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SUPERSYMMETRIC MEASURES AND MAXIMUM
PRINCIPLES IN THE COMPLEX DOMAIN.

EXPONENTIAL DECAY OF GREEN'S FUNCTIONS

BY J. SJOSTRAND AND W.-M. WANG

ABSTRACT. - We study a class of holomorphic complex measures which are, in an appropriate sense, close to a
complex Gaussian. We show that these measures can be reduced to a product measure of real Gaussians with the
aid of a maximum principle in the complex domain. The formulation of this problem has its origin in the study
of a certain class of random Schrodinger operators, for which we show that the expectation value of the Green's
function decays exponentially. © Elsevier, Paris

RESUME. - Nous etudions une classe de mesures holomorphes complexes, proches d'une gaussienne complexe.
Nous montrons que ces mesures peuvent etre reduites a un produit de gaussiennes reelles a 1'aide d'un principe
de maximum dans Ie domaine complexe. Notre principale motivation est 1'etude d'une classe d'operateurs
de Schrodinger aleatoires, pour lesquels nous montrons que 1'esperance de la fonction de Green decroit
exponentiellement. © Elsevier, Paris

1. Introduction

We study in this paper a class of normalized complex holomorphic measures of the
form e'^^d271^ in R272, where ^n(x) is holomorphic in x and Re^n > 0 and grows
sufficiently fast at infinity, so that the integral is well defined. It is not presumed that
e'^^d271^ is a product measure. Moreover we assume that e^"^ is "close", in some
sense, to a complex Gaussian in certain regions of the complex space. Assuming that /
does not grow too fast at infinity, we are interested in estimates of integrals of the form

( f^e-^^d^x,

which are uniform in n. So that eventually we can take the limit n —> oo. Assume (for
argument's sake) |/(^)|oo = 0(1)» then if ^n(x) were real, we would immediately have

( f{x)e-^nwd2nx=0(l)

uniformly in n. However it is clear that, in the case where ipn(x) is complex, the same
argument will not give us a bound which is uniform in n. Since typically,

/'le-^^ld^-^oo

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE. - 0012-9593/99/03/© Elsevier, Paris



348 J. SJOSTRAND AND W.-M. WANG

as n •—>• oo, even though

e-^^d27^ = 1,

for all n.
In the following, we show that under appropriate conditions (convexity, domain of

holomorphicity etc.), this class of measures can be reduced, uniformly with respect to
the dimension of the space, to a product of real Gaussians. Hence the usual estimates of
integrals with respect to positive measures become applicable.

The initial inspiration for this paper comes from random Schrodinger operators, where
the expectation values of certain spectral quantities can be naturally expressed as the
correlation functions of some normalized complex measures in even dimensions. Other
examples of complex measures arise, for example, from considerations of analyticity of
certain quantities in statistical mechanics. However for concreteness, we only state our
results in the random Schrodinger case, although it is our belief that the method presented
here should prove to be of a general nature, with possible applications to other fields.

We now describe the discrete random Schrodinger operator on ^(Z^):

H=tA+V, (0<t<l) (1.1)

where Ms a parameter, A is the discrete Laplacian with matrix elements

A ^ = l | z - j [ i = l ,
= 0 otherwise (1.2)

where %, j G Zd, | • |i is the I1 norm; V is a multiplication operator, (Vu}{j) = vjUj,
with Vj € R. We assume that the vj are independent random variables with a common
distribution density g. We use ( } to denote the expectation with respect to (w.r.t.) the
product probability measure. Such operators occur naturally in the quantum mechanical
study of disordered systems. (See e.g. [FS,Sp].).

For small t, the spectrum of H is known to be almost surely pure point with
exponentially localized eigenfunctions. (See e.g. [AM,DK,FMSS].) This is commonly
known as Anderson localization after the physicist P. Anderson, who first realized the
importance of the phenomenon [A]. Another related quantity of interest, which provides a
necessary condition for the existing mechanisms for proving localization, is the density of
states (d.o.s.). Roughly speaking, d.o.s. measures the number of states per unit energy per
unit volume. More precisely, d.o.s. is the positive (non-random) Borel measure p such that

(trf(H))= J f ( E ) d p ( E )

for all / G Co(R). It is known generally that if g is smooth, then for t small enough or E
large enough, p is also smooth. (See e.g. [CFS.BCKP].) In the continuum, one can prove
similar results [W2], and moreover obtain an asymptotic expansion for p [Wl].

Let A be a finite subset in Zd. Let AA be the corresponding discrete Laplacian defined
as in (1.2) for z , j in A. Define

H^ = ^AA + V, (1.3)
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SUPERSYMMETRIC MEASURES AND MAXIMUM PRINCIPLES 349

on ^(A). For E real, (assume E G (r{H^) a.s.), let

G^E-^irf)=(H^-E-iri)-\ (1.4)

be the so called Green's function. We denote by G^(i,j',E + irf) the matrix elements of
G\{E + %^). Then we have the following representation

p(E) = lim UmIm(C?A(0,0;E+%^)) a.5.
A/^Z^ ri\0

In this paper we study (GA(/^, z^; ̂  + ^7)) for t sufficiently small or E sufficiently large.
Our aim is to obtain estimates which are uniform in T], A, so that we can pass to the limit:

(C?(/^z/; £+%())) := lim limIm(C?A(/^;E+%^)).
AyZ^ rj'\0

The existence of the limiting function can be obtained directly [SW] and we will not enter
into the details here. Although the present method can give that too.

Assuming g is sufficiently smooth, using the supersymmetric representation of the
inverse of a matrix, which was first used in this context in [BCKP], we can express
{GA^ ^; E + %0)) as a correlation function of a normalized complex measure. (See sect.
2 and also appendix A.) Let

g{r)= [e-^g^dv

denote the Fourier transform of g . Assume for example that <j(r) = e'^ ^ 0 for
T € R"^ then (after taking the limit T] \ 0)

(G^^E+iQ))=

z L.^Jdet^M^-^i-i.-^--^^---^-^^ (Ls)
J L J ^eA 7r

where xj G R2, xj - Xk is the usual scalar product in R2 and

M^=t^-E-i diag (k\x, • rr,)), (1.6)

where diag^'^ - ;z^)) denotes the diagonal matrix whose jj-th entry is k'{xj ' xj).
We notice the appearance of the Fourier transform of the original probability measure
in the above induced measure. We believe that this is the main accomplishment of the
supersymmetric representation here. After an integration by parts, (see appendix A or B,)
we have further:

(G^^E+iO))=

/'M^^^^^^et^MA)^-^^^^^^-^^-^^ IÎ '- (L7)

J jCA

Note that if the measure in the square brackets in (1.5), (1.7) were positive, then we would
have immediately obtained that

\(G^^E))\<\M^(^^E)\^

where the sup-norm is w.r.t. x. Hence the main idea is to make a change of contours in
(C2)A, so that on the new contour the measure becomes real positive. In order to do that
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350 J. SJOSTRAND AND W.-M. WANG

we assume that g is such that 'g is holomorphic in a region of C which includes the convex
cone bounded by R+ and e^0(£;)R+, where 0(E) == arg(l + iE) c] - j, j[. Moreover we
need to assume that g is e (0 < e « 1) "close" to

9o = ~~.—,—9T?7r(l + v 2 )

so that there exists an open neighborhood ^.(E) C C of e^^^[0,oo[ which is conic at
infinity and in which ^ is e-close to ^o- (See (3.7).) For the precise conditions on g , see
(2.26)-(2.28). Note that assuming t, e small, then the final contour where the phase becomes
real should be "close" to ((e^^R)2)^ (Recall that Xj G R2.) Therefore in sect. 3, before
we embark on the real work, we first rotate the contour from (R2)^^ to ((e^^R)2)^
Using the assumptions on g , the measure then takes the simple form in (1.5), (1.7). Define

( j ) : = i \ ^ t X j ' X k - ^ E x j ' X j - i Y ^ k ( x j ' X j ) .
\|j-^|i=l 3 J )

The change of contours is accomplished in two steps. In sect. 4, we look for a first vector
field Vt (holomorphic both in x and t) in (C2)^^ such that

^(e-^+V^e-^.^O, (1.8)

or equivalently

<9^+V,^.^=0. (1.9)

where
v . v^ := ̂ (^,A^ + v^9^(f>).

3

Using the flow of the vector field to change variables, we get rid of the "interaction" term
^txj - X k ' The main difficulty here (as opposed to the case (f) real) is to find Vi such
that the corresponding flow stays in the appropriate region in (C2)A for t small enough
so that the resulting integral is well defined and that the measure has no zeros there. This
is achieved by using a cutoff function and solving (1.9) in some appropriate weighted
space. Sect. 5 studies the corresponding flow, while sect. 6 expresses the resulting measure
on the new contour.

Unfortunately, after this operation, the coupling between xj and Xk (j / k) still persists
in the Jacobian of the above "change of variables". Writing the measure as e^ ]~[ d^xj
(with L holomorphic as the measure has no zeros there), in sect. 7, we look for a second
vector field ^ (holomorphic in x and t) such that

^(e"^) + V^e-^) • ̂  + e^div v = 0.

or equivalently

QtL + V^ • ̂  - div^ = 0. (1.10)

We use a maximum principle in tube domains in the complex space to solve (1.10) under
the condition that ReHessL > c > 0 and some additional conditions on VL, which
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ensures that the resulting flow stays in tube domains around the real axis. This is in fact
why we need to find the first vector field Vf to ensure that the new phase L is such that
VL has the required properties. (See sect. 7, appendix C.)

Under these two changes of contours, the final measure takes the simple form

.-E.^TT^.
±± ^

3

We then obtain in sect. 8 that for t/(\E\ + 1) sufficiently small and E in the appropriate
range (depending on g\ {G^,y\E + irj)) decays exponentially in |̂  - v\ for all A
sufficiently large, by using weighted estimates on M^^fi^'.E). The precise estimate is
formulated in Theorem 2.1 in sect. 2.

We should mention here that the region of analy deity in t is uniform in A. The
construction above does not depend on the fact that we have a nearest neighbour Laplacian
(1.2). It works the same way if A is replaced by any other symmetric matrix with
off-diagonal matrix elements decay sufficiently fast.

As we have seen earlier, (C?) can be expressed as a correlation function of a normalized
complex measure. In fact (1.5) shows clearly the link between the present problem
and problems in statistical mechanics. (1.7) is special to the present problem. Our main
constructions however do not depend on these special equalities arising from the symmetries
of the present problem.

Before the first in a series of the works of B. Helffer and J. Sjostrand [HS], where the
equation (1.10), to our knowledge, first appeared in the context of statistical mechanics,
one of the main tools to study correlation functions was cluster expansion-an algebraic
way of rearranging the perturbation (e.g. in t) series. (1.10) provides an alternative way
of treating such problems. The advantage, in our opinion, is that there is no combinatorics
involved. The mathematics involved is purely analytical and self-contained. Moreover the
convexity condition on L that one meets is the natural one.

Another general, but more probabilistic, approach to statistical mechanics is by using
semi-groups or heat equations. It seems interesting to us to understand what would be the
analogue of the construction presented here.

Although, as mentioned earlier, the inspiration for the present paper comes from quite a
different source-random Schrodinger operators, in the end, the work presented here should
be seen as a logical extension of the works of B. Helffer and J. Sjostrand [HS,S1,S2] in
statistical mechanics. (The work presented below might also be useful for the study of
Feynmann formula.) Indeed one can take the standard example of studying the correlation
function for the measure

g-E^cAj.-fci^i^'^ TT e-^dx,
______________•'••'•J^______i_ rr G R

^-E^eAJ.-fcl^i^^ n^A6"^2^/

. _ _ i _ .\._A .41 _ - . - - _ _ _ _ - _ • __.-n -i-£:^--i ~TA. „--_- -1---. j-_

J (

assuming that k is such that the measure is well defined. It seems clear to us that under
appropriate conditions on fc, which essentially amounts to assuming k analytic and k ^ 0
on R"^, k does not grow faster than linearly at infinity and some convexity conditions on
k (See Lemma 3.1.), the analyticity of the correlation function in t for small t should be
a direct consequence of the constructions here.
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352 J. SJOSTRAND AND W.-M. WANG

2. The supersymmetric representation and statement of the main result

Let t €]0,1] and let H be the discrete Schrodinger operator on -^(Z^) defined earlier
in sect. 1. For convenience, we recall it here:

f f = ^ A + y , (2.1)
where A is the discrete Laplacian with matrix elements

A^j = 1, when \i — j|i = 1, and == 0 otherwise. (2.2)

V is a multiplication operator, (Vu)(j) = vjuj, with vj G R and | • |i is the (1 norm. We
assume that the vj are independent random variables with a common distribution density
g. For real E, we consider the inverse operator

G(E + irj) = (H - E - ir])-\ (2.3)

and more specifically, we are interested in the expectation value of the kernel (i.e. matrix)
of G(E + irj) (the so called Green's function): {G{^,v\E + irj)) in the limit r] \ 0.
We will write,

(G(^ ̂  E + z0)) := lim<G^ ̂  E + ^)), (2.4)
7?\,0

if the right hand side (RHS) exists.
We proceed by taking A C Z^ to be a finite set or to be a large discrete torus of

the form (Z/WZ)^. The corresponding discrete Laplacian AA on A is then defined as in
(2.2), with i^j in A. Define

H^ - ̂ AA + y, (2.5)

on ^(A). Let

C?A = {H^ - E) (2.6)-i

for complex E, whenever the inverse is well-defined. We also consider the expectation
values (GA(^, ^; E + irj)) for E eit, rj > 0, and the corresponding limits when T] \ 0.
The aim of the game is of course to have estimates which are uniform in A, and in this way
we get information about (G) whenever we can take the infinite volume limit A —^ Z^.
(The possibility of taking this limit can be obtained by [SW] and we will not enter into
the details in this paper, even though the present methods can give that limit too.)

We use the supersymmetric formalism to express (G^)- In order not to make too
much of a digression, we will only write the few lines that are necessary to reach the
representations (2.18,22,25), and we refer to appendix A and references therein for a
more complete discussion. Using Gaussian integrals ((A.9) in appendix A), we have the
following expression for the Green's function:

GA^, ̂ ; E + irj) = i j x^ ' x^ det[i(H - (E + %T/))] x (2.7)

exp -i V(ff - (E + ir]))^kXj • Xk TT —x3-,
~—' -•--L 7TL j,fc . j'eA

4^^ SERIE - TOME 32 - 1999 - N° 3
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where x^; € R2, /^ G A and we sometimes drop the subscript A and write H instead
Of ^A.

