
ANNALES SCIENTIFIQUES DE L’É.N.S.

J. SJÖSTRAND

W.-M. WANG
Exponential decay of averaged Green functions for random
Schrödinger operators. A direct approach

Annales scientifiques de l’É.N.S. 4e série, tome 32, no 3 (1999), p. 415-431
<http://www.numdam.org/item?id=ASENS_1999_4_32_3_415_0>

© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1999, tous droits réservés.

L’accès aux archives de la revue « Annales scientifiques de l’É.N.S. » (http://www.
elsevier.com/locate/ansens) implique l’accord avec les conditions générales d’utilisation
(http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systé-
matique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi-
chier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ASENS_1999_4_32_3_415_0
http://www.elsevier.com/locate/ansens
http://www.elsevier.com/locate/ansens
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Ann. scient. EC. Norm. Sup.,
4® serie, t. 32, 1999, p. 415 a 431.

EXPONENTIAL DECAY OF AVERAGED GREEN
FUNCTIONS FOR RANDOM SCHRODINGER

OPERATORS. A DIRECT APPROACH

BY J. SJOSTRAND AND W.-M. WANG

ABSTRACT. - Under suitable analyticity conditions on the probability distribution, we study the expectation of
the Green function. We give precise results about domains of holomorphic extensions in energy and exponential
decay. The key ingredient (as in [SW]) is the construction of a probability measure in the complex domain after
contour deformation. This permits us to avoid the use of perturbation series. Compared to the method in [SW1,
the variant here seems limited to the random Schrodinger equation, in which case however it permits to treat more
general probability distributions. © Elsevier, Paris

RESUME. - Sous des hypotheses d'analyticite convenables sur la densite de probabilite, nous etudions 1'esperance
de la fonction de Green. Nous donnons des resultats precis sur des domaines d'extension holomorphe en energie
et sur la decroissance exponentielle. L'ingredient principal (comme dans [SW]) est la construction d'une mesure
de probabilite dans Ie domaine complexe apres deformation de contour. Ceci nous permet d'eviter d'utiliser des
series de perturbation. Comparee a la methode de [SW], celle proposee ici semble limitee au cas de Inequation
de Schrodinger aleatoire, ou elle permet cependant de traiter des distributions de probabilite plus generates.
© Elsevier, Paris

0. Introduction

The purpose of this work is to present a variant of the method in [SW], which gives
a more direct approach and which permits to treat more general probability distributions;
not only perturbations of the Cauchy distributions but also for instance Gaussian ones.
The main idea of the proof is the same as in [SW], namely to replace a certain complex
density by a probability measure, but here we exploit in a more essential way some special
structure in the problem and avoid the use of Fourier transform. On the other hand, we
feel that the method of [SW] is of a more general nature and is likely to have applications
to analyticity problems in statistical mechanics. Though the results below are more general
(in the random Schrodinger case) they permit to recover only a slightly weakened version
of the main result in [SW].

Let A be the discrete Schrodinger operator on ^(Z^), defined by

A^)= ^ u(^, |. |i = | . | ^ i . (0.1)
|/A-^|l=l

When A C Z^ is a finite subset, we put
AA = rAArl, • (0.2)
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416 J. SJOSTRAND AND W.-M. WANG

where r^ : ^(Z^) —^ -^(A) is the restriction operator, so that the adjoint r^ = ^(A) —»
.^(Z^) is the operator of extension by 0: {r\u)(y) = u(v), when v G A, = 0, when
v G Z^ \ A.

We are interested in the random Schrodinger operator ^AA + V on ^(A), where
Vu(j) = Vju(j), so that V can be identified with the diagonal A x A matrix, diag(z^).
Here vj are independent random variables with the distribution g(v)dv, where g(v)dv
is a probability measure on R. More precisely, we shall study the expectation value of
the Green function

G^E) = (^AA + diag (^-) - E)-\ (0.3)

given by

{G^E}{^}}, = /^AA + diag(^) - E)-\^v}\[g{v^v^ (0.4)
17 JCA

first for Im£' > 0, and then wherever this expression can be extended holomorphically
w.r.t. E.

Let K C C be compact, symmetric around R and assume:
(HI) g extends to a holomorphic function on C\K (that we also denote by g), which satisfies

\g{z)\^C{l^\z\)-\ \z\ >C,

for some C > 0 with K C D{0, C).
Here -D(0, C) denotes the open disc of center 0 and radius C.

Let K- = {z € K\ Imz < 0}, and let ch(K-) denote the convex hull of K-. Our
second assumption will need some further discussion:
(H2) For every simple closed smooth negatively oriented curve 7 m C _ = { ^ G C ; Imz <
0} (with non-vanishing derivative) which is real in a neighborhood of all real points of
ch (^-) and with {z € ch (K-); 1m z < 0} C int (7), there exists a probability measure
^[dz) supported in 7, such that

I f{z)g(z)dz = / /(^(ck),
J^ J-y

for all functions f which are holomorphic in int (7) and smooth in int (7).
Here int (7) denotes the bounded open set which has 7 as its (smooth) boundary.

