T-ip^r = 0^| T~iv(I'vr)' H^nce, T~ip,r is a polynomial algebra
over the group algebra of CM/(Z/J/'Z) where M' is the Levi system of Q ' ' . Note
also that one can write T-ip^r = T~ij,r x T~tr where one defines the J-semilocal
Hecke algebra as Hj^r = ^v^j^v{I^r) an(l lts complement (the non-J-part) by
^J) = 0^j^(^4(r.)).
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2.3. Action on flags

Let Q C H as above. We keep the Notation of Section 2.1. For any r > s > 1, we have
an obvious action of 1^ = Tlv\pl^r on ̂ ,3 ̂  left translation and of M'(Zp) by right
translation. We wish to extend the action on the left to the semi-group Ay, = f^ip ^v.r' It
is enough to define the action of Dy on 1^ ^/Q^(r^) for each v\p.

• For Q = P, let ^ = /^(t.l2;^) ^ ^ (so 0 ^ 2.ord^(t) < ord^(rr)); let
(Ev^v) € y^s; note that the image dyE^ of £^ can be written tE^ for some
direct factor E^ inW ^> Ty and <^ = ̂  o (^1) is an isomorphism E'^^-r^, whose
reduction mod cJ^ is the canonical isomorphism ei i—^ (1,0), e^ i—^ (0,1); so we put
d,.(^^) = (^<^).

• For Q = P*, let ^ = /^*(^.l2) C D^ (so 0 < ord^(rr) < ord^(?/)); let
(£'^^i;^,i) G y^s; similarly, dyEy^ = xE'^^ for a direct factor ^i in W 0 r^
and <^ i = ^>v,i ° (^^71) is an isomorphism E ,̂ i ^ r^, whose reduction mod w8^ is
the canonical isomorphism ei i-̂  1; so we can put ^.(J5^i,<^i) = (^,1^,1)-

• For Q = B, let ^ = T ( t , t ' ' , x ) G ̂  with 0 < ord^(t) < ord^^) < jord^(rr));
let ?/ = ((^,i,^);^,i,^) e y^,^; again, ^^,1 = tE^^ and let £^ =
W H (d^ 0r, ^v); we have E^ ̂  C E^ C W (g) r^, each term being a direct
factor in the next one; to define <^ : E^ r^; we take a basis {91,92) of £^ such that
^(^i) = (1^ 0) and ^(^2) = (0,1), then we can pick a basis {g[, g'^) of ̂  such that
dv9i = ^^ (so, we put <^ '̂i = 1) and d^g^ = ^/^ + \g[ for some A G F,;, then we
put (^(^2) = (O?1)- The reduction of this isomorphism mod w^ coincides with the
canonical isomorphism; hence we can put dy.y = y ' = (^ i,£^);^ i,^).

Then, one can let any element Sy = ud^u' G A^^ act on Vy^ by composing the actions
of u, dv and u ' . This yields the desired left action of A^ on Y q ' , s '

Actually, for further calculations, it will be also useful to give the group-theoretical
description of this action. It simply amounts to the following: for dy G Dy, for any
9 ^ Iv,s, resp. J^ there exists Q\ G Iv,s (resp. J^) such that

dygd^ = gi mod Q+(^)

moreover the coset ^lO^r,;) G Y^,s is uniquely determined by this congruence. Then,
we have:

d^{gQ+{r^)=glQ+^).

Consider now d^i = ii{l^Wv) and dy^ = ^(l^Wy.l^) , dy^ = dy^dy^ and
dq = n^i ^^- write P! = P, P^ = -P* and Pa = B. Let us establish, following
Hida [17], the crucial Contraction Property of this action. We give two proofs: one in the
language of buildings, the other being group-theoretical . In the following proposition, the
map TI-Q/ is the one defined in paragraph 3.1.

PROPOSITION 2.2. - For r > s>_ l,for Q = Pi, the operator d o ' 8 contracts YQ, ̂ (Z/j/'Z)
to ^(Qz/^z).

Proof: It is enough to consider each v\p separately. Let e = ovdv{p).
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• for Q = P, take a lagrangian submodule E with basis (pi, ̂ 2) congruent to the
standard basis (e i^eg) modulo p8. Then d^\~8 (^1,^2) is congruent modulo jf to
o^i,^) where a G GL(i?) and deta = Imod p8, as desired.

• for Q = P*, take an isotropic line E^ with basis pi, congruent to ei modulo p8. Then
G^'~^PI is congruent to (1 + jr^)ei modulo j/\

• for Q = B, take a lagrangian flag (£'i,£1) with basis ((71,^2) congruent to (61,62)
modulo p8. Then by case one, by applying ^^-s) one can assume pi = (1 + p^)ei;
then, applying d^~\8 does not change pi and sends p2 to aei + (1 +^*)e2 with a G r^.
So, d^^^E) is the standard flag ((ei), (61,62)).

A group-theoretical proof of this proposition is to notice that for Qy = Pi, for any root
a in RQ, one has 'y(a(d^)) < 0, hence if g G J^, then the element pi defined by 2.3
belongs to 1^ s-^-i' Compare with Lemma 4.3 below.

D
For r > 1, one deduces from the left action of Ay. on YQ, a left action of AyT1

on LQ/(P,^;O) given by (<?~1. /)(?/) = f(6.y), by tensorization by 7^/0, it extends
to J? = LQ/(P,^;O) 0 J^/0. This will be a typical coefficient module for the group
cohomology we have in mind.

2.4. Nearly ordinary part of the cohomology groups

Given Q C H / Z p as above and U a level group unramified at p we have defined in 1.2
the level groups UQ^). Similarly, we consider

UQ^) = [h C H{Z)',hmod pr G ^(Z/^Z)}

For N > 1, we put r = {U x H^o) D HQ; for each r > 1 we define

r i^^rn^^xH^) and W)=rn([W)xiO.
In the sequel, these congruence subgroups are viewed as embedded either in the
archimedean component H]^ or in the ^-adic component H^ of H^. The context should
make it clear which embedding is used. We assume that

r is torsion-free.

Let Z = H^/((7oo H H^) be the Siegel-Hilbert space of genus 2 over F; it is a global
hermitian domain of dimension 3d; then, Hyo/Uoo is the union of two copies of Z.
For any r-module R, for any subgroup r' C F let R be the local system associated
to R on the 3d-dimensional complex manifold Y'\Z. There are canonical isomorphisms:
H^r',^) ^ W{T'\Z,K).

We fix a p-adic field K with ring of integers 0. Let R be a discrete 0-module with
left action of Ay:1 . In particular, the group r^p7') (^ = 0,1) acts on R by its p-adic
embedding ^(j^) C 7^.. For each integer 0 < q < 6d, consider the cohomology group
H^(r,(^),^) for r > 1.

As in the beginning of Section 4 of [17], we introduce global versions Tq of the local
Hecke operators introduced in Sect. 2.2 and let them act on H^r^p^.jR); they are
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defined using global double classes r^j/'^Qr^p71) (* = 0 or 1) for suitable elements
^Q € HQ. Recall that (cf. [16] Sect. 1.10 or [17] Sect.4): for ^ e HQ, and R a left
module over the semigroup generated by r' and ^-1, the double class [F'^F'] acts on
H^r',^) by sending a ^-homogeneous cocycle u to the cocycle v defined as follows.
If r'^r' = U^, for 7 G I" let 7, G r such that ^-7 = T^/for some J 1 ' , then
^(7^°\...,7^) = ̂ j^u^0^, —? 7^)- O116 sees easily that this does not depend on
the choice of the representatives ^ and that it is well defined on cohomology. Consider
the endomorphism TQ = [F^p7')^?^?7')] of H^r^^),!?); although the operator TQ
will depend on several choices, it will not be the case for the nearly ordinary idempotent
CQ defined by

CQ = Urn TQ'
n—>oo "

The image of the cohomology by this idempotent is denoted by

H^(W),.R).

Note that these groups form an inductive system with respect to the restriction maps
when r grows.

It remains to construct ^Q.
Let XQ be the element of H^Q 0 Z) whose components are 1 outside J and is given

at each v G J by

• ^(p-2.l2;l) i fQ. = Pi,

• ^*(p-2,l2) if Q. = ?2,

• T(p-2^-1; 1) = ^h-1.^; l)^*(p-\ 12), if Q. = B= Pa.

By the Strong Approximation Theorem, there exists <^) ^ HQ with C,Q = XQ mod UQ^).
By finiteness of the class group of F, there exists h > 1 and TT ^ Fx such that
'Kp~h = 1 mod prOF,v for each v G J and ord^(7r) = 0 for any other finite place v. Define

CQ=^
Then, via the embedding F C Fy, one has

^Q = d2^ mod I^r

Hence, the double class r^j/^Qr^j/1) has, for r-adic completion,

• I^il^r for ^ ^ ^

• ^(r,) for v € 5p\J,

• ^'TT2^ == U^2 for [/' = [/ H H} for i ̂  Sp.

Note that for any unit u G r^, for n large enough ^An! = Imod p1^. Hence for n large
enough, the local double class of ̂ ' is that of 1 at v outside J, and that of d^- at v G J.
In particular, the idempotent CQ associated to TQ does not depend on the choice of TT.
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3. Control theorem for the full cohomology

3.1. Induced modules

As before, we fix a J-proper SPS Q with Levi subgroup M/z and a representation
v = ̂ v\p v^ of M|rL^ glYen by p : M -^ GLo(V). When we want to put emphasis on
the set J of places where Q^ is a proper parabolic of G^, we write V =VJ^VJ where
^ = <8).eJ v- and VJ = 0^j K. Let A, =p-r0/0 (r = 1,...), and A = A^ = K / 0 .
For each character ^ of the cocenter CM' of M', dominant with respect to p, recall that
in 2.1 we have defined an 0-module of finite type ̂ (p^; 0) which we decompose when
needed as L^p^ 0) = L^p^ 0)^ where L^p^ 0) = (g)^ mdg/ (p,0^).
We call ^(p 0 ̂ ; 0) the algebraic induction of p 0 ̂  from Q'(Zp) to J', and\ve form

L\p 0 ̂ ; A,) = L^p 0 ̂ ; 0) 0 A^.

Remark: Let us write ^(^/(Z/yZ), p (g) ^; A^) for the submodule of La(p 0 ̂ ; Ar)
consisting of functions which factor through V^Z/j^Z); then, for any finite r > 1, there
exists an integer s > 1 such that

L a { p ^ x ^ A r ) = L ( Y Q , ( Z / p s Z ) ^ p 0 ^ A ^ .

This follows easily from the finiteness of £"(? 0 ̂ ; 0) as 0-module.
We also consider another induced module associated to p:

CQ91; A) = {/ : YQ, -^ V 0 A; / locally constant;
f(xm) = p(m-1)/^) for any m G M^Zp)}.

We shall refer to it as the smooth induction from M1 to I ' of ?\M^ This module is not of
cofinite type over 0. Note also a difference between the two definitions, besides the nature
of the functions, namely that for the latter we impose an equivariance condition only for
m G M1. These modules carry a left action of A-1 given by (6~1 f)(y) = f{8.y) where
A acts on the left on YQ, as defined in Section 2.3. The latter is a smooth admissible
representation of I ' in the following sense: let

HV) = kerCH^) ̂  H^Z/^Z));

then, for any r > 1, C^A)"'^) consists in functions on the finite set V^Z/j^Z),
hence is of (co)finite type, and

C^A)=\JC^A)H1^
r

Let us write ̂ /(Z/^Z), p1; A), resp. ^(M^Z/^Z), ̂ ; A) for the module of V 0 A-
valued functions satisfying the equivariance condition for Ml(Z/prZ) and defined on
VQ^Z/^Z), resp. on M^Z/^Z).

We consider now two short exact sequences which will permit the comparison of these
two notions of induction. Namely, for all r ^ 1,

0 -̂  Kr -^ L\p 0 ̂ ; A,) h V 0 ̂  (g) A, ̂  0 (3.1)
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where (f)r is the evaluation map at the marked point Oy of YQ,. Observe that for any
s >_ r defined as in the remark of section 4.1, it is an exact sequence of A^1 -module,
hence of Fo^8) -modules; however we view it only as a sequence of r^jr^-modules.
The reason is that we want to let the characters \ vary; actually as a ri(p5)-module, we
have V (g) ^ 0 Ar = V 0 Ar.

Similarly, for s > 1,

0 ̂  /C, ̂  ̂ /(Z/^Z),?1^) ̂ (M^Z/p^^A,) -> 0, (3.2)

where ̂  is the restriction map from the Z/j^Z-points of YQ, to ^^(Ox^z/p-z), that is,
to the Z/j^Z-points of Q ' l Q ' ^ = M'.

We view 3.2 as a sequence of A--modules. One should remark that although the
middle terms of 3.1 and 3.2 are A^-modules, the maps (f)r and ^s are only A--linear;
hence the restriction to the above-mentioned semigroups.

3.2. Taking p-adic limit in Shapiro's lemma

From (3.1) and (3.2), we deduce long exact sequences of cohomology: for s > r,

... ^^{r^^K^^^^W^^Q^p^x'.Ar))^
-> H^W), V 0 A,) ̂  H^W), Kr) -^ . • •

and

... ^H(^(^o(pr),/c,)-^H^(^o(pr),c(yQ,(z^rz);p l;A,))^
H^ro^^M^z/^z),?1^)) -H^W),/^) ̂ ...

If we apply the idempotent CQ to this sequence, it remains exact. We shall prove

PROPOSITION 3.1. — For any q > 0, r > 1, and for s > r associated to r as in the
remark of Section 4.1, the nearly ordinary idempotent CQ annihilates H^Fi^),^) and
H^W),/^).

Comment: It is important to note that only the continuity of the functions / : YQ, —>• Ar
in Kr (and 1Cr) is used in the proof of this lemma. The very fact that a power of TQ
contracts VQ/(Z/^Z) to ^(O^z/^z) will do.

Proof: Let u be an homogeneous g-cocycle with values in Kr or JCr- Since the proof is
very similar in the two cases, let us deal with Kr only. By the remark of the Section 4.1, we
know that Kr is contained in ^(^/(Z/^Z), V 0o Ar). Let (^°\..., 7^)) G Fi^5)^1;
by Proposition 2, ̂ -1 sends VQ^Z/^Z) into ^(O^z/j^z). Let us put v = u\To~1. If
W^W) - U,W)%, for any ,/ e V^, we have :

^ .̂..̂ a/) = E^1"^'-'^)^)J°) ^
5 • • • ? / / \^/ —— / ^ '/J "^V /J

jj

where rfj^ = 7^%/• That is,

^(7(o\...7(g);2/) = ̂ ^(7{0\...,7?);%.2/)
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and r]j is of the form ^Uj where Uj G Q'(Zp). Hence rjj.y G ^(O^z/^z). This
proves u\To~1 = Omod ^s. By letting s grow to infinity, one can then conclude.

Let us put

^Q-^^^L^p^^A}} = li^H^^ri^^^^p^^A,))
s

H^-no(ri(p°°), v 0 A) = im^ H^^ri^), y 0 A,))
s>r

and

H^ro^cG^A)) = llmH^(^o(pr),c(yQ,(z^rz);pl;A,))
r

COROLLARY 3.1. - 77?^ maps ^r, resp. ^r form a system of compatible isomorphisms
(when r > 1 and s > r grow)

H^-n<,(^l(ps)^a(p8>x;A.))^H^(^l(ps),y®A,)
(resp. H^ro^^y^Z/^Z),^,)) ^ H^_^(^o(pr);C(M/(Z/prZ)^l;A,)))

By taking their inductive limit we obtain isomorphisms

^ •• H^(ri(p00), L^p 0 x; A)) ^ H^_^(ri(p°°), y ® A) (3.3)

a^zrf
^-^(roh00)^^1;^) ^ iimH^ro^cWz/jfz),^))

r

We can now state the main result of this subsection:

THEOREM 3.1. - For any character \ of CM' dominant with respect to p, there is a
canonical isomorphism

^ : H^jro(p), C(p1; A)) ^ H^(ri(p00), V 0 x ̂  A) (3.4)

Comment: The two ingredients of the proof are:
1) a version of Shapiro's lemma involving smooth induction instead of finite induction,

since C(/);A) is a direct limit of the inductions from Fi^) to FoO^),
2) the lowering of the level on the Fo-side from p°° to p, by the so-called Hida's

lemma (Lemma 3.1 below).
Proof: We apply Shapiro's lemma, noticing that

C(M'(Z/;/Z), p1; A,) = Ind^g:; V 0 A,

It yields the canonical identification:

H^-no(^o(pr),c(M /(z^rz),p l;A,)) = H^jri^y^A,)
Using Corollary 3.1, we obtain isomorphisms:

H^-no(^o(^),c(yQa(z/prz);p l;A,))-H^(^l(pr),y0A,)=
H^-noaW^^x^A,)
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We observe then that

I™ H^(^o(^),c(yQ/(z^rz),pl;A,)) - im H^ro^co^A,))
=^qQ,^(poo).c{p^A^)

Next, we show that, in the inductive system defining H^^roO^^C^^A)), the
transition maps are isomorphisms, therefore showing that the inductive limit coincides with
the first group of the inductive system. For that purpose, we use a variant of a lemma
used extensively by Hida [13], Lemma 4.3 (and due to Shimura): Let ^Q G H(Q) be the
element constructed in Section 2.4. For s ^ r > 1, we put:

T = [W^W)] ,r = [W^W)] and T" = [W^W)]

LEMMA 3.1. - With notations as above, for any A~1-module L, one has a commutative
diagram:

W{W),L) ^ H"(WU)
[T /T' [ T "

Q^W^L) -^ H^W),^)

where the horizontal maps are restriction maps.

The important consequence of this is that on the Q-nearly ordinary part of these
cohomology groups, the restriction map admits an inverse because T and T" become
automorphisms; therefore the restriction maps induce isomorphisms for any r > 1:

H^-no(W), L) - H^_^(ro(^00), L)

Proof: Let us show the commutativity of the upper triangle. It is a consequence of
the equality Fo^^^-To^') = FO^^CQ'TO^) which follows from a calculation
establishing:

^W)^ n W) = ̂ W)^ n W)
Let us check it. It is a local computation at each v dividing p\ we may therefore replace
$Q by dy^i defined before Proposition 2.2. Since the three cases are similar, let us treat
only the case Qy = B\ we write a matrix of Zy,s as

/ * * * *
(p8) * * *
(p8) (p9) * (p8)

W (p8) * * .
it becomes, after conjugation by d^ = diag^p8"'',^3'8"'''),^2^-'')):

/ * (^-r) (p^8-'-)) (p2(s-r^\
(p*-) * (p^--)) (p8-*-)

(p31--28) (p2—)) * (p1-)
UP2'-8) (^) (^-r) * /

The point of this computation is that the blocks corresponding to the lower unipotent
Q~ have p-order less than r, therefore the intersection of the group of such matrices
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with Iv,r is made of the matrices whose blocks constituting the lower unipotent of Q
have p-order >_ r and those constituting the upper unipotent satisfy divisibility conditions
identical to those defining d^Iy^d8^ H J^. This shows the equality. For the lower
triangle, one observes that

1. the restriction map from Fo^) to Fo^p8) is given by the double class action
[ro^Wo^)} and for any ^ e HQ:

[^o(ps)^^o(^)][^o(pr)l2^o(^)] = [ro(p^W)]

2. the computation above shows the equality of double cosets:

W)^TW) = w^W)

These two observations yield the desired commutativity. This concludes the proof of
the lemma.