Let | A | be the number of points in A. We use the Grassmann algebra of 2[A| generators
to express dei[i{H — E)}. This algebra is generated by 2|A| anticommuting variables ^,
rji, i € A satisfying the relations:

[^%]=:^•+^=0, (2.8)

[̂ •] = ̂  + ̂  = 0.
[ni^j] =fnirnj+w^ =o.

with [a, 6] = ab + ba the anti-commutator. It is denoted by A[$i,?7i, ..,$|A|^|A|] (if we
identify A with {1,..JA|}). From (2.8), we see in particular that ^ ^ r]] = 0."C°°
functions" F^^rjj) of these anticommuting variables are defined by Taylor's formula at
(0,0) which contains a finite number of terms because of nilpotency. In this way F(^rf)
becomes an element of the Grassmann algebra. For example if

F^):^-^, (2.9)

then ?
F(^)=1+A^^. (2.10)

This is the function that we need in writing the determinant. We also need to define the
notions of differentiation and integration. Define:

|;(&)=1, (2.11)

(̂,.) = 1. (2.12)

We also require that these differentiations be linear operators and that Leibnitz' rule hold.
We can then define integrals (with respect to 9) as follows:

/\d^=0, /^d^=l, / ld^-0, /^d77,=L (2.13)

A multiple integral is defined to be a repeated integral. For example,

{ ^d^d% = - I rf^d^drj, =- f %d% = -1. (2.14)

Using (2.10), (2.14), we get

det[i(H - E - ^)] - (e-^^11-^^3'^ Ip^-^)- (2-15)
17 JCA

We illustrate (2.15) in the case where i{H — E — ir]} :== M is a 2 x 2 matrix, using
(2.8)-(2.14). The integrand in the RHS of (2.15) is

e-E^,^-^ p (1-M,^),
j,fc=l,2

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



354 J. SJOSTRAND AND W.-M. WANG

where we used the commutativity of e"^-^^ and (2.10). Doing the integral in the RHS
of (2.15) upon using (2.13) and (2.14), we obtain

RHS = MnM22 - Mi2M2i = detM,

as expected.
Combining (2.7) with (2.15), we obtain the following expression:

G(^ ̂  E + irj) = i [ x^ . x^ E^eA^-^-^^-^ JJ d2^, (2.16)
J JCA

where

xj : = ̂ j ^ j ^ j ) ^

Xj • Xk : = X j • x j , + ̂ (%6- + r]k^),

d2^
d2^. : = ——^d^.. (2.17)

Hence,

(C?(/.^;£+^)) =i L^^e-^(E^^l-^l=ltxJ•xfc-^cA^+^?^^^ (2^8)

n^^^n^^)^!!^^
jCA= z f x,. ̂ e-^-,.-.^ ̂ ^-^^^^^n^^-x^nd2^^^

J J

where
^(X, • X,) = ̂  . x, + ̂ ^) := g(xj ' x^ + y(^ • Xj)r)^j, (2.19)

is the (super-)Fourier transform. Assume that ^ is in 5 away from 0. Then the above
integral is well defined. We can take the limit T] \ 0 and obtain

(G(/.^;£+zO))=zL^^e-^E^^-E^^)JJ^(^^^

(2.20)
Note that by using (2.17), the integrand in (2.20) is a sum of terms of the form

^•i-^,fci-fej^)^i •••^^i ••"^ (n< |A|),

where the /'s are called coefficients. Note that apart from the factor x^ ' Xy, the integrand
in (2.20) is only a "function" of the Xj ' Xk. Such "functions" are called supersymmetric
functions. Using Theorem A.2 in appendix A, we have:

ye-l(^-^^•xt-^^•^J]^,.X,)^d2^=l, (2.21)

for all A, all t. Hence (C?(/^ v\ E-}-i0)} can be seen as a correlation function associated to the
normalized supersymmetric "measure" in (2.21). By integrating out the anti-commutative
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variables ^,77, this measure can be further reduced to a (normalized) complex measure.
Assume for example that g(r) = e-^ ^ 0. Then using (2.15), (2.17), we obtain:

{G(^^E+iO)}=

^/'^.^[de^^e-^i-^-^——^^--1^^-"]!!——1, ̂
j ,eA 7r

where
M = t^ - E - i diag (k'(xj • X j ) ) . (2.23)

We note also that by using (2.21)

det^M^1^-^- ̂ fc-^ ̂ -^E, ̂ •^ TT d2^ = i, (2.24)
-LJ. 7p
J€A

for all t.
Using an integration by parts, established in Proposition A.3 in appendix A or

equivalently (B.19) in appendix B, (2.22) can be further put in a more transparent form:

{G{^^E+iO)) =
/>M-l(/x^;^)[det(%M)e-^(S^•^-E^•^-^Efc^•^)1 J]d2^. (2-25)

17 j'eA

In appendix B, we give direct proofs of (2.22, 24,25) without using supersymmetry. The
rest of the paper will be essentially devoted to the study of the resulting complex measuer
as denned in (2.24) in an appropriate region in (C2)^

Note that if g is the Cauchy distribution, ^o(^) = ^^pi^ tnen ^(T) = M ^° rea! T an^
we have corresponding holomorphic extensions from each half axis (and we shall only use
the one from the positive half axis, which is given by fc(r) = r). Using (2.25), we then
obtain another derivation of the fact that

{G{^^E))={t^-E-i)-\^ (2.26)

for the Cauchy distribution. (A more direct proof based on the Cauchy formula can easily
be found either as an exercise or by looking in [Ec]).

We now specify the class of densities g that we shall allow. We assume that g is of
the form:

^)=(l+0(e))^(^+^^), (2.27)

where

^^n^-i
and r^ has the following properties:
(a) y-e is smooth and real on R and satisfies

\9-f-\ < CkC for all k G N, (2.28)
ov^

for some fixed constants Co,Ci, . . .

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



356 J. SJOSTRAND AND W.-M. WANG

(b) There is a compact 6-independent set K C C, symmetric around R with i ^ K, such
that r^ has a holomorphic extension to C \ K (also denoted by rg) with

^^^^ITH21110^' (2>29)

The 0{e} in (2.27) is determined by the requirement that f g(v)dv = 1. Assuming also
that e > 0 is small enough, as we shall always do in the following, we notice that it
follows that g(v) > 0 and hence is a probability measure.
Remark. As it was mentioned in the introduction and as it will become clear later in the
proof, the conditions for our constructions to be valid are rather on the Fourier transform
^ of g. But for concreteness, we shall state our main theorem only for the class of
densities above.

For all A > 2d, introduce the convex open bounded set

f d 1
W{\) := < T] € R^; 2^cosh% < A

I i J
(2.30)

Let
p\[x) := sup x • rj (2.31)

rjeww
be the support function of W{\) so that p\(x) is convex, even, positively homogeneous of
degree 1. Moreover p\(x) > 0 with equality precisely at 0. In other words p\(x) is a norm.

In sect. 8, by using weighted estimates, we show that there exist Co > 1, Ci > 0, such
that if \E\ > C^, F < M and V = diag(^), with \Vj\ < F, then

|(A + V - E)-\^ v)\ < C, exp (~P\E\^ - ̂  + Gla+F)^ - ̂ l). (2.32)

A special case of this is that if E € R, V = diag(^) with \Vj\ <, e > 0, t €]0,1],
t/\E+i\ « 1, el\E+i\ « 1, then

("A + ̂ V - E^-} {^v) = 0(1) exp (-p^/t^ - ̂  + Al)————^ - ̂ |Y
(2.33)

for all /^ € Z^.
Moreover, we show in sect. 8 that (2.33) is likely to be optimal by studying the inverse

of A - E on ^(Z^), when E e C, |£'| » 1. After a suitable Fourier transform we see
that this operator is unitarily equivalent to the operators of multiplication by 5(^) — E on
^(T^), where S(^) =2^ cos ̂  and T^ = (R/27^Z)d is the standard torus. By Bochner's
tube theorem we know that the largest open connected set of the form R^ + iW containing
R^ where 8(^) -E ^ 0, is of the form R^+W^), where W{E) C R^ is an open convex
neighborhood of 0. In sect. 8 we shall see that W{E) is bounded, and we also note that
W[E) is symmetric around 0 since 6 is an even function. As in the case E real, we define

pE^x} :== sup x ' rj (2.34)
rf€W{E)
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to be the support function of W{E) so that pE^x) is convex, even, positively homogeneous
of degree 1. Moreover pa^x) > 0 with equality precisely at 0. In other words pE^x) is
a norm.

In sect. 8, we shall see that

PE{x) = p\E\ {x) + 0 (—. \x\\ (2.35)

W(\E\) = ̂  € R"; 2]^ costly < \E\ L (2.36)

[(A - E)-\^v)\ < ̂ (l^-^i^-^W^-^ (2.37)

uniformly in E, /^, when [£'| is large enough.
Equip the extended line R := {-00} U R U {+00} with the natural topology (i.e.

the one induced from the topology on [—1, +1] under the map / : R —> [—1,1], where
/(±oo) == ±1, f{x) = x / ^ 1 -+- x2, x e R). We define a subset £ C R in the following
way (see the figure at the end of this section):

When E € R, we say that E e £ if and only if (iff) the following holds: The line LE
through -i which is orthogonal to the vector E + i (the direction of the segment joining
—i to E) does not intersect K- := {z G K'^lmz < 0} and separates K- from £', in
the sense that if P+ is the open half-plane containing E with boundary LE, and P- the
opposite open half-plane, then AT_ C P-.

When E e {±00}, we say that E e £ iff the above holds with LE = ^R.
Note that a necessary condition for £ to be non-empty is that —i does not belong to the

convex hull of K-. It is also clear that £ is open and connected.
Let d\E\{f^^ ^) be the distance on A associated to the norm p\E\{l^ — ^)» so that

d\E\{^v} ̂ P\E\{^-^

when A is a finite set and

d\E\{^v} =_ i< p\E\ffi-^),
^e^W^e^1^)

in the case when A is a torus, with TTA : Z^ —> A denoting the natural projection.
We can now state the main theorem of this paper.

THEOREM 2.1. - For every £ ' CC £, there are constants to > 0, eo > 0, such that if
0 <: ^ < ̂  t ^]0,1], E € £ ' , —^ <: to, then for A sufficiently large we have uniformly
in t^ e, E:

\{G{^ ̂  E + i0))\ < ̂  exp (-d^i\/t{^ v) + 0 (-1—e\p{^ ̂ }, ̂  G A. (2.38)t \ \ |A+%|y }

Here p denotes the standard Euclidean distance in A.
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3. Rotation of coordinates

We make the assumptions of Theorem 2.1. Then for E e 8 D R, we have

{G{^E + z0)) = i ( x^ . ̂ e-^E^-^-E^^) J-[^(X, . X,) JJd2^-. (3.1)

The corresponding normalized "measure" is

^E^^-E^^J]^ -J^nd2^.. (3.2)
j

where ^(Xj • Xj) is as in (2.19). Our aim in this section is to make an appropriate change
of contour, so that on the new contour, after integrating out the anti-commutative variables,
the phase of the normalized complex measure is almost real.

Recall from the preceding section that,

go{a) = e-^ for Re a > 0, (3.3)

and if we replace g by go in (3.1), (3.2), we are naturally led to consider the factors,

^ iE - l ) x j -X j ^ ^ - ( l - iE )x j -X j /^ ̂

(Recall that X,'Xj = ^•^•+i(^^+^-^); see also (2.22), (2.25) with k(xj'Xj) = Xj'Xj.)
which in some sense can be expected to be dominant when t > 0 is small or E is large.
With a = Xj ' Xj, this factor becomes real after the change of variables,

' =elews = r^lrwhere w = arg(l + %E) e ] -I-1 [•
Put (9(±oo) = ±j.

LEMMA 3.1. - Let E G £ and let S(E) be the closed convex sector in the complex
plane bounded by the two half-lines [0,+oo[ and e^^[0, +00 [. The function ^g(a) has
an entire extension from the positive half-axis, that we also denote by ^, which has the
following properties:

(a) IfE / 0 and \E\ < oo, then for every 7 G [0,1[ and for all k, N G N;

a^(a) = O^^e-^—)^ (3.5)

where a € S{E) and (a) = (1 + |a|2)1/2.
(b) If E e {+00, -oo}, then there exists 60 > 0, such that for every S > 0

9^g{a) = O^a)-^-60'111-! + e-^-^-), a C 5(E). (3.6)

(c) Recall that g = g^. For every £ ' CC £, there exists an Co > 0 such that if E is
confined to £ ' and 0 < e < eo; There exists an open neighborhood fl{E) C C of
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e^^[0, +00 [, which is conic near infinity, and a holomorphic function k on fl(E)
such that

g(a) = e-^, k(a) = a + 0(e), a G ^E). (3.7)

Proof. - If a > 0, then in the defining integral,

g(a) = { e——g(x)dx
JR

we may replace the real axis by a closed curve 7 in {Im z < 0}, which in the case when
E is finite stays on the opposite side of the line LE (introduced in the definition of the
set £ in the preceding section) from E, except in an arbitrarily small neighborhood of —%.
We then get the entire extension from ]0,+oo[ by:

g(a)= fe——g(z)dz^ (3.8)
J^

so for every N G N,

\W\ < C^a)-^^)/ (3.9)

where
H^{a) = suplm(za). (3.10)

207

Now consider the situation in (a) and assume in order to fix the ideas that E > 0. It
is straight forward to study H^ and we see that for every sufficiently small 6 > 0, we
can choose 7 as above such that:

H^(a) < -Rea-\-S\a\, 0{E) - 6 < arga < 0{E) + 6, (3.11)

H^{a) < -^-Ima, when 0 < arga < 0(E) - 6. (3.12)
E

Note that Re a = ^Ima when arga = 6(E). From this, we get part (a).
For part (b), we may assume for instance that E = +00. Then LE is the imaginary

axis, and we can choose 7 confined to the intersection of the lower and the left half-planes
except in a small neighborhood of —z. Then there exists 60 > 0, such that for any small
6 > 0, we can choose 7 such that (3.11) holds and

H^a) < -eolma when 0 < arga < 9(E) - 6. (3.13)

Part (b) follows.
In order to get part (c), we use the decomposition (2.25) and (3.3) as well as the fact that,

if we represent fg as in (3.8), then the contour can be pushed across —i and consequently,

|^OT)| < C^e-1^"6^1 in ^(E), (3.14)

if 6 > 0 and ^l(E) are small enough. D
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In the various integrals involving the density (3.2), we want to replace the integration
variables x e (R2)^ by x = e^^y, with y e (R^ and a = 6(E). As mentioned earlier
in sect. 2, the integrand in (3.1) is a sum of terms of the form

fh-^M-k^)^ ' " ^ r ] k , ' " r ] k ^ {n< |A|), (3.15)

which is a polynomial in ^, rj and where the jTs (coefficients) are holomorphic functions in
x. For the purpose of change of contours in x, we can view ^, 77 as mere "parameters". (See
appendix A. for a more formal presentation of this simple fact.) The change of contours can
be justified by means of the Stokes' formula, if we can show that the coefficients / decay
fast enough on all the intermediate contours x = e^^y, y e (R2)^ for 0 < a < 6(EY
(where we assume for simplicity that E > 0).

Using (2.19), / is proportional to

e-^^-E^^^h^x^x,^ (3.16)
j

where hj = ^ or hj = ^/. Assume E G £. Using (3.5) and without uniformity w.r.t.
A, we have that

I/I < ̂ (^(e^^-i-^^'^n^^- .^.)-^e-^+l/£;)Im(^•^•))V
V 3 )

where 0^(1) also depends on t, E. Here lm(xj ' Xk) = (sina)% • ̂ , and we get

I / I < ONW exp [(sma)^||A|| -7^+ ̂ )W] II^)"2^'

Since E + 1/E > 2, and since we can choose 7 arbitrarily close to 1, this quantity is
^A^1)!!^)"2^ uniformly in a, when

^1|A| |<2, (3.17)

or when

0 < t < 1 and E is large enough. (3.18)

Stokes5 formula can now be applied and we obtain

{G(/.^;E+zO))=zy^.^e-<E^^-E^^)]^^(X,.Z^^^

(3.19)
where x e (e^0(£;)/2R2)A and ^, r]j are the corresponding Grassmann algebra generators.
(See (A.4) in appendix A.)

From (c) of Lemma 3.1, we notice that for every compact subset £ ' C £, there exists
co > 0, such that k(a) = fcg(cr) = a + re(cr) is holomorphic with r^(a) = 0(e) in some
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neighborhood of e^^ ̂ [0, +oo[, which is conic near infinity. Let m = |A|. Integrating out
the anticommutative variables, we get for E 6 £ ' ' .