As an example, consider

».M4,̂ . (0.5)

It is clear that go satisfies (HI) with K = {—i^i}. Let 7 be a simple closed
negatively oriented loop in the closed lower half-plane with —i E int (7). Let
/ 6 Hoi (int (7)) H C^in^)). Here we let Hol(O) denote the space of holomorphic
functions on 0, if 0 C C is open. By the method of residues

[ f(z)go(z)dz=f(-i). (0.6)
J7
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EXPONENTIAL DECAY OF AVERAGED GREEN FUNCTIONS 417

But / is also harmonic, so

f(-i)= [ f(z)P^dz)^
J^

(0.7)

where P^{—i^dz) =: /^y(cb) is the harmonic measure (i.e. the Poisson kernel). This is a
probability measure on 7, given by a strictly positive density, so (H2) is fulfilled.

The preceding example may be generalized. Take for instance

( \ cl ^ , c2 I32 rn ̂
go{v) = T (.-a,)2+^ + T (.-a^+/3j- ^

where 01,02 € R, A,/32 > 0, C^C^ > 0, C7i + C2 = 1. Then (Hl,2) hold with
K = {ai + %/?i, o;i — %/?i, as + %/?2? ̂  — ^2}- ^7 becomes a weighted mean value of
two harmonic measures.

The assumption (H2) is rather implicit and in order to have more applications, we shall
prove in section 1 the following stability result:

PROPOSITION 0.1. - Let go(v)dv be a probability measure on R which satisfies (HI), (H2),
-with K = KQ. With 7 as in (H2), we denote by /^o,7 tne corresponding probability measure
given in (H2). Assume that for every 7 as in (H2), there is a constant C^ > 0 such that
A^o,7 ^ T~dt on R n 7 D V^, where Ky is some neighborhood ofch (K-.).

Let gj(v)dv, j = 1,2,.. be a sequence of probability measures on R such that gj — go is
of class C2 and tends to 0 in C2 when j —> oo. Further, we assume that each gj satisfies
( H I ) with K = Kj —> KQ and that gj —^ go on every compact subset of C \ KQ.

Let K C C be compact, symmetric around R and containing KQ in its interior, and such
that K- = {z G z G K\ 1m z < 0} is convex. Then for j sufficiently large, gj satisfies
(HI), (H2) with K = K.

For A > 2d, let
d

W(\) = [r] G R^; 2^ cosh 77, < A}. (0.9)
i

This is a strictly convex bounded open neighborhood of 0 with smooth boundary, which
is symmetric around 0. Let

p\(x) = sup x - 77, x e R^
r]CWW

(0.10)

be the support function of W{\). p\ is smooth outside x = 0, convex, even, positively
homogeneous of degree 1, and p\(x) > 0 for x / 0. Let jD(0,7') denote the open disc
of center 0 and radius r and let dist(^.L) = inf^i, \z — £|, z G C, L C C. A main
result of this work is:

THEOREM 0.2. - Assume (HI), (H2). The expectation value (0.4) extends from the
open upper half plane to a holomorphic function on C \ (ch(J^_) + D(0^2td)), that we
continue to denote by {G^{E){^y}}. If E G C \ (ch(J?_) + D(0,2td)), then for every
A e]2d,|rdist(£,ch(A'_))[, we have

||e-<)(^(E))<,--<-)||^,,., S ̂ ,.W.))-1>' t0-11'

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



418 J. SJOSTRAND AND W.-M. WANG

for every r] G W(\), and in particular,

K^^"' ̂ 1 s di^,ch^))-,A e-"""""- f0-12'

Moreover, the limit of {G^E)^,^)} exists when A / Z^, an^ we have (0.11), (0.12)
also for the limit.

In section 3, we show how to relax the condition (HI) and eliminate (H2), provided
that |£'| is large enough.

Combining Theorem 0.2 and Proposition 0.1, we get:

COROLLARY 0.3. - Consider the situation in Proposition 0.1 with KQ^ = K_. For every
6 > 0, there is a j(e) € N such that the following holds for j > j{e): {G\(E)}g^ extends
holomorphically to C \ ch (-KO,- + -D(0,2td + e)) and for every E in the latter set and
every X e]2d,^(dist (^ch(ATo,-)) - e)[:

11<.'<->«^)>.,C-""|L<,,,,,, S ,,,^(K\,))-.-tX1 t0-13)

for all 77 G W(\), and in particular,

'(^('••- l̂ < dî .cMJiL))-.- '̂""'""- t"-14)

f0.74) cYm Z?^ generalized as in Theorem 0.2' below.
In [SW] we considered perturbations of go given by (0.5). Using the residue method

(following Economou [E]), we get:

(G^E)(^ ^)),, = (IAA - {E + i))-1^ v}. (0.15)

Let K C C be compact, symmetric around R, with -i ^ chK- and let gj have the
properties in Proposition 0.1 with KQ there equal to K U {-%,%}. We then recover the
main result of [SW] in a slightly weakened form, by letting E G R have the property that
dist(E,ch(^_ U {-%})) = |£+z| > |£-F|, for all F G ch(^_).