We apply it to the left hand side of 3.3 for the pair (r,s) = (1,5). By taking the
inductive limit over r of these isomorphisms, we obtain

H^(Fo(p), C(^; A)) - H^(ri(j)00), V 0 A)

3.3. Independence of the weight

For each element C € CM'(^P\ we define an automorphism (C)p,x °f

H^ri^^p^A))
as follows: first, for each r > 1, one views < as an element of CM/(Z/VZ) ==
ro(y)/ri(y) (compatibly when r grows) and we choose for each r > 1 a lifting
7C of C in ro(^) ; then, one puts for u <E ^(Fi^), ̂ (p (g) ^; A)) and y <E VQ/:

«C)^^)(7o,...,79)(2/) = ̂ "^^...^S^C^c'1^)

These automorphisms are compatible when r > 1 grows: their inverse limit defines (C)p,x-
On the other hand, ZM'(Z^) acts on C<y;A) by: (z.f)(y) = f(yz~1). This action

commutes with the action of To{p) hence defines automorphisms in cohomology.
Let i be the natural isogeny % : ZM' —> CM' - Let uj denote the central character of p

and uj^ = uj x (^ o %); it is the central character of p 0 ̂ .
With these notations, we can draw from Theorem 3.1 the following corollary

COROLLARY 3.2. - For any character ^ of CM' dominant with respect to p, there exists
a canonical isomorphism

^ ^'Q-no^P^L^p^^A)) -H^^rob),^1;^)

such that,
-for any z G ZM'CZ?) and for C = i(z) in CM',
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- and for any c G H^jri^00)^^ 0 ^;A)), w^ have:

Z.L^C) = 0;^).^(< C-1 >^ C).

Comment: This statement can be viewed as a p-adic version of the Matsushima-
Murakami theorem (see [3], chapter 7). It interprets the infinite level cohomology of finite
(co)-rank modules in terms of a finite level cohomology of an (infinite corank) smooth
admissible module. Moreover, this module does not depend on ^.

Proof: We define ^ by i^1 o u^. Let us check the (twisted) equivariance for the central
action. Recall that

eH-(ro(p),C(p\A)) = limeH^ro^Jnd^j V 0 A,))
eV^=lmieH-(ri(^),y)

and that i^1 is induced by the canonical isomorphism

eH'(W)Jnd^;jy0A,)) -. eH-^i^), V).

Now, let us consider an element z C ZM^Z?); let C = ^) and 7^ be the
corresponding element of FO^)/?!^); note that one can assume that 7^ = zmod j^.
For [u] G eHqQ_^(^o{pr),C(pl',A)), one knows that the cocycle

^ ^ (7o, . . . ,7g) • - ^ ( 2 / 6 M^ZyVZ) i-̂  ^(7c-17o7c^••.7c-17g7c)(7c-12/)) is
cohomologous to ZA. On the other hand, since z G ZM'^ one has 7^1^/ = yz~1', hence

^(7o,. . . , 7g) = (^)(7c-17o7o•^7c-17g7c);

thus, by applying </^1 to the classes of these cocycles, one sees that

^(^(Oprf^.M)^1^]),
which yields 3.2.

3.4. Weak Control theorem

Since the J-proper SPS Q contains the Borel subgroup BH, its Levi subgroup M contains
the standard maximal torus TH = Res^ T of H. Recall that we have fixed an absolutely
irreducible representation p of M defined over 0\ we denote by S G X*{Tn) = X*(T)sp
the dominant character associated with the fixed ff-compatible representation p (see
Definition 2.1).

DEFINITION 3.1. - A character \ € X*(T^) = X^T)^ is called regular dominant, if
for all v G Sp, one has \v = (^i?^2; b) with b > ai and ai > 02 > 0.

For any a > 1, let us respectively have

^:(P; 0)={f: V^JZp) ̂  V; / polynomial, /(^/m) = p{m}-lf{y} for meM^Z,,)}
C,(p1; 0) = {/ : VQ/^(Z^ -^ V; / continuous, f{ym) = p^m)-1/^) for meM\Zp)}

These are left J^-modules for g.f{y) = /(^-1^). Note that ^(p1; A) = C,^1; 0) (g) A
can also be defined as the space of locally constant functions with values in A, by density
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of the space of V-valued locally constant functions in the space of V-valued continuous
functions.

Let us define also twisted versions of £^(p; 0). For that purpose we introduce arithmetic
characters.

DEFINITION 3.2. - An arithmetic character of CM' is a product e\ where e : CM/(Zp) —>
Ox is a finite order character and \ is an algebraic character of CM'- A level for e"^ is a
p-powerp7' such that e factors through CM'- £\ is said dominant with respect to p (in brief,
p-dominant) (resp. regular) with respect to p, if8 (g;> ^ is dominant (resp. regular).

Note that if the character 8 associated with p is regular, then any arithmetic character
^X °f CM' dominant with respect to p, is regular with respect to p.

For any p-dominant arithmetic character e\, let a > 1 be such that e factors through
CM^Z/J^Z); we write L^{p (g) e^O) for L^(p 0 ̂ ;0) viewed as an J^-module for
the following twisted action: {g.f){y) = ̂ V^"1^/), where e{g) means that one applies
e to the element of

CM/(Z/^Z) = ̂ (z/^zv^z/^z)
congruent to gmod p" G ^'(Z/^Z) modulo (^(Z/^Z).

Let ujex be the character of ZM^Z?) given by uj x {e\ o i). As already noticed, there is
an action of ZM'(Zp) on Ca(p1; A), given by (z.f){g) = f(gz~1)', hence one can speak of
the largest submodule C^(p; A)[c^J on which Z^Zp) acts via o;̂ . One can now state
the main theorem of this Section. A linear map between 0-modules is called an isogeny
if its kernel and cokemel are finite.

THEOREM 3.2. - For any p-dominant arithmetic character e\ regular with respect to p,
for any a such that p^ is a level of e\, one has

(i) for any 0 < q < 3d, K^r^^L^p 0 e^K)) = 0;
(ii) for any q, there are natural isomorphisms L ^ :

^ : H^(r^00), L^p 0 ̂ ; A)) - H^(ro(^), C,(^; A))

defined similarly to 3.4; with the Notation of Corollary 2, they satisfy

^^(c)=^^)^«z(^))^c);

(iii) for q = 3d, ̂  induces, for any r > a, an isogeny:

H^-no(ro(^)^:(p0£x;A)) -. H^^ro^),^^1;^)^].
Proof: (i) This statement is a corollary of a result by J. Franke [8]. The calculation is

detailed in Appendix A below. The idea is the following: for any congruence subgroup
<I> of G'(F), Franke defines a spectral sequence abutting to the cohomology groups
H^, L(p 0 -0; C)) (Corollary 4.8 of [45] and Proof of Thm. 18 of Franke's paper). Its
.El-term is expressed in terms of the (Lie(M),ATM)-cohomology of unitary automorphic
representations of M. Then, if for each archimedean place v of F the highest weight 6^v
of L{p^ 0 ̂ ; C) is regular, it follows from the classification of Vogan-Zuckerman ([44]
that E8^ = 0 if s 4-1 < 3d. In fact, one only needs the explicitation of Vogan-Zuckerman
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calculations for Sp4 and SLs. It is done in the Sp4-case by R. Taylor (p.293 of [34]), for SLs
it is a classical result that the cohomology of an infinite dimensional unitary representation
can be non-zero only in degree 1. We first found these vanishing results in [27], for F = Q
where the author assumed that the weight of the local system is sufficiently regular; they
were confirmed to us for an arbitrary totally real field F by J. Schwermer in a letter [28].
We thank D. Blasius for pointing out to us the reference of Franke [8].

We shall deduce (iii) from (i) and (ii) by using a control criterion due to Hida (Lemma 5.1
of [17]). First, we perform several reductions.
1) For any Zp-algebra A, let

M^=ZM'{A)M\A^

it is a subgroup of M'(A) of exponent 2 (it is trivial if Q = BH\ Let F^p7') be the
subgroup of Fo(p7') of elements congruent to an element of M^, ^O^Z/j^Z) modulo
j/\ Consider

Ind^7^ V 0 ex 0 A, = {/ : M^Z/^Z) -^ V 0 A,;
z/p^z

f(gh-l)=p®ex{h)f(g) for all h £ M^z}

Shapiro's lemma yields:

^-^(rob^Jnd^2^^ V 0 ex 0 A,) - H^^F^), V 0 ̂  0 A,)

For any r > a, let / : VQ, ^(Z/p^Z) -^ V 0 A^ be a function such that f(xm~1) =
p(m)f(x) for m <E M^Z/jfZ) and /(^-1) = ^^(^)/(^) for ^ G ZM^Z/^Z);
its restriction to M^Z/j^Z) has a prescribed behavior on M^/ ,^ ,hence belongs to
Ind^ /p ) y (g) £^ (g) Ay.. We consider a variant of 3.2; namely, for each r > a the
exact sequence of AQ^.-modules:

0 - /C^ C(r^(Z/^Z), p1; A,)[^] ̂  Ind^7^ V 0 ̂  0 A, -> 0
z/prz

where the map ̂  is the restriction from V^/ ^(Z/^Z) to M^Z/jfZ).

2) We take the long exact sequence of cohomology for Fo^); Again, one checks that
for any r > a,

1- H^-no(W)^) -O,

2. for any A^ -module L, for any r > a,

Res^ : H^(Fo(^ £) - H^.^Fo^), L)

Therefore, we obtain an isomorphism similar to ^ of 3.4 (see Theorem 3.1 above):

H^-nJro^^^^^JZ/^Z); P1; A,)[^]) 1 H^(Fo(^ V 0 ̂  0 A,) (3.5)

for each r ^ a.
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3) Let Q^A) =. Mj[Q+(A); for any s > a such that

L^p 0 ̂ ; A,) = L(r^(Z/^Z), p 0 ̂ ; A,).

Consider the exact sequence of /\Q1 ^-modules (for s > r):

0 ̂  K^ -^ L^p 0 ̂ ; A,) ̂  V 0 ̂  0 A, ̂  0 (3.6)

We can take the cohomology of 3.6 for Fi^) or for Fo^5); with the first choice, one
obtains for any s > r:

^ '' I%-no(W), L^p 0 ̂ ; A,)) - H^W), V 0 ex 0 A,)

and by taking the direct limit over s > r:

^ ' ' H^-no(ri(p°°), L^p 0 e^ A)) ^ H^_^(ri(p°°), V 0 ̂  0 A) (3.7)

With the second choice, one obtains for any s > r:

^ •' ^Q-no(W). L^p 0 e^ A,)) - H^_^(ro(^), V 0 ex 0 A,) (3.8)

Comparing 3.4 (in Thm. 3.1) and 3.7, we obtain the isomorphism ^ = b^1 o i[:

^ : ̂ Q-no^P00)^^? 0 ̂ ; A)) ^ H^^ro^), C,(^; A))

This proves (ii). Moreover, by comparing 3.8 and 3.5, we obtain an isomorphism
%, = ̂  0 ̂

^ : H^(ro(^),^(p0^;A.)) - H^^ro^)^,^1;^^]) (3.9)

Exactly as in Corollary 3.2, one can show

z.^(c) = ̂ (^^({C-1)^^)

4) Next, we shall relate the two isomorphisms ^ and ^ for q = 3d by using the
natural map:

^-^(ro^)^,^1;^^]) -^ ̂ ^(ro^),^^1;^)^] (3.10)
In order to show that for q = 3d the map 3.10 is an isogeny, we apply Hida's

control criterion (Lemma 5.1 of [17]). Namely, we consider the completed 0-algebra
A = (^[[ZM^Zp)]] of the group ZM^Z^). This last group is the direct product of a finite
group ZQ by a free Zp -module ^ of rank m = y^dyrk(ZM^). Let A = 0[[<5>}} be the

vCJ
completed group 0-algebra of $. Let P^ be the ideal of A, kernel of [z] \-^ <^(^); since
A is a regular local ring, P^ n A is generated by a regular sequence (Ti , . . . , Tm). Let
B, resp. A, be the category of discrete A-modules, resp. of discrete 0-modules with left
action of A^, such that 1^ acts smoothly admissibly (that is, such that any point has an
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open stabilizer and invariant points by any open subgroup form a cofinite type submodule).
Note that A is a subcategory of B. Consider the cohomological functor

U:A^B^ A^H^(ro(^),AO.

Let UJQ, resp. o;̂  be the restriction of LJ^X to ^o rcsp. to <I>. Let Co = (^(^A)^].
Hida's control criterion says that the map 3.10 is an isogeny for q = 3d, provided the
following four hypotheses are verified:

(ffi) the modules

C^A), ,Co[Ti,...,r,] (J=l,...,m),C,(pl;A)[a;^]=Co[^l,..,^^]

are objects of A',
(^2) for each j = l , . . . ,m, the endomorphism of multiplication by Tj on

Co[Ti, . . . , T^_i] is surjective;
(^3) W(Co) is finite for all q < 3d;
(^4) U^^C^p1', A)[ci;^]) is of cofinite type over 0 (that is, Homo(-, A) sends it to

a finitely generated 0-module).
Condition (ffi) is obvious; for (^2), one writes YQ, ̂ (Zp) = Q-^Zp) x M\Zp),

hence the Pontryagin dual (^(p^A)* = Hom^C^p^A^A) can be identified to

0[[0-(^Zp)]]0^0[[CM/(Z^)]]0oHomo(y,0)

Since 0[[CM/(Zp)]] ^ A^", the multiplication by Tj on C^/(Ti,.. . ,r^_i)C^ is injective;
hence the conclusion by duality. For (^3), we simply apply ( i ) (for ^ regular with respect
to p). The last condition (H^) is verified by 3.9.

D

3.5. Descent to prime-to-p level

We consider in this section a proper standard parabolic subgroup Q of H defined over
Z; that is, Q is the restriction of scalars from r to Z of B, P or P*. In particular, its
base change to Zp is an Sp -proper SPS for any prime number p. As usual, we write the
Levi decomposition (over Z) of Q as MQ^. Let Ko C Q be a number field containing all
o-(F) when a runs in I p and let Oo be its ring of integers; Fix a finite free Oo-module VQ
and a representation po '' ^ / O p ~^ GLoo(Vo) defined over Op. For any prime p, we fix
a p-adic embedding ip of Q in Qp and we denote by 0, resp. AT, the j?-adic completion
of ip(Oo), resp. of ip(Ko), and we put V = VQ <S)oo 0. P = Po ^ 0; we denote by TT
a uniformizing parameter of 0.

Let

£o(po; Oo) = {/ : HZ/QZ -^ ^o; / regular, and f{ym-1) = po(m)f{y)}

It is a lattice in Lo^Ko), defined independently of p. Once j? is fixed, one can write
V = (S)veJ vv 0 ®v^j v^ and accordingly:

^o(p;0)=0^o(p.;0)^0
veJ v^j

4° S6RIE - TOME 32 - 1999 - N° 4



SEVERAL-VARIABLE p-ADIC FAMILIES OF SIEGEL-HILBERT CUSP EIGENSYSTEMS 525

For each place v of F dividing p, let us consider the semi-group A^o = K^DyK^
where Dy is defined in terms of the center Zy of My = MQ^ as in section 2.2, but with
the hyperspecial subgroup K^ = G^r^) instead of the parahoric subgroup 1'^. Recall that
we denote by ujv the central character of p-y, that is, the restriction of p to the center ZM'
of M^. We let D^ act on L{p^ K) by d~1 i-> (^(d"'1).^^). Then we extend this as an
action of all A^ as in 2.3. Let Ao = rL|p ̂ ,0.

Let eo = lim (T^)'1' be the idempotent associated to the Hecke operator T^ = [r^F]
where ^Q is defined as in Section 2.4.

A level subgroup U C G(Z) of level prime to p is fixed. Let F = [/C?oo n G^Q).
We want to see that if p has regular weight, one can get rid of the p-part of the level

in BqQ_^('^o{p),La(p',A)) (this is the analogue of Lemma 7.2 of [17]). This fact will
be of great importance in the exact control theorem in next section, as well as in the
algebro-geometric considerations in Section 7 on the Galois representations associated to
^-ramified cuspidal representations in the regular discrete series.

PROPOSITION 3.2. - Assume that the highest weight of p is regular dominant for the
ordering defined by (M', B D M', T D M') and that p is such that no completion Fy for v\p
contains a p-th root of unity: (TF) f^p(F^) = {1} for v\p. Then

(i) the lattice ^o(p5 0) ls stable by the action of Ao described above;
(ii) for any q ^ 0, there is a natural isomorphism

H^-no(ro(^)^;A)) ^ eoH^(r^o(p;A))

Comments: 1) The first assumption is of course implied by the regularity of the highest
weight of p ( by the H -compatibility of p, see Def. 2.1); it is strictly weaker if Qy is
maximal at some place v\p.
2) The assumption (TF) is fulfilled if p does not ramify in F. (TF) will be used to
insure that ZM'{F^) has no .p-torsion.
3) By statement (i), the action of T^ on H^r^Lo^A)) is well defined, hence one can
speak of eolWLoQ^A)).

Proof: For assertion (i), one needs to see that for any d G Dy, a;^;(d-l).pv(d) preserves
£o(po; 0). For that, we observe first that by (TF) and by Sect.2.5 and 2.11 of [22], we
have a direct sum decomposition

L^O)=Q)V,
r]

where T] runs over weights of ZM'^V) acting on Lo(p-,K) and V^ is the eigenmodule
corresponding to the eigenvalue 77. For each v G J, the highest weight of pv is ̂ , therefore,
if a and /3 are respectively the short and long simple roots of Sp4, one has for any weight 0
of T'(r^) acting on Lo{p; 0), M~1 = o^/?^ with me.ne > 0. Hence, for any d e A;,

• ovd^es^w) > o
Now, we remark that 8y restricted to ZM^ is equal to o^, and that the map 0 \-^ rj given
by restriction from T ' to ZM', is surjective; we conclude that for any d G Dy,

ord^^^cOX)
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This proves (i).
For proving (ii), we first need a fact.
For v G J and Qy the parabolic subgroup determined by Q, 1^ the corresponding

parahoric subgroup; let dy e Dy be the element associated to Qv as in Proposition 2.2;
let Wy be the Weyl group of (G^B^Ty) resp. WM, the Weyl group of ZM, and r an
element of order two in G' inducing the element of greatest length in Wy; actually one

can take r = { 2 ) . Let dy = d y , for Qy = P, as in Sect.2.3; let us consider the
\-l2 0 )

group J^ = K^ H d^K^dy and J^ = T-V^T. We have

LEMMA 3.2.