{G{^^E-^-iO)) (3.20)

- i I x, .^det(^M)e-^(^A-^•a;-^Efc(a;—))d2r^
JezO(£;)/2R2m 71̂

= { (M-l)^det(^M)e-<(tA-^--^E^^))d2^,
./^(.;)/2R2.n /^ ^ '

where M(rc) = ^A — zdiag {k\Xj • xj)) — E. (See appendix A.6 for the integration by parts
leading to the second equality.) The corresponding normalized complex measure becomes:

— A^m^
^m(detM)e-^((tA-£;)a;•a;-^Efc(^^))—^. (3.21)

We now specify the domains where we shall work. For a,/3 > 0, we introduce the
neighborhood fl{E, a, /?) of the half line e^^^O, +oo[ asymptotically conic near infinity,
by

|Im (e-^^r)! < aRe (e-^^r) + (3. (3.22)

Then with £ ' , £ as above, £ ' connected and with a, (3 > 0 small enough, we have

fcM^r+rM.rM^O^in^^a,/?), (3.23)

where we have put ^(f^a,/?) = U£;^/^(£',a,/3).
After the rotation of variables,

^,=e^)/2^, (3.24)

the density (3.21) becomes,

~ ^-^ ~ rl^771'?/
|1 + ̂ £|"ldet (1 +?A + diag(r'(yj • ̂ .^e-lw^-y+^^+E^^))-^, (3.25)

where

'= (dW t3-26)
''('' = ̂ f^"^ f3-27'

so that

^(r) = 0(e) for r G ^(0, a, /?), (3.28)

where

^nT^- ^
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4. Elimination of ^A: The deforming vector field

We consider the density (3.25) together with (3.26-29). From now on we drop the
superscripts "^" and write "x" instead of 'y, so that the exponential in (3.25) can be
written as e-^+^l^^), where

Qt(x) = x ' x + tAx ' x + V^ r { x j ' X j ) . (4.1)

We look for a complex change of variables x = Xt(y), generated by a ^-dependent vector
field v = Vf(x) ' -^, holomorphic in t ^ x :

r\

-0-^t{y) = Vt(xt(y)), xo(y) = y , (4.2)

such that

Qt(xi(y)) = QoO/). (4.3)

Differentiating this equation with respect to t, we get

QtQt + V,Qt • Vt = 0. (4.4)

Letting m x m matrices act on C2771 in the natural way, we have

V^Qt = 2(1 + ^A + diag {r\Xj ' x,)))x. (4.5)

Note the appearence of the same matrix as in the determinant in (3.25).
Looking for v = Vf of the form v{x) = B(x)x where B is a (^-dependent) m x m

matrix, and using that QtQt(x) = Arc • x, (4.4) becomes

-(Arr, x) = 2((J + ^A + diag {r\Xj • Xj)))x, B(x)x}, (4.6)

and it suffices to find B(x) such that

-A = ̂ (x) o (I + tA + diag {r\Xj ' x,))) + (J + tA + diag (r'(^ • ̂ ))) o B(x).
(4.7)

We shall take B = Bt(xi • r c i , . . . , Xm ' ^m)- (Note that this gives more choice for B then
requiring ^(x) o (J + ^A + diag^'^- • xj))) = A/2.)

A possible choice would be B{x) = -j(^ + ^A + diag {r\Xj ' ^)))-1A, but it turns
out that the corresponding vector field is not sufficiently small in some components, and
that we cannot exclude that the corresponding flow will take us out of the region where
r is well-defined. A better vector field can be constructed by means of a certain cut-off
function, and before doing so, we specify in which region in (C2)7^, we want to work.

For a e]0,1[, b > 0; let V(a, b) C C2, . b e the neighborhood of R2, given by

(Im^)2 < a(Rexj)2 + 6, (4.8)

where (Imxj)2 = (Imxj^)2 + (Imxj^)2 and similarly we define (Rexj)2. From simple
estimates, we see that the map C2 3 xj ^ Xj ' xj e C, takes V(a, b) into 0(0, a,/?), if

^ 2 ^ ^ 2 ^ _ »
I — a I — a ^/a

and we can have a,f3 as small as we like by taking a, b, b / ^ / a sufficiently small.
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We assume that o, b, b/yd, a, f3 in (4.9) are small enough, so that

Te^ (0 ,Q , /3 )^ | l+ r | ^ J ( l+ |T | ) , | a rg( l+r) |<I , (4.10)

X, ey(a,6)=^ \ l + X j - X j \ ̂  -(l+|a;,|2). (4.11)
Zi

For Xj G V(a^b) we can define in a natural way {xj) = ^1 + xj ' xj, and combining
(4.10), (4.11), we see that for xj G V(a,b):

—<N) < 1(^)1 < <N), |arg(^.)| < ^. (4.12)

Here (\Xj\) = ̂ /l + |^j|2 is of the same order of magnitude as 1 + \xj\. It follows from
(4.12) that for Xj.Xk e V(a,b):

| {^)+<^) |> | ( |<^) |+ |{^) | ) . (4.13)

Put
^s)=——_ (4.14)

i/ i~ •'>
Xi,j(.x) = x({xj), (a;fc)), X j , X k £ V(ffl,&). (4.15)

Notice that ~)(j,k + Xfc.j ^ 1 sin^ ^at

i^^K^b^- (4•16)

by (4.13).
Let ^(rc) denote the m x m matrix (Xij^^Kij^m and let * denote the operation of

elementwise multiplication of m x m-matrices: (a * b)j^ = aj^bj^- We look for a solution
B{x) of (4.7) of the form

B(x)=x(x)^A{x), x^V^b^, (4.17)

with A(x) symmetric. Then *(^ * A) = *^ * A = A * ̂ , and (4.7) becomes

-A= (4.18)
(A * \) o (I + ̂ A + diag (r'(^ • ̂ -))) + (I + ̂ A + dmgr\Xj ' x^)) o (^ * A)

= P(^)(A) + t7Z(^)(A), (A = A(a;)),

where

P(rr)(A) :== (A * ̂ ) o D(x) + D(a;) o (^ * A), D(.r) := I + diag (r^- • ̂ )), (4.19)

7Z(^)(A) := (A * \) o A + A o (^ * A). (4.20)
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Write D = D{x) = dmg{dj(x)). On the level of matrix elements, V{x) is the map

o^ ̂  (dy^ + dkXk^j^k, (4.21)

and we contemplate the multiplier:

^Xj^k + dfcXfcj == 1 + Xj^r^Xj • ̂ •) + Xkjr^Xk ' xj,). (4.22)

Combining (3.23) (where the superscripts have been dropped), with the Cauchy inequality,
we see after a slight decrease of a, 6, a, /?, that

[r^- •^•)| ^ Ce, X j C V{a,b), (4.23)

where C == 07(4.23) depends on a, 6, a, /3 and on how much we decreased V(a, b). Using
this in (4.22) with (4.16), we get

\djX^k + dkXkj - 1| ^ 4G(4.23)e. (4.24)

Clearly (4.24) imples the invertibility of the map V{x) and we shall introduce weighted
£°° -norms on the m x m-matrices, for which (4.18) can be solved by a perturbation
argument. Let p : A x A - ^ R b e a symmetric function: p(j, k) = p{k^j), satisfying

\p(ji, h) - p{J2,k^}\ < <5(|ji - j2|i + \ki - W, (4.25)

for some 8 > 0, where [ • |i = | - |^i is the (1 norm in Z^. The smallest possible 6 will be
denoted by [|p[|Lip- If -B = (&j,fc) is an m x m-matrix, we put

||5||,oo ^maxe^'^lft^l. (4.26)
j?^

Then according to (4.16):

||x*A||^J|A*txll^<2||A||^, (4.27)

and (4.24) implies that

\\W\\c^^ ^ 1 + 4C7(4.23)e, ll^^)"1!!/:^,^) ^ T——————. (4.28)
p p p p 1 - 40(4.23)^

In order to estimate the norm of 7Z(rr), write

(AoB)^= ^ &,,,,
|j-^li=i

^a^)(AoB),,fe = ^ e^^-^^e^'^fr^^
b-^|i=i

and conclude that

\\^aB\\^<i2de^\\B\\,y^ (4.29)
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where we recall that d is the dimension of the lattice. Similarly,

\\B o A||^o < 2dewL^ ||B||^. (4.30)

Combining this with (4.27), we get

ll^)!!^-^)^^"^?. (4.31)

Write (4.18):

-A = P o (J + tV~1 o 7Z)(A). ' (4.32)

Assume from now on,

4C(4.23)6 < J, 32\t\de < 1, (4.33)

and choose p with

32|t|deMILiP ^ 1. (4.34)

Then IIP^II^oo^oo) < 2, ^tV^TV^c^00 ^°°) <. j» and (4.32) has a unique solution
A == A(rc), satisfying

||A||^<4||A||^. (4.35)

Naturally, we may replace A in (4.32), (4.35) by any symmetric matrix.
Below we sum up the discussion of the existence of a deforming vector field:

PROPOSITION 4.1.
(i) For a, /3 > 0, define 0(0, a, /3) C C as in (3.22) to be: Ifr^ 0(0, a, /3) C C, then

[Imr] < aRer+/3.

(ii) For a e]0,1[, b > 0, define V(a, b) C C2 as in (4.8) to be: IfXj € Y(a, 6) C C2,
then

(Imxj)2 ^ a(Re^•)2+&.

(iii) For a, f3, a, b satisfying (4.9), C2 3 ̂  ̂  Xj • ̂  G C, takes V{a, b} into 0(0, a, /3).
L^r y(a, 6) be sufficiently small, so that (4.10), (4.11) hold.

(iv) Assume
\r\x^x,}\^C^ ^ey(a,&),

[r(^ '^j)| < Ce^ X j E V(a,6).

fa^ in (3.28), (4.23) with the tilde dropped), where e satisfies (4.33).
Then there is a holomorphic vector field v == ^(rr)-^, defined for t E C, \t\ < I/{32 de),

x € V^a,??)771, which satisfies (4.4). v(x) is of the form v{x) = B{x)x = %{x) * A(rr)rc,
where ^(rc) is as defined in (4.14), (4.15) and A{x) is the unique symmetric m x m-matrix
satisfying (4.18). If p is such that

32|^ell/)IILiP < 1
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as in (4.34), then

l|A|k- < 4||A|Lo

as in (4.35).

In the remainder of this section, we shall derive various estimates on A and v under
the assumptions of Proposition 4.1. According to (4.33), (4.34), a possible choice of p in
(4.35) is p(j,k) = \j - fc|i. (4.35) then gives

K,^)| ̂ e1-^'1, (4.36)

which implies that

||ACr)||^^4e(^)', (4.37)

for every p G [l,oo].
We apply this with p = oo to the expression

v j ( x ) = ̂ ^A^Xj^kWxk, (4.38)
k

together with the estimate which follows from (4.16), (4.12):

IY.^J < ^yiM < 2|^)|(M) .4 ̂
î l̂ ̂  |(^)| +1^)| ^ |(^)|+|^)| (4<39)

< ̂  1 ( ^ )11 ( ^ )1 < ̂ ^,, V .

- v \ ( x - } \ + l^^l - ~V21^X^\\tL3/\ 1 IV^ f c / l

and conclude that

|^(rr)| < 2^1(^)1 Y^ \a^(x)\ ̂  8V/2e(^l)d|(^•)|. (4.40)
k e i/

This estimate implies that if 0 < a' < a, 0 < 6' < &, ^/ e l^a',?/)'71, then for |^| small
enough depending on a, 6, a', b ' , d, we have ^(?/) e V^b)^. It was in order to have
this property that we introduced the "cutoffs" ̂ j in (4.14), (4.15).

We now go on to estimate higher derivatives of A and v in a systematic way. The
estimates are to be summarized in Lemmas 4.2, 4.3. We use (4.18). We first estimate
derivatives of \.

As can be seen from the Cauchy inequalities, we have

l^,^^^),^))]^^^!^)!-^!^)!-^, (4.41)
where we use standard multi-index notation, so that

Q^ = %i9^ H = a! +^, a = (01,02) G N2, x, = (^,1,^2) G V(a,&).

For j e A, let 11̂  be the orthogonal projection onto the corresponding copy of C2 in
(C2)^ When differentiating the matrix \ == (x((^)^ (^))) with respect to Xj, we see
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that we get zeros except on the j'.th line or on the j'.th column. Hence (with constants
depending on a, a, b):

9^x=^^o{{x,}-\a\)+o({x,)-^)oIl^ . (4.42)
where the 0's refer to the ^°°-norms for matrices. For k 7^ j, a ̂  0 ̂  /3, we get

9^x = n, o o^-)-'"'^)^') ° life + life o o^,)-'0'^)^') ° n,. (4.43)
For k ^ j ^ i i- k, a ^ 0, f3 ^ 0, 7 ̂  0, we have <%,^<%X = 0.

For D(x) in (4.19), we can also use the Cauchy inequalities, and obtain after a slight
decrease of a, b in V(a,b):

^Z50r)=n,o0(e(^)-l°l)°n,, a ^ O , (4.44)

9^9^D{x) = 0, when j ̂  k, a ̂  0 ̂  (3. (4.45)

From (4.42)-(4.45), we get

9^x{x) o D{x}} = n, o O^,)-'"') + 0({x,}-^) o n,, a ̂  0. (4.46)

^,<(t^)o^))= (4.47)
n, o 0(^,)-1°1(^)-1^1) o life + I^ o 0«a;,)-l°l(^)-l^l) o n,, j i. fc, a + 0 ̂  /3,

^^(^(a-) ° £>(a;)) = 0, j + k ^ ̂  j, a ^ 0, (3 + 0, ^ ^ 0. (4.48)

We can now study the derivatives of T>(x) + VR(x) in (4.18). If C is an m x m-matrix,
let S(C) = C + tC. Then,

/D(x)(A)=S{{A*tx{x))oD{x))=S(A*(tx(x)oD(x)^ (4.49)

7Z(a;)(A)=<?((A*^(a;))oA). (4.50)

If Pi, Pi are symmetric weights, then for all symmetric A's in the three cases in
(4.46)-(4.48):

\\^-D){x)(A)\\^=0{l){x,}-^\\A\\^, if (4.51)
p2 ^ Pi on L(j) := ({j} x A) U (A x {j}),

||(^<25)(^)(A)||^ = ^(l)^,)-1'1'^)"^'!!^!!^, if (4.52)
P2 ^ Pi on {(j, k), {kj)} - LQ-) n £(fc),

(9:,<%P)(a-)(A) = 0. (4.53)yX j - Xk Xt
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We have the same estimates for the map A i-̂  A * ̂ (rr), and if we assume in addition
that ||pi ||Lip, ||p2||Lip < r, then

||(<^,%)Or)(A)||^ = (W^r^lAII^, i fa^O, and p^ < p, on £(j), (4.54)

\\(9^n)(x)(A)\\^ = O^K^r1'1^)-1^ 3^ k^a ̂  0 ̂  A (4.55)

ifp2 ^ Pi on£(j)nL(fc),

(%<%^))(A) - OJ / fc / ^ a / 0, /? ^ 0, 7 74 0. (4.56)

If we assume,

I^K = 0(1), (4.57)

then (4.51)-(4.53) are valid with P replaced by £ := V + t7Z, but now with the restriction
11 Pi 11 Lip, 11 P211 Lip < y. For a given such pi, the optimal choice of p-z in (4.51) (with V
replaced by £) is

p^(a) = min pi(6) + r|a - 6|i.
6€L(j)

Similarly, the optimal choice of p2 in (4.52) (with V replaced by £) is

^%)(pl(6)+rlffl-611) ^ ̂ e^fc^^^7''61-621^7'!62-0!1^^2^-

We shall now differentiate the equation (4.18), that we write as

£t{x){A) = A. (4.58)

Let r > 1 satisfy

32|^e r<l, (4.59)

so that according to (4.35):

ll̂ kr.-i ^4•2der (4.6o)
We use the remark after (4.35), on the differentiated equation, with ji,... JN pairwise
distinct and with aj ^ 0:

£t{x){9^ . . .9^A)= a linear combination of terms (4.61)

(^ W){0^ . . . Q^-< ... 0^ A) and of terms

(^^^(^(^•••^T^''1^^

with 0 < o4 ^ (^fc for the first kind of terms and with k ^ i, 0 < o^ < a^, 0 < a[<, a^
for the second kind.
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Using the observation after (4.57) and an induction argument based on (4.61), we get

\\9^...9^A\\^=0(er)(x^-^...{x^}-^, (4.62)

(where O^) comes from ||A||^oo = C^e^),) when j i , . . . , J N are distinct, a i , . . . , ON 7^ 0
and

p(^ ^/) = r min min (|(/^v} ~ bN\i (4.63)
7i-ePerm(ji,...,j^v) ^N^(^(.7^))

bieL('7r(ji))
boCd iag(AxA)

+ | & A T - & N - l | l + . . . + | & l -&o|l) .