If ^o is given by (0.8), then

<C;A(i?)(^)^ = (GA(£)(^^))C,6^_^+C.^_^

becomes the expectation value for a complex Bernoulli distribution, and we may consider
perturbations as in Corollary 0.3.

The first step in the proof of Theorem 0.2 is to notice that if 7 is a curve as in (H2):

(GA(£)} = ( (^AA + diag (^.) - E)-1 TT g(v,)dv^ (0.16)
^A .eA

for 1m E > 0. Then since (^AA + diag(^) - E)~1 depends holomorphically on
v = {^LeA in ^EA, where HE is an E-dependent neighborhood of the closed lower half
plane, we can apply Fubini's theorem and (H2), to get:

{G^E)} = ( (tA + diag(^) - E}-1 TT ̂ (d^-). (0.17)
J7A JCA
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EXPONENTIAL DECAY OF AVERAGED GREEN FUNCTIONS 419

The remainder of the proof is given in section 2, and consists in showing that
(^AA + diag(z^) - £')~1 exists when vj e 7, Vj C A, when 7 is as above and convex, and
E G C \ (int (7) + .0(0,2td)), and satisfies (0.11), (0.12), with K_ replaced by mt^Q).

Remark. - Using the fact that g is holomorphic, to show that {G^(E)) is holomorphic,
has already been done before by Constantinescu, Frohlich, Spencer [CFS]. Their proof
uses the Neumann series of (^A + V — E)~1 for small t and contour deformation in vj to
show that the expectation value of the resulting series converges. However they did not try
to show that the resulting measure on the new contour can be made positive. The method
in [CFS] is effective when g decays fast enough at infinity. The measures considered in
the present paper do not necessarily have this property.

It is clear that the proof gives a more general result. For N 6 {1,2,..} and Ej, G C
with Im Ek > 0, consider

/ N \ N(n^A^oo^))) = / n^^A+^s^)-^)"1^^))!!^^)^)'
\k=l I g u k=l jCA

(0.4')
Then we have the following generalization of Theorem 0.2:

THEOREM 0.2'. -Assume (HI), (H2). The expectation value f0.4') extends to a holomorphic
function on (C \ (ch(JG-) + 75(0,2^)))^, that we denote by the LHS of (0 .4 ' ) . For
(£'1,.., jB^v) in this product domain, let \k e]2d, ^dist (£'fc, chA^_)[. Then

Nn(c;A(£,)(^))
U=l

^ e-P>^-^
^ H (dist(^,ch(^_))-^)' ((U2/)

In the above theorem we could even replace the common point (^, v) by the fc-dependent
point {jik^k) (both to the right and to the left in (0.12')). The interest of Theorem 0.2\
might be that we are able to estimate some kind of correlations between the values of the
Green function for different energies and even at different points. Notice however that each
value Ek is reached by holomorphic extension from the same half-plane. Consequently, we
have no new result on the expectation value of powers of the modulus of the Green function.

The plan of the paper is the following: In section 1 we discuss the assumption (H2)
and prove Proposition 0.1. In section 2, we complete the proof of Theorem 0.2. In section
3, we generalize our results further, by showing how to avoid making the assumption
(H2), when \E\ is large.

1. More about the assumption (H2)

Notice that (H2) is equivalent to the apparently weaker assumption that for every
neighborhood V of ch(J^_) there exists a closed contour 7 = 7y contained in V and a
probability measure ̂  with support in 7, with the properties described in (H2). In fact, if 7
is a simple smooth closed loop (with non-vanishing derivative), let P^ : (7(7) -^ C(mi (7))
be the Poisson operator determined by P^u\ = u, P^u harmonic in int (7). Since P^
is positivity preserving, the adjoint P* maps a positive measure IJL supported in int (7)

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



420 J. SJOSTRAND AND W.-M. WANG

to a positive measure P^, supported on 7, and if / is holomorphic in int (7), or more
generally harmonic, and in (7(int(7)), then

f fMdz) = f P,{f^^dz) = J f^{z)(P^)(dz). (1.1)

Let 7, 7 be two curves with the geometric properties described in (H2) and such that 7 is
contained in int 7 and carries a probability measure ̂  with the properties in (H2). Then
P*(/^) is carried by 7 and has the properties of (H2), and we have proven the claim.