K^K^= ]_] [J ^d,w^
W(^WV/WM^ 'ae((Tw)- lJ^Twn^)\^

The computation is done in [33] p. 316-318 (see also [17] p. 467). Conventions there
are slightly different, so we redo the calculation. We have

d^K^\d^KW, = [J d^K'^e, where W, = [_[ J^e
£ £

Note that J^ contains a parahoric subgroup 1^ (actually r = 1,2 or 3 according whether Q^
is the Siegel, Klingen or Borel parabolic). Hence, one has by the Bruhat decomposition:

K^= ]J Q^wl[= [J JM= ]J [] J'^u
WCW^/WM^ WCW^/WM^ W(^W^/WM^ Hew-^wnj^v^

One can and will assume that the representatives u of w^J'^w H I^)\I^ are in the
unipotent radical Q^ of Q^. This decomposition yields:

K'.= ]J U ^Twu

weWy/WM^ ue(w-lJ^w^\I^\I',

hence,
d^KW,= [J ]J d^K^rwu

-W^W^/WM^ uew-lJ^wnI',)\I^
or, in conclusion:

KW^ ]J [J ^d,w^
wC^/lVM^ ^((TW^V^rwnJ^V^

Now we can start the proof of the proposition. Recall that we denote by TT a uniformizing
parameter of 0. For any r > 1, put Ar = TT^O/O and A = K / 0 . We consider the
homomorphism

L'.L^A^L^p^A)
obtained from the inclusion of lattices Lo(p',0) C La{p',0) by tensoring with A. We
shall study the homomorphism

j : eoH^(r, £o(p; A)) -. eH^ro^), L0^; A))
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defined by j = ^ o i where

i= e o res : eoH^F, Lo(p; A)) ̂  eH^Fo^), £o(^; A))

Let us show that the-restrictions C^) to the Ti^-torsion of these modules are isomorphisms.
We start with r = 1. Consider the commutative square:

eoH^(r, £o(^; Ai)) A, eH^Fo^), Lo(p; AQ)
i i (3.11)

eoIF(I\Lo(p;A))[7r] ^ eH^Fo(p),Lo(p;A))[7r]

where ^i is defined just like i, replacing A by Ai and where the vertical arrows are
the natural surjective homomorphisms. We first show that ^i is an isomorphism. For that
purpose, let us consider the evaluation map

po : Lo09, ̂ ; Ai) ̂  (V 0 Ai), / ̂  /(Q+)

for any polynomial function / : ff //0+(Zp) —^ V 0 Ai.
Note that po is equivariant for the action of ZM^Z/^)): (z.f){l) = f(z~1) =

p{z)f(l) = uj(z)f(l). Similarly, the evaluation map at wQ+ for w e W/WM =
rLeJ^W^ satisfies (z.f)(w) = /(^w) = p^wzw-1)/^) = a;w(^)/(w). Thus,
for a cocycle c with values in Lo(p',0), one has

f^w'u)"1^*,...,*;^) = Omod c^(^) if w G WM
H^wn)-1^*, . . . , * ; Q+) = 0 mod ^(d^TT if w ^ WM

Hence, by 3.2 in the previous Lemma, we see that T^ coincides with the level p Hecke
operator Tq modulo TT; thus, e o res = res o eo. Let us consider the commutative diagram

eoH^F, £o(p; Ai)) ^ eH^Fo(p), L^ Ai))
fci i I k[

eH^Fo^^^Ai) = eH^Fo^^^Ai)

The proof of [12], Thm. 3.2 (second statement) proves similarly that fci o eo = e o fci
and that fci and fc'i are isomorphisms. Hence, ^i is an isomorphism. Note that in the case
of k[ the contraction Proposition 2.2 applies; however, for fci, it does not apply because
the strata of K^/Q^(ry) apart from the open one don't contract. Therefore, to prove the
surjectivity of fci, one requires instead to produce a section thereof (up to automorphism);
it is provided by eo o Tr o inj where inj is the canonical injection of V (g) Ai —^ £o(p; Ai)
given by the highest-weight (twisted by r) element of greatest length in the Weyl group,
viewed in F by weak approximation (see p. 233-236 of [12]).

Note that the injectivity of i^ is easy: Tr o res is the endomorphism of multiplication
by (F : Fo(j))) on eoH^r^Lo^Ai)), and this index is prime to p (provided p does
not ramify in F; if it does, one should replace Fo(j?) by Fo(p) in the statement of the
proposition, where p is the product of the prime ideals in J).

Now we can see that ^(-zr) itself is an isomorphism. The quasi-inverse of 4 is

eo o Tr : eH^Fo^), L^ Ai)) ̂  eoH^F, L^ Ai))
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The formula eo o Tr o e o res = (T : Fo(p)) is tme on eoH^r^o^Ai)); hence, by
functoriality, it is also tme on its surjective image eoH^r^Lo^; A))[7r]. It shows that
^(7r) is injective, but it is surjective by 3.11 so it is bijective with quasi-inverse V{^)
for V = eo o Tr . Then, for r > 1 arbitrary, Nakayama's lemma shows that ^(TT^) is
injective as well as V^). Hence i1^} o i^} (resp. i o V^)) is injective on the finite
set eoH^r, £o(p; A))^] resp. on eRq('^o{p), £o(p; A))^]; thus these maps are bijective
and ^(Tr7') is bijective. We conclude that t is bijective.

To conclude, we need to see that ^ is an isomorphism. For that purpose one considers
the commutative triangle:

£o(p;A,) ^ L-^Ar)
\ /

{V 0 A,)

where the left map is po and the right map is p. Using Lemma 3.1 of Section 3.2, we
see that the maps induced on cohomology by po and p are isomorphisms. Then, by the
commutativity of the diagram:

eH^ro(p), £o(p; A,)) ^ eHP(ro(p), ̂ (p; A,))
\ /

eH^(ro(p),(y0A,))

we obtain that ir^ is an isomorphism. Finally, taking the inductive limit over r, we see
that ^ is an isomorphism. In conclusion, j = L^ o £ is an isomorphism.

3.6. Exact Control

We fix the data (£/, p) as in Section 3.5. We want to prove the following theorem:

THEOREM 3.3. - If PQ is as above with regular highest weight, there exists a finite set of
primes Sjj.p depending only on the level group U and on p such that for any p ^ Su,p, for
any arithmetic character ̂  = e^ : CM^Z^) —^ Ox congruent to 1 modulo 7r0 of level p^,
regular with respect to p, for any integer q such that 0 < q < 3d, one has:

^-^(ro^^^^A)) ^ H^^ro^)^,^1;^)^] = o
and

^-nMp^^L^p^e^A)) ̂  H^^ro^),^^1;^)^]

Comment: The exceptional set Su,p can be described as follows: it consists of the set
of p's such that either

• p divides the order of the torsion subgroup of H^r^ind^/ po) for some q between
1 and 3d, or

• p divides the order of p^{Fp), or

• p is exceptional with respect to the boundary cohomology (see Section 5, Thm. 5.7).

For F = Q the two last conditions are void.
Proof: The proof is similar to that of Thm. 7.1 of [17]. It makes use of (i) and (ii) of

Theorem 3.2 above and of a variant of Hida's control criterion, namely Lemma 7.1 of [17]
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(proof similar to that of Lemma 5.1 [17]). This variant is the following: one considers the
same category of A^-modules and the same cohomological functor T-C- = HQ_^ on that
category. One considers the same object ^(p^A) and we must verify four hypotheses
about this object and its cohomology. These are identical to (ffi) to (^4), except for
(ffs) which is replaced by

, ffor p ^ Su,p, for 0 < q < 3d, for all e^ congruent to one
w ^modulo TT, H^^ro^), L^p 0 ̂ ; A)) = 0.

In order to define Su,p and prove (^3), we use Proposition 3.2 ("of j9-destabilisation").
We know that (^3) is equivalent to

H^-no(^o(pa),C.(pl;A)[^])=0

But actually, an induction argument1 on q < 3d shows that it is enough to check, for
all q < 3d, that

^qQ-no(W^(pl^A)[^)=^

or in other words, for each q < 3d:

H^ro^^A))^

that is, by Proposition 3.2, for q < 3d:

eoQq(^,Lo^K/0))=0.

On one hand, this vanishing is valid for p ^ Su,p by Proposition 3.2.
Comment: It is however important to notice that one can give another criterion of

vanishing for the localization of these groups at the maximal ideal m of the nearly ordinary
Hecke algebra (see Def. 7.1 below) corresponding to the mod p eigensystem given by
TT. Let us say that the maximal ideal m is "non-Eisenstein" when the residual Galois
representation associated to TT is absolutely irreducible. Then, we have the conjecture

CONJECTURE 1. - If for F = Q we assume that the residual Galois representation
associated to TT is absolutely irreducible, then ̂ (T^L^K/O))^ = 0.

If one assumes this conjecture, exact control holds for V^.
Remarks:
(i) Let us assume the conjecture above. Using the Borel-Serre compactification and

the corresponding boundary long exact sequence, we find that tll{S{U),L^(K/0)^ is
isomorphic to 'H.\9(S{U)),L^{K/0)^ which is cofree by Section 5 below (essentially
by [16]); using now Poincare duality, we see that ̂ {S^U), ̂ (0)m is torsion-free, hence
^{S(U),L^{K/0}^ is cofree; we deduce from this, not only exact control, but also
cofreeness of eV^. In other words, for F = Q, one obtains a better exact control theorem:
if p is ordinary and non Eisenstein for TT, the A-module eV3 is cofree.

1 yielding exact control for H^.^ro^0'),^1^)), for any arithmetic character uj^ as in the theorem,
and for each q < 3d
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(ii) Assuming various auxiliary assumptions, this conjecture has been proved recently
by Mokrane-Tilouine (cf. [24]) and Urban (cf. [41]) independently and by completely
different approaches. The method of Mokrane-Tilouine is quite general and should work
for other Shimura varieties provided that an arithmetic compactification theory is available.
It relies on the occurence of specific weights in the mod p crystalline cohomology of the
Siegel variety. They require that p be prime at the level in F, is bigger than a specific
bound depending only on the highest weight of p, and that the image of Gal(Q/Q)
contains the Pp -points of a reductive Che valley group acting irreducibly on the space of
the representation which seems conjecturally true for all but finitely many p. The method
of Urban is more elementary and requires only some regularity condition modulo p on
the cohomological weight. However it works only for the case GSp4Q. It rests on the
existence of a nice cycle in the Siegel threefold corresponding to the abelian surfaces
which are products of two elliptic curves. This cycle had been already used by Weissauer
to investigate the classes occuring in the degree-two cohomology and coming from the
so-called CAP representations.

4. p-Ordinary cohomology of boundary strata of the Borel-Serre compactification

In this section, we generalize the theory of ramification of "cusps" of [16] to the group
GSp4 over a totally real number field. The generalization to other groups is straightforward.
In fact, we use the fact that H = GSp4 only in the paragraph 4.4.4. In the next section,
we will give the complete calculation of the ordinary cohomology of the boundary of the
Borel-Serre compactification. In a subsequent paper, we will give a partial generalization
of these results for a general reductive Q-group whose derived group is quasi-split at p.

4.1. Reminding the Bruhat order

In this section, A is a valuation ring, MA is its maximal ideal and K its field of fractions.
We denote by valA the valuation of A. Let 7Y be a split and connected semi-simple algebraic
A-group. We fix T a maximal split torus in U and denote W = N^(T{A))/T(A) the
Weyl group associated with T. Let (X, $, X^, ̂ v) be a root datum of (H, T) fixed once
for all. If a e X, we denote by o^ e X^ the coroot associated to it, and (-,-) the canonical
perfect pairing on X 0 X^. Let R^ C X be the corresponding subset of positive roots,
B the associated Borel subgroup and UB its unipotent radical. For any root a wenote Sa
an element of order two in TV-^(r) inducing in the Weyl group the elementary reflexion
corresponding to a and u^ : Ga —^ T~i the corresponding one parameter subgroup. For
any algebra A we have

tu^a)t~1 = u^{a(t)a} W G T(A) and Va G A. (4.1)

wua(ex)w~1 =. u^)(x) \lx G A ,Vw C W and e = =L1 (4.2)

^(a"1)^ = ̂ ^(^^(-a'^a^a"1). (4.3)

We consider below the so-called Iwahori subgroup I defined by:

I = [g (E 7^(A) such that gmod MA e B{A/MA)} = U~{MA)B{A)

where U~ is the unipotent group opposite to UB'
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We think that the two following lemmas are well-known to specialists. However, we
give their proof since we do not know any reference. We are grateful to Choucroun for
explaining to us the following proof which is more general and simpler than our former one.

LEMMA 4.1. - Let a C $, a C K* and w G W. Then we have:

ws^u-^a) e IwB{K) U IwSaB(K).

Proof: By 4.2, wsc,u-a(a) = Uw^a)(^a)wSa with e = ±1.
If w(a) > 0 and a G A then wSaU-a{a) e Ua^A^wSa C IwSaB{K).
If w(a) < 0 and a G M.A then wSo,u-oc{a) G ^"(.MA^^O C IwSaB(K).
If none of the terms of the alternative above hold, we make use of 4.3:

SaU-a(a) = SaUa(a~l)sa^(a)ua{a~l) G s^ Ua{a~1) s^B^K).

Therefore by 4.2, wSaU-a(a) G u_^^)(ea~l)wB(K) with e = ±1. Hence in the two
remaining cases, we have:

If w(a) > 0 and a ^ A then a~1 e MA and thus wso,u-a{a) G (/"(.MA)'^^)
C IwB{K).

If w(a) < 0 and a ^ A^A then a~1 € A and thus ws^u-aW ^ Up{A)wB{K) C
IwB(K).

D
In order to state the next lemma, we recall some definitions about the Bruhat's order.

For w 6 W, we can write w = 5^1 . . . Sa^ with the o^ € $ and n minimal; n is
then called the length of w. For w' G W, we write w' -< w if w' = Sc,,^ - - - S a , with
1 < %i < . . . < ik < n. Of course, if w' ^ w we have length(w') < length(w).

LEMMA 4.2. - If w € W, then we have the following inclusion:

UB{K)WC [J I w ' B ( K ) .
w' -^w

,,-1.Moreover, if u G UB^K) - UB^A) and if w^uw ^ Ua{K\ then uw € Iw'B{K) with
length(w/) < length(w).

Proof: We proceed by induction on the length of w. Let us write w = w\Sa with a € $
and length(wi) = length(w) -1 and fix u G UB^K). By induction, 'uwi € Iw[B{K) with
w^ ^ Wi. Thus there exist go d. I , t E T[K) and n' G Ua{K) such that 'uw = g^w^u's^t.
Now we can write u'Sa = s^u-a^a)^ with a E K and i^ G UB^K). Thus by the
previous lemma, U^IA'^ G Iw-iB{K) U Iw[saB(K). This proves the lemma because
w^ ^ w and w^a ^ w.

D

4.2. Ramification theory of the cusps

We denote by H^ = H1 0z Zp = ]~[^ S p ^ / r ^ and TVp a subgroup of H1 isomorphic
to the Weyl group (N^{T)/T)/z^ of H^. We assume that Wp = IL|p^ where each

Wy C G/r^ maps bijectively to the Weyl group of Sp4 isomorphic to the dihedral group
Ds. For any element x in one of the previous groups, we will denote by x{v) its projection
on the ^-component.
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If P is a parabolic subgroup of H^, we say that it is of Klingen type (resp. Siegel, Borel)
if it is conjugate to the standard Klingen parabolic P* (resp. the standard Siegel parabolic
P, or the standard Borel subgroup B). An arbitrary type is denoted by the letter E; we write
PE for the corresponding standard parabolic subgroup and we put Ps == PS 0 Zp C H1

Consider now the so-called Bruhat decomposition:

H^Fp) = [J ^(Fp).w.5(Fp)
wCWp

The group W^ = Wp DPs is isomorphic to the Weyl group of the Levi of Ps and we have:

P^p) = U B(Fp).w.B(Fp)
wEW-s

We deduce the Bruhat decomposition for Ps:

H1^)- [_[ ^(Fp).w.Ps(Fp) (4.4)
w^W/Ws

In this section, for any subgroup ̂ f with r(^) C F' C F we consider the set Cusp^F')
of r'-conjugacy classes of type S parabolic subgroups. For any parabolic subgroup P
of type E, we note sp the F'-conjugacy class of P. Since r is an arithmetic subgroup
of level prime to p, we can write Cusp^(F) = { . s p ^ , . . . ,5p^} where the P^'s are
parabolic subgroups of H1 such that P, 0 Qp = ^(PE ^ Qp)ft~1 with ^ e H^Zp)
and ^ ^ Imodp^. Since Pa is a parabolic subgroup over Zp, we have by Iwasawa
decomposition:

HWMW ̂ (Z^/^Z,).
Then we can write:

t t
cusp^r') = ]Jr'\r/r n P, = yrWz/^zvp^z/^z^p^r) (4.5)

z=l i=l

where the overline means the reduction modulo ^r, £'p,(r) == F n P^/r n P,1,
and noting P1 = MpUp for a Levi decomposition P = MpUp. If Cs(r') =
r^H^Z/^ZVP^Z/jfZ), then there is a canonical map TT:

Cusp^^') ̂  r^H^)/?^) - ̂ (r') (4.6)

From the decomposition 4.5, we can see that for i C { 1 , . . . ̂ t} TT restricted to r^r/TuP^
is one-to-one.

Let g € H^Zp), then by (4.4), we can write

9 = go^gp-s (4.7)

with j?s (E Ps(Zp), Wg € W and ^o e J. Let 7^(1;) = Sup {?; ^o(^) e ^,z}; here the
l y / s are those defines in section 2.1. For ^ e H^Qp), we denote by [g] its class in
Cs(r'). Let s € Cusps(^/) and g C H^Zp) such that 7r(s) = [^]. Let us recall that we
deal with two parabolic subgroups Ps and Q. The first one defines the type of a stratum

4® SERIE - TOME 32 - 1999 - N° 4



SEVERAL-VARIABLE p-ADIC FAMILIES OF SIEGEL-HILBERT CUSP EIGENSYSTEMS 533

of the Borel-Serre compactification and the second one defines the ordinary idempotent
CQ. Then if we note WQ the Weyl group of Q (Wq = W D Q), the class of Wg in
W_Q^ = WQ\Wp/W^ is independent of the representative g of s and is denoted by Ws.

DEFINITION 4.1. - The class Ws in W.Q-Q = Wq\Wp/W^ is called the Weyl type of s. We
set rs{v) = Sup{r^(v) where [g] = 7r(,s)}; we call Ts(v) the v-depth of s.

Remark: If Ts{v) > r then rs{v) = oo because by successive modifications by elements
of r' D r(jf) one can let rg(v) grow to infinity. Therefore rs{v) G { 1 , 2 , . . . , r - 1, oo}.

For any h,g elements in a group, we write ̂  = hgh~1. We denote by RQ the roots
of UQ, the unipotent subgroup opposite to UQ.

LEMMA 4.3. - Let v\p and T ' be as above. Let (3 G H^Q) be such that (3 = tu mod p "
with u G ^a(Zp), t G T(Qp). We suppose that v{a{t)) > 0 for all a G RQ. Let P be
a parabolic subgroup ofQ1 and let us set s = sp G Cusp^(r') and s ' = S p p p - i . Then
we have two possibilities:

a) Ws'(v) = Ws{v) and T s ' ( v } > rs{v).
b) or else length(ws/(v)) < length(ws(^)) — 1.