Here Perm (ji, . . ̂ j^) denotes the group of permutations of ( j i , . . . ,j^v). For given TT
and &o^i5 • • • ^N as in (4.63), we write bk = (&fc , i , ^,2). so that

|(/^) - ̂ |l + |&N - ̂ V-l|l + . . . + |&i - bo|l =

1/-A - bN,l|l + |&N,1 - ̂ V-l,l|l + . . .

+ |&1,1 - 6o,l|l + |&0,1 - &l,2|l + 1^1,2 - ^2,2 1 + . . . + |&N-1,2 - &N,2|l + |&N,2 - ̂ |l-

Here for each k > 1, one of 6^,1^,2 is equal to Tr(j'fc) while the other component "is
free". 61^1 = &i^ is also free. Taking the infimum over the free components, we get

|/^ - ̂ UN)\I + \^UN) - ̂ 0'N-i)|i + • • • + |7r(ji) - ̂  i,

for some new permutation (which can be arbitrary, when varying TT and the choice of free
and unfree components). We then arrive at the simpler expression for p in (4.62):

yo(/^Z/) = r mm \^1 - J^N)\1 + |j7r(N) - J'7r(7V-l))|l + • • • + |j7r(l) - ̂ |l.
7rCPerm(l,... ,N)

(4.64)
We may say that p is r times the f1 distance from fi to v, when passing through the points
j i , . . . ,JTV in the shortest possible fashion. With this description of p it is quite obvious
that we can drop the assumption that j i , . . . ^ J N are distinct in (4.62).

We have proved:

LEMMA 4.2. - We make the assumptions of Proposition 4.1 and choose p as in (4.64)
with 321^^ < 1. Then

\\0^ ... 9^A\\^ = O^)^}-'-1'... (^)-^l.

We now go on to estimate v. It is easy to get the corresponding estimates for the matrix
B in (4.17). We start by sharpening (4.41) by using the middle bound in (4.16) and the
Cauchy inequalities, to get

Ix^l^mmfl,1^1), (4.65)
\ l ^ f c / 1 /

I^Q<^(a•)l=0(l)mi^(l,K^ )t)(a;,)-H(^)-l /31• (4.66)
V \\xk/\/
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Combining this with (4.62), (4.60), we get

% • • • 9^ b^(x) = 0^) min (l, l̂ l) e-^{x^-^ ... ̂ ,)-1-1, (4.67)
\ lY^/l /

with p given by (4.64). (We always have the option of replacing r by a smaller value
in (4.64), (4.67).)

Recall that we have already estimated the vector field v in (4.40). We now estimate the
derivatives. For |a| = 1, consider

9^{x) = Q^C^b^{x)x,) = b^(x) + ̂ 9^(b^(x))x,. (4.68)
^ ^

Here the first term can be estimated by means of (4.67) and we use (4.67) also for the
last sum in (4.68):

E Q^ ( { ) • (x}}x - ̂ T 0(0^ X J / . 1 ^-^1-7-fch+lfc-^h)
^fc^^WM/X - Z^^A6 ) / ^ \ /^ \ x^

^ ^ \x^l/ \;^fc/

=0(l)^yere-r^-fcll+lfc-^l)=0(l)-(^ere-rlJ-fell
(^)z^ (Xk)

where in the last estimate, we first assume a strictly positive lower bound on r. Writing
the Jacobian matrix ^- = (j^), where j^ is a 2 x 2-matrix, we obtain

C7*L v (JJL ]^ ' CfX f^

^=0(1)^-^1, ^

It follows that if ||p||Lip ^ Or, where (9 G [0,1[ is some fixed constant, then

ll^yo^o^)ll^^)=0(er), (4.70)

for 1 < p < oo. Here we write (x) = diag((a^)).
We next generalize (4.69) to higher derivatives. Let N > 1 be fixed and let

f c i , . . . , fc^v € A. With a slight abuse of notation, we have

N

^ • • ̂ ^ = E( î • • -^^^))^ + E .̂i • • -^ • • -^.w^/^ ^=1
(4.71)

where the hat indicates the absence of the corresponding factor. From (4.67), we get,

(9^ .. .9^^{x))x, = 0(1). (xj}——-e^-^), (4.72)
\xkl/ • • • ̂ kul

where

p(j, ̂  = ̂ ^p^ ^ \3 - k^(N)\i + \k^(N) - ̂ (N-I)\I +...+ |̂ (i) - ̂ |i.

(4.73)
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It follows that the first term of the RHS in (4.71) is

0(1)——<^——e^-p(^i,-,^ (4.74)
{^)...<^v)

where

p ( j ; f c i , . . . , A ; 7 v ) =
Or mm \j - k^N)\i + \k^N) - ^(TV-I)! + . • . + 1^(2) - k^\^.

TrGPerm (1,...,N)
(4.75)

Every term in the last sum in (4.71) is also of the form (4.74), so the same holds for
9xk ' • ' 9xk v j ' ^e did not assume f c i , . . . , fc^v to be distinct, and the resulting estimate
can therefore be given the apparently more general form, which we state as:

LEMMA 4.3. - We make the assumptions of Proposition 4.1 and choose p as in (4.75),
with 0 < 6 < 1 fixed. Assume also that 32111^ < 1. Then

Q^ ...Q^ Q^VJ = 0(1)-,——,^ , 3 .——e^-^15-^ (4.76)
^i xk^ ^ 3 v (rr^)!0'1!...^^)!0'^!

when l a i l , . . . , \ON\ > 1.
It follows that when lai],..., [a^l > 1:

Q^ .. . Q^divv = 0(l)(xk,)~^ ... (rr^-'^le'e-^1--^ (4.77)

where

p ( k ^ , . . . , k N ) = Or mm (|A^(TV) - A;^(JV-I)| + . . . + |^(2) - ̂ (i)]). (4.78)
Ti-GPerm (1,...,N)

Note that there is no reason to expect some nice (i.e uniform in A) estimates for divv
itself. We notice the special cases:

Q^divv = 0(l)(xk)~\ when |a| = 1, ' (4.79)

Q^O^divv = ̂ (l)^)-1^)-^-7^-^11, when |a| = |/3| = 1. (4.80)

5. Elimination of tA: The flow of the deforming vector field

In this section we shall study the flow of the vector field v = Vt constructed in the
preceding section. The constructions of that section extend to sufficiently small complex t,
and we shall work here with complex t satisfying \t\ < To < 2, with

32Tode7' < 1. (5.1)

Here r is some number > 1. (5.1) ensures that Proposition 4.1 is at our disposal. Further
we will work in a domain of the form V(a, ft)772 with V(a, b) as in Proposition 4.1, and as
we observed after (4.40), if 0 < a7 < a, 0 < b' < b, then there exists To > 0 depending
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only on a.b.a'.b'.d (but not on r in (5.1)), such that if y € V^a^b^, \t\ < To, then
xt{y) ^ V(a^ b^. Moreover, there is a constant C > 0 depending only on a, &, d, such that

l < K(^)).)I < ̂i
c - K%)1

(5.2)

In order to estimate the differential and higher order derivatives (w.r.t. y) of
x ( t ^ y ) = Xt{y), we shall give a slightly weakened variant of (4.76). Introduce

d0 ' ; fc i , . . . , fc^v)= min (b'-^(^)| + \k^N) - k^N-i)\ + . . .+ |A^(2) -A^(I)|),
TT e Perrn( 1,..., N )

(5.3)
so that / ? ( j ; fc i , . . . ,fejv) in (4.76) is of the form rd{j\ f c i , . . . .k^). Fix 0 e]0,l[. We
claim that

/^(V^n^...^^)\:r/
<cw

^ W
TI

^pi"pi (^
TN

ePN
PN

(5.4)

T, e(C2)A , i f^p i , . . . , ^G [1,+cx)], - = — + . . . 4 - — ,
PATP Pi

provided that the weights p, p i , . . . , PN '- A —> R satisfy

p{j) < Ord{j\ f c i , . . . , fc^) + pi(fci) + ... 4- PN^N), j, h,..., fc^ G A. (5.5)

Here (7^v is independent of the weights and the exponents and we recall the notations:
{x) = diag((rCy)), l / ( x ) = {x)~1. V^'y is the symmetric tensor of the N:ih order
derivatives of v. To see (5.4), write with Ty = (r^i , . . . , T^^), s == ( ^ i , . . . , 5yn), and with
a slight abuse of notation (since r^j, sj are 2-vectors and not scalars):

<^<V^TI r^)) "SS-'-S^^i •••^^^•)n^...TAr,^ =

J ki k^

V^ y 0^(l)erep(J)-rdo'^l'•••'^)-^l(fcl)-•••~^(^)((^•)^•e-^^
j'eAfeeA^

e^^^Ti^ e^^)r^^
(^fcl) '" (^y)

Here the exponent is

- (1 - 0 ) r d ( j ' , k ^ , . . . , k N ) - (<9r<7 ; f c i , . . . , fcjv) +/?i(A;i) + . . . + p N ( f c ^ v ) - p(j))
<-(l-0Mj;fci, . . . ,^).

It is easy to see that ̂ ^ e-^V^rM...^} ^ 0^(1), v = 0 , . . . , N , where ^^
denotes the sum over all the variables j, & i , . . . , k y ^ . . . , fc^v (with the exception of fc^) and
with the convention that fco = j. It follows that

(^<V^i »^)) = (^^(i)^7'!!^!!^ [|Ti|[^i.. . [|Tjv|[^^
for q,p\,... ,PN ^ [1, +00] with 1 == l/^ + l/j?i + . . . + I / P N , first in the case when
precisely one of the 9, p i , . . . ^PN is = 1 and the others = +00, then by interpolation in
the general case. The last estimate is equivalent to (5.4), since (^p is the dual space to ( p .
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If p i , . . . , pN are given, then the optimal choice of p in (5.5) is given by

?{j) = Rer,N{pi,. • . , P N ) U ) := (5.6)
inf Ord(j', f c i , . . . , fc^v) + Pi(h) + . . . + /^v^).

fc i , . . . , fc7vGA

PROPOSITION 5.1. - Assume that

^Pj < 0r for every K C { ! , . . . , N}. (5.7)
^ Lip

Then R O ^ N ^ P I , ' . • ,^v) = Pi + . • • + PN.

Proof. - It suffices to prove that Rer.N^Pi-, • • • ; P N ) > Pi + ' • • + PN^ since the opposite
inequality is obvious. We have the proposition in the case N = 1. Assume we have proved
the proposition with N replaced by N — 1, for some N > 2. Let TT G Perm (1 ,2 , . . . , N).
Then if 7r(N - 1) = v, 7r{N) = ^

Or(\j - fc^(i)| + |A^(I) - fc^(2)| + . . . + |^(TV_I) - k^N)\) + pi(fci) + . . . + ?N{kN)

> Or(\j - fc^(i)| + . . . + \k^N-2} - ̂ (N-I)I) + ^ Pj(kj) + (p^ + P^}{k^.
jV{^}

Here { 7 r ( l ) , . . . , 7r(7V — 1)} = { 1 , . . . , jS , . . . , TV}, so the last expression is

> Re^N-i(pi,'",Pi.-^ ^,...,^,...,PN)O') > (pi + •••+PN)O')

D
Now consider (4.2) and differentiate once w.r.t. y e ^(a',^')'71:

r\

^(V^,y),n) = (V^(a;(^y)),<Vya;(*,i/),Ti))
(V,/a;(0,y),Ti) =TI.

(5.8)

Here TI £ (C^ is independent of t. If ||pi||L;p ^ ^^, then we get from this (5.2), (5.4)
and Proposition 5.1, that for p G [l,oo]

<9| | 1 (V^,y),Ti) ^0(l)e'- —(V^,y),Ti) .
{y}pP

" P i
(P
-PI

(5.9)

Here, we also used that if t ^ z(t) G B is a C^-curve in a Banach space B, then
t \—> \\z{t)\\B is Lipschitz and the a.e. defined derivative satisfies

^\W\\B <.
dz(t)

dt

Also recall that for Lipschitz functions, we have

m - fw = f l^)^-
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Combining the differential inequality (5.9) and the initial condition in (5.8), we get

——^^y)^)\ < e°™ \\——r, (5.10)\ v y ^ ^ ^ y ) ^
(y}(P" p i {IP"PI

This can be reformulated as

1 ^ 9 x ( ^ y )
(y) 9y (y) < e^M).

r ( ( > p fP \^\^p-\ ^pi /
(5.11)

(Compare with (4.70).)
Considering also (5.8) with initial condition at some fixed t instead of at t = 0, we get

an estimate for the inverse of the differential in the same way:

(^T^w - HA^,^) < e0^!*!).

Differentiating (5.8) TV - 1 times, we get for N > 2:

(5.12)

^(V^a;(^),Ti®...®T7v)

-((^.Vt)(x(t, y)), (V^, y), Ti 0 ... ® rjv)) =

a linear combination of terms of the type
{{^Vt)(x(t,y)), (V^rr, (g) r,) 0 ... ® (V^a;, 0 r^)},

keKi keKL
with L ̂  2, Ki U ... U KL = {1 , . . . , N}, K^ n K^ = 0 for v ̂  ^ K, ̂  0.

The initial condition is now:

(V,,a;(0, y), r,) = T,, V^a;(0, y) = 0 for M ^ 2.

(5.13)

(5.14)

Let p i , . . . , p N : A —r R be weights satisfying (5.7). Using (5.4), Proposition 5.1, (5.13),
we get by induction over N:

N

,-,{V^a^,y),-n®...®Tjv)
(P

P I + - - - + P A T
^^Mll 7^ - (5-15)1 n \y/ ii^

for TV > 2 and for weights pi,...,^ : A -^ R satisfying (5.7) and for exponents
P I , . . . , P N , P ^ [l,oo] satisfying

1 - A. _L
P Pi ' " P N '

(5.16)

The constant CN in (5.15) only depends on 0 in (5.7) and not on the choice of the
p i , . . . , p N and pi , . . . , p N .
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6. Elimination of tA: The end

We start with some formal considerations about how to transform integrals, to be
justified in each case by convenient choices of contours along which the integrands decay
fast enough near infinity. All functions are assumed to be holomorphic in x and sufficiently
smooth in t where t varies in some interval. (The case of complex t with holomorphic
dependence on t works the same way.) Let A be some parameter ^ 0 and let Vf he a
(holomorphic) vector field such that

^ + VfW - ^div (^) + ̂  = 0, (6.1)

where T'( is a remainder and ^ a phase.
Then

^ t Mx)e-^^dx = / (°^+ rtft + Vt{ft(x))} e-^^dx, (6.2)^/^-"^-/(f

where we used an integration by parts in the next to the last integral. We conclude that
the integral f /t(a;)e-A<^a^drc is independent of t, if

tt+^(/0+rj,=0. (6.3)

Let t r-^ Xf{y) be an integral curve of Vt\ 9tXf{y) = Vt(xt(y)). Writing u(t) = ft(xt(y)\
(6.3) amounts to

—u{t) + rt(xt{y))u(t) =0,
at

so
uW^uWe-^^^8.

In other words, the solutions of (6.3) (at least locally) are of the form ft{x\ with

ft(xt(y))=fo{y)e-^r'(x'(y))ds. (6.4)

The way we have set up things, ft is given for some t and we look for fo, so we
rewrite (6.4):

Uy)=e^T'(x'(v))dsf,{x,{y)\ (6.5)

leading to the identity,

f ft^e-^^dxt = y/,(^(^))6-^o(1/)+Xtrs^^dsd^ (6.6)

Let
Mt(x) := 1 + ̂ A + dia,gr\Xj ' x j ) ,

which first appeared in (3.25). Note that in V{a, fc)771, det Mf / 0. logdet Mf is therefore
holomorphic. We apply (6.6) with (f)t{x) == Qt(x) — (I/A) log det Mf, where Qt is as in
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(4.1) and A == |1 + iE\. Let ^ be the vector field constructed in sect. 4. Let f(x) be a
holomorphic function on V{a, b)^ of at most polynomial growth at infinity. We also recall
that t\ < To, with To so small that Xt{y) G V^a.V)^ when y G y(a /,6 /)m, for some
fixed a! ,V with 0 < a' < a, 0 < V < 6.