We next prove Proposition^).!. Let go, K be as in that proposition and choose 7 as in
(H2), with K there equal to K. The preceding discussion shows that it suffices (for every
such 7) to show that for j large enough depending on 7:

/ f{z)g,(z)dz = ( f{z)^(dz)^ f C Hoi (int (7)) n C^mtCT)),

for some probability measure ^j on 7.
We already know that

f f{z)g^z)dz= f f(z)^dz)^
J-i J^

where /^o is a probability measure and from the preceding discussion and the positivity
assumption on /^o m Rn neigh {K), it follows that /^o > ^\dz\ everywhere on 7. It
is then clear that Proposition 0.1 will follow from:

PROPOSITION 1.1. - Let f2 C C be open bounded, simply connected with positively oriented
C°° boundary 9^1 = 7. Let g G C2^) be a complex-valued function such that

l g ( z ) d z e R . (1.2)
J^

Then there exists a real-valued function k € C(^), such that

t f(z)g(z)dz= ( f(z)k{z)\dz\^ (1.3)
^7 J^

for all f (E Hol(Q) U C00^).

Proof. - The Riemann mapping theorem (see [B]) gives us a diffeomorphism
K : 0 —^ Z)(0,1), holomorphic in the interior. By composing with /^-1, we can therefore
reduce ourselves to the case when 0 = J9(0,l).

Expand in a Fourier series with z = e^:

<+00 \ /+00

.w0'+i)* \^+ - / \^^.^jg(z)dz = ^OV0'̂  \idt = [j^g(j)e^ d^ (1.4)
V-oo / \-oo /

where g(j) = zg{j - 1) and where the C2 assumption assures normal convergence of the
series. The assumption (1.2) tells us that

^(0)= ig{-l) e R. (1.5)

4^^ SERIE - TOME 32 - 1999 - N° 3



EXPONENTIAL DECAY OF AVERAGED GREEN FUNCTIONS 421

For / (E Hol(F(0,1) D C°°(P(0,1)), we have

f(eit)=f^fWeiet

^==0

so

/ f{z)g(z)dz = 27T ̂  mg(-^' (1.6)
Jc?D(0,l) ^Q

This expression does not change if we modify 'g(j) for j > 1 and we take

-1 00

k{t)dt = (5(0) + Y-gW + YW^e^dt, (1.7)
-00 1

which is real thanks to (1.5). D
We also give a proof which avoids the use of the mapping theorem. For simplicity we

assume that all objects are smooth. Let 7 be the positively oriented boundary of an open
bounded simply connected set Q C C with smooth boundary. Let / G C°°(7).

PROPOSITION 1.2. - We have ^ (f>{z} f {z)dz = 0 for all (f) G Hol(^) H C00^) iff f
extends to an element in Hol(n) D C°°(n).

Proof. -If f extends to Hoi (0) D C00^), then (f)f extends to an element in the same
space and f (f)fdz = 0.

Before proving the converse statement, let / G C°°(7) and consider the two Cauchy
integrals,

c7inJ^=2^/^dc^c"?

C7ext^)=2^/^dc^ec\a

Then C-^f C Hoi (^) n C00^), C^f G Hoi (C \ H) H C°°(C \ »), and

f = ̂ int/l ~ CextJ| •'7 —^i^

If we now assume that ̂  (j){z)f{z)dz = 0 for all of) G Hoi (Q)nC°°(n), then C^f = 0,
so / = Cint/| and / has the extension C.ntf in Hoi (^) n Coo(^). D

PROPOSITION 1.3. - For every g G C°°(7) with f g(z)dz G R, there is a unique
f € Hol(O) n C°°(n) such that lm{fdz^) = lm{gdz^).

Proof. - We first discuss uniqueness. It suffices to show that if / G Hol(f^) D C°°(^),
Im(/d^| ) = 0, then / = 0. Let F G Hol(Q) H C00^) be a primitive of f: ̂  = /,
or equivalently: d.F = /d2;. Hence 1m F = Im(fdz), so ImF is a harmonic function
on f^ with

d(ImF| ) = I m / d ^ | = 0 .
77 t/ - 17

In other words, Im.F[ is constant, so the uniqueness in the standard Dirichlet problem
implies that 1m F = Const. on 0. Then F is constant, and f = ̂  vanishes, as claimed.

ANNALES SCIENTIFIQUES DE L'fiCOLE NORMALE SUPERIEURE



422 J. SJOSTRAND AND W.-M. WANG

The proof of existence uses the same idea. Since f lm{gdz) = 0, there exists
G e C°°(7; R) with dG = Im (gdz^). Indeed the vanishing of the integral assures us that
the primitive is single valued. Let Q G C°°(n) be the solution of the Dirichlet problem:

A^ = 0 on n, Q\ = G.

Since Q is harmonic and 0 simply connected, it is equal to the imaginary part of a
holomorphic function F which is easily seen to belong to Hoi (Q) D C°°(n). Let / = ^-.
Then,

Imfdz^ = IrndF,̂  = d(lmF^) = dG = lm{gdz^). n

Combining this result and the easy part of Proposition 1.2, we get a new proof of
Proposition 1.1. Indeed, if g is given as in Proposition 1.1, then let / be as in Proposition
1.3. It follows from the proof that / is of class C1. According to Proposition 1.2, the
real measure (gdz - fdz)\ has the required properties and can be written as k\dz\ with
k of class C1.