Proof: In what follows, if Ts = oo, J^r, means ly^r and UQ^^r^) means ̂ (^r,;).
Let us write 0 = 6tu with 8 G F^) and choose, by 4.7, ^o ^ ^,r, such that 7r(5) = [^o^s].
Then ^(5') = [(3goWs} = [^t^o^s]- By the Iwahori decomposition, we can write

ugo = u~u^to with u~ G ̂ (jf^r^ ^+ G Q(Qp) and to € T(Zp).

Thus Trfy) = [^(H")^^)^^]. We deal with two cases:
a) {u^Y(v) G Q(r^). Since (^6-)t(^;) G U^p^^1} by the hypothesis on t, we have

(^(n-)^^)*)^) G ^,r,(i;)+i- Thus ^/(^) = ^s(^) and ^/(v) > ^(i;).
b) {u^Y{v) i Q(r^).Then we can write (^+)* == '̂0]" with u^{v) G UB(F^\UB{^)

and H]" G ^(w^r^).Then by the Lemma 4.2, we have pi-tY) == [go^] with ^o ^ ^,1,
lengtHw'^)) < length(ws(v)) - 1.

D

In the sequel, we set 7*5 == mf{rs{v)',v\p} and

Z(w) = ̂ [F, : Q,,] x length(w(^)).
v\p

We note Cusps^(r') the subset of Cusps(^/) consisting in the cusps of Weyl type w
and depth oo.

We recall that CQ = MQ/MQ = T/T H MQ is the cocenter of MQ and we note iq
the canonical surjective arrow from T to CQ.

For any sp, G CuspsfT), we set Cusps^(5p,,r') to be the set of cusps s G
Cusps ^(F') lying over sp^. Let us observe that as a consequence of the Bruhat
decomposition relative to the parabolic subgroups Q and Ps, the set Cusp^; ̂ (.SP,, iTo^))
consists in only one element. We choose a representative P^ of this class; the class itself
is therefore denoted by sp^.

DEFINITION 4.2. - We put: M^ = wM^w~\ T^ = T n M^ while E^T) is defined
as the image ofT n T(Zp)/r n P^ n T(Zp) in^(Z/V-Z).'
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LEMMA 4.4. - Let sp, e Cusps (T). r/zen

• ^sPs.Jsp.,!'̂ )) = {sp.^}

• Cusps, Jsp.,!̂ )) ^ CQ(Z/prZ)/iQ(T^(Z/prZ)E^(^))

Proof: The first point has already been observed. The second follows from the calculation
of the stabilizer of sp. ̂  in CQ(Z/J)''Z) = Fodo7')^!^'').

D

4.3. On the p-ordinary cohomology associated to a type S

For any s = sp e Cusps (P), we set r',=P n T". We begin now the study of the
ordinary part of the following cohomology groups:

G^r';M)= ® H^;M)
speCusps(r')

If C e H^Q) is such that ̂ I^-1 D r' is of finite index in F then the double class [r^F]
acts on this cohomology group as follows. Let us first decompose FW = TT rWi'1
If c = e c^ e GaO^M) then ' w /

WW)^ = ®, s,,^,_j[r^^^^^o-)r^]
Using definition 4.1, we define the following cohomology subgroups:

GWr';M)= 9 H^;M)
speCuspsCr7)

r^p<t , length(wsp)=Z
or length(wsp)>^

^,w(^ /;M)= 9 H^r^;M)
c"sps,»(r')

By Lemma 4.3, the Hecke operators [r^P] act on these cohomology subgroups and
we have:

COROLLARY 4.1. - The Hida idempotent eq annihilates the quotients:

G^_^_,(r';M)/G^(T';M)

and "we have

e<^(r';M)= © eQG^(r',M)
w(EW_^

Proof: Let n be an integer; for the ̂  defined at the end of section 2.4, consider the
right coset decomposition

t^p-Uno-)
i

where sp e Cusp^P) has Weyl type of length / - 1. Then by Lemma 4.3. S(;O)P$( )-i
has Weyl type of length less than / - 2 or has a depth oo if n is chosen sufficiently large.
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Thus, for c e G^_^_,(r';M), (c|[r^(j)r'])^ = o, so c|[TO)r] e G^O^M)
as desired. For the second point, let us note that we have a nitration:

... c G r̂; M) c G^_i,,_i(r'; M) c
C ^-1,00^;^) C G^.^r'iM) C ...

the ordinary part of which

• • • C eQG^(r';M) = eQG^_^_,(r';M) C

eo^-i.ooO"; M) = eoG'^.^.ia"; M) C ...

is still a filtration of eQG'^(r'; M) with quotient isomorphic to

^(G^-i.ooO"; M)/G'^_^_i(r; M))
since CQ is an idempotent. The result follows from this observation.

D
On the other hand, by the last part of Lemma 4.3, we can decompose the action of CQ

on G^ u,(r') into an action on each H^r^,; M) with Ws = w and Tg = oo and thus:

e^jr; M) = © ^(r'jH ;̂ M)
seCusp^(r)

7-5=00, Ws=W

where e^r,) = lim^ootr^rj71' with ^ normalizing P^.
What we are aiming at is the study of the action of ^(Z/^Z) on eoG^Fi^); M)

via the canonical isogeny :

ZQ(Z/^Z) - CQ^/P-Z) ̂  W)/W)
z i—> 7^

given by the natural action of ro(y)/ri(y) on our cohomology groups. If 7 e Fo^)
normalizes P^ (i.e 7 G IQ(T^ ̂ (Z/^Z)!?^^))), it operates on the cohomology
H^ri^np^M)).

PROPOSITION 4.1. - Wr/z the previous notations, -we have:

CQG^W^ M)= © ^(Tr^^z^^cr)) ̂ O11^1^!^) n P.- M))
sp^ecusps(r)

Proof: For any sp G Cusp^ ^(^p^, Fify)), there exists 7 G Fo^) such that P = P^.
Since Fo^) normalizes Fi^), we have Fi^) H P = (ri^) H Pz,^)7 and thus
^(ri^) n P;M) ^ H^Fi^) n P,^;M). Then the proposition follows easily from
this observation and Lemma 4.4.

D
In the sequel we fix an arithmetic character \ = e^ of CQ where ^ is algebraic and e

factors through CQ(Z/prZ) (p7' is a level of ^ cf. Definition 3.2). We can now prove the
independence of the weight for the S-stratum ordinary cohomology:
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COROLLARY 4.2. - With the previous notations, we have a canonical isomorphism:

^^,w(ri(p°°), L\p 0 ̂  A)) = lim e^jri (;/-); L\p 0 ̂ ; A))
r

^Q^jro^c^A))
Proof: As in the proof of Corollary 3.2, we can prove that

eQH*(P^ n ri(^), ̂ (p 0 ̂ ); Ar) ̂  eQH*(P^ n r^p8), v(p) ® A,)
eQH*(P^ nro^CGo1^)) ^ eQH*(P^ nroO^^M^Zp/p'-Z,,),^,))

On the other hand, by Shapiro's lemma, we have still

eQH*(P^ n W), V{p) 0 A,) = eQH'(P^ n W); Ind^^^j Y(p) ® A,)

Therefore by the first isomorphism, we have

eQ^UWU^XiA,-))

= ̂ C^^z^.cr)) ̂ H-(P.,, n Fo^); Ind ;̂:̂ :̂; V(p) 0 A.))

- H•(p-n W)' ̂ S^^z)..^?)) I<:::̂ iK ^(^) ̂  A.))

By the transitivity of the induction process, we have:

C(M'(W7..),,.; A,) = In<̂ ;,,,,.,<,,, I.<i?;::S£:! V(rt » A.

We deduce now our result from these previous isomorphisms and taking the inductive limit.
D

By the same argument as in the proof of Theorem 3.2, one can prove the following
lemma. We leave it to the reader:

LEMMA 4.5. - For all \ of level p " , we have a canonical isomorphism

^^jro^J^p^A)) ̂  eQG^(W^C^A)[^]) (4.8)

In Section 3, we proved a control theorem for the total cohomology in degree 3d using
an abstract control criterion due to Hida. To apply this criterion, we started from the
identification 3.9 of which 4.8 is an analogue. Then, we used vanishing results of the
cohomology groups in degree less than 3d. Unfortunately, this last point is not satisfied for
the E-stratum cohomology or for the boundary cohomology. Thus, we need to go further
in the computation of this cohomology. In particular, we will see in Section 5 how to
compute them explicitly for F = Q and to get the control for the boundary cohomology.
The general case is treated only modulo torsion and we will not obtain a control theorem for
the boundary cohomology, but only a weaker result, which nevertheless proves sufficient
to imply a control theorem for the interior cohomology.
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4.4. Ordinary cohomology of parabolic subgroups

4.4.1. An abstract lemma

We begin with some abstract considerations. Let Q be a group and 3 be a normal
subgroup of 5; we set Q = fl/3 and g \—^ g the reduction map. Let OT be a subgroup
of 0 such that 911 == 9T D 3 is a non trivial subgroup of 71. Let 77 be a element of 0
such that 9T H r]^r]~1 is of finite index in 7t and in 77 O^"1. We suppose that there exist
elements 771 and 77' in Q such that:

(1) 77i normalizes Tto = 9l/9Ti
(2) T ] ' normalizes Tti
(3) 77 = 7/771 = 77177'

(4) 773 H 9l77?t = 7/^17719li
We say that the quadruple (9T, 9li, 7^771) is admissible. We can now consider the

following double classes:

WU [^iriWand[^M

where 770 = 77' . Let M be a OT-module (resp. N a O^o-module), with an action by 77"1 and
77f1 ( resp. 77o"1). Then these double classes act respectively on the cohomology groups

H*Cn;M), H*(9li;M) (resp. H*(9To;^)).

and if these modules are finite or cofinite over Zp, we can consider the respective
idempotents e, ei and eo; this assumption will be understood in the following lemma. For a
group G and a G-module A, let C*(G, A) = Hon^ZC;^1, A) (the standard homogeneous
complex giving rise to H^G, A) is the fixed part C*(G, A)0). Let us consider the double
complex which gives the Hochschild-Serre spectral sequence:

L^ = C^/^CWM)^1)^1.

LEMMA 4.6. - Let (?t, 711,77,771) be an admissible quadruple.
(i) //?li7?i9Ti = ]J^ yi^Zi and O^o^o = Uj ̂ o^ ^^ ̂  ^ ̂  then

9^9t= ]_[^i^ /̂^
'j-

^^

(ii) L^r c G .L^9. T/z^n w^ ^^/?n^ an action on the double complex L^^ by

c|[^9T](^i,...,^)(2/i,...,^)

= ̂ ^n,)-1^.... ,^))(^\ ... .^))

vv^/z rjQnjX = x^rfon'jf and rf^Zirj'njy = y^^r f ^Z i ' r j ' r i j ' .
(iii) The Hochschild-Serre spectral sequence induces a converging spectral sequence:

eoH^o^iH^^M)) => eW^^M).
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Proof: (i) Let x e 9̂ 91. Since ^i normalizes ^lo = 91/̂ 1, we have

^0^0 = Wl^O

= ^o^o^Wi=n^ow^i.
J

Thus there exists j such that ;r = n^o^j^i- Then ?/ = (nrif)~lxn^l G ?7i3 H y/'"1^^^ ==
9^17719^1. Thus there exists ^,2/ G ?ti such that ?/ = 2^771^' and

a; = nrf zr}\z' Uj = n(rffzrf/~l)r]-t(rffzfrif~l)r)/nj.

By (2), (T/^T/"1) and ( r ] ' z ' r ] ' ~ 1 ) belong to ^i. Thus rr G n 9^17/19^17/7^- and there exists
i such that x G yiri^Zirfnj. We have proved that OTr/O^ = |j^ Ttrj^Zi^rij', the fact that
the union is disjoint is obvious.

The second point consists in verifying that the action preserves Lp'q and that it commutes
with the differential maps; the reader can consult [16] (cf. p. 299) for this. For the third
point, it is enough to check that

(c|[?ti^^])|[?lo^o^o]=c|[^9l]

and remark that the action defined in (iii) on I/0'9 is the usual action of [O^^l].
D

4.4.2. Application to the ordinary cohomology of unipotent subgroups

For all v\p, let Ry = R((Sp^) 0 r-y, T(g) r-y) be the set of roots of (Sp4) 0 r^ with respect
to T 0 TV and let Rp = J T Ry. For any subset R C Rp such that (R + R) D Rp C R, we

v\p
denote by Up the unipotent subgroup of H(Zp) associated with R.

For any subset Ro C Rz = R ( H / z ^ T n / z } of the set of rational roots, for each
v\p, let Ro(v) be the image of RQ in Rv by restriction to T 0 r^ C Tn (g) Zp; let
W = U.ip %(^). We denote by Up^) = Fi^) H UR^.

We denote R^ ( resp. R~) the subset of R of positive roots (resp. negative roots)
(according to the choice of the standard Borel subgroup). And we set

DQ^R = f^t G TnW H J] M4(r,) ; v(a(t)) > 0 W|^ Va G J? H ̂  ^
[ .\P j

For any t G DQ^R, one can choose ^ 6 ff(Q) such that ^-1^ = 1 mod ]f (modulo
the center Zn)' The construction of such an element is similar to that of Section 2.4.
We consider the double class [UR^^^UR^)} and eq^p the associated idempotent (it
is easy to prove that idempotent is independent of t). Sometimes we note it CQ if there
is no possible confusion.

Let Ri C RC RQ verifying (R-\- R^) H R = 0. Then Up, is central in Up. If t G DQ^R,
one can find t^ C AQ^ such that

v(a{t^)) = 0 for all v\p and a G R - Ri
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The quadruple (Up^), UR^),^,^} is admissible {i.e. it verifies the four conditions
stated before Lemma 4.6). Therefore, if M is a {DQ^UR^)) -module, by Lemma 4.6,
we have the ordinary part of the Hochschild-Serre spectral sequence

CQ^WdJR^^CQ^WdJR^^M)} ̂  CQ^W^dJ^^M)

with UR^) = U^/UR^).

DEFINITION 4.3. - For all R C Rp, we set

\R\ := Y^[F, : Qp} x Card(R H R,)
v\p

Let us denote R^ (resp. Rq) the subset of positive roots corresponding to the unipotent
radical of Ps (resp. Q). We recall also that AQ denotes the set of roots of MQ with
respect to T.

LEMMA 4.7. - Let M be any Zip^p^-module with a trivial action of U^ Fl UQ and
UR, H UQ. Then

e<^H^(jf),M) = H^"(^ HM^M)

with QQ = \Ro(p) ri RQ\ and qo = \Ro(p)\ — \Ro(p) H RQ\; thus this group is trivial for
q outside [g^o].

Remark: If Ro(p) C AQ there is nothing to prove. If Ro(p) C RQ U RQ then the
theorem states that eoH^^TRo^^M) 7^ 0 only for q = qo = QQ and in this case
^(^(p^M) = M.

Proof: Let us prove this lemma by induction on the cardinality of Ro, using the p-
ordinary Hochschild-Serre spectral sequence. In the general case, let a C RQ such that
^{a}^) is contained in the center of Up^p7'). Then as consequence of Theorem 3.6
of [16] (cf p. 293-297) one has

e^^U^p^M) = J^^-K^^M^M) ^^^^

By the induction hypothesis and the spectral sequence above with J?i = {a}, we get
our result.

D
Let ^s(r') == r'FWp for s -=- sp. If we apply the previous lemma to our situation we get:

COROLLARY 4.3. - Let w G W_Q^ = WQ\Wp/W^ s G Cusp^ ̂ (Fi^)) and M be a
trivial finite or cofinite G(Q)-module. Then

eQ,w(fc)H^(^(ri(^)),M) = H^-(Z4^) HMQ,M)

where q^^ = \RQ U w(J?s)| and ^s,w = \R^\ - \RQ H w(Ac)|; thus these groups are
trivial for q outside [^sw?9s,w]-

One can prove easily the following lemma:
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LEMMA 4.8. - Let ^ with t-1^ = 1 mod p7' and v(a(t)) > (r - s)e^ > Ofor all a G RQ
and v(a(t)) = 0 for all a € AQ.Then for any RQ, the canonical reduction map induces
the following isomorphism:

Un^/^Un^p^ H U^p8)) - ̂ ^/(^-^^^n^^)

where the overline means the reduction modulo p8 and where RQ H RQ stands for an
abbreviation of Ro(p) D RQ.

LEMMA 4.9. - For r > s > 1 and any T-module M, the restriction map induces a
canonical isomorphism:

eQK^Up^^M) ̂  e^H^^M).
Proof: By the Lemma 4.8, the double classes [Up, (p^Up, (p5)], [Up^p^Up,^)}

and T = [UR^p^^Up^p8)} have the same representants. Thus we have the canonical
commutative diagram:

H^^M) ———— IT(^(jf),M)

[UR. (^?0 (p8)} / T [Up, (p^Un, (^)]

IT(^O^M) ———— Q^Un^^M)
with T = [UR^^^UR^p8)}. The idempotent associated with T gives the inverse of the
restriction map we wanted.

D
We now make use of Lemma 4.9 in order to compute the cohomology of a unipotent

subgroup for the module M = £(/?0^; A) where A = Aoo = K / 0 or A = A^ = p~a0/0
(see Section 3.1).

PROPOSITION 4.2. - Let s (E Cusp^fT^)) for i = 0 or 1. TTz^z we have the
isomorphism:

eQ^^H^OW)), L(p 0 ̂ ; A,)) = H9-^- (Z4^) n MQ, y(/) 0 ̂ ; A,))
^nJ m particular is zero for q ^ [<7s,w^s,w]. Moreover this isomorphism is equivariant
for the action of MQ D M^.

Proof: By arguments similar to those used in [17] and section 4.2 (cf. Cor. 4.1), , we
can prove for r ' ^> r that

CQMR.^WW))^ L(p 0 ̂  A.)) ^
eQ,^)H^(r,(j/)), Y(^ 0 ̂ ; A,))

Moreover this isomorphism is equivariant for the action of MQ. If r ' > r, we can assume
that [4(I\(j/)) n £/Q acts trivially on V{p (g) ^) 0 A^. Therefore considering together the
last isomorphism and Lemma 4.3, we have for r ' ^> r:

^(^^(^(r^j/)), £(p 0 ̂ ; A,)) = H9-^- (MQ n ̂ (^), V{p (S)x)^ A,)

On the other hand, by Lemma 4.9, we see that the following cohomology groups are both
independent of r' > r.

^QMR^WW)). L(p 0 ̂  A.)) ^ eQ^R^^W'))^ L{p 0 ̂  A,))
we deduce our result from these last two isomorphisms.

D
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4.4.3. The spectral sequence associated to the Levi decomposition

For any parabolic subgroup P of C?(Q), we write Up for its unipotent radical and let
P = MpUp be a Levi decomposition of P. We set Mp the derived subgroup of Mp and
P1 = MpUp. Let Us (F') = r' n Up for s = sp. Then we have an exact sequence:

i -^ u^) ̂  r' n P ̂  M,(r') ̂  i.
where Ms(r') is an arithmetic subgroup of Mp(Q). Note that when P is maximal, the
derived subgroup Mp(Q) of its Levi is isomorphic to SL(2,F).