If a, b sire not too large, e""^^ will decay exponentially when x\ -^ oo, re G V(a, ̂
and by contour deformation (based on Stokes' formula) we first see that

[ f(x)e-x^dx= I f^e-^^dx (6.7)
•AR-'̂  ^((R2)^

= t /(^(2/))6-wo^)+^^^^^)ds)fd^^^d2/
.AR^ \ dy )

where ^((R2)^ denotes the image of (R^ under the flow ^. Using now (f)s{x) =
Qs{x} - (l/A)logdetMg and the fact that

^=^+^.VQ,=0,

(which is just (4.4),) we obtain that

/ f^e-^^dx^ ( /(^(^)e-^o^)+Xt(sdivvs)^^)dsd2/, (6.8)
^(R2)A J(R2)A

where
sdivy : = diyv — tr.M,

M : = A o M~1 + 2diag (r'\Xj ' Xj)xj ' Vj) o M~\
and where f(xt{y)) is holomorphic of at most polynomial growth in l^a',?/)^ while
JQ (sdiv Vs)(xs{y))ds is holomorphic and bounded in the same set. Formula (6.8) represents
the final elimination of tA from the exponent. Unfortunately this does not mean that we
have decoupled the various Xj'-variables in (3.25). Such couplings persist in the determinant
and have appeared in the integral in the exponent in (6.8).

As a preparation for the final decoupling in the next section, we estimate derivatives
in the transformed measure (3.25):

^ ^ ^m^-A0o(2/)+J^(sdiv^)(^(^))d^^

=\m]^(l+r\y,•y,))e~x^y3'y3^r{y3'y3^^sdlvvs{xsw^^ (6.9)
J / v 7r /

We first make a (separate) change of variables in each yj. For every j, let

v'-^^ <6-10'
in C2. Since r(0) = 0, r(r) = 0{e)\T\, the above change of variables is well defined for
6 small enough and we have ^ G Vj{a,b), if ̂  G Vj{a',V). It is easy to check that the
Jacobian of the above change of variables is precisely

II^^-^-))"1- (6.11)
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We therefore obtain in the new coordinates:

pQ) = ^m^-A^^^+^sdiv^(^(^)))d.JJ /"^V (6.12)

3 ' /

As in the proof of (5.4) and Proposition 5.1, we see from (4.77), that if the weights
/?i, ..,pN on A satify the condition (5.7) and 0 = ^i+- • •+^v. 1 = l/J)l+• • -+I/PN. then

N

(VJVdiv^,Tl0..0T^)=^(l)e r^|[^)- lT,||^, (6.13)

(Here we first treat the case when one of the p/s is 1 and the others +00, and then
use interpolation.)

Similarly, we obtain for the same system of weights:

N 1 1
(V^trA^n 0 .. 0 TN) = ON(€) n IN'S-II^:' 1 = - + •• + -^ (6tl4)

where we also used the fact that V^M is bounded for the same weights. Define Xt(y) :=
Xt{y{y)). Using (6.10) Xt satisfies similar estimates as ̂ . Using the analogue of (5.15) for
ft, we can estimate V^sdh^z^t^)). It suffices to write <VNsdiv7;t(^(^)),tl(g)..0tN)
as a linear combination of expressions

{(V^div^) oxt, (V^Xt, 0 Tk) 0 .. 0 (V^^^i, 0 Tfc),
k^Ki keKM

with ̂  7^ 0, ̂  n ̂  = 0 for ^ ^ /^, K^ U .. U XM = {1, ..,^}. It follows that if
p ^ , . . , p N satisfy (5.7), then

N

(V^sdiv^^Ti 0 .. 0r^) = CMiKe- + c) J] II^TS-IL^ (6-15)
i PJ

1 <pj < oo, ! = — + . . + —, P I ^ ^ P N as in (5.7).
Pi PN

This implies,

TV

/V^ f f sdiv^(^(^))d5Vn 0 .. 0 r^\ = ©^(l)^ + e)\t\ J] ||<^-S||^.
\ Vo / / i PJ

(6.16)
with p^, pj as in (6.15).

Let

Ut(y) = sdivvt{xt{y{y))),

Rt{y)= f^y)^. (6.17)
Jo
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Summing up our estimates, the "measure" p in (6.9), can be written as

p(x) = C^e-^'^^ ^^d27^, x G V(a\ 6')^ (6.18)

where % = 7?^(a;) is holomorphic in x and satisfies for every N > 1:

<V^7^^),Tl0..0T^=0^(l)^^^^||^)-lT,||^ (6.19)

for all TJ € (C2)A, pj € [l,oo], with 1 = 1/pi -h .. + I/PN, and pi,.., PAT : A -> R,
satisfying (5.7), for some fixed 0 G]0,1[. Here 0^(1) is uniformly bounded not only w.r.t.
Tp but also w.r.t. pj, pj (and A).

7. The final decoupling

Let Rt(x) be the function defined in (6.17), and put 6 = ^(er + 6)^ where we assume
that r >_ 1, A > 1. We assume that t is such that \t\6 is sufficiently small. Put

( l ) t { x ) = x ' x + R t ( x ) . (7.1)

We shall work in tubes around (R^ of the form

W^RY+^oc^T), (7.2)

where B^oo(0,T) denotes the open ball of radius T in (R^ for the i°° norm:
IHI^° = sup^J^-l.

In view of (6.1), (6.6), we look for a vector field v = Vt in ^(T), such that

^ + ̂ ) - ̂ div (^) - ̂ , = 0, (7.3)

where Et is a constant. We look for Vf of the form ^ == V^i for some holomorphic
function Uf on f2(r), so that (7.3) becomes:

-A^ + AV^ . ̂ ^ - ̂  = -\°^ = -\nt{x\ (7.4)

where 7^(a;) is as defined in (6.17). Taking the gradient, we get

-A(V^) + AV^ • ^-(V^) + A^(^)(V^) = -AV7Z,(.r). (7.5)
c^a;

The LHS is P(V^), where P = -A + ^(rr, ̂ ) + V(a;) is of the form (C.29) in appendix
C, with

.(.,^)=AV^.^=A(2..^+V^).^), (7.6)

V(x)=\^(x)=\{2I+R"(x)). (7.7)

In the following we shall work with some fixed T > Q, and write fl = ^(T). Using
appendix C, we have the following estimates for the solution to (7.4).
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PROPOSITION 7.1. - Fix 6 e]0,1[, and let t be such that \t\6 =_^(e + e") be sufficiently
small. Then (7.4) has a solution u = Ut, with Vu G C^W n HOL Moreover, for
N G {1,2 , . . .} there exists CN > 0, such that

ll^lk^o^CN6- ^8)

for all weights p i , . . . , PN '' A —^ R satisfying (5.7), p^ + p^ + • • • + PN = 0 and all
exponents p i , . . . , p N ^ [1. +00] satisfying 1 = ^- + . . . + ̂ .

Remark. - Those readers who wish to delay reading the proof of the proposition, could
go directly to the paragraph after (7.33).

PROOF OF PROPOSITION 4.1. - To verify the above proposition, we first check that the
assumptions of Theorem C.8 are satisfied, when 8 is small enough:

Let x G 90, so that \xj\ < T with equality for some j = jo. The jo:± component of v is

A(2^, + V^R(x)) = \(2x,, + 0{8)).

For the corresponding real vector field Z^R, we therefore have ^pd^ol) > ° at the

point under consideration. The outgoing condition (C.32) follows. The conditions (C.25)
and (C.31) are clearly fulfilled, and the vector field v therefore satisfies all the required
conditions.

Let B = ^° with ||^||Lip < Or. Then as a special case of (6.15):

^(x^c^^^OW. (7.9)

We then get (C.33) with <(^" there equal to A:

I frreH^GB^eB* and Re (u\v) = IMIalMlB*, (7.10)
then Re{V{x)u\v) > \\\U\\B\\V\\B^

It follows that if v G CbW H Hol(O), then there exists u G E (the space defined in
Theorem C.8) such that

Q

-An + AV^ • ̂ u + \^{x)u = v, (7.11)
ox

and
sup IHI^oo < — sup IHI^oo. (7.12)

Q p A 'Q

We also recall from the proof of Theorem C.8, that if v e 5(0) H Hoi, then u is in
the same space.

We shall use next the maximum principle as in appendix C, to estimate the derivatives
of u, when u, v G <S(H) n Hoi. To simplify the notations, we divide (7.11) by A and then
take the scalar product with the constant vector r:

-^A<^r) + ((V^V^r) + ((V^^r) = (?r). (7.13)
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Now differentiate (7.13) in the constant direction s, using the identity

5i(9^) o .. . o Sk{Qx)u = (V^, 5i 0 ... 0 S k ) , (7.14)

when 5 i , . . . , Sk are constant directions:

- ^A((VH, 5), r) 4- («V2^ 5), V^, r) + ((Vn, (V2^ s))^ r) + ((V2^ (Vn, s})^ r)

=^«V^5),T)-«(V3^5)^),T).

The second and third terms of the LHS can be rewritten, and we get,
1 ^

-^A«Vu,s),T)+V^•^{<Vu,s),T)+((V2^s),< t(Vu),T))+ (7.15)

((V^V^^T) - ̂ «V^),T) - {{(^s},u},r).

Let B = ^° with ||/?||Lip < 0r, so that (7.10) holds with V = AV2^. Let a;o € H be
a point where ||Vu||̂ , ̂  (= H^Vu)!!^^. ^.)) is maximal =: m, and choose s e B,
T e. B* normalized, such that

((Vn(a;o), s}, r) = (s, ('V^o), r)) = m
= |KV^O),S)HB||T||B. = llsllBllfVu^o)^))!^,

so that 0 9 a; i-̂  Re«VM(a;),T),s) attains its maximum (m) at a;o. Hence the real part
of the first term in (7.15) is > 0 at x = a-o and the same holds for the second term by
the outgoing condition. In view of (7.10), the real parts of the third and the fourth terms
in (7.15) at x = a-o, are both > m, so we end up with the estimate

2sUp|[V^||£(B,B) ^ ^SUp||Vv||£(B,B) +SUp||V3^[|^^^.||u||£;, (7.16)
"" s& o

where E ^ (C^ is any Banach space with (C^ as the underlying vector space and
IIV^II^^B*)* denotes the norm of V3^ as a trilinear form on B x E x B*.

Notice that u is the gradient of a holomorphic function in 0 iff Vu is symmetric. The
same holds for v of course, and we now rewrite (7.15) in the form:

--AVz6+ (V( / ) •—)(V^)+V^oV 2 ^+V 2 ^oV^+(V 3 ^^} = ̂ v. (7.17)
A \^ OX j \

Here (V3^) is symmetric, so if we transpose the last equation and then take the
difference between (7.17) and its transpose, we get

1 ^
-^A(Vu - *Vu) + V^> • ^-(Vu - *VM) + (Vu - *Vu) o V^+ (7.18)

V2^ o (Vu - *Vu) = ^(Vv - 'Vu).
A
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The maximum principle (used after going back to an equation of the type (7.15)) shows that

2^11^-^11 < 1 sup || Vv- ̂ || (7.19)
Q /x fl

In particular, if v is a gradient, so that Vv - ^Vv = 0, then the same holds for u.
In this case, if u = V/, v = V^, we see that the LHS in (7.11) is the gradient of
-A/ + AV^i • -H^f and we get

r\

-A /+AV^ .—/ -^=^ (7.20)
ox

where Et is a constant.
We now want to estimate higher derivatives and we start from (7.20) with V/, Vg G

5(0) D Hol(O). Let « i , . . . , SN be constant directions, and apply 5i(9a;) o .. . o SN{9x)
to (7.20):

i î
-^A(si(^) o ... o sjy(W) + V<^) • ^(si(^) o ... o SN(W)+

JV ^____

^ V(s,(a^) • V(si(9,) o ... s,(^) o ... o SN{9^f)+
j=l

E vffn^^^^fn^^)^
JUK={l,...,N},Jn^=0,ttJ>2 \ \ J / / V^: /

= y5i((9a0 o . . . o s N { 9 ^ ) g ,

with the convention that Fl^5^^) = 1» when K = 9. This can also be written
r\

-AA^/, si ® ... 0 sjv) + V<^) • .(V^/, si ® ... 0 STY) (7.21)
AT

+ E^2^'s^' <VA^'sl 0
 • • • ̂  • • •

0

 SJV^ =
J=l

^V^si®...®^^)- ^ ((V1^/,^^),^^^,^^)).
JUK={l,...,N},JnK:Q,tJ>2 ke.K jeJ

Let p i , . , . , PN '. A —>• R satisfy (5.7), and put pn = ̂ ikeK Pk, when K c {1 , . . . , N} is
non-empty, and p® = 0. Let pi , . . . ,pjv G [1, +00] satisfy

1=^-+.. .+-3- . (7.22)
Pi PN

If AT C { 1 , . . . , N}, define p^ £ [l,+oo], by

-1- = V -'-. for A' ̂  0, p0 = +00. (7.23)
^ 6^

Let a;o € ^ be a point where

^IIV^)^ ^^.=:m, (7.24)
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is attained, and observe that IIV^a;)!! ,1 „„ (defined as after (7.16)) is also the
" " \ t p - ^ ' < y • • • W - p ^ )

norm of V^a;) as a multilinear map: ̂  x .. .^ ... x ̂  -^ ̂ ., where 9, is the
conjugate index to pj: ^ + ̂  = 1, so that ^ = P^ ^ ^y (When 7V== 1, we interpret

^ x ... ̂ ; . . . x ^N as C and our identification remains valid trivially.) The latter norm
will be denoted

II J ^ ''I/Y^I^ /^ ^ p p N • p q j \i-\tp^•••'-pj•••wl-p^^_p.)

Let Sj G ̂  be normalized vectors with

{^Nf{xo), sz 0 ... 0 57v ) = m. (7.25)

We notice here that (7.9), (7.10) remain valid, if we replace "oo" there by some arbitrary
p C [l,oo]. Since

m = Re (sj, (^Nf(xo), s^ 0 . . . s] . . . 0 S N ) )

=IM^II (V^o),^... ̂ ...0^)||^ , ^^

and ^!f^ is the dual of ̂ , it follows from the above mentioned extension of (7.10), that

Re ({V^^o), S j ) , (VNf(xo), 5i 0 .. . 5 ; - . . . 0 S N ) ) > m. (7.27)

(When N == 1, we use the convention: (V^/^), 5 i , . . . 5 ; . . . (g) 5^) = V/(a;).)
Taking the real part of (7.21) and putting x = XQ, we can apply the maximum principle

as before, and get

^P ll̂ ll̂ ...̂ ). ̂  isuEllv l̂l(^...^).+ (7-28)
3'E^' a;G^

E ^^(ll^^ll^ ,^^)llvl+^ll.(0 ^^))'
Ju^={l,.,N},Jn^=0,ttJ^2 «^ V ^^^ pfc p ^ej ^ ' -^/

where we also used that 1/pK + l/j?j == 1, so that (^fc)* = ff^p. If we also have
pi + ... + PN = 0, then a natural choice for p, to bound the infimum above, may be
p = p^^ since then —p = pj.

We return to the equation (7.4). Approximating %i by the functions e'^^^x) G
<?(n) H Hoi (0), we see that (7.4) has a solution u = Uf with V^ G C^U) H Hoi (0) and
such that the estimates we made for the equation (7.20), can be applied with g = -A%t
f = u.