We end this section by linking the above discussion to the Neumann problem. Let
g € C°°(7) with

[ g{z)dz=l. (1.8)

As above, we look for / e Hol(O) H C00^) with

gdz^=fdz^+k\dz\^ (1.9)
with the last term real. The unique solution of this problem is given by the function /
in Proposition 1.3, which is of the form f{z) = |̂ , where F is holomorphic in 0 and
solves the Dirichlet problem

AImF = 0 in ̂  ImF,^) = f Im{g{z)dz), z C 7, (1.10)
A.o^

where 7^^ denotes the positively oriented segment of 7 which starts at ZQ and ends at z.
We observe that the conjugated function Re F satisfies the following on 7,

Q r\

-^——ReF = -—ImF(7(^)), ̂  = interior unit normal,
O^int Ot

provided that we parametrize 7 by arc length with positive orientation, so that \^'(t}\ = 1.
But then J^mF{^{t)) = lm{g^{t))Y{t)) according to the boundary condition in (1.10),
so Re F is the solution (unique up to a constant) of the Neumann problem:

r\

ARe F = 0 in ^, .——Re F = -Im (^7') on 7. (1.11)
°̂ mt

Then we get Re{fdz^ ) = dtReF{^(t)), so

k(t) = Re (^(7W)YW) + ̂ [(^^(Im^Y)^))]. (1.12)

Here KN denotes the Poisson-Neumann operator which solves up to a constant the
Neumann problem:

^KNV = 0 on 0, . — — K N V = v on 7, when / v(^{t))dt = 0,
înt J

and r^ is the restriction operator: C°°(n) -> C°°(7).

4° SfiRlE - TOME 32 - 1999 - N° 3



EXPONENTIAL DECAY OF AVERAGED GREEN FUNCTIONS 423

2. Coercivity and exponential decay

For A > 2d, let

f d }
W(\)= ^ G R ^ 2 ̂  cosh 7y, < A ^ (2.1)

I 1 J
We refer to [SW, section 8], for a more complete discussion, using also the Fourier
transform. W(A) is a convex bounded open set symmetric around 0, and we let

p\(x) = sup X ' T ] (2.2)
r]^W{\}

be the corresponding support function. p\ is convex, smooth outside 0, and positively
homogeneous of degree 1. Moreover p\{x) > 0 for x / 0. In [SW], we observed that
for r] € W{\):

\\e^^e-^\\c^^<\ (2.3)

and similarly for A = A^d.
Let E G C with \E\ > 2d and choose A G]2d, \E\[. Then for 77 G W(A), we have in

the sense of self-adjoint operators:

R^-zarg£;^.(.)^ _ A^e-^-)) > |£| - A, (2.4)

and similarly with AA replaced by A. As noticed in [SW] with a slightly different method,
it follows that

\\e^-\E - AA)-1^-)^^) < .——-p (2.5)

and in particular for the matrix of the inverse:

K^-AA)-^)! < ̂ E^^^' (2>6)

Using an argument of flattening of the weights near infinity, we obtain (2.5), (2.6) also for
A. In the present paper, we shall not use (2.5), (2.6) but rather (2.4) and establish:

PROPOSITION 2.1. - Let E G C with \E\ > 2d and let Vj, j e A satisfy Re e"1^^ < 0.
Then E — (AA + diag(^)) has a bounded inverse such that for every A G]2d, |I?|[ and
every T] G iy(A):

\\e^-\E - (AA +diag(^)))-le-t'•(•)||£(^) ^ ̂ .̂ (2.7)

In particular,

[(^-(AA+diag^)))-1^)! < ——^e-^-). (2.8)

The result remains valid with A replaced by Z^ if we assume that {vj}j^d is bounded.
That can be proved by flattening the weights at infinity in the proof below. Since this
extension is not needed in the remainder of the discussion, we skip the details.

ANNALES SCIENTIFIQUES DE L'^COLE NORMALE SUPERIEURE



424 J. SJOSTRAND AND W.-M. WANG

Proof. - Using (2.4), we get

Ree-^^^^-^E-^^dmg^^e-^} > \E\ - \ (2.9)

and (2.7) and (2.8) are obtained as (2.5) and (2.6). D
We now return to the situation in the sections 0, 1. Let 7 be a curve as in (H2) so that

(GA(£Q(^ v}) = /(^AA + diag (^-) - E)-1^ y} J] /^(d^-). (2.10)
" JCA

We may assume without loss of generality that int 7 is convex. Let E G C belong to the
exterior of 7, and let 7r^(E) e 7 be the point on 7, closest to E: \7r^(E) - E\ = dist (E, 7).
Then the line through 7r^(E) which is perpendicular to E - TT^{E) separates 7 and E,
and we have:

Re (e-^^^^E) - v)) > 0, W G 7. (2.11)