Besides, by the Hochschild-Serre spectral sequence we have:

iP(Mp^ (r'), H^p^r'), M)) ̂  IF+^P^ n r', M)
Let

t,= J] a^p) and t1 = ]^ a^p)
a€w(As)ri-Ro aEw(^s)ri-RQ

where As is the set of roots of Ms. Let 771 resp. 77' elements of ff(Q) defined as in
Section 2.4 such that (P^ Hi", Up, ̂  (T'), 77177', 771) is an admissible quadruple in the sense
of section 5.4.1; therefore, we can take the ordinary part of this spectral sequence and get

eQnM^^Mp^^^QR^Up^)^) (4.9)

^eQH^(P^nr,M)

DEFINITION 4.4. - We set:

V^{p) = W-^{MQ H^(^),y(p)) L^(p) = Ind^̂  V^(p)

For any w € WQ and any weight A € X, we set w.A == w(A + QMq) — ^MQ where
^MQ is the half-sum of the positive roots of MQ. For any algebraic subgroup M of H
containing TH and any dominant weight A we denote by E^ the irreducible algebraic
representation of M of highest weight A.

PROPOSITION 4.3. - Let w C W.Q-S = WQ\Wp/W^, then one has natural isogenies:

(i)V^.,(p)- © ^^(O^A
WQ(EV^Q,S,w

l{wQ)=q-q^

(ii)L^(p)-^ © ^-^^^OA
WQ€WQ,S,W
f'^Q^q-Qw

where WQ^^ = {wq E WQ such that A^ U WQ(A^) C w(As) H Aq}.
Moreover, the isogenies (i) and (ii) are isomorphisms if p is chosen larger than the

semisimple weight of p.

Proof: If U/Zp is a connected unipotent subgroup of the unipotent radical of a parabolic
group P of G1 with Levi subgroup M and V a finite free 0-module with an action of G1

making it an irreducible module with highest weight ti G X~^~, one has

H^Z^y^H^Lie^y), and H^Lie^)^) ~ © E^
vCWu,l{v)=r
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where Wu = {v € W such that R^ H v(R~) C Ru} and ~ means that there is a natural
isogeny. The first identity comes from the isomorphism between Lie((7) and U given
by the exponential map and the second one is an integral version of a result of Kostant
(see [43] ch. 3.2). It is actually a direct calculation since Lie((7), when non zero, is r?,
acting on V{p) = (S>v\p Synf^). So we apply this result to H9"^?^^) D MQ, V{p})\
this yields (i). Then,(ii) follows from (i) by transitivity of induction.

D

THEOREM 4.1. - For all i, w and S, we have the following spectral sequences:
(i)
eQnM^H^Mp,, (W)); L^^p 0 x; Ac.)) =^ eQW^{P^ H W), ̂  0 x; A,))

(ii)
eQnM^^Mp^ (ri(^°)); ̂ ,09 0 x)) =^ eQiF^(P^ n ri(p°°); L\p 0 ̂ ; A))

Proof: We apply (4.9) to M = L(p0^ AJ and F = r?^) (? = 0 or 1) with r ' > r.
Using Proposition 4.2 we obtain a converging spectral sequence:

E(2)^(r?(^)) = e^nM^H^Mp^jrKp'^^E^^^x) ̂ AJ

^ eQH^(P,^ n r.^), £(^ 0 ̂ ; A,))

By the same argument as in Proposition 3.1 and Corollary 3.2, we see

E(2)^(rK^)) ^ eQnM^^M^W'))^^?) 0 A,).

Let us prove (i). We take ? = 0 in the above formula; a slight variant of Lemma 3.1 yields:

E(2)^(^o(pr /))=E(2)^(^o(pr))
CQIP+^P^ n ro(^), L{p 0 x; AJ) = egH^+^p,^ n ro(^), L(p 0 x; A.)))

This is what we wanted.
To prove (ii), we simply take the limit over r' and over r and notice that forming

spectral sequences commutes to inductive limits.
D

DEFINITION 4.5. - For Q = B, for any w G Wp/W^, note that ^s,w = (?s,w^ ^et ̂ w be
this common value and let us abbreviate £s,w,n^ (? ̂  x) as L^^(p 0 ̂ ).

COROLLARY 4.4. - We have the following equality:

eB^(P^ n W), L{p 0 ̂  A)) = CB^M^-^ (Mp,, (Fo^)), L^p 0 ̂ ))

COROLLARY 4.5. - The following canonical map has finite kernel and cokernel

eQH^P^nro^UG^^A)) -^ efc+^=peQnM^H fc(Mp^(^o(p r)),£E,w,^(p0X;A))

Proof: It is well-known that the spectral sequence (4.9) over C, degenerates when the
weight \p 0 \ is regular (by [29] Thm. 2.7, p.51). The corollary follows easily from
this observation.

D
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4.4.4. The center of the Levi subgroup

From now on, we assume that PE is maximal and, for simplicity, that Q is rational (i.e.
Qv is independent of v). In order to complete the computation of the ordinary cohomology
of the strata, we shall consider the action of the center of the Levi component for each
cusp. Let us first pose a definition.

DEFINITION 4.6. - A weight X = {xa^a'^^a^ip ls called separable (resp. sufficiently
separable) if for any a, a' G IF ^ith a ^ a ' , we have Xa- / y ^ ' and Xa- + Va 7^ ^ a ' — Va'
(resp. \Xa - y c r ' \ > 3 and \Xa + Va - (^ - ya')\ > 3).

One can easily see that if Inf [xa- ; 0- € I p } > Sup {ya ; cr G I p } then A is separable and
of course regular. The usefulness of the above definition appears in the following lemma:

LEMMA 4.10. - Let \ be a separable (resp. sufficiently separable) weight. Let w G W^
for a fixed type of parabolic S. Let v ^ v / G Sp with a 7^ a ' ; assume thai ('^•A)|^(^) =

(W.A)|^(^,) (resp. KW.A)|^(^) - (w.A)|z^/)| < 3). Then we have w{v) = w{v'\

For any s = sp G Cusp^^(^ /), we consider S 6 H{Q) such that 8P6~1 = Ps and
8 = w mod p7^ (see Lemma 4.3 above). Then we set

^(r^^Pnr^nz^Q)

where Zs is the center of Ms. Therefore E s ^ ' ) can be seen as a subgroup of r^

LEMMA 4.11. - (i) Via this identification, Es^f) acts on the maximal p-divisible subgroup
of ^s,w,g(^ ̂  x) ^Y tne characters

^S,W,WQ = W -1WQ.(A^ + X) + ^
ae^snw-^^Q)

a

w/z^r^ WQ runs in WQ^^ and q — q^ ^ = l(wq).
(ii) If^,w,wQ is trivial on Es^T^^)) and \p 0 ̂ , is regular and sufficiently separable,

thenw{v) G W{v)/W^{v) is independentfrom the v ' s dividing p and q^Qw^Qw are multiples
of d.

Proof: The first point (i) follows from Proposition 4.3. Assertion (ii) follows from the
remark that an algebraic character is trivial on a subgroup of finite index of the units of F
if and only if it is a multiple of the norm. Then W'^WQ.A^ + ̂ ) + Sac.Rsnw-1^ ) ^X^)
is independent of v\p. Now by Lemma 4.10, the character A^ regular and sufficiently
separable has the following property: given two places v and v/ above p, if w{v) / w(v1}
then the characters (A^^)^(^) and {^p\)^(v') are different and even far one from the
other. The lemma follows.

D
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5. p-Ordinary cohomology of the boundary of th Borel-Serre compactification

5.1. Reminder on the Borel-Serre compactification

In this section, we recall some classical facts about the Borel-Serre compactification
constructed in [2]. Let G be a reductive algebraic over Q with positive Q-rank. Let
X = G(Ti)/Z(R)°K^ with K^, a maximal compact subgroup of C?(R) and Z(R)°
the connected componnent of the center of C?(R). Borel and Serre constructed then a
contractible topological space X with an action of G?(Q) such that for any arithmetic
subgroup I\ F\X is a compactification of F\X, whose boundary has the homotopy type
of the quotient by r of the Tits building of parabolic Q-subgroups of G. For any parabolic
Q-subgroup Q, we let AQ be the identity component of the real points of the center of a
Levi subgroup of Q. Then we have X = JQ <°(Q) with ^Q) = AQ\X. Therefore, we have

r\x= |J (rnQ)\e(Q)
r-conjugacy classes

of parabolic
subgroups of G

8(r\x)= J (rnQ)\e(Q)
r-conjugacy classes
of proper parabolic

subgroups of G

Let ̂ (r) be the set of r-conjugacy classes of proper maximal parabolic Q-subgroups
of G and let XQ(T) the closure of (F D Q)\e(Q) for any parabolic Q-subgroup Q. Then
XQ(^) = UPCQ^ n ^VW and the ^^V (XQ^Q^GW forms a finite cover of
the boundary 9(T\X) and we can calculate its cohomology by using the spectral sequence
of Leray (cf. Th 5.24 p. 209 of [11]): the term E^ is

© ^(nf^Xp^r)^)
(Pi,...,pp)

with P^e^cCr)

for any sheaf T.
For any subsequence (Qi,. . . ,^) of (Pi,...,?,,) we note ^^Q,,...,Q^P^...^ the

obvious map
H^(n^iXQ,(r)^) ̂  H^(n^A(r)^).

Then differential map from E^'9 to E^159 is given by:
d^ = S (-l)^ResW-^)W,•.•^-l,Q,P.,•..,Pp)(a)

Oe^r)
If G = Res^ G with rkpG = r with G / p split, we can see easily that E(2)p'g = 0 if
p > r = rankQ^G) and therefore this spectral sequence degenerates at least in Er.

Now we consider the case r = 2; we fix a Borel subgroup B and let Pi and ?2 the two
maximal parabolic subgroups containing B. Then the spectral sequence degenerates in E^
and may be seen as the Mayer-Vietoris sequence:
. . . -^ W-\QB{T\XV^ -^ H^((9(r\z);^) -.

H^((9p,(r\x);^) eiP((9p,(r\x);.F) -^ H^((^(r\x);^) -^.. .
where H^((9p,(r\^);^) (resp. H^((9B(r\X);^)) is the sum of the groups
H^XpfT);^) when P varies in the set of r-conjugacy classes of maximal parabolic
subgroups of G conjugated with P, (respectively Borel subgroups of G).
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5.2. Ordinary cohomology of the boundary

For any F-representation M, we can construct a sheaf M over F\X as the sheaf of
locally constant functions on T\X with values in M. Moreover, for any g G C7(Q) which
acts on M, it is well known that we can define an action of the double class [F^F] on
the cohomology groups H^r\X;M),H^(9(F\X); M) and Q^n^X^M) such that
the restriction maps Res(Q^_^)(p^...^) commute with this action. From this, we deduce
that the action of the Hecke operators commute with the differential map of the previous
spectral sequence. In particular, this point proves that e^E^'9 =^ eoEP^c^F^^M).
Therefore, when the rank is 2, the above Mayer-Vietoris sequence induces, by application
of the "p-ordinary "idempotent, a (Hecke-equivariant) long exact sequence for F':

...^e^-^M)-

^ CQIPWW; M) -^ CQG^ (r; M) C e^G^F'; M) ̂  e^G^F'; M) -. . . .

THEOREM 5.1 (Independence of the weight). - With the previous notation, we have a
canonical isomorphism:

(i) eQH^^ri^AZ), L\p 0 x; A)) = Urn eQ^^W^X)^ L^p 0 ̂  A))
r

^eQH^ro^AX),^1^))
(ii) eQHTi(p°°), ̂ (p 0 x; A)) = Urn CQHTi(p'-), L^ ® x; A))

•r

^eQH^ro^)^^1;^)

Proof: The first point is deduced from the ordinary Mayer-Vietoris exact sequence for
M = L°'{p 0 ̂ ; A) and M = C(p1; A) and the Corollary 4.2. The second point follows
from the first one and the Corollary 3.2.

D
Remark: This theorem is true even if we do not assume that the rank is 2. Indeed, we

have the isomorphism on the term E^'9 of the spectral sequences abutting on the boundary
cohomology eQ?(9(^l(poo)\X),La(p0x;A)) and eQH^ro^WC^A)), since
the Corollary 4.2 does not require any assumption on the rank of our group. This remark
holds as well for the following lemma, deduced from Lemma 4.5.

LEMMA 5.1. - For any ^ of level p1^, we have a canonical isomorphism

eQ^WW^^L^p^x'.A)) ̂  eQ^WW^X)^?1'^)^})

One can decompose the cohomology groups eqG^ in terms of the ^G^^'s
(where w runs over the Weyl types). Let us examine whether the morphism r^
preserves these decompositions. Consider TT^ the canonical surjection from WQ\Wp onto
W_Q^ = WQ\Wp/W^. If we consider, for all (w,w') € W.QP x W_QP*'> the map:

^) : (eQC?^(^/;M)eeQG^^(^/;M)) - (]) eQG^(F';M).
^eTrp^w^Tr^wO

then we have
rP — V^ r?

~ / ^ {w.w'Y
{'w,w'^W_QpXW_Qp^
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We want now to compute the r^'s in terms of the Hochschild-Serre spectral sequences
of Thm. 4.1. More precisely, consider the map

r^ : CQW{P^ n W), L\p 0 x. A)) -

0) © eQH^B^nro^^^^^A))
SBfcGCusp^(r) ^CTi-^w)

PzDBfc

There are similar maps at the level of the E^-terms of spectral sequences of Thm. 4.1
abutting to the source, resp. target of rf^9. Let us first consider the Fo-case:

^ :6QnM^H^(Mp^(ro(^));L^,,(p0x)) ——

© © CLo^-^MB,, n W), L^^{p 0 ̂ )) (5.1)
sB^eCusp^r) •uCTi-^w)

PzDBfc

It is a theorem of Hida (see Thm. 3.12 of [16], proved there in the SL2-case, but
easily generalized to the GLa-case) that the right hand side module of 5.1 is canonically
isomorphic to

eQnM-H^(Mp^(ro(^))^s,w(^0x))

Let us set

R^ = © ^
sp^ecusps(r)

and let us introduce
qp,w 9p*,w'

IP _ V^ DP-q.q i V^ DP-q.q
' (w,-^7) — / ^ ^P.w ' / ^ ^P^w7

and
y.'p - Y^ ^ P

~ / . '(w^7)
(w^OcWQpXiVQp.

PROPOSITION 5.1. - W?7/i the previous Notation, r^ and rp induce the same map from the
^(eQG^ro^M) C CQG^W^M)) into Gr^QG^^M).

5.3. The case (Sp4)/Q

Let r be an arithmetic subgroup of level prime to p and without torsion.
Let eQH^ri^00);^^)) = lim CQW^Y^p^X^L^p'.A)}. Then, the control

r
theorem for the boundary cohomology is the following:

THEOREM 5.2. - For any arithmetic character % of (7o(Zp) we have :

CQ^WW^L^P^^A)) - 6Qm(9(ro(p)\x),c(^;A))K].
Moreover this group is cofree in the case Q = B.
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This theorem will be a direct consequence of the calculations of subsections 5.3.1-5.3.2
below, together with Hida theory for SL(2,Q) (Theorem 1.9 [14]).

COROLLARY 5.1. - For any arithmetic character ^ of CM' which is regular, dominant
with respect to p, there is a canonical map with finite kernel or cokernel:

H?o-no(W),£°(/30X;A)) ̂  H^.^ri^^iA))^]

Recall that ai (resp. 0:2) denotes the short root (resp. the long one) and s, the element
of the Weyl group associated with 0.1. We summarize the results in the following tables:

5.3.1. The case Q = B

PS
P
P*
B

-RE

02, Q'1 + Q'2? 2ai + 02

ai,ai + 02,2ai + 0:2
Ol,02, Q^l + 02, 20i + 02

WQ^
id^ — % d , 5 2 , —52
zd,-%d,5i,-5i,

%d, -%rf, 5i, -51, 52, -52, 5i52, 525].

The three following tables give the values of n^ = q^ = q^ for the different E:

Ps=P
w

id

-id

52

-52

fly]

3

0

2

1

PE=P*

w
id
-id

5l

-5l

^w

3
0
2
1

Ps=^
w
id
-id
52

-52

5l

-5l

5l52

5251

n^
4
0
3
1
3
1
2
2

MQ = T ' is the subgroup of diagonal matrix isomorphic to Gm x G>rn and /? is nothing
but an algebraic 0-valued character. We know by the Corollary 4.4, we have for any
dominant 0-valued arithmetic character \\

eBGq^W^La(p^A))= © ©
sp^ ecusps (r) w^w/w-s

eBHM^-^^Mp^W^L^p^x))

Now, if PS 7^ B the subgroups Mp^ ̂ (ri^)) are congruence subgroups of SL2(Z); we
know by results of Hida that the ordinary part of their cohomology is non trivial only
in degree 1. We set
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q
1

2

3

4

wp^q

—id

-S2

S2

id

Wp^q

—id

-Sl

Sl

id

Given a pair (S,g), where q e [1,4], let us abbreviate the unique element ws,g defined
in the tables above by w. We see from these remarks and the tables that:

e^(W), L\p 0 x; A)) = CBG^ JW), L^p 0 x; A)) =
©^eCusp^D^nM^H^Mp^jro^)),^^^^^)

and

eBG^(W)^(p0^A))= (]) eBnM^H^M^jro^)),^^^^^;^)
sp^ecusps(r)

and
e^G^ro^), ̂ (p 0 x; A)) = 0 for q = 0,5.

For Ps = -B, we have similarly:

eaG^W); ̂ (p 0 X; A)) = © © £a,w(p 0 X).
SB^ € w, n^=g

Cusp5(r)

In order to study the properties for the boundary cohomology, we consider the maps
rg(w,w'). By the tables and the previous discussion, we can see that for each q, the only
couple (w,w') for which r 9 ^ is non trivial is (wp^,wp*^); moreover,

^ _ Dl,g
(wp,g,Wp*,g) —— "^Wp, ^-^p?

l,g
P*wP*,g

Moreover for g = 2,3, this is a direct sum. Noting <^ = R^p^ and (^^>, = R^pi ̂  ^ ,
we have therefore by the ordinary Mayer-Vietoris exact sequence:

eBH^WAX^M) = ker^p + <^.)

0 ̂  coker(^ + 0p.) -^ eBH2(9(^o(pr)\X);M) -^ fcer^ C fcer^ ^ 0

0 ̂  coker^ C coker^ -^ eBH3(9(^o(pr)\X); M) -^ ker^p C fcer^ ^ 0

0 ̂  coker^ C coker^. -> eBH4(9(^o(pr)\X);M) ̂  fcer(^ + <^) -^ 0

Recall that we put w for the unique ws,g defined in the tables above. By looking at how
the restriction occurs in the Hochschild-Serre spectral sequence

ker^= © eK^{Mp_(W))^L^(p(S)x^A))
sp^ecusps(r)

is cofree over 0 and coker<^ = 0 by classical Hida theory cf. [14].
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For q = 1,4, we can see that ker(^ + ̂ ) ^ ker(^) C ker(^.) 9
eaG^roO^),!^? 0 X;A)). we summarize our results in the following:

THEOREM 5.3. - The p-ordinary cohomology of the boundary of the Borel-Serre
compactification is described by:
• eaIWro^AX), ̂ {p 0 X; A)) = 0 for q = 0,5.
• eaH^WAX), L^p 0 x; A)) =

® ^e ®^=^B,w(p0X;A)e
Cusp5(r)

®S=P,P*® ^ ^usp(^P.^(ro(^))^s,w,(p0X;A))
Cusp^(r)

w/i^ m the last part of the sum, for q = 1,4, the element Wq of the Weyl group is
defined by wi = —id and w^ = id.