Let p i , . . . , pN : A —^ R be a system of weights which satisfies (5.7) for some fixed
0 and assume,

Pi + . • . + PN = 0. (7.29)

Let j? i , . . . ,pN C [1, +oo] satisfy (7.22). We shall derive estimates for \/Nu, which depend
on 0 in (5.7), but not on the choice of pj and pj satisfying (5.7), (7.29) and (7.22). If
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0 / K C { ! , . . . , N}, then ^, k ^ K, -pK satisfy (5.7), (7.9) with N replaced by
1 + ^K, and if QK is the exponent conjugate to P K , then p^, k ^ K, q^ satisfy (7.21):
E y -L- + -]- = 1. Using this remark, we can make an "induction over N": Let m(N) be-"• Pk qK & » \ /
the infimum of all constants C = Cf such that

KV^TI (g)... 0 T^)| < C7||Ti||^ ... ||T^||^, (7.30)

for all TJ G C2, ̂  C [l,+oo] satisfying (7.22), ^ satisfying (5.7) (where 0 is fixed)
and (7.29).

In (7.28) we choose p as in the subsequent remark, and get

Ns^ 11^11 .̂..̂ )̂  (7-31)
S^IIVW7^11(^...^).+

E mO+WsupllV^II^ ^,^
jux={l,...,N},Jn^=0,jtJ^2 " Je>7 3

Now recall (6.19):

l^^ll^^...^^)* ^ ̂ ^(er + 6) = c^-

and that 6 = 0(1), by assumption. It follows from (7.1), that

IÎ L .̂..̂ ^ ̂(^®...®0t - "'
so

ll^^ll^.-^,^)^^-••^^•e.j^''^

From (7.31), we get with a new constant C N ' '

N-l
m(l\) <:UN\^ -\-V.m[z(N) < CN [ 6 + ̂  m(fc) , (7.32)

so with a new constant C^:

m(7V) < CNS. (7.33)

Hence the Proposition. D
We now establish that the second deforming vector field V^i depends holomorphically

on t for t such that \t\6 is sufficiently small.
Let Vf be a holomorphic function in (t^x), more precisely ^ e <?(0) D Hol(O) and is

holomorphic in t for t sufficiently small. Let 14 be the solution with V^i e <?(0) HHol (^)
of 1 ^

--^Ut + V^i • —Ut - Et= Vt''
A (73;

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



384 J. SJOSTRAND AND W.-M. WANG

Return to the equation for the gradient:

1 ^
—AVH( + V^ • -^-^Ut + V^tV-Ut = Vv(. (7.34)

Let us first show that Vu( depends continuously on tin a slightly smaller tube f2' = S1,(T'),
T < T:

1 )̂

-^A(V^, - VnJ + V^ • ^(Vut, - VutJ + V^t^Vu^ - VutJ (7.35)
r^

+(V<^ - V^J • ̂ V^ + (V2^, - V^JV^ = V^, - V^,.

Here the sup^/ || • ||^oc of the last two terms on the LHS and the RHS are 0(i^ - ti),
(where we do not require any uniformity w.r.t. the dimension,) and it follows that

sup || V^, - V^J|^ = 0(|^2 - ̂ i|).
^/

Dividing (7.35) by t^-t^ and letting t^ -»ti, we see that ^V^ exists in <S(n7) HHol (f^)
and that

-^A(^V..) + V^ . ̂ (^Vu<) + V^^Vu.) (7.36)

-^^ • ̂ ^ + ̂ 2wut = ̂ vt in "/-

These arguments also work, when we let t be complex while keeping S sufficiently
small, and (7.36) remains valid with ^ replaced by -k Hence -|=Vz^ = 0, x G ^/.
Letting f^' /' ?2, we conclude that V^i is holomorphic in (t,x) (G C x ^l) for t such
that |^| 8 is sufficiently small. The Cauchy inequalities w.r.t. t now allow us to take as
many t-derivatives as we like and all the estimates that we have obtained for ^7NUt
extend to (^V^.

Finally, if v e Q)(O) D Hoi, we approximate v narrowly by v^ G 5(0) D Hoi and we
see that the limiting solution of (7.41) depends holomorphically on t, and that all estimates
for VNUt are also valid for (j^V^.

In terms of the deforming vector field VIA = Vz^, (7.8) can be written,

HY^V^H p^ ̂ N.^ < CN^ N > 0, (7.37)<-pl^y•••^^/^^ ^p

when p z , . . . ,pN e [1, +cx)], ^ = ^- + ... + ̂ , /) = pi + ... + PN and p i , . . . , pN satisfy
(5.7). This is analogous to (5.4) (except that we have lost the gain in powers of {x), since
the Cauchy inequalities do not produce such a gain when working in a tube). The argument
leading to (5.15) now gives an analogous result for the (new) flow x(t,y) of the (new)
vector field Vut(x), for t such that 8 is sufficiently small.

\\^y) - 2/ll,oc <C,\t\8^ (7.38)
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1^^-jll <W, (7.39)
9y ^(^^)

when 1 <: p <: oo, ||p||Lip < ̂

ll^^^ll^^...^^)^^^!^ (7-40)
for ̂  >: 1 and pj, p, p j , p as in (7.37). We observe that by (7.38), if 0 < T ' < T, then
for t such that \t\8 > 0 small enough,

Xt=x(t^):^Tf)^W. (7.41)

We fix such a T ' .
The final decoupling can now be carried out: We recall that the RHS of (6.8) is of the form

/ g^e-^^dx, (7.42)/ g^e-^^dx,
J(R)A

where ̂  is givien by (7.1), and where g(x) = f(xf(x)), with Xi here denoting the earlier
v-flow, so that g is holomorphic and of at most polynomial growth in the tube ^(T). Using
Stokes5 formula, we replace (R^ in (7.42) by ^((R2)^, then a second application of
Stokes' formula gives us as in sect. 6, that the integral (7.42) is equal to

/ /~ / \ \ —\x-x— \ Esds _i/ g[Xt(x))e ^o dx.
7(R2)A

Here we also use that the vector field in Proposition 7.1 is holomorphic in t.
Using finally that J e-^^dx = Je^^^d^, (see (2.24) and also appendix B,) we

see that jj E^ds = 0. The RHS of (6.8) is then of the form

/ /{xiox^e-^dx. (7.43)
J(R2)A

8. Exponentially weighted estimates and end of the proof of Theorem 2.1.

We consider weighted estimates for A + V — E, where E 6 C. Let

d

^):=2^cosh%. (8.1)
i

We then have

||e(^Ae-^||^^)<^).

Writing
g(-)^(A + V - E)e~^11 = V - E + e^Ae-077, (8.2)

we observe that \v — E\ >_ \E\ — \v\oo everywhere on 7ld. Let 2d < \ < \E\. Assume
qW ^ A.
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Passing to the matrices, and using that every entry of a matrix is bounded by the norm
of the matrix in £(^2), we get from (8.2):

|(A + V - E}-\^ z.)| < _——1————e-^>\ (8.3)
\FJ\ — A — \V\oo

Define the convex set

WW={rJ^Ttd^ q^<\}.

We introduce the support function of W (A):

p\{x) = sup x • r], x G R^. (8.4)
r^eww

Then p\ is even, continuous, convex, positively homogeneous of degree 1, and p\(x) > 0
for x -^ 0. In other words, p\ is a norm on R^. Varying 77 e W(A) in (8.3), we get

|(A + V - E)-\^ v)\ < _——2————e-^-). (8.5)
1 ^ 1 — A — \V\oo

We now assume \E\ » d. In order to get a precise control on p\, we first consider
(A - E)-1 on ^(Z^), when E <E C and \E\ » 1. Let T - R/27rZ. The Fourier
transform T : ^(Z^) ^ L^T^; ̂ dQ given by:

^(0 - E e^n^)- (8-6)
j'ez^

is unitary and has the inverse,

^-YJ)=^/e-^)^. (8.7)

Conjugation by T shows that A is unitarily equivalent to the operator of multiplication
on L2(T^ by

d

j)(0:=2^cos^. (8.8)
i

Whenever convenient, we view p as a (2^)^ -periodic function on R^ and it will be
natural to consider p also as a function on Cd:

d d

p(C) = 2 E cos Cj = 2 Y^(cos ̂  cosh ^- - i sin ̂  sinh rjj), (8.9)
i i

with C = ^ + %77 e C^.
We are interested in points where j?(C) - E ^ 0. Our analysis will be based on a certain

approximate translation invariance. Observe that

coshrjj = ̂ \ + O(e-l^l), sinh% = j(sgn^)e'^l + O(e-^l), (8.10)

4e SERIE - TOME 32 - 1999 - N° 3



SUPERSYMMETRIC MEASURES AND MAXIMUM PRINCIPLES 387

so that
d

p(C) = ̂  e-^^^e1^1 + 0(1). (8.11)
i

Here sgnrjj == +1, when r]j > 0, and = —1, when ^ < 0. (The choice for r]j = 0 is
unimportant.) Put

s(r]} = (sgn7yi,. . . ,sgn^). (8.12)

Then uniformly for t G R:

P(^ + ts(r]) + ̂ ) = e-^ + ̂ ) + 0(1). (8.13)

For E e C \ [-2d, 2d], let 0(E) == R^ + iW(E) be the largest connected open tube (i.e.
set of the form R^ + iW) containing R^, where p(C) - E / 0. Bochner's tube theorem
implies that IV(I?) is convex.

When E > 2d, this coincides with the earlier definition:

f d 1
W(E) = ̂  G R^; 2^ cosh ̂  < £ >. (8.14)

I i J

This is so because if 77 belongs to the RHS of (8.14), then for every ^ G R^:

d d

b(C) I < 2 V^ I cos ̂  cosh rjj — i sin ̂  sinh rfj \ < 2 ^ ^ cosh r]j < E^
i i

so j9(C) 7^ £ and hence T] G TV(£'). On the other hand, if 2^fcosh^ = E, then
p(%77) = £, so 77 ^ W^(£1), and (8.14) follows. As in (8.4), we introduce the support
function of W(E):

pE^x) = sup x ' 77, x G R^.
?7€lV(^)

If 9(77) = 2^^ cosh 77^-, as before, we notice, from (8.10), that

1|V^)||^=^)+0(1). (8.15)

It follows that for E^ > E^ » 2d:

W{E^) C W(E^) C W{E^) +Bf 0,0(1) log E2). (8.16)
\ ^i/

(The first inclusion holds more generally for E ^ > _ E ^ > d . )
(8.16) is all we need to have a precise control on p\ in (8.5). However for completeness

we now go on to consider the case of complex E. We first recall the estimate obtained
in the proof of (8.14):

h(C)| < E, when E > d, C <E R^ + iW(E). (8.17)
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Consider now the case of general E e C \ [-2d,2d]. It follows from (8.17) that
b(C)| < \E\ f o r C G R^+Wd^l) , so

W(\E\) C W(E). (8.18)

In the other direction, we have:

PROPOSITION 8.1. - There exists a constant C > 0, such that

b«)| < \E\ + C for all C C R^ + W(£). (8.19)

/n particular,

W{E)CW(\E\+C). (8.20)

Prw/. - Let C = ^ + ̂  0 R^ + %W(E) and assume that [p(C)| = R » 1. Consider
the closed curve

7 : R/27TZ 3t^p^+ its{rj) + ̂ ) = e-^(C) + 0(1),

which winds once around 0 in the negative direction at a distance > R - C from 0. Since
the set of values of P^j^.^^ ls ^ply connected and contains the image of 7, it also
has to contain the closed disc D(0,R - C). By definition of W{E), E cannot belong to
p^ + iW{E)\ so \E\> R- C, and \p(Q\ < \E\ + G, as claimed. D

We now go back to estimate (8.5). We assume that \E\ » 2d and that 1 + |-y|oo <: ^\E\.
Choose A = \E\ - \v\^ - 1. (8.16) gives

W(\) C W[\E\) C W(\) + B fo, 0(1) log -_——E———-) .
\ 1-^1 - Moo - I/

Here
1^1 - n g f i + H ^

|^|-(|t,|^+i) "^ |̂ | ^'
SO

W(\) C W(\E\) C W{\) + B fo, 0(1)1+M^).
\ 1^1 7

Consequently,

PxW < p^(x) < p^x) + 0(1) ̂ ^M.
1^1

Substitution into (8.5) gives on Z^ x Z^:

|(A + V - £;)-l(/., ̂ )| < e-pl^-^+^l)l±^-< (8.21)

We shall derive similar estimates for (AA + V - E)~1, when A is a discrete torus or a
subset of Z^. As a preparation, we first establish that,

(logA - log2d)[^i < p^x) < (logA)|:r|^ (8.22)

when A » 1. Recall that p\ is the support function of the set W{\) in R^, defined
^ 2^fcosh^ < A, so if 77 e W(A), we have el^l < A for every j, or equivalently,
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r] G B^oo(0,logA). In the other direction we notice that if \r]j\ < log A - log(2c?), then
2 cosh % <: 2el^l <, ^, so 2^fcosh^ <, X and hence rj G W{\). We have shown that

B^ (0, log A - log 2d) C W{\) C B^o(0,logA). (8.23)

(8.22) now follows, since the support function of B^oo(0,l) is \x\^i.
Let A = (Z/TVZ)^, N » 1 be a discrete torus, and consider AA + ̂  - -E, where

V = diag(z^), j € A. We also view v as an ^Z^-periodic function on Z^ in the natural
way. If TT : Z^ —> A is the natural projection, and y € Z^ some point in the pre-image of ^,

(AA+V-I?)-1^)^ ^ (A+V-E)-1^). (8.24)
/TCTT-1^)

Let
dx(p.^)=^ min P\{^ - ̂ }

/-teTr-1^),^?!—1^)

be the distance on A, induced by the norm p\. Observe that in (8.21) we can introduce an
arbitrarily small (but fixed) pref actor in the RHS, by modifying the choice of A by 0(1),
which increases the 0(1) in the exponent. Using also (8.22), we see that (8.24) converges
as a geometric series and that only a fixed finite number of terms may contribute to the
leading behaviour. It follows that

|(AA + V - E)-\^ v}\ < e-^^^^1)1^^), (8.25)

where p denotes the Euclidean distance on A.
Consider next the case when A is a subset of Z^. Let V •==- diag(^), v G i°° and let

AA be the discrete Laplacian on A. The observation after (8.1) extends:

||e^AAe-^||^,,2)<^),

and the argument there shows that

||e^(AA + V - E^e-^c^^ < ^——^————, (8.26)
\Jb\ — A — \V\oo

when rj e W(\), A + Hoo < E, and we get the analogue of (8.20),

KAA+y-^)-1^)! < .-——1————e-^-^ (8.27)
\^\ — A — \V\oo

and for |£'[, \v\oo as in (8.21):

|(A^ + V - E}-\^ v)\ < e^i^-^^1)1^!^!. (8.28)

To establish Theorem 2.1, it only remains to combine the above estimates with the
changes of variables in the preceding sections. The starting point is the identity (3.20),
where

M(x ' x) == tA — %diag (k\Xj ' xj)) — E^
k \ X j ' X j ) = l - { - 0 ( e ) ,
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so that M = t/\ - (E + i) + diag(0(6)). The subsequent changes of variables lead to
(7.43) (with the A there equal to |1 + iE\\ and we get

((^A + v - (E + zo))-1^ „)) = [f^^xt o x^e-^^yy rT fil±^d2^,
J ,6A^ 7r ^

(8.29)
where

f(x)=M-l(x)(^^
= (tA - (E + z) + diag 0(e))-1^ v)^.^i^^Y^,

The modulus of this expression can be bounded by

1 -^| g+, i( /x^)+C>(l)———|^-^|

r ' A '
and since we integrate / against a positive normalized measure in (8.29), we get the
conclusion in the theorem.

Appendix A. The supersymmetric formalism

We give here a brief account of an algebraic formalism, which amongst its many virtues
is convenient for expressing the inverse of a matrix. For more details, see e.g. [Be,V]. For
the usage of supersymmetry in the study of random Schrodinger operators, see e.g. [K,KS].