Writing

^A + diag (^-) - E = - ( E - TT^E)) + (^A + diag (^ - TT^E))) =

-t \1,^ - TT^)) - ("A + diag f1^. - ̂ (E))^
L^ \ • V 6 ,

we apply Proposition 2.1 with E there replaced by ^(E - TT^E)) and Vj there replaced
by ^(^- - 7L,(£?)), and get for 77 G ^(A):

lle^^^AA+diag^)-^)-^-^^!!^^) < (2.12)
1_____1_____ _ 1
t (^\E - 7T^E)\ -\)~ \E-7T^E)\-t\'

if } \E - 7r^E)\ > 2d and A e]2d, }\E - 7r^E)\[, and in particular,

I^AA+diag^)-^)-1^)! < ———————e -^ -^ . (2.13)
\rj — 7r^(l^)\ — t\

Since /^^ is a probability measure, we get from this and (2.10):

||e"<-)«W)e-"||^ ̂  s |̂ .̂ |.,,, >, e H'(A), (2.14)

1

K^)^)!̂ .,̂ )!- ,A''""""• <2-15)-7?

for A G]2d^|£;-7r^(^)[[.
Since we can choose 7 in an arbitrarily small neighborhood of ch (AT_), we may arrange

so that \E - 7r^(E)\ -^ dist (E, ch (AT_)) and Theorem 0.2 follows in the case of finite A.
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It remains to establish the existence of the limit of {G\[E}{^, z/)), when A —^ 7^ through
the finite subsets of Z^. Let E , 7, A be as above and let vj e 7, j G Z^. Let A c A be
finite subsets of Z^ and put VA = dmg{vj)j^ V^ = diag(^) ^. Then in ^(A),

IA^+V^-^-^A^
U(tAA + VA - ̂ -'IA - ̂ IA(^ + V^ - ̂ -'[A^ IA]IA(^AA + VA - E)-1!^

If ^^ € A, it follows from (2.13) (valid also for A), that

(^ + V^ - E}-\^ y} - (^AA + VA - E)-\^ ̂  =

O^^^expf-^^^AA^+d^AVA^))],
L - -I

where C?A denotes the distance associated to the norm p\. This estimate is uniform in
A, A, u,, and even in /^. Integrating w.r.t. }\.^^(^Vj}, and using (2.10) and its
analogue for A, we get

{G^E){^ v)} - {G^E)(^ ̂ ) = Ot^xW exp f-J(rfA(^, A \ A) + ̂ (A \ A, ̂ ))1,

which implies the existence of the limit of [GA(-E)(/^ ^)), when A —^ Z^. This completes
the proof of Theorem 0.2. D

3. A more general result

In this section we shall relax the assumption (HI) about holomorphic extendability, and
suppress the assumption (H2). The price we have to pay, is that the result will be valid
only for E sufficiently far away from the region of non-analyticity in some precise sense
that we will explain. We start by proving some auxiliary results which contain the essential
ideas. Write {z) = ^(1 + \z\2).

LEMMA 3.1. - Let R 3 t i—> ^(t) be a smooth curve in the open upper half plane C^,
with 7'(t) / 0 and without self-intersections. Assume that 7^) = (7± + e^e±t, ±t » 0,
where 0- < 0 < 0+ < TT + 0-, and let Q, C C4' be the open set with Qfl = 7. Let g{z) be
a continuous function on 7 with g{z) = O^)"2"6), for some e > 0, and with

[ g { z ) d z e R (3.1)
J^

Then there exists a real measure fJ, on 7 of the form ^{dz) == m(^)[cb| with m continuous
and (P^)"2"6), for some, possibly new e > 0, such that

[ (/){z)g{z)dz = /^(^(d^), V(^> G Hoi (^) H CW H L°°(n). (3.2)
J^ J^

Proof. - Let G € €^7) be a primitive of lm{gdz) with G = O^)"1-6). Considering
rotations of the functions Re ̂ -1-€, we see that we can find a positive harmonic function q,

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPfiRIEURE



426 J. SJOSTRAND AND W.-M. WANG

defined near f^, of the order of magnitude l^l"1"6, for sufficiently small e > 0, depending
on 0+, 0_. Consider the Dirichlet problem for Q e C1^):

/\G = 0 in 0, Q^ = G. (3.3)

Approaching this problem with suitable problems on f^ :== 0 D P(0,Ji), using the
maximum principle with q as a comparison function, and letting R -» oo, we see that (3.3)
has a unique solution with Q =- O^)"1"6), for some e > 0.

Using a scaling argument we also see that

VQ = O^z)-2-6). (3.4)

Since Q is harmonic in 0, we have

^=Im^ ^GHol(n) .

From the Cauchy-Riemann equations, we see that T € C1^), and

(3.5)

( 3 . 6 )

(3.7)

(3.8)

V^^O^)-2-6).

Put p.(dz) = gdz - dT\ = gdz - fdz\ , where / = .̂ Then,

Im {gdz - AF| ) = Im {gdz) - dG = 0,

so ^ is real. Moreover,

^t{dz) = m{z)\dz\, m G €(7), m = O^)-2-6).