• For q = 2,3, abbreviating again Ws,g as w, "we have
eaH^CWAX), L{p 0 x; A)) =

© © eH^(Mp^ (ro(^)), £s,w(p 0 X; A)).
S=P,P* sp^eCusps(r)

Similarly, calculations using the same vanishing results given by the above tables yield
a theorem for r^p^-type groups:

THEOREM 5.4. - The p-ordinary cohomology of the boundary of the Borel-Serre
compactification is described as r(Z/yZ) -module by:
• eBH^ri^AX^^^A)) = Qfor q = 0,5.

• eBH^ri^AX^^^A)) =
© © I^^LB^P^X'.A) e

SBfc e w,n.u,==g
Cuspp(r)

© © Ind^ ,̂̂ ^^ eH (̂Mp,̂  (ri^)), ̂ ,̂  (p 0 x; A))
S=P,P* sp,e 'w9

Cusps (r)
w/?^r^ m the last part of the sum, for q = 1,4, the element Wq of the Weyl group is
defined by w\ = —id and W4 = id.

• For q = 2,3, abbreviating again ws,g as w, we have
eaH^a^i^)^), L{p 0 x; A)) =

© © l̂̂ z)̂ . (?) ̂ usp(Mp,, (W)), L ,̂,(p 0 x; A)).
E=P,P* sp,6Cusps(r)

5.3.2. The case Q maximal

We begin by Q = P. Then we have:

PS
P

P*

B

R^
02, O^l + Q'2? 2ai + 02

ai, ai + Q/2,2al + (^2

Oi, 02, O'l + Q'25 20:1 + Q'2

WQ^
id^ —id., 52

%d, —id

%d, —%d, 52, —^2
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The three following tables give the values of q^ and q^ for the different E:

PE=P
w

id

-id

52

C
3

0

1

Qw

3

0

2

ps=p*
w

id

-id

9w

2

0

?w

3

1

PS=B
w

id

-id

«2

-S2

^

3

0

2

1

Qw

4

1

3

2

Since the spectral sequence of the Theorem 4.1 still degenerates in E^ we can make
analogous computation and get

THEOREM 5.5. - Let Q = P; there exists a filtration of the degree three ordinary boundary
cohomology -whose associated graded module is given by:

• Gr epH^WAX), L^p 0 ̂  A)) = ©
sp,e

Cuspp(r)
eH^p(Mp^ (W)), Lp^{p 0 x)) C H°(Mp^ (F), Lp^P 0 x))

© eH^(Mp^(ro(^)),£p*^(p 0 X))
sp,e

Cuspp* (r)

• Gr epH^riTOX), ̂ (p 0 ̂  A)) = ©
sp^e

Cuspp(r)
^SQ/^E^r)) ̂ (̂Mp.,, (ri(^)), Lp,,,,(̂  ® ^))

® ̂ (̂ (r2; H°(Mp^(r), Lp^(p ® X))

© I<;(^7z^z?J^))eH-p(MP.,..(^l(^))'JL^,^(^x))
sp^e

Cuspp. (r)

Remark: Note in both cases the contribution of full H° without taking ordinary part
and for the level group F comes from the coincidence Q = wP^w~1 for P^ = P and
w = id. We observe these H°'s are torsion although it doesn't matter here. We consider
now the case Q == P*

PE
P

P*
B

R^
Q^OI + 02,2ai + 02
Q^OI + Q^^OI + a'z

01,02, Oi + 02, 20i + Q/2

]£
%d, —zd

%d, —%d, 5i
%d, —%d, 5i, —5i
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The three following tables give the values of q^ and q^ for each E:

P^=P*

w

id

-id

Sl

c
3

0

1

Qw

3

0

2

PS=P*
w
id
-id

C
2
0

qw
3
1

PS=B
w
id
-id

5i
-5i

9w

3
0
2
1

Qw
4

1

3
2

Since the spectral sequence of the Theorem 4.1 still degenerates in E^, we can make
analogous computation and get

THEOREM 5.6. - Let Q = P*, there exists a filtration of the degree three ordinary boundary
cohomology -whose associated graded module is given by:

. Gr e^H^WAX), L^p 0 x; A)) - ©
sp,e

Cuspp*(r)
eH^p(Mp,̂  (W)). Lp.^(p 0 x)) C H°(Mp^(r), Lp*,̂  0 x))

© ^^^(Mp^^ro^))^?^^ 0 X))
sp,C

Cuspp(r)

• Gr ep.H^^ri^)^); L0^ 0 x; A)) = ©
sp,e

Cuspp* (r)
^C^TZ^Z)^^)) ̂ pCMp.,, (W)), ̂ ,..(P 0 X))

©Indf;;̂ /̂  H°(Mp.,.,(r), Lp.^(p ® ^))

© I<^/^z)^J^))eH-p(^P.,,.( l̂(pr)),̂ ,.,2(^
sp,e
U^ "zp^Tp'^CZ/p-z)^^^)
sp,e

Cuspp(r)

Remark: The remark following Theorem 5.5 applies here as well.

5.4. The general case

When F is different from Q, we cannot complete the computation as simply because it
does not seem possible to control the torsion arising in the term of the spectral sequences
associated to the Levi decompositions of the parabolic defining the strata of the boundary.
As it will become clear below, we can only make the computation modulo finite kernel or
cokemel. It is the reason why we are led to introduce in definition 6.1 below an ad hoc
CQ^Z?) -module which will control the boundary cohomology (in degree 3d); namely, its
^C-part will be isogenous to Q3d(0(^o(pr)\X),La(p (g) x;A)).
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THEOREM 5.7. - For any ^ regular, dominant with respect to p and sufficiently separable
(see Definition 4.6), the following canonical homomorphisms have finite kernel and cokernel:

(i) eQ^\9{W}\X\ L\p 0 x; A)) -—

© ^forAM^ (W)), Lp.^{p 0 X))
sp,€

Cuspp.(r)

® © Htrd^p^^ro^))^?^^^^^)
sp,€

Cuspp(r)
(ii) eQQ^^W^^L^p^^A)) -^

© ^(^^^^^^ "U ,̂, (W)), ̂ ,s^(p 0 X))
sp,e y

Cuspp*(r)
e © (̂̂ ^

5p,€ y '
Cuspp(r)

where Si(v) == ^ for all v\p. Moreover, if we have chosen p outside a finite set of primes
depending on T and p, this map is an isomorphism.

Remark: The assumption of sufficient separability for p can be removed when Q is
the Borel subgroup at each place v above p. Indeed, instead of using Lemma 4.11 (ii)
which proves that w{v) is independent of v, one uses the same argument as in the end
of the proof of Corollary Al to show that if w contributes to the boundary cohomology,
it satisfies 2d < l{w) or l(w) < d.

Proof: Let us detail only the proof of (i); the second point is similar. Recall that

eo^w(W); L^p 0 x; A)) = © CQH^P^ n W), L\p 0 ̂  A))
sp,e

Cusps(r)

Corollary 4.5 computes the cohomology groups of the right hand side up to finite kernel
and cokemel. From Lemma 4.11, we see that in this corollary, all the terms of the sum in
the right hand side of index I not divisible by d are torsion and therefore can be neglected.
Thus, for Ps maximal we obtain a canonical map with finite kernel and cokemel:

^QG^W^L^p^^A)) ->

© [eM^nQH^Mp,, (W)), L^^{p 0 x))
sp,e

Cusps(F)

eeM^nQH^Mp,, (W)), L^^(p 0 x))

ecM^nQH^Mp^ (W)), I.s,w,o(p 0 X))]

Note that for the terms occurring in the right hand side, the action of the center of Mp, ^
on the coefficients is trivial. Recall that for any Z-module M with a trivial action of
Zn we have

H^, M) = Hom(/\ Z71, M)
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Therefore for k e {1,2,3}, the following map has finite kernel and cokemel

eM^Q^^Mp^W^^L^^.^P^x))^
i

e^o1 Ko^AJBP- - ̂ "W.. (W)). L^^a{p ̂  x)))
Therefore it is torsion for k = 3. Moreover for k = 2 and 1, it is non torsion only if
w = ws^-k with w^4_k(v) = ws,4-fc (see tables of paragraph 5.3). This last point
implies that TTp^wp^-k) H TTp^wp^-k) = 0 and therefore ker r3^ is isogenous to the
cohomology below where £p, is the group of units defined in section 5.2 :

i

CS=P,P* © C^Ko^A^^^^P.w.^^o^))^^^
^ P z 6

Cusps (r)
I

e e^o1 Hom(/\ ̂ , H^Mp^^ (W)), £s,w.,^(p ̂  x)))
We remark now that for any arithmetic subgroup X C SL^-F) and any regular weight

A, we have

Hf(X^(C))=0

if i ̂  d. Therefore in the above sum, all the groups H?^ vanish except for ; == 0 while
all the H?^j vanish. This takes care of kernel of r3^. For the cokemel of r3^"1, the same
calculations show its finiteness. This concludes the proof of (i). The last assertion follows
from two facts. First, the isogeny of Corollary 4.5 is in fact an isomorphism outside a finite
number of prime depending only of the weights modulo p. This verification is left to the
reader. Let us note that in the case Q = B, the isomorphism comes from Corollary 5.4.
Second, all modules arising in the proof of Thm. 5.7 are cofree if p is outside a finite set
of primes depending on F and p, for this result see [17].

D

DEFINITION 5.1. - We set yV^Fi^); p<S>x) ̂ le Tight-hand side of(ii) in Theorem 5.7 and

Wa(ri(p°°);p) = lim W^W);?);
T

we note by r ' the canonical map from CQ^^T^^X}, ̂ (p^; A)) to W^Fi^00); p)
induced by Theorem 5.7. (ii). which is equivariant for the action o/C^Z/j^Z).

From Hida's Control Theorem 5.1 for SLs over number fields of [16] and Theorem 5.7.(i),
we obtain easily:

LEMMA 5.2. - For \ as in Theorem 5.7, there is a canonical map with finite kernel
and cokemel

e^^WAX); L\p 0 x; A)) - n^Fî 00); p)[^}

THEOREM 5.8. - For any arithmetic character ^ of CM' which is regular, dominant with
respect to p and sufficiently separable (see Definition 4.6), there is a canonical map with
finite kernel or cokemel:

H^-^WU'^^A)) ̂  H^.^ri^00)^0^))^]
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Moreover this map is an isomorphism if p is chosen outside a finite number of primes
depending on F and p.

Proof: We abbreviate the notations by:

V = ̂ Q^d^P00)^^?^)) = ̂ Q.^W^P1^))

W = H^^ri^L^A)) = H^_^(ro(j)),C(^;A))
Wa = H^^^ri^00)^)^0^;^) = H^^^^o^W^^^A))
^=Wa(ri(p°°;p))

By Theorem 5.1 and Lemma 5.1, we have the following commutative diagram:

0 -^ H?^_^(ro(^), L^p ® ̂  A)) -. H^_^(ro(p'), I/^ ̂  ̂  A)) ̂  H^^^Fo^)^), I/^ (g) ^i A))

I I I I I I

o - H^.^ro^co^A)^]) ̂  H^^ro^co^A)^]) -^ H^.^wro^^^^c^^A)^])
i ^v i <-w 1

0-^ V[^] -. W[^] ^ WaK]

Since iy\i has finite kernel, it is also true for L^>. In order to obtain our theorem, we
simply need to prove that

corank ((V[^]) < corank (H^.^^o^), L\p 0 ̂  A))).

Let us consider the following commutative diagram with exact lines and Cq(Zp)-
equi variant maps:

0 ^ V -^ W -^ Wa
i I I i rf

Q -> V ^ w ^ WQ

where V is defined as the kernel of W —^ WQ. It implies that V[^] (-^ V^^^]; therefore
by the Lemma 5.2, we obtain the inequality we wanted . For the last assertion, it is enough
to remark that WQ = Wg by Theorem 5.7) and that in this case, there is an exact control
theorem (Theorem 7.1 of [17].

D

6. Nearly ordinary cuspidal cohomology and the universal Hecke algebra

In this section, we deduce from the results of the previous sections the main theorems of
the paper, namely, control and freeness of the nearly ordinary part of the cohomology of
the Siegel varieties Sr, finiteness and torsion freeness of the big nearly ordinary cuspidal
Hecke algebra over the Hida-Iwasawa algebra, the existence of several variable families
of cuspidal Hecke eigensystems interpolating a given cuspidal Hecke eigensystem. This is
a developed version of our note [38] where we announced these results for F = Q.
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6.1. Induction from Sp4 to GSp4

Let U be a level subgroup in Hf of level prime to p, say sufficiently deep so that the
discrete subgroup of ff(Q) associated to U has no torsion and Q is a standard parabolic
of H 0 Zp. Let p : M —^ GLo(y) be a group-scheme morphism as before; for each
X G X*((7M) dominant with respect to p, we consider the local system £"(? 0 ̂ ; A) over
Sr{U), defined by the action of U^p) on

La(p(S)X^A)=La{p(S)X^O)^A

where
^{P ^ X; 0) = {/ '' ^/0+(Zp) -> V; / is polynomial

and f(xm) = p (g) x^"1)/^) for m G ̂ ^^
Note that for any r > 1 we have:

H^^^HWtU^HW-^
teR

where ^(R)"^ is the neutral component of H(Tt), and where the set R is a finite set of
elements of Hf whose components at places in the level of Uo(p) are equal to 1 and
such that its image i^(R) by the multiplicator v : GSp4(FA) -)> F^ is a complete set of
representatives of the [/-ray-class group of field F: Cl^j = FX\F^/v{U) x F^+. Note
that R is independent of r since i/(Uo{p)) is unramified at p.

Moreover, recall that

CW)/W) ̂  (^(z/^z);
hence if Sr is a complete system of representatives s e H(Zp) of ^(Z/^Z)), one has

^(A) = U U ^(QWQ^WR)^
te-Rs€5^

Note that 5 normalizes (7i(jf); let us put for any t G fi and for i = 0 or 1, we set:

I\^) = ff(Q) H ̂ .^^^(R)^1 and 1̂ ) = r^(^) H ff'(Q).

For i = 0 or 1, let:

5(r^)) = r^,(^)\^/(E/oo n H^
note that for any t ^ R,

ro,t(^)/ri,,(j/) ^ GM/(Z/^Z).^,
where £'1 C Z^(r/jfr) is the reduction modulo ^r of the image in Z^(r) of ^(To,t). So,
since ^((7) = HQ^A/U^P^U^, we see that

^(C7) - Uind^%/;;% W,^));
te^

hence

eH^^^^-C^x;^)) = Q^c^^^^^^^
t^R

Note that v induces an isomorphism

C7M(Z/prZ)/C7M/(Z/^)rZ)^ ^ (vIp^YlEt.
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6.2 Hecke operators and Hida-Iwasawa algebra

We let act on (^([/^/^(p 0 ^;A)) the so-called Hecke correspondences defined as
follows. Let S be the set of places of F occurring in level((7). Let U ' = U^^) and
S(U^ = Sr(U).

• for any h G Hf H A^Z), that is, such that hy = 1 for v G 5 or dividing p, we define
[U'hU'Y let (7" = [// n fal/'h-1 and consider the map [h] : (S^) -^ (S(h-lU"h}
induced by right multiplication by h on H(A) and by pull-back by h on the sheaf
(without any action on the group L^p (g) ^;A) itself). The diagram

S^) w S^)

I I (6.1)
^((r) 5([//)

induces on cohomology the desired action of [U'hU'}. Recall the classical Notation:
for v ^ S (and prime to p): T^ = [U'^(\^ w^U1}, Sy = [V diag(w^, Wy, w^, w^U'}
and R, = [U1 ̂ {l^w^A^U'} - {Nv2 - 1)S,

• for hp G Dp, one considers similarly [U'hpU'} defined by the diagram 6.1 but for
[hp] acting on the ^(p 0 ^;A)-bundle of S^U") by (x,f,) ^ (xh.hp1^. Here,
Dp = rivip^ denotes the subsemigroup of ZM^Q?) defined in Section 2.2.

• for ft G ZM(Z^), we let [U'hU'} act by normal action since ZM^?) viewed in U^f^f}
normalizes U^^p7').

• for z e Z^(A), we let U ' z U ' act by central action.

Remarks:
1) The normal action factors through ^M(Z/PrZ).
2) Let

0- = [z C Zjy(r); ^ = 1 mod.jf}

and put

7Z. = ^(Q)\Z^(A)/^Z^(R)+.

Then the central action factors through %y.
Let

W^p) = lim eR^S^U)^ /:a(^; A)) ^(p) = Urn 6H^(^([/), £-(/); A))
r r

where H^(5fr((7),>Ca(p;A)) is the cohomology of the boundary of the Borel-Serre
compactification of Sr(U). We define ^^(p) by the exact sequence

o^np^H^-.n^)
We also introduce the interior cohomology groups H?:

eK^S^U)^ ^(p; A)) = Ker(eH^(^([/), ̂ (p; A)) ̂  eH^(^(E7), ̂ (p; A)).
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In particular,

V^)= limeH^^^A)).
r

DEFINITION 6.1. - We define the nearly ordinary Hecke algebra h^^i^e) of level U^^)
(outside S ) by as the 0-subalgebra generated by the operators

• [W)^W)] (h e H^\
• [W)/^W)] (hp ^ Dp),
• [W^W)] (h C ZM(Z/^Z)),

• and [U^zU^)} (z G Hr)

acting on effg(^([/),/:a(p;A)).

Remark: One can also define similar Hecke operators of level U (replacing U^) by
U). Then, an important property of the isomorphism in Proposition 3.2 is that it commutes
with the Hecke operators for h G ffj^; moreover for hp € Dp, the corresponding operators
are congruent modulo p (on the prime-to-p level side, one has to divide [UhpU] by the
constant uj(hp)).

When r > 1 grows, the endomorphisms [U^p^hU^)} (h € fff), [Ui^hpU^)}
(hp G Dp), [U^hU^)} (h G ^(Z/^Z)) and [U^zU^)} (z G %,) form a
compatible projective system; one can therefore consider the algebra

h^x = um h^(^•
r

By definition, it acts faithfully on V^p).

DEFINITION 6.2. - For ^n;y r >_ 1, let Hr be the amalgamated sum:

H, = ZHW\ZH{A)/^ZHW Cz^(z/^z) ^M(Z/^Z)

w/z^r^ ̂  amalgamation is taken for Zp \-^ (a^p'1),/?^)) where a is induced by the
inclusion Zp C A and (3 is given by the homomorphism ZH C ZM'

We put

H = lim Hr
r

We call it the Hida group of H.
The Hida-Iwasawa algebra A is defined as the projective limit of the group algebras

A, = 0[H,]

for the natural transition homomorphisms:

A=0[[H]]
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Remarks:
1) Let H(p) be the largest torsion-free pro-p subgroup of H and A(p) = 0[[H(j9)]];

then H = $ x H(j?) where <S> is a finite group and A = A(p)[<I>] is the group algebra
of <I> over A(j?). Let

%r = ZH(Q)\ZH{A)/^ZH(K) x ZM'(Z/^Z) and U = Urn 7Z,
r

and 7^(j?) its largest torsion-free pro-p subgroup. Note that since p is odd, there is a
canonical isomorphism:

n(p)^n(p)xZM^Zp)(p)
given by {z,t) ̂  {z,t') where t -= Z p t ' , Zp G Z^(Zp)(p) and ^/ e ZM/(Zp)(p).