1. Terminologies and notations

All algebras considered here are Zs -graded associative algebras, i.e. can be written

A = Ao C Ai

with
AiAj C Ai^-j for i j e Za.

The grading of a homogeneous element a is called parity and is denoted by a. The
supercommutator of two homogeneous elements of an associative, graded algebra is
defined as

[a, b] ̂ ^-(-l)^.

If the commutator is equal to zero, then the elements commute. If all the commutators are
equal to zero, then the algebra is commutative.

An algebra homomorphism from A to A is even if it preserves the grading, and odd
if it exchanges even and odd elements.
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2. Differential calculus on R/^ and C^

Functions of odd variables
Polynomials are the simplest functions of ordinary analysis. A polynomial algebra with n

generators is generated by n (even) commuting variables x" (a = 1, . . . , n), and is written
R[a;i,. . . , Xn}. (With the above convention, even means that [ x 0 ' , x^ = xaxb - xbxa = 0.)

The Grassmann algebra with m generators is analogously generated by m odd
commuting variables ̂  (^ = 1,... ,m) which satisfy the relations

[^^]=^+^=0.

It is denoted A[^i , . . . ^rn}- It is natural to consider its elements to be analogues of
polynomials, and in fact of all C°°-functions of even variables. Indeed, in the even case all
functions can be obtained from polynomials by taking limits, but the Grassmann algebra
is complete in itself. We will think of the Grassmann algebra A[$ i , . . . , <^n] as the algebra
of "C°° -functions of m anti-commuting variables $1,.. . ,$m". The general form of such
a function of odd variables is

f^) = /o + ̂ f, + ̂ ^f^ + • • • + ̂  • • • ̂ m^...^, (A.I)

where all repeated indices are summed over and the coefficients f^...^ are real and
antisymmetric in ^r-^m- The parity of the function depends on the number of ^
factors. The space of functions of variables ^, [i = 1, • • • ,m is a Z^ -algebra; it has
dimension 2^ with even and odd parts both having dimension 2m-l. We define /o = /(O)
to be the value of the function at zero.

The algebra C^R'I^)
We will now assume that we consider expressions of the type (A.I) with the coefficients

being C°°-functions of n variables a;i , . . . ,^n. The set of all such "functions" is called
^oo^Rn|m^ p^ element of (^(R/11771) is called a smooth (super)-function of the variables
x i , . . . , Xn,^,..., $m. We will write

/(^O = /(^•••^n^l,..-^m)

= MX) + ̂ h{x) + . • •^fm(x) + .. .̂  .. .^^,..^(^), (A.2)

where the variables xl,.,.,xn are the even variables, and the variables $\... ̂ m are
the odd variables. The map fo(x) = f(x,0) defined on R71 is called the scalar function
associated to /. We have :

C^R"17") = C^R") 0 A[^ i , . . . , ̂ ].

C^R^) is itself a Z2-graded algebra: C^R"^) =COO(Rnlm)oOCOO(Rnlm)l. Elements
of (^(R^^o are called even functions, and elements of C^R^)! are called odd
functions.

Examples
1. m = 0. Then C^R"10) is the ordinary C^R").
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2. n = 0. Then C^R0!771) is the usual Grassmann algebra A[^i , . . . ,^].
3. n = m. Then (^(R71!71) is the algebra of differential forms on R".
In this paper, we are mainly interested in the case n -==- m. Hence all the algebraic

operations that we describe below can be seen as (perhaps) a more compact way of writing
the standard operations on differential forms.

Non-linear transformations

Assume that we consider two algebras (^(R^) and (^(R^l^), where the variables
for the first algebra are denoted by a;0,^, and the variables for the second algebra are
denoted by t^r". Suppose we are given f(x^) e C^R^) and n even functions in
C^n'lm') : x" and m odd functions ^:

^=^r),

^=^,T), (A.3)

We can then define f(xl^r)^..^xn^r)^l^r^...^rn^r)) by substitution as
follows. If / = f(x, ̂ ) is a polynomial (i.e. all the coefficients are polynomials in rr), then
the result of substitution (A.3) is obvious. For an arbitrary smooth function the result of
the substitution is determined by Taylor's formula. The even function ^(^r) is separated
into a numerical part ^(^0) and a nilpotent supplement /^(^r) = xa(t,T) - ̂ (^,0).
For each coefficient /^...^, we can expand

f^...^(x(t,r)) = f^...^(x(t,0) +x(t,r) - x(t,0))

= f^...^ (x(t^ 0)) + df^ ...̂  {x{t, 0))(^, r) - x(t, 0))
+ • • • •

Because of nilpotency the above Taylor series contains, in fact, only a finite number of
terms.

Example. sin{t + -T^r2) = smt + T^r2 cost.

In this fashion, we define a change of variables. The use of Taylor's formula to extend
a function from numerical values to all even elements of a Grassmann algebra is called
Grassmann analytic continuation.

From the rules for manipulating power series it follows that substitution (A.3) possesses
the natural property "associativity": the result of two consecutive substitutions does not
depend on the "arrangement of brackets". Thus one can deal with non-linear transformations
of even and odd variables just as with changes of variables in classical analysis.

Differentiation
Derivatives with respect to odd variables are defined by algebraic rules:

^ - 1
together with linearity and the super-Leibniz formula (see below). For differentiating with
respect to even variables one differentiates the coefficients in (A.I). We now use collective
notations-we let xA stand for both x" and ̂ . For simplicity, we let [A| denote the parity
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of a^, i.e. \A\ = xA. If xA is even, then |A| = 0. If xA is odd, then [A| = 1. Let c be a
(numerical) constant. The properties of partial derivatives (in collective notation) are:
(linearity)

Q , . Qf , <9 . , (9/ 9g
(^-^-T and —-( /+^)=- J +9xAy J / QxA axA'J ^ QxA axAI

(the Leibniz formula)

9W=4L9+^)wfa9
Qx^3' Qx^ ' v ' J Qx^

(derivative of the composition of two functions)

sW)=^.
(Note the order.) The parity of the derivative is equal to the parity of the corresponding
variable (i.e. Q|QxA maps even to even and odd to odd, or exchanges even and odd
according to whether xA is even or odd). The partial derivatives commute:

^f . 1̂ 1 92f
9xAQxB ' ' QxB8lxA'

and Taylor's formula is valid:

}{x +h)= f{x) + h^^ + ̂ BhA^^(x) +...+ 0(^+1).

(Note the order. The symbol 0 has its natural meaning.)
By analogy, one can also define the notion of (super)vector fields, which we do not

elaborate here. See however (A.5) for an example of such a vector field.
In general all naturally formulated analogues of the assertions in an analysis course

carry over to the supercase. The most important of them is the implicit function theorem:
the system of equations

FA(x^)=0

is uniquely solvable with respect to the variables x == (^A) if the matrix of partial
derivatives (9FA/OxB) is invertible (see below). Then the solution (^A) can be expressed
as a smooth function of the variables y =• (y1^) (a square matrix is invertible if and only
if its even-even and odd-odd blocks are invertible, see below).

Example
The change of variables

xa=xa(xf^f)=xa,{xf)+0^2)^

^=W^f)=^T^xf)+0^3).
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The variables x\ ^f will be expressible in terms of the variables x, ^ if the numerical
matrices (Qx^/Qx^) and (T^) are invertible. (This should be compared with the fact that an
element of the Grassmann algebra of the form g = g^ + g^, where g^ is a scalar and g^ the
nilpotent part has an inverse, if and only if^i / 0.) Such a change is called non-degenerate.

The algebra T-C^U^)
In this paper, we are in fact more concerned with expressions of the type (A.2) with the

coefficients being holomorphic functions of n variables z^ • ' ' Zn in an open set [/n C C".
Complex odd coordinates are Cj = $j + zrfj and Q = ̂  - irfj where ^, ^ ( j = 1 « • • m)
are the generators of a Grassmann algebra. A holomorphic function, i.e. an element of
H^U^) is then of the form

/(^C) = /(^•••^n.Ci^-^Cm)
= /o(^) + CVi(^) + • • • CU^) + • • • C^ • • • C^/^...^ (^),

where the coefficients are holomorphic functions of z in U"' C C". We have therefore

^n|-) ̂  ̂ (^^ A[Cl,- • • , Cm].

Naturally, all the statements that we have made so far carry over with holomorphic
functions replacing C°° functions.

3. The Berezin Integral

The integral for a differential algebra
The definition of an integral with respect to odd variables emerges from the following

general algebraic construction, obtained from a formal variational calculation. Suppose we
have a commutative algebra A with an operator Q - a 'differential' (but not endowed with
any kind of 92 = 0 property). Then the equivalence / mod 9A is called the integral of
the element / e A. If 9 is a differentiation of the algebra A, then 'integration by parts'
works. This construction is used to model the integral of functions of a single variable.

Example

On the algebra of functions of compact support C§°CR), taking 9 to be the ordinary
derivative, the integral coincides with the ordinary integral over R.

The Berez.in integral over R71!^
We first consider the algebra C^R0!1). It is spanned by the functions 1 and ^. The
operator <9/<9^ annihilates 1 and turns ^ into 1. The corresponding integral of the function
/ == /o + $A is therefore equal to the coefficient /i up to normalization. We write:

/ ^ 1 = 0 , / d^=l.
^R0!1 JRO|I

The operation of integration is odd. We assign parity 1 to the symbol d^. Therefore its
permutation with functions follows the supercommutator rule.
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We define a multiple integral over R/11m to be a repeated integral. To do this we assign
parity 1 to dx in R = R1!0. We define

d^O^dCr1,...^^...^)
= d x l d x 2 - ' d x n d ^ ' " d ^ r n

for R^.
Let / € (^(R^) be such that all of its coefficients are in ^(R71). If the term of

highest degree in $ is ^m - • ̂ a^x), we obtain by using the parity conventions for dx, d^,

/ d0r, Q/(^ 0 = (-l)^-1)/2 / a{x) dx1-' dx\
JR71!"-1 JR71

Let x = (a^) be the collective symbol of (x^). Let dx denote d{x^). Let c be a
(numerical) constant. Then the following properties can be verified directly:
(linearity)

I {f{x)-^g{x))dx = [ f{x)dx + [ g{x)dx,
JR^I^ J'R,n\m JRT^Im

/ cf(x) dx = c f{x) dx,
jRrz|m jR^l^n

(differentiation under the integral sign)

9 I f{x^y)dx = (-1)^ / ^{x^dx^
9y J^\^ J^\m 9y

(integral of a derivative and integration by parts)

L. '̂̂ "'1"0'/ ^,d. = (-i)iw- / /^d . ,
^R^i- Qx^ 7R-i- ^A

and (Fubini's theorem-reduction to a repeated integral)

f dx dyf(x^y) = (-l̂ ^ ( dx [ dy f{x^y).
JR^I^xRPi^ JRnlm JRP19

Clearly all the above properties hold in the case C^ under appropriate conditions on
the coefficients.

In the special case n = m, the Berezin integral can be seen as follows. We consider
an inhomogeneous differential form on R" as a function of the variables x0' and d^,
where dx0' = 1:

uj{x, dx ) = ̂ (0) + ̂ (1) + • • • + ̂ n).

Then
/ LJ = \ cc/^ = ± \ uj{x, dx)d{x, dx).

./R71 JR" JR^I^
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Change of variables in the integral
Suppose we have a non-degenerate coordinate transformation

^=^(^0
^=?,0

with Jacobian matrix

^ a{x^) ^ fax/Ox' a^/ax^
' 9{x1^1)' {ax/a^ a^/a^)'

It can be shown (see e.g. [V]) from general algebraic considerations that there exists an
essentially unique scalar function, (i.e. a function which is of degree zero in Q, associated
with J, called the Berezinian of J, denoted by Ber J . It is the generalization (counterpart)
in R/^ of the notion of the determinant in R71. Let gij (i, j = 0,1) be the blocks of J, i.e.

T ( ^ C'\ .- ^00(^,^) ^01 (^,<f)^v ^'"W^7) ̂ w
Then it can be shown by using Gauss's method that

fBerJVa/) = del (^00(^0) - ̂ oipn^ioK^O))
v A / det^n(^O)

_ ______det ̂ oo(^,0)

Define

det(^n(^0) - bioAoiK^O))'

.̂B.̂ B.4^}.

We then have

THEOREM A.I. - L^r the function f(x^) on R^ be such that all of its coefficients are
in <?(R71). Then we have the equality

I f{x^ OdQr, 0 =sign{det [{9xlQx'){x1\ 0)]}
JR"I^

/ A^^^O^^^O),^1^^^^').
jRn|m a{X ,^ J

Change of contours in U^^
Let /(2;,C) e ^(C/71^). Let F71 be an open set in (771. Assume all the coefficients of

/ are rapidly decreasing in f so that contour integration in 1̂  is well defined. The
superanalogue of the usual Stokes' formula (see e.g. [V]) then allows us to make a change
of contours in U^. Specifically, assuming R71 c V C U71, (e^R)71 c F71 C U" for
some 6 / 0, we make the following change of contours in sect. 3:

/ f(z^)d(z^)= [ f(z^)d(z^) (A.4)
JRn|m J(e^R)n|m

by using the superstokes' formula.
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4. Supersymmetry on R271!2^

We will now consider the special case of the superspace R^l2^ it will be more
convenient to change our notations. We group the 4n (super)commuting variables into 2n
pairs of coordinates: let Xi € R2 (z = 1, • • • ,n) be the even commuting coordinates; ^,
rji (z = 1, • • • , n) be the odd commuting coordinates:

[^•]=0

[ r j i ^ j } =0
[^•l-O.

We use the composite notation Xi = (^,^^). We define the (super)dot product:

X i ' X , : = D { X ^ X , )

;= fo{xi,Xj) + f i { x i ,X j ) r j i ^ j + f2 (x i ,X j ) r j j ^ i

:=Xi ' X j + -^{rii^j +%^)

where xi - xj denotes the usual inner product of xi and xj in R2. Note that when i = j,

Xi ' X i = Xi 'X i - } -^ .

Supersymmetries are defined to be the set of coordinate transformations that leave the
above dot product invariant. Two obvious transformations that leave D invariant are the
usual rotations 0 in R2,

Xi = x[0 (z = 1 , ' " ,n)

and the transformations A G Sp{2) acting on ^, rfi (% = 1, - • • , n) such that

(^^-(^OA,

where {^,^,^}^=i is another set of coordinates on R271!271, x\ being the even ones and
^/, r][ the odd ones. We put X[ = {x^ ^/, ̂ ), (% = 1, • • • , n). Aside from these two linear
transformations, supersymmetries also include transformations generated by (super)vector
fields of the type:

v-
î

= E^ + ̂ )^ +2^ •x^ - ̂ a'x^ (A-5)

where a, 6 € R2, and

Q a a
a-^— ''= ^i-—— + a^-—v .—— m/i i î ^

OXi OXi i (7.Ti.l ^z,2

,9 , 9 , 9
&7—— ^bl^———+&2-/ ^ •— ^i n i ^z ^(9a;, 9a;, i 0x12

(A.6)
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(Note that it is the same transformation in all the JQ.) As before the above transformation
is to be understood in the algebraic sense. We check that VD{Xi, Xj) = 0. We check also
that the Berezinian corresponding to such a change of variables is 1.

Let T be a supersymmetric transformation. Let Xi = rX[ (i = 1,. • • , n).

DEFINITION. - A superfunction F is supersymmetric if it is invariant under all
supersymmetries:

F(Xi,...,X,)=F(X^...^),

for all r supersymmetric transformations.
Clearly, supersymmetric functions belong to a rather restricted class of functions. For

example, in R2!2, F is supersymmetric if and only if there exists /: [0, oo) ^ R of
class C°°, such that

F(X) = f{X • X) = f(x . x) + f\x . x)^.