Finally we have (3.2), since

/ (/){z)f{z)dz = 0, (f) G Hoi (?2) H C(H) H L°°(0),
J-y

by a standard argument for Cauchy integrals. D

Remark. - Assume that g satisfies the regularity and growth assumptions of the Lemma
outside some compact subset K of 7 and that g is a distribution near K. Then we can
find a real distribution ^ on 7 which is of the form m(^)[d^| outside K with m as in
the lemma, such that the identity in (3.2) holds for all (f) G Hol(O) n C00^) H L°°(n).
To see this we repeat the proof. G will now be a distribution near K, and with the same
properties as before outside K. Then we can solve (3.3), where Q is of temperate growth
near K and elsewhere C1 up to the boundary, and == 0{(z}~l~e) far away. We still have
(3.4) far away and can define T as before, holomorphic in 0, of temperate growth near
K and C1 up to the boundary away from K. Moreover f := c^- = 0{{z)~2~e) far away.
Define p,{dz) as before, now with fdz\ interpreted as a boundary value in the sense of
distributions. We get a real distribution, and our claim follows from the fact that

f c/){z)f{z)dz = 0, cf) G Hoi (f2) n C°°W n L°°(0).
J^

4e SERIE - TOME 32 - 1999 - N° 3



EXPONENTIAL DECAY OF AVERAGED GREEN FUNCTIONS 427

Let 7 be as in the lemma and let /^(cb) = m(^)|cb| with m real, continuous and
= O^)-2-6). Let p{z) = ^^f and let

Pu{z) = I p(z - t)u(t)dt

be the Poisson operator for the upper half plane C^ mapping bounded continuous functions
on R to bounded continuous functions on C+. We recall that P is positivity preserving.
The adjoint P* maps bounded measures (i.e. with finite total mass) on C^~ to bounded
measures on R, and in the case of positive measures, the total mass is conserved. We are
interested in P*(/^) which is of the form k{t)dt with k{t) = J p{z — t)fjt{dz).

LEMMA 3.2. - Let 7^, j = 1,2 be as in Lemma 3.1, and let p'j{dz) be a real measure on
7y of the form mj(z)\dz\ with mj continuous and 0{(z)~2). Assume that

{ <^Wck) = [ (^Wcb), (3.9)
J^l J72

for all (f) G Hoi (C"^), which are bounded on every half-plane: 1m z > e, e > 0. Then

P*(/.i)=P*(/.2). (3.10)

Proof. - Since ^ are real, it follows that

( ReWz))^{dz)= ( ReWz))^{dz)^
J^l </72

for all (f) as in the lemma. It then suffices to notice that p(z — t) = Re<^, where ̂  is as
in the lemma. Q

As in the remark after the proof of Lemma 3.1, we can relax the regularity assumptions
on 11 j on some bounded part of 7^.

LEMMA 3.3. - Let 7 be as in Lemma 3.1 and let fJi{dz) = m(^)|d2;| be a real density on 7
with m continuous and m{z) = O^)"2"6) for some e > 0.
a) Then P*(^) = k{t)dt with k continuous and k{t) = 0{(t)~2).
b) For T > 0, let 7r(t) = 7^) + iT, and define p,r on 77 as m(z - iT)\dz\. If

f /W=l, (3.11)
J^f

then there exists To > 0, such that P*(/^r) > 0 on R, precisely for T >_ To.

Proof. - We have

C 1 y^^ TTTTV^
k(t)= p(z-Wz)=- \ -——-^m(^sW{s)ds=

J^ 7[ J -oo Hy8) "I

/+00 /<?\ />00 1 1 / 1 \
"W „ (i^TwO-2-''-0*1'! (TT^tiT^-1"0^}
and we have proved a).
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If P*(/^To) >. 0, for some To and T > To, then we can identify this measure with the
measure P?-To(^T) on the line 1m z = T - To, where PT-TO is the Poisson operator for
the half plane Imz > T - To. It is easy to see that P*(^r) = P^P^-T^T) > 0, so to
prove b), it suffices to find one T > 0 such that P*(/^r) ^ 0. Write P*(^T0) = krdt, where

kT(t) = f p{z - t)^{dz) ̂  (3.12)
J^T

p(7r(0) -f)+ ! {p{z - t) - p(7r(0) - t)}^z}.
J^T

Here p^O) - t) ~ T/{T + \t\)2.
When z G 7r and \z - 7r(0)( < T, we have

h(,-<)-^(0)-,)|SC-j!^^,

and the corresponding contribution to the last integral in (3.12) is

(T
0(1) /ow £ ̂ W^TW^ = "^(^D2 = o(l)p(7r(o) -()' (3J3)

J-T

when T —^ oo, uniformly in t.
The integral over |^ - 7r(0)[ > T can be split in two terms:

0(1) / -Ar——d.
o(l)/.l^?Mp.^d•• p-14'
'̂.LT ;̂̂ - (3-15)and

the last expression is 0(1)^^ = o(l)p(7r(0) - t). (3.14) is

/loc 1 1wy, ̂ ^ (3-16)
If r ̂  |<|, we estimate this by O^T-2^ o(l)p(7r(0) - t). If T <, \t\, then the change
of variables s = \t\ff gives