2) The relative Krull dimension of A over 0 is equal to the Zp-rank r?(H) of H;
one has rp(H) = 1 + 5 + Z^^iA where r^ is the rank of CA^ (that is, 1 if n^ is
maximal and 2 if 11̂  = B) and 5 is the defect to the Leopoldt conjecture for (F,p).
For instance, if Q is the Borel subgroup, one has rp(H) = 2d + 1 + 6. For the general
definition of the Hida group, see [36]. The number Tp(H) is important for us since it will
be the number of j?-adic parameters for the space of nearly ordinary deformations of a
given nearly ordinary Hecke eigensystem.

For any r ^ 1, the group Hr acts naturally both on e'Qq{Sr(U\Ca{p',A)) and on
eH^^^A)) by

( }r^: M ̂  [W)^W)]

These actions are compatible when r grows; hence H acts on W^ and Vp^ These
actions can be extended uniquely by linearity into 0-algebra homomorphisms

A, ̂  Endo(W^) A, - Endo(V^)

(resp.) A - Endo(H^) A, -. Endo(V^).

DEFINITION 6.3. - 1) An arithmetic character 0 of H is a continuous homomorphism
6 : H —> Ox such that its restriction to some p-adic open subgroup coincides with an
algebraic character of the algebraic group ZH x ZM'

2) It is called arithmetic dominant with respect to p if one can write for h = (z^ t) G H,
0(h) = (f){z}uj^(t) where \ G JC*(CM) is dominant with respect to p, e : CM^?) —^ Ox

has finite order, ^ is locally algebraic on Ti (and (f) = uj^ on (a^1),/^) for any
zp e Zn(Zp)).

DEFINITION 6.4. - For any arithmetic character 0 of H dominant with respect to p,we
define the so-called arithmetic prime pe of Spec A associated to 6 as pe : Ker( A —^ 0)
where the 0-algebra homomorphism is defined by linearity and continuity from the group
homomorphism: h ̂  0{h)\ We say that pe is algebraic if 6 itself is algebraic.
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6.3. Control Theorems

As in Section 3.5, we fix a Dedekind ring Oo in Q, finite over Z, and for a prime p, we fix
a p-adic embedding bp of Q, hence of Oo, and we denote by 0 the completion of ip(0o).

We obtain easily the following theorems of independence of the weight and of exact
control for the cohomology:

THEOREM 6.1. - For any p with H-admissible highest weight, there is a canonical
Hecke-equivariant isomorphism: j^e '' Vp ^ ^0xe suc^ ^^f01" C ^ ^M(Zp), we have

^{w^x^mx^c)
Let 0 = (f) 0 u^ex be an arithmetic character of H where ^ G X*(CM) is dominant with

respect to p and e : ^(Z/^Z) -^ C^. Let Vr,p^W (resp. V^(<^)) be the largest
submodule of Vr.p^e^ resp. V3^ on which $ acts via (f). Then, note that the natural map

^(g)£^ ~^ ̂ [^^

induces
V'r^W - ̂ [pe]

THEOREM 6.2. - Let p be any absolutely irreducible representation of MQ;
1. Weak Control: Let p / 2 &^ an arbitrary rational prime. For any arithmetic

character 0 of H regular dominant with respect to p and sufficiently separable (see
Definition 4.6), say Q = (f) (g) o;̂  /or ^ G X*((7M) dominant with respect to p and
e : CA^Z/^Z) ^ C^, r/^ maps

V^W - V,3 ]̂
n% )̂ - n^M

/zav^ ̂ n;̂  kernel and cokernel.

2. Strong Control: Assume moreover that p = po 00o ^ an^ ^fl^ ^>s< ^n^lesi weight is
regular; then, there exists a finite set of primes Su,p such that for p ^ Su,p,
(i) for any q € [0,3d[, ̂  = W^ = 0
(ii) /or an^ arithmetic character 0 = <^ 0 cc;g^ o/ H 05' above, with the supplementary
condition that e^ is congruent to 1 modulo TT, r/^r^ or^ canonical isomorphisms

V^M ^ ̂ t^] H;^ ̂  w^[^]

Proof: This results from the corresponding theorem (cf. Thm. 5.8 for Sp4) and from
the induction formula

K3^ = © indg:,̂ ;;2 .̂̂ ) 0^(1^), L\p 0 x; A))
t6-R

D

THEOREM 6.3. - L^ F = Q. L^ p be defined over OQ; assume either (i) or (ii):
(i) for all t C R, ^Q-n^oAp)^ La^ K / 0 ) = 0 for i = 1,2;
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%=3

(ii) p is regular and p does not divide TT |H'(rf, £o(p; Oo}tors\-
i=l

Then, for any arithmetic character 0 ofH. dominant with respect to p, say 0 = (j) 0 uj^ for
^ € X*(CM) dominantwith respect to p, congruent to 1 mod TT ande : C^Z/j^Z) —> Ox

a character congruent to 1 modulo TT, there is a canonical isomorphism

^p^W^^Pe}

Remark: If Q is the Klingen parabolic or the Borel subgroup, it follows from K.
Buecker's thesis [6] that the part of assumption (i) relative to % = 1 is satisfied. Note also
that for (i) to be fulfilled, it is sufficient that

H^(^o,,(p)^a(p;0/7^0))=0

for i = 1,2.
Proof : The proof is the same as for the previous Theorem 6.2, except that one uses

here Thm 3.3 which does not require any assumption on p.
Let V,̂  = Romo(V^K/0) and V, = Romo^^K/O).

COROLLARY 6.1. - Let p and 0 be as in Thm. 6.2 (Weak or Strong). The natural
homomorphism

^p/Pe^p -> Vy.^^)

has finite kernel and cokemel in weak control case and is an isomorphism in the strong
control case.

COROLLARY 6.2. - Under the same assumptions as in Thm. 6.2, V^, is of finite type over A.

Proof: It is a simple application of the topological Nakayama's lemma: let m be the
maximal ideal of A. We see from Corollary 6.1 that V^/mV^ is a finite group.

D

COROLLARY 6.3. - Let p be as in Thm. 6.2 (Weak or Strong). For any arithmetic character
OofH. dominant -with respect to p and sufficiently separable, the natural homomorphism

h^0A^/p^h^0^

is surjective with kernel contained in the radical.

Proof: We have to prove that a non trivial idempotent of the left-hand side does not
map to zero. Let e be such an idempotent. By Hensel lemma, it lifts to an idempotent e
of (h^'5)^. If e maps to zero, by Corollary 6.1, we have

e.(V^ Cpe.CVp)^.

Since e is an idempotent, this implies that e = 0 and e = 0.
D
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6.4. Structure over the Hida-Iwasawa algebra

We are going to prove that V^ is co-free over the Hida-Iwasawa algebra provided
that p is outside an explicit finite set of primes, prove that result we need the following
general duality theorem. For any dominant character ^ G X*(T) corresponding to a triple
(a,6;c), we put ^v = (a,b;-c).

THEOREM 6.4. - The following pairing yields a perfect Pontrjagin duality

(-. -)x •' H^ordOW; L^p 0 x. 0)) 0 H^O-o^AX; ̂ (^ 0 ̂ v; A)) - A

mr/i A = K / 0 and {x,y)^ = (p^{x U W^ ,(^))Q/)) w^^ ^x is induced by the natural
pairing between I^Qo (g) x;0) and ^(^ (g) x^O) ̂  ̂ h Wr^(^) C GSp4(F)

normalizing T such that W^^ = ( 2 2 jmod ^(p271).

Proof: Recall Ar = p^O/O. Consider the following commutative diagram where r <, s:
H^ord^On^^^A.)) 0 H^-^FO^P-AX,^^ 0xv;A.))-^H^(^o,,(pr)\X;A.)-A.

I I I I I I
H^ord^o^A^^^A.)) 0 H^-^ro^^)^!/0^ 0xv;A.))-H^(^o,<(ps)\X,A.)^A.

I I I I I I

H^O'o^A^ ̂  ̂  X) 0 A.) 0 H^-^ro^^A^ ̂ v ^ ̂ v) ̂  A.)^H^(ro^A^A.)-A.

The isomorphisms of the left hand side for compact support cohomology follow from
versions for compact support cohomology of
• Hida's lemma for lowering the p-level (Lemma 3.1 above with the same proof).
• The contraction lemma (Proposition 3.1 above with the same proof).

The last line is exact by the Poincare duality theorem and the fact that we have
(eg)* = Wy (p^)eQ(Wr (p-))"1- Now we get our result, taking inductive limite in
the equality :
Kom^^r^p^X^ L^p 0 x; A.)), A) ̂  H^O^AX, L^ 0 ̂ v; A.)).

D

COROLLARY 6.4. - If p 1 Su,p U 5^pv then V^ is cofree of cofinite type over the
Hida-Iwasawa algebra.

Proof: In order to get our result, we prove that H^^o^A^^O9 ̂  X;A)) is
p-divisible for a densely populated set of sufficiently separable, regular dominant algebraic
characters ^. By the following exact sequence:

H^(ro^)\X, L^p 0 x; K)) -. H^(ro^)\X, L^p 0 x;A))

- ̂ ^W\X. L^p 0 x; 0)) - ...

this will be true if we know that H^^o^P7')^ ̂ (/^X; 0)) is without ^-torsion. But
by the previous theorem, the Pontrjagin dual of this group is H^J'l(^o^(pr)\X,£a(pv ®
X^A)) which is zero by Theorem 6.2.(i) for p ^ S u p ^ '

D

COROLLARY 6.5. - If p ^ Su,p U Su,p^ then h3^5 is torsion-free over the Hida-Iwasawa
algebra.
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6.5. Families of eigensystems

DEFINITION 6.5. -A family ofQ-nearly ordinary Siegel-Hilbert cusp eigensystems of genus
2 is the datum of an homomorphism of K-algebra from the universal Hecke algebra h^'5

into a finite and flat extension J of A(p):

X : h3^ -^ 3

The above definition is justified by the following:

COROLLARY 6.6. - Let \ be such a family. For any arithmetic character OofVL separable
and dominant with respect to p, say 0 = (/) 0 c^ for ^ G X*(CM) dominant with respect
to p and e : CA^Z/J^Z) —> 0^ such that e^ is congruent to 1 modulo TT. Then for any p '
prime ideal above ^e, there is the following commutative diagram:

h^A^/p. Am^' J/P'

h^0^) >w W

Proof: This results immediately from 6.3.
D

COROLLARY 6.7. - Let TT be a cuspidal representation of GSp4 / p whose archimedian
component belongs to the discrete series with cohomological regular weight 0o. Then there
exists a finite number of prime S{7r) D Ram(7r) such that ifp ^ S(7r) and TT is Q-ordinary
at p there exist a family of Q-nearly ordinary Siegel-Hilbert cusp eigensystems of genus 2
whose specialisation mod pe^ "is " X^ the character of the Hecke algebra corresponding
to TT.

Proof: This results from the previous corollary, the torsion-freeness of the universal
Hecke algebra and the Going-Down Theorem for lifting ideal in normal extensions.

a

7. Application to Galois Representations

We recall below some classical conjectures on Galois representations associated to
cohomological automorphic representations. Let us start by some preliminaries. Recall
what we have fixed in the previous sections embeddings ip and loo of Q m Cp and C. Let
TT be a cohomological cuspidal representation of GSp4 / p - Then it must occur in

H^W; (g) L(^^)(C))
crCiF

where L(a^5^<^)(C) is the irreducible representation of GSp4/c of highest weight
(a^6^;c^) over which GSp4(.F) acts via too o a. Note that Ca is independent of a
(because it is the infinite type of the central character of TT); we denote sometimes this
common value by c. We denote by A^ the character of the Hecke algebra corresponding
to TT and by E^ the subfield of Q generated by the values of A^; we embed it canonically
in Qp via ip.
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CONJECTURE 2. - Let TT be a cohomological cuspidal representation of GSp4 / p - There
exists a continuous Galois representation Q^ unramified outside Ram(Tr) U Sp:

^ : Gal(F/F) -. GSp^Qp)

such that for all prime w ^ Ram(Tr) U Sp the characteristic polynomial of ^(Frob^) is
given by \^{QwW) where

Q^{X) = X4 - T^X3 + q^R, + (1 + q^S^X2 - q^T^X + q6^.

For F = Q, if TT has multiplicity one this conjecture results from works of Laumon [23]
(for trivial coefficients) and Weissauer [46]. In general for F = Q, Weissauer has proved the
existence of a 4-dimensional Galois representation associated to TT when 71-00 is holomorphic.
It seems the general case where 71-00 is in the cohomological discrete series can be treated
in a similar manner, although details have not been written (oral communication of
R. Weissauer).

DEFINITION 7.1. - For each v C Sp, let Ip, the set of embeddings of Fy in Qp. Then by
the choice of ip, we can identify IF and [J IF, by a \-> L p O (T. For any a G I F , ̂  set

v^Sp
v = Va ^ Sp the place ofF dividing p associated to ip o a. For each v € Sp, we identify
GF, = Gol(Fy/Fv) with a decomposition subgroup at v ofGal(F/F). We denote by Q^^,
the restriction of Q^ to Gp^'

The conjectural local properties at places dividing p are given by:

CONJECTURE 3. - We keep the hypothesis of Conjecture 2. Then for all v G Sp, we have
(i) QTT,V is Hodge-Tate, and for all a C IF,, the Hodge-Tate weights associated to a are:

(a^+^+c^/2+3, (a<,-^+c,)/2+2, (-a,+^+c,)/2+l, (-a,-^+c,)/2;

moreover the four corresponding Hodge numbers are equal.
(ii) Assume that TT is unramified at v. Then Q^^ is crystalline in the sense of [10].

(iii) Assume that TT is unramified at v. Then the characteristic polynomial of the crystalline
Frobenius acting on the filtered ^-module associated to Q^^ is \^{Qv{X)).

Comments: (i) Assume that F = Q, TT is unramified at p. If TT is endoscopic, it comes
from cuspidal representations ((71,02) for GL2 and its Galois representation is Hodge-Tate
because those associated to 0-1 and 0-2 are. If not, then the existence of Q^ is also known,
and it is constructed as a submodule of the sum of four copies of the etale cohomology of
the Siegel variety of level prime to p (see [46] and [23]). Therefore, by the etale-crystalline
comparison theorem of Fallings [9], it is crystalline at p hence Hodge-Tate. The fact that the
four Hodge-Tate weights occur should come from the stability of the L-packet at infinity
(i.e. 7Tf 0 TT^ is automorphic if and only if 717 0 TT^ is, assuming that TT is not endoscopic).
This also implies that the four archimedean Hodge numbers are equal. This motivates
statement (i). Statement (iii) is investigated in [42]. A proof thereof seems accessible.

Let v e Sp', as a p-adic valuation of F, we normalize it by v(p) == 1. Let us denote
by ao, 01,02,03 the p-adic valuations of the roots of \^(Qv{X)) written in increasing
order. Recall that e^, resp. fv, denotes the ramification index, resp. the residual degree
of Fy. Then we have
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LEMMA 7.1. - If TT is Q-ordinary, we have do + 03 = a^ + a^ = f^(3 + c) and

• If Q. = P, ao = 1 Y (c - a, - 6,).
" <.6^

•IfQ.= P\ ao + ai = /„ + -!- ̂  (c - ̂ ).
e" ^€^

•IfQv=B,ao=^- ̂  (c - a, - 6^) anrf ai = /., + —— ^ (c + ̂  - a,).
" "eiFy ev aelp,

Proof: It will follow from the calculation of the u-order of the coefficient of A^(Q^(X))
adapted to Qy. As explained in the beginning of Section 3.5, we consider the Hecke
operator T^ defined in terms of the action by o^(d-1) • pv{d)) (for d £ A,) on

H3^^); 0 £(^;<,)(C))
(TCiF

The Q^-ordinarity condition says that the image of T^ by A^ is a ^-adic unit. One has
^(d.) = e,;1. ̂ ^ (c - a, - &,)/2 for Q, = P, resp.^^d,) = e^1. ̂ ^ (c - a,);
for Qv = B, there are two elements dy, and the two previous formulas occur. For
Qv == P*, we thus have

^A,(T,)). = e,-1 . ̂  (c - a, - 6,)/2;
<reJ^

similarly, for Qy = P*,

v(\^{q^R^ === /^ + e^-1 . ̂  (c - a<,),
<reJ^

and both for the Borel case
D

DEFINITION 7.2. - Let v e Sp. A weight ((a^;(^))^j^ ^ c^/fcrf v-admissible if
and only if the corresponding four Hodge-Tate weights given by the conjecture above are
independent of a G Ip^ •

PROPOSITION 7.1. - We assume the hypothesis and conclusions of Conjectures 2 and 3 and
that TT is Q-ordinary with separable weight (cf. Definition 4.6). Then the local representations
^ takes values in a conjugate of Q^{L) where <% is the Langlands 'dual of Qy (i.e.
0; = P* (resp. P and B ) if Q^ = P (resp. P* and B).

Proof: This is a consequence of Lemma 7.1 and Corollary B.I (see the appendix B).
Thereafter we give another proof in the case where v is admissible because it is the special
case for which the Newton and Hodge polygons meet. In the other cases, they never meet
as it can be easily checked (see the last remark of the appendix B). We take the opportunity
to thank H. Hida for pointing out to us that the assumption ofp-admissibility is not satisfied
in general for ordinary cuspidal automorphic forms. This led us to write the appendix B.

We use the terminology of [10]. Let £ be a field of coefficients of p^, finite over Qp,
of degree, say L Choose a e Jp, and let us denote by .Dcris(^) = -Dcris,a(^) =
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(y^Q-K.v) otBcris)0^ the filtered (^-module constructed "a la Fontaine" where the action
of GF^ on Bens is done through a. It is an L 0 F^o-module where Fy^o is the maximal
unramified extension of Qp contained in Fy. By Conjecture 3.(ii), its F^o-dimension is
equal to 4^. An easy argument shows in fact that each eigenspace D^ given by the slope
t of the crystalline Frobenius is free of rank 1 over L 0 F^Q. By Conjecture 3.(i), the
Hodge-Tate eigenspaces have same Fv -dimension hence are of dimension i. Thereafter,
we construct the Hodge polygon (resp. Newton polygon) by applying to the coordinates
an homothety of factor i~1. Let a any element in J^.