I? /̂ .i IT^?^ = ̂ T^W = °(l)''hT(()) - t)-
Summing up, we get

krW = (1 + o(l))p(7r(0) - t), T -> oo, (3.17)

uniformly in t, and the positivity follows, when T is large enough, n

Remark. - a) We can relax the continuity assumption on m and allow p,(dz) to be a
distribution on some bounded set and elsewhere as in the lemma. Then a), b) still hold.
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In estimating for instance the last integral in (3.12), we decompose p,T into a continuous
density and a distribution with compact support. For the contribution of the latter, we only
need to notice that for k > 1:

V^(^ - t) - ̂ (7r(0) - t)) = W\T^^ = ̂ (1)P(7T(0) - t).

b) If we map the upper half-plane conformally onto the unit disc, then the curves in the
preceding lemmas close (at the image point of infinity), and we get a conceptual link with
some of the arguments in section 1.

We can now start to formulate the main result of this section. Let g{x)dx be a probability
measure on R and assume that for some e > 0:

g is continuous and ©((a;)"2"6) outside some bounded set. (3.18)

g has a holomorphic extension to some set of the form (3.19)

\lmz\ < ^(Rez - C), which satisfies g = O^)"2"6).
G

A straight line L is called admissible if L is non-parallel to R and if g has a holomorphic
extension g = O^)"2"6) to a set of the form [z e C; dist(^,^) < G~l{z)}, where
KL := C- H 11̂  and C_ is the closed lower half-plane, and 11̂  is the closed half plane
with boundary L containing [a,+oo[ for some a.

If L is admissible, represent L as a + e~^R for a e R, 0 < 6 < TT, and let 7 be a curve
obtained from ] - oo, a - e] U (a -e) + e"^^ R+, by smoothing in a small neighborhood of
a - e. Here e > 0 is sufficiently small. The complex density g{z)dz\ is then well defined.
Let /^ be the corresponding normalized real measure on 7 obtained from Lemma 3.1 (after
a rotation + translation which maps L to R). Let PL be the Poisson operator associated to
the closed half-plane 11̂  opposite to 11̂ . We say that L is admitted if Pj?(/^) > 0. From
Lemma 3.3 we know that if L is admissible, then L becomes admitted after a sufficiently
long parallel translation to the right. If L is admitted, let h^z) be the real affine linear
form which vanishes on L with normalized gradient pointing in the direction of 11̂ . Put,

h{z)= sup h^z}, (3.20)
L admitted

so that h(z) is a convex function which tends to +00 when z tends to infinity in some
conic neighborhood of [0,-j-oo[.

THEOREM 3.4. -Assume (3.18), (3.19) and define h{z) by (3.20). Then ((^A+diag (^) -
E)~l}g has a holomorphic extension from the open upper half-plane to the union of this
half-plane with {E G C; h{E) > 2dt}. IfE belongs to the latter set and X € [2d, h(E)/t[,
then for every rj G W(\):

\\e^((t^ + diag (^-) - .B)-1)^-^^ || ^ 1

r(^) - h{E)-t\'

and in particular,

|((*AA+ diag {v,}-E}-\^ !/)),| ^ ^e^-).
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Proof. - Let L be an admitted line and choose 7 as above. For Im E > 0, we have

(^AA+diag^)-^)-1)^ f ^AA+diag^-^n^d^. (3.21)
J^A

Let £ 6 n^ with dist(E,£) > 2d^ and let Vj € 11̂ , 77 e IV(A), 2d ^ \ <
disi(E,L)/t. Then

-Re(e^•)e-^ar^-^£;))(^AA + diag(^) - E)e-^) > dist (£,£) - tA,

where 7TL(£') is the point in L which realizes the distance from E to L. It follows that

e^^^AA+diag^,)-^)-^-^)!! ^ ————
- dist (£, L) - tX'

|(^4-diag(.,)-^)-(^.)| < ̂ ^e-^).

If in addition 1m E > 0, then we can use (3.21) to get

<(<AA + diag(^) - E)-1),, = ( (^AA + diag(vj) - E)-1 TT^(d^)
J'Y7^

= ̂ AA + ̂ s^-) - JB)-1 n^^)^-)-
From this identity and the preceding estimates, we see that ((^AA + diag(^) - £')-1)^
extends holomorphically to the set of E in 11̂  with dist (£', L) > t\ and satisfies the
same estimates. It then suffices to vary L among all admitted lines. D

We have not tried to formulate a result of maximal generality or sharpness. One
obvious generalization would be to consider holomorphic extensions to some Riemann
surface. Another would be to consider the situation in the introduction, and only make the
hypothesis (HI). When 7 is a closed bounded curve. Lemma 3.1 reduces to Proposition 1.1,
and Lemma 3.2, 3.3 remain valid. We leave the formulation of the analogue of Theorem
3.4 to the interested reader.
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