After a Tate twist, we can assume that c = da 4- &a- By Conjecture 3.(i) the Hodge-Tate
weights are (a, + 6, + 3, a, + 2, 6, + 1,0). and the Hodge polygon of I5cris(^7r,v) is the
convex envelope of the set of points:

PHodge = {(0,0), (1,0), (2,6, + 1), (3, a, + 6, + 3), (4,2a, + 26, + 6)}

Let us denote by (ti)o<^3 the slopes of the absolute Frobenius (p. From the point (iii)
of the Conjecture 3, they are given by divising the valuations c^ of the Lemma 7.1 by
fv (recall that the relative Frobenius is the ^fv). Since the weight is supposed to be
^-admissible, it gives rise thus to the following Newton polygons:

Newton = {(0,0), (1,0), (2, ti), (3, a, + 6, + 3), (4,2a, + 26, + 6)}
P^ion = {(0.0). (1. ^o), (2,6. + 1), (3, a, + 6, + to + 3), (4,2a, + 2b, + 6)}
Newton == {(0,0), (1,0), (2,6, + 1), (3, a, + 6, + 3), (4,2a, + 26, + 6)}

(Cf. figure).

Hodge Polygon

The case Qv == P

Hodge Polygon

The case Qv = P"

Hodge Polygon

The case Qv = B

In the case, Qv = B we see immediately that I5cris(^7r,v) is ordinary in the sense of [26].
In the case Q^ = P (resp. Qv = P*), Fil^^'^.Dcris^^) (resp. Fil^-^.Dcris^Tr^)) is
a weakly admissible submodule of -Dcris(^7r,i;) and therefore admissible by [10] prop. 5.4.2.
For F^o as above, we denote by Vcris ^ M \-^ {Bcns^F^ M)y=id the quasi-inverse functor
of J^cris. It is defined on the category of admissible filtered (^-module. Then,
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• if Qv = P, Q-K^v leaves stable the 1-dimensional subspace

WFil^6^3 ̂ cris(^,.)) C V(^,.),

hence takes values in P*(£),

• if Qv = P*, it leaves stable the 2-dimensional subspace

^(Fil0-4-2 ̂ cris(^)) C V(^,.))

hence falls in P(£),
• if Qv = B, it leaves stable the three-step filtration defined by the above submodules,

hence it falls in B(L).
D

Let us apply these considerations to a family of nearly Q-ordinary cuspidal Siegel
modular forms.

THEOREM 7.1. - Let \ : h^'5 —^ J be a family of nearly Q-ordinary cuspidal Siegel
eigensy stems such that Conjecture 2 is true for \ mod P for a densely populated set of
arithmetic primes P. Then there exist a finite extension 7 of the fractions field ̂ j of 3 and
a unique semi-simple Galois representation:

^ : Gal(F/F) ̂  GL4(^)

such that
1. It is unramified outside Sp U S such that for all prime v ^ S U Sp the characteristic

polynomial of g\(Frobv) is given by \(Qv(X)),
2. If moreover we assume Conjecture 3 for \ mod P for a densely populated set of

separable algebraic primes P, the local representations Q\^ = Q\\GQ\{F^/F^ takes
values in the ^F-point of a parabolic subgroup of GL^ whose the trace on GSp4 is
conjugate to Q^ where Q^ is the Langlands'dual of Qv (i.e. Q^ = P* (resp. P, B)
if Q. = P (resp. P\ B).

Proof: By Corollary 6.6, the existence of the representation Q\ results from the
existence of the 4-dimensional representations Q\ mod P and the theory of (here, degree 4)
pseudo-representations developed by R. Taylor (cf. [33]).

Let us prove the second statement, for instance for Qy = P*, as the proof is analogous
in the other cases. We first establish a lemma. Let E be a finite extension of Qp.

For any J = OE[[T^ ... ,T,]]/a , we put J g = Cp(T^ ... ,T^/a

where Cp(Ti,..., Tr)s is the ring of power series converging on the closed poly disk D^)
of C^ of radius 6 e]0,1[ and a is the closure of the ideal of Cp{Ti, . . . ,Ty.)<$ generated
by a. A map from Spec(J)(Cp) D D^(^) to Cp will be called analytic, if it is defined
by an element of J<$.

LEMMA 7.2. - Let E be a finite extension of Qp and gj be a continuous representation
ofGol^E/E) on a 3-lattice C(Qj) of a J^j-vector space V(gj). Assume there exists a
densely populated set X C Spec(J)(L) where L/Qp is finite such that for all P G X,
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gj mod P exists, is Hodge-Tate and stabilises a subspace ^i(P) C C{gj) 0 J/P such
that the Hodge-Tate weights of Vi(P) vary analytically and are different from those of
V^(P) = (C(gj) 0 J/P)/yi(P). Then there exists Vi C £(^j) stable by G^(E/E) and
such that Yi mod P ^ V^(P) for all P G X.

Proof: The proof relies on results of Sen [30], [31]. Let 7Z = Endj{C{gj) (g) J<§).
According to [31], there exists y?j G % such that for all P G A' (^j mod P is the
operator defined in [30] associated to the representation QJ and therefore is semisimple
with integral eigenvalues corresponding to the Hodge-Tate weights. By our hypothesis,
there exist elements k i , . . . , ki e J g such that {ki mod P,. . . , k^ mod P} are the Hodge-
Tate weights of Vi(P). If we denote by <t>i = n!=i(^J ~ ^)' smce ^e eigenvalues
k,(P) do not occur in ^(P), we have Vi(P) 0 Cp = Ker $1 mod P. We consider
V^Js) = Ker $1 C C(gj) 0 J^ and Vi = ^(J^) H £(^j). Therefore for all P <E X
such that (Vi)p and C(gj)p is free over Jp (this is a Zariski-open condition), we have
yi(P) = (Vi) (g)Jp/P. Therefore V ^ J p / P is stable by Gal(E/E) for densely populated
P and thus Vi is stable by Gal(£/£) too.

D
Let us come back to the proof of the theorem.
Let g\^ be the restriction of Q\ to Gp^- So, we are going to see that the hypotheses

of Lemma 7.2 are satisfied by the representation V = Ind^ g\^v. Let us denote by I
the integral closure of J in f'. Let £ be a stable I-lattice of V and X C Spec(I)(Qp)
be the set of sufficiently regular and separable algebraic primes (or arithmetic of level at
most p) such that Cp is free over Ip. For such P's, the Hecke eigensystem A modulo P
corresponds to a cuspidal representation of level prime to p by Proposition 3.2 and we can
therefore apply Proposition 7.1 (in fact Lemma 7.1 and Corollary B.I of the appendix):
For all P G X, let (a^b^;c)^eJ^ be the algebraic and separable character associated to
A modulo P. Then for ip = Inf^i^, ̂  — ba + c^)/2 + 2

î(P) = Kris(Fir Pcris,.(Ind^ £p 0 Ip/P))

is a G?Qp -stable subspace of Cp 0 Ip/P (cf. appendix B); its Hodge-Tate weights (given
by {(a/+ ̂  + c^)/2 + 3, (a<, - ̂  + c^)/2 + 2}^^) are different from those of ^(P).
One sees easily, using the series log^(l+T)/^o^(l+p) G J^, that the Hodge-Tate weights
of our V^i(P) are expressed analytically in terms of P. Thus, Lemma 7.2 applies and we
note YI C V the corresponding stable subspace. We can now conclude as in the end of the
proof of Proposition B.I by considering the Res^V^ C Res^Y.

D

Comment: This Theorem admits an integral version if one assumes that the reduction Q\
of the representation Q\ is absolutely irreducible: in this situation, one can use a theorem
ofNyssen [25] to construct a representation Q\ into GSp4(J) and even to GSp4(T) where
T is the local component of h3^5 attached to Q\. One can then prove the analogue of
Theorem 7.1. This gives rise to a A-algebra homomorphism from the universal ring of
nearly ordinary deformations of Q\ to T. The possibility that it is an isomorphism for
Q = B was raised in [36] and more precisely in [37], and was at the origin of the present
work as an analogue of [48] in the symplectic case. We hope to come back subsequently
to this topic.
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Appendix A. Cohomology of the Siegel-Hilbert variety

The purpose of this appendix is to apply some results of J.Franke in order to prove some
facts on the cohomology of the Sd-dimensional Siegel-Hilbert variety. We are following
very closely the formulation of [45].

Let us introduce the Notation we need. Let fl; = Lieq(Res^ Sp4/p). We denote
by Ao be the maximal Q-split sub-torus of the diagonal torus of Res^Sp4/p. Let
do = Lieq(Ao) 0Q R. Then a$ = R.Ai e R.A2 where Ai(diag(:n,a;2, -rci, -x^)) = x^
and A2(diag(rri,a;2, -^i, -^2)) == x^. We set ai = Ai - A2 and 02 = 2A2.

For PS = P (resp. P*,B) be the standard Siegel parabolic (resp. Klingen parabolic,
Borel) subgroup of G. Let As be the maximal Q-split sub-torus of the center of Ms the
standard Levi of Ps. We set ds = Lieq As 0Q R C do. Then

a? = ker(ai) dp* = ker(o;2) and OB = do

and we have

a? = R.(Ai + A2) a?. = R.Ai

Let Joo the set of embedding of F in C, then

S1 = Lieq(Res^ Sp4 /p) 0Q C = eaeJoo^COa

Let 1) = ^o-eJoobo- C s1 where 1)̂  is the diagonal Cartan algebra of sy^C)a- we denote
by (Ai,^A2,a) its canonical basis (with obvious notation). We denote also for any E,
bs,(T = Lie^(As 0 -F) (^p,a C.

The Weyl group W is obviously isomorphic to the product ]~[a ̂  where each W^ is
the Weyl group associated to the cr-component and is generated by s^, and s^ . For
any parabolic Ps, we set W^ the subset of W of elements w such that w-1 (a) ^0 for
all positive roots a of the Levi component of Ps.

For any weight A e b*, we denote by \^ its canonical projection on c^ (induced by the
injection Os^pC C I) ofReA)). Note that the projection ReA)|^ and As are different: the
first one is product over a e Joo of the restrictions of ReA)^ to l)s a while the second is a
restriction of ReA) to ds 0 C = Oo ̂  C n ()s. Then if A = ]^^J ̂ ,.Ai,, + ̂ .A2,. then

• A^ = EaeJoo Re^)Al + Re^)A2

• A? = KEaeJoo Rex- + ^)).(AI + A2)

• >P- = (E.e^R^))^!
Let us denote by C the Weyl chamber in c^ defined by

C = {(x, y) = x.X^ + y.\^ with x > y > 0}.

For A, A' e aS, we write A >- V if A - A7 G C. This defines a partial order; we are
interested in maximal elements of finite subsets of a*. For any A e a^ we denote by
[A] the projection of A on the convex C and for any finite subset 6 C C we define by
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induction on p > -1, Qp the set of maximal elements of e - Uf^Q' and 6-1 = 0. For
any dominant weight A G f)* and p € N, we set:

^(A.p) ={we ̂ s; s. t. - w(A + p)s e [W(A + p)^}.

w^w=\^w^{x^p)
p

Note that IVs (A) does not contain id.
Then the result of Franke that we use in our situation is the following:

THEOREM A.I (Franke). - Let K be an open compact subgroup ofGSp^(^); then there
exist a spectral sequence whose E^-term is given by:

HP+(^(GSp4(F)\GSp4(ftF)/^.^R,^) Cse{B,p,p*} C^w^)
lW<p-^q

^-^\M^{Q)\M^)/(K.K^ ^ Ms(ft)), E^^{-w(\ + ̂ )

and abutting on

HP+g(GSp4(F)\ GSp^F)/K.K^ E^)

where H^) stands for L2 -cohomology.
LEMMA A.I. - Let A()* be a regular weight. Then for any S and any w G W^{\),

w{\ + p) - p viewed as a weight of Ms is regular.

Proof: It is an easy calculation. Let us verify it of Ps = P*. In that case,
(W^)a = {id, 5i, 5i^2, ^25i52}. We need to project for each a e Joo Wa(\a + Pa) - Pa on
R.02 along R.ai and check that the projection is on the upper half-line. For \cr = (x,y)
(x > y > 0) and for w^ € (W^)a of length 0,1,2,3, we find respectively y,x-^-l,x-\-l,y
which are strictly positive if A is regular.

D

COROLLARY A.I. - If X is regular, then we have

Hg(GSp4(F)\GSp4(AF?^R^) = 0

for q < 3d.

Proof: The summands of Franke's E^ involve all Levi subgroups of Sp4: first for
Sp4 itself, we know that the L2-cohomology of Sp4 with regular weight coefficients is
non zero only in degree 3d (this results from Vogan-Zuckerman classification of unitary
representations occuring in the cohomology). Then, let us consider a summand of Franke's
E^ corresponding to a type S € {P,P*,B}. For the Levi subgroups of the maximal
parabolics, the corresponding factors vanish unless p + q - l{w) = d\ this results from
the calculation of the relative Lie algebra cohomology of SL2 using the classification
of cohomological unitary representations. For the Borel, the corresponding factors vanish
unless p + q - l{w) = 0. Let us examine which w does occur in the sum. For any
w € W^ (A, p) such that

^y-^\M^Q)\M^W/{K.KH H Ms(A)), E^_^-w{\ + p)^)) ^ 0
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the central character of E^^, y J—w(A + p)s) needs to be trivial on the rational points
of the center of Ms. Therefore, since F is totally real, the a-components of w(A + p)\^
do not depend on a G Too; let fi be the common value of these components. We have
w(A + p)s = ri.Re/^). Since w e TV^A), we have Re/^) < 0, so for any a G loo,
-w(A + p)(^ e c^.
• For E = P*, resp. P, we find that Wa € {s]_s^, -<5i}, resp. Wo- G {^i,-,^}, so

length(w^) > 2 and l{w) > 2d. On the other hand, we have p + q = Z(w) + d;
therefore we conclude p -}- q > 3d.

• for S = B, one has —w(A + p)o- G C^, hence w = —id, so length(wo-) = 4 and
p -\- q = l(w} = 4d.

This concludes the proof.
D

Appendix B. A remark on ordinary representations

Let K be a finite extension of Qp of degree d = [K :. Qp]. Let p be a representation
of Gol(K/K) on a ^-vector space V for E C Qp a finite extension of Qp. Let Bens
and BHT be the usual Fontaine's rings. We consider Q naturally embedded in B H T ' We
denote by IK the set of embeddings of K in Qp. Then for all a G I K ^ we set

DHT^E^) = (v^E BuT)01"

This is a J^-vector space. We first assume that V is Hodge-Tate. That means that for
all a € IK

dimK DnT,E,a(V) = dim^ V = n

and we denote by (a^. , . . . , a^) the corresponding Hodge-Tate weights with a^, < . . . <
a^. We denote by with fa^., . . . , /^ the corresponding Hodge numbers (i.e h\ is the
dimension over Qp of the a^-component of DHT,E,(T(V))-

Next, we assume that V is crystalline. Following Fontaine, we set

D^a{V)=(V^B^)GK

where Bens is endowed with the action of GK via a. Then Dcns.a is a Ko vector space
for Ko the maximal unramified extension of Qp contained in K. Saying that (V^p) is
crystalline means that for all a € IK we have

dimĵ  -Dcris,o-(y) = dimE^V)

The absolute Frobenius (/? acts on the Dcns,a and it is not difficult to see that its slopes
are independent of a £ I K - Let us denote them by ai < ... < ai and let us call di the
multiplicity (which is independent of a) of the slope o^ in Dcns,a(V)-

Remark: If V is crystalline, it is a f onion Hodge-Tate. However note that, it does not
make sense in general to consider Dcns^E.a because we cannot embed E in Bcris (e.g. if
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E is ramified). Moreover even if E is unramified this E component would not be stable
by the action of the absolute Frobenius (p.

In this appendix we want to overcome a difficulty mentioned in the introduction, namely
that when K ^ Qp, it may well occur that the Hodge polygons (indexed by a G I p ) never
meet the Newton polygon. Since our main tool for showing the ordinarily is precisely
that when these polygons meet at an integral point, it yields a filtration of filtered (p-
modules, this creates a problem. The idea, to overcome this, is to work with the induced
representation, provided one assumes a "separability" condition which permits to relate the
Hodge polygon of V and that of its induction to Qp.

We make the following assumptions:

(Indep I) The number k^ of Hodge-Tate weights is independent of the embedding a;
we note it k.

(Indep II) The Hodge numbers are independent of the embedding a we denote them by
fai,..., fafc.

These conditions are naturally satisfied if V comes from the p-adic etale realisation of a
motive. We will consider in the proposition below the following hypothesis:

(Sep t) For all a, a ' G I K , we have a\ < a^J"1.

Then we prove the following proposition:

PROPOSITION B.I. - We assume that for some t, the condition (Sep t ) is satisfied and that

t t t t
^ hi ̂  a\ = [K : Qp]. ̂  aidi and ^hi=^di
i=l (T^IK ^=1 »=1 ^=1

Then there exists in V a E-sub space V of dimension ̂ ^ hi over Qp which is stable
under the action ofGK- Moreover the Hodge-Tate -weights ofV associated to a € IK ^^
a^"1,..., a^ -with Hodge numbers ^t+i,..., hjc.

Proof: Let us consider W = Ind^ V the induced representation of GQ^ =
Gal(Qp/Qp). Then the Hodge-Tate weights of W are { a ^ , . . . , a^; a G I K } with Hodge
numbers equal to hi for each a^, a e IK is. By the assumption (Sep t), we see that the point

{[K:Q,}.^h^hi^a^
i==l i=l (T^IK

is a vertex of the Hodge polygon of W.
The slopes of the absolute Frobenius acting on Peris (W) = (W 0Qp Bcris)6'^ are

a i , . . . , ai with multiplicity [K : Qp\.di for the slope ai. Therefore, the point

([K:Qp}.^d^[K:Q,}.^^di^ I/1" • ^PJ- / ^ ^-z^'1)
1=1 i=l

is a vertex of the Newton polygon of W.
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Under the assumptions of the Proposition, the two vertices described above are the same
and the Newton and Hodge polygons meet at that vertex. Therefore for i = Jn/cr^a^"1,
the subspace

W = ycris(Fir PcrisW) = (Bens 0 FiF PcrisW)^

is of dimension [K : Qp](^>^ hi) and is stable under C?Qp. Its restriction to GK splits into
[K : Qp] subspaces permuted by the action of Gal(Q^/Qp) whose component V in V
(for a choosen embedding of V in Res^;^ W) satisfies the conclusion of the proposition.
The details are left to the reader.

D
The following corollary is straightforward:

COROLLARY B.I. - We assume that all the Hodge numbers and all multiplicities of slopes
are equal to h. Let (^)i<s<r be some integers with 0 < t\ < ... < tr <: k such that for
all s (E {1 , . . . ,r}, (Sep t s ) is satisfied and

ts+l t.+l

E ai = E [K~Q} E <•
i=t^l i=t^l [1Y • ̂ J aelK

Then there exists a filtration of E-vector spaces Vr C ... C VQ = V stable under the
action of GK such that for all i, dimQp Vi =• h.ti and the Hodge-Tate -weights ofVi/V^
associated to a G IK ^r^ ^+1, • • • -, d^1 with same Hodge numbers.

Remark: Note that this Corollary allows us to conclude that the representation p is
ordinary for the Parabolic subgroup P of GLn whose Levi is GLn^ x GLy^ x ... x GLn,+i
with ni = h(ti — ti-\]/[E : Qp] (i.e the image of the representation falls in a conjugate
of P), even if the Newton polygon of p never meets the Hodge polygon associated to
any embedding a G IK (that is, Newton is strictly above Hodge). This does happen
if the Hodge polygons for various a do not coincide (that is, when the assumption of
admissibility of Definition 7.2, with Fy == K does not hold).
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