For the general classification in R27^271, see e.g. [KS].
Define dXi = (d^/Tr)^ d^ (i == 1, • • • , n). One of the most useful properties of the

supersymmetric functions is the following:

THEOREM A.2. - (see e.g.[K]) If F is supersymmetric with all of its coefficients in
^(R271), then

t F{X^ ... ,X,)dXi.. • dX, = F(0,.. .0). (A.7)

5. An Expression for the Inverse of a Matrix

Let A be an operator on ^(A), where A is some finite index set. Let |A| be the number
of elements in A. Assume A = Ai + iA^, where Ai, As are real symmetric matrices with
AI > 0. We then have the following well-known Gaussian integrals on R2^!:

/ -V^ A i . X i - X j T-T d'^Xj 1e ^-^ IJ l J N ——3- = —— A.8i--L TT detA v /
jCA

and L» .^-^,-A-- n ̂  ={A-^ (A.9)J ±± TT detA v 7
j€A

where a, b G A. Using the construction made so far in this section, we also have the
following counterpart on R^2!^):

f e- E^.A A^'^ JJ d% d^- = det A (A.10)
7 j€A

and
^a^e-^^A^^ J]d^-d^ = (A-^deiA). (A.ll)

J JGA
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Combining (A.5) and (A.6), (A.4) and (A.7), we finally have the following expressions for
the inverse of A, expressed as a Berezin integral:

/ A i\ r -y^ Ai.xi-x. T-r , ̂
(A-1)^ = / Xa -XbC z——^ ^ l ^ j^ dX,

" J'CA

= I^e-^^^ nd^- (Atl2)
17 j'eA

This is precisely the representation that we used in sect. 2.

6. An Integration by Parts

We now give the details of the integration by parts which led (2.22) to (2.24) in sect.
2. It was first derived by using superanalysis (i.e. using supervector fields etc.). In order
not to venture too far in that direction, we present below a "translated" version which
uses standard analysis. Define

L = i(Y^txj ' Xk - y^Exj ' X j - i ^ > k ( x j • x j ) ) - logdetM(a;),

where
M{x) =t/\-E-i diag (k\Xj • ̂ )), (det M / 0),

as in (2.23) in sect. 2. Let (G(^, v\ E + %0)) be as in (2.22). Let m = |A|. Then we have

PROPOSITION A.3.

{G{^ ̂  E + i0)} =^rn [ M-\^ ̂  E)e-L^ J] d2^.
J jeA 7r

Proof. - Define

(f){x) = i (^ txj • Xk - ̂  Exj ' Xj - i ̂  k{xj • X j ) J .

We first look for a vector field v, such that

x^ =v.V(e-^ (A.13)

so
^ = -v . V(^. (A'!4)

Since
V<^ = 2%Ma;, (A.15)

we look for v of the form: v = Bu, where B is a matrix and uj = 1 for all j. Let TT^ be
the matrix, such that (TT^)^ = 6i^6j^. Then (A.14) can be written as

(Tr^)a; = -2%(B* o M)a;.
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Therefore
B = ^M-1 o T^

z^
is a solution. Hence

v = ̂ M~1 OTT^U (A.16)

satisfies (A. 14). We now show that v in fact verifies

^-L = v . V^) + (div^e-^ (A.17)

Comparing (A. 14) with (A.17), we see that we only need to show that

v ' (VIogdetM) +divy = 0. (A. 18)

Using the fact that

9j logdet M = -^'{x, . ̂ •)(M-1)^-

and the expression for v in (A.16), we easily verify that (A.18) holds. Hence (A.17)
holds. We then have

(G(/^ ̂  E)) = z^ / ̂  . x^e-^ n d2^.
J JCA

= ^m+l / ̂  • (v . V + div v)e-L^ J] d2^-
7 J-CA

=^ m /M-^^^^e-^^JJd2^-
j'eA

by integration by parts. Q

Appendix B. Direct approach to some basic formulas

In this appendix we shall give direct proofs of the normalization property (2.24) and of
the formulas (2.22), (2.25). The main step will be to establish the following proposition:

PROPOSITION B.I. - Let a; 1,^2, ..,Xm denote variables in R2, let

/. : R^ 3 Qri,.,^) ̂  {x, -Xk)i<^k<m e R^. (B.I)

Let IJL be a probability measure on the space of complex symmetric m x m-matrices with
compact support contained in the open subset of matrices -with positive definite real part
and denote by ( ' ) the corresponding expectation value. For r G R7"2, let

fA{r) = e-E0^^ = e-^. (B.2)

Introduce the Laplace transform:

W = [ /A(T)^(dA) = /'e-^dA). (B.3)
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Then if d^x denotes the Lebesgue measure on R2771, we have
{ ( Q \ \ d^x
^h^)'-)0''^'1' (B•4)

^ /) \ / r) \1 \ A^T
((A-),.) » / ( ^ M,,l-^} +M,,(-^) ,M) o» d^ (B.5)

/l ^ ̂  9^^ ^ d2Tnx= j x, . ̂  (^det ̂ -^J^MJ 0 ̂  ~^-Qr)^ ) ) TT-

/•Z^r^ Mkj(--l^) is the m x m matrix obtained from {-^) = (-^a—) , by
replacing —o0— by 1 and all other elements on the j:th line and on the k:th column by 0.

Notice that the integrals converge exponentially. In fact, if r is a point in the image of
K and A belongs to the support of ^, then Re (A • r) = (ReA)x ' x > c\\x\\2 for some
c > 0 independent of r and A. Here we let A act on (R2)771 in the natural way.

PROOF AND PROPOSITION B.I. - If A = (a^,fc) is a complex symmetric m x m-matrix
with Re A > 0, then

/ — ^2m
detAe-i>^^—^=],

^m
(B.6)

which can be written

Let ^(A) be a distribution with compact support on the space of complex symmetric
m x m-matrices A with Re A > 0. Then we can define the Laplace transform ^(r) as in
the proposition, and if we apply ^ to (B.7), we get

In the case when [L is a probability measure, this reduces to (B.4).
In the general case we notice that \(r^^ +Tfcj)/2(r) is also the Laplace transform of

a distribution with compact support in the space of symmetric matrices with positive real
part, so (B.8) gives:

( f) \ /1 \ \ A^rn
det -^)(I(rJ•fe+T^)/2))o'<^-=o• ^

We write this as

( (\ ( Q \ \ d^x
j ^(T^+T^.)det^-^J/.Jo^-^-=0
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[^(^fc+^j)^^ ( - 0 -1 ]? ) o^z \ o r / /

Put
M,,>(-^)=[^,d.t(-^))=[d.t(-^),-n,,]

and notice that M^ is indeed the differential operator in the proposition. Consequently,
by summing over a column:

-(-̂ ,-i>,.(̂ )(-̂ ),
3 v / \ 3 ^ /

so if M = (M^fc), we obtain:
M(-^)o(-^=(-^o<-^=-(-^-.

Formally we can write:

Mf-a)=(-apetf-aW
V 9r7 \ Br/ \ 9r

Rewrite (B.I I):

^(^ ( Q\ ^ ( Q\\- d^xy^^^-^^^ikj[ -T- A f c O ^ ————
TT

a \ \ d2771 ^BJ2^-/Q^+^det^-^^o^

Since / o \ __

^V^)6"^'^'' = (^^^^^""'""^etA,

we can apply this to ju = /^ (so that p, is the ^-measure at A,) and get with (B.4):

A-" -/^H} .M,,(-^))e-E——— ,. d^ (B.13)

/1 / / 5 ^ v^ \ d^r= /^ , . .T4det -—e-E a ^ T ^ ]o^^-^ .y •7 \ \ aT/ / TT^

If /^ is a probability measure as in the proposition, we get (B.5) by taking the expectation
value of (B.I 3) w.r.t. p,. Q
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We now apply Proposition B.I to get the formulas (2.24), (2.22), (2.25). We will take
m = |A|, R2771 = (R2)^ Let g(v)dv be a probability measure on R, with compact support
to start with. For E C R, t,r] > 0, let ^ = ̂ ,£;+^(dA) be the probability measure with
support on the set of matrices of the form,

%tAA + %diag {vj) - iE + T] Vj <E R, (B.14)

given by Y[g(vj)dvj. Then we get the Laplace transform:

^+^M = /le-^AA-^^+^diag^))•T^^(^)d^•

^e-^-^-n^).
where ^ denotes the Fourier transform.

If { ' ) g denotes the expectation value w.r.t. T[g(vj)dvj, we get from Proposition B.I:

i = f (act (-^) (e^-^-n^.))) - n (d!?)' (B-15)
((<AA + diag (z;,) - [E + i^Y\ ,), = (B.16)

•/((^(^)4M^-^))(e(••AA-E+"•r^^)))°'•^(d!?)
=./„..>(de.(-^)(^-"*r^fc„)))°"^('l!a)•

U \ \ / / \ /

Now replace the assumption that g has compact support by the assumption that
§no,oo[ belongs to 5([0,oo[); the space of smooth functions on [0,oo[ which decay
rapidly near infinity together with all their derivatives. Since g is real, we also have
<7|]-oo,o[ ^ <S(] - oo,0]). Notice that ^ is continuous, being the Fourier transform of a
measure of finite mass. Let 0 < \ G ^(R) be even with ^(0) = 1, and approximate g by

^= r f \ ( \A ^(^(^J x^M^)^
which is a probability measure with compact support when e > 0 is small enough. Then

1 1^ / - \ ^
^^U*^

where * indicates convolution, and ^ ^ ,̂ ^e -^ ^9 pointwise away from 0, when
e —» 0. Moreover

I^MI+I^Ml^^^)-^, (B.I?)

uniformly in e for every N > 0.
(B.I 5,16) hold with ^ replaced by g^ and since we never get any higher derivatives

of ^ in these formulas, we can apply the dominated convergence theorem and (B.I 7), to
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conclude that (B.15), (B.16) also hold for g . Using again that ^|]o,oo[ e <?([0, oo[), we can
let T] tend to 0 in these equations and get:

1 = / (det (-^) (^-""II^))) »« n (d!a). (B.18)

where by definition the first member in (B.19) is the limit of the first member in (B.16),
when rj —» 0.

Wherever ^(r^) = e-^'^, with k smooth, the integrands in (B.15,16,18,19) become
more explicit:

^(-^(^^-^-n^))
^ g-.(tAA-£;).rg-^fe(r,,,) det^AA - E - ,diag^(r,,,)).

Here
(*AA - E - idiag^(T^))^^ = M,

where M is given by (2.23). From this we get (2.24), (2.22). To get (2.25) it suffices to
observe that when <?(T,j) = e-^.j) :

[JM»(-^)^M,,(-^)][e-————-n^)]

= e-^A-^-E^^) det [^AA - E - Miag(A/(r^))]]

x fz [^AA - E - zdiag (^(r,,,))^] 1.

Appendix C. An equation in a tube

We start by developping some L2-theory on the real space R^, and later we use these
results to study more precise L00 estimates, using a version of the maximum principle.
It is only in this last part that we make estimates which are uniform with respect to
the dimension.

Let C^° = Cj^R^) denote the space of all C°°-functions a on R^ such that for every
multiindex a e N^, there exists a constant C = C^ such that l^a^)] < C on R^.
Here a is a scalar (real or complex) function, but we may similarly define the space of
vector-valued functions C^R^E), if E is a finite dimensional vector space.
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We consider a differential operator of the form
/ Q \

P = - A + ^ ( ^ — ) ^V(x), a;eR^Y Q x j

where v = ̂ f ^j{x)-^- is a complex but scalar vector field and V G C^R^; MatM(C))
a function of class C^° with values in the space of complex M x M-matrices. This means
of course that the operator P acts on functions with values in CM. We assume that the
vector field v satisfies: Im^ C C^°, VRez^ e C^°. Here A denotes the usual Laplace
operator, and V the standard gradient.

We start by deriving two basic a priori estimates. Let u, v G ^(R^), z == z\ + iz^ ^ C,
and consider the equation

{P-^-z)u=v. (C.I)

We will assume that z^ > CQ for some sufficiently large constant Co > 0. It will also
be convenient to use the notation D^ = iat"' so ^^ ^(^5 Da.) = ^(:r, ̂ ). Notice that
the complex adjoint of ^(x,D) is given by

^*(a:,Da;) = —%div^(rr) — 2z(Im^)(a;,Da,) + ^(^,Da;).

The assumptions on v tell us that the first term to the right belongs to C^° and that the second
term is a vector field with coefficients in C^°. Write v{x^x) = ^i(a;,Da.) 4- iv^x^x}.
with z/i = \{y + ^*), z^ = ^(^ - ^*). Then

.^modfcr+E^0—)\ i ^j 7

^ -omodfer+E^a^) -\ i c/a;^ /
where until further notice, we write v = u(x,D^) and similarly for ^, j = 1,2.
Similarly, write V{x) = V^{x) + iV^x), where Vi, V^ are Hermitian, and P + z ==
(PI + ^i) + %(?2 + ^2), where Pi = -A - ̂  + ^i(^), ?2 = ^i + ^2^). From (C.I),
we get:

[|^|[2 = ||(Pl+^)^||2+||(P2+^2)^||2+^((P2+^2)^|(Pl+^l)^)-^((Pl + ̂ )^|(P2 + Z2)U).

(C.2)

The sum of the last two terms can be written (z[P^,P<z}u\u}\ here,

[Pl.P2}=

[-A^i(;r,D,)] + [-^V^x)} - (^{x.DMxM - ̂ (^D,)^(^D,))
- [^{xM^{x)} + V,{x) o ̂ {xM - ̂ {xM o V,(x) + [Vz(x)^(x)}

= (-^D,) + yi(rc)) o ^i(a;,D,) - ̂ i(^,D,) o (-^(^,D,) + Vi(rr)) + -Q(^,D,),%
where Q is a second order formally self-adjoint operator with coefficients in C^R^).
We rewrite (C.2) as

[H|2 = ||(-A - ̂ D,) + ViCr) + ̂ )^||2 + IIM^D,) + V2(^) + ̂ N^C.S)
+ (Q(a;,D^)H^) + %((^i(rr,D,) + z^)u\{-^(x,D^) + ^i(^))^)

- z((-^D,) + yi(a;))^|(^(a;,D,) + ^2)^),
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where we judged it convenient to reintroduce ^2-
Since ^2 has coefficients in C^°, we can apply a standard a priori estimate to the first

term of the RHS, and using also the famous inequality ||a + b\\2 < 2||a||2 + 2||&||2:

^IK^Cr, D,) + zM2 < IK^Cr, D,) + V^(x) + z^u\\2 + \\V^x)u\\\

we get for z^ > Co large enough:

IHI2 ̂  ̂ IHlip + ̂ IMÎ  + ̂ IMI2 + IIK^D,) + ̂ ||2 (C.4)

- o(i)|H|2 - O(I)|HMH| - O(I)||(^D,) + ̂ HIHlHi.

After increasing Co, Ci, we can absorb the last three terms and get the basic a priori
estimate

CilHI2 > IMI!? + zM^ + zi\\u\\2 +1|(^(^ D,) + ̂ )H||2, (c.5)
for solutions to (C.I) of class S, when z = z^ + ^2 and ^i > Co with Co sufficiently
large. In this estimate, we can also replace ^i by v, if we so wish. We notice that this
estimate is equally valid when u e H^^R^).

Our second basic L2-estimate will be of semi-boundedness type, and very simple to
obtain: For u G 5, we simply notice that

Re((P + z)u\u) = (-^u\u) + (-^ D,)u\u) + (V^x)u\u) + ̂ ||^||2 (C.6)

>|ll^ll^+(^-0(l))||^||2-||^||m||^||

>jlHI^+(^-0(l))IH12.

Let H^ be the space H1 equipped with the norm |[(|D^| + ^T)^|[, and let H^-1 be
the corresponding dual space, equipped with the norm ||(|D^| + ^z^)-1^. Assuming as
before that ^i > Co, with Co sufficiently large, we can write the preceding estimate,

IHIin <O(I)II(-P+^HH-I|H|^ ,
so

IMIn^ < c\\{p + z)u\\^, u e s. (c.7)
We have the same estimate for the adjoint:

IH|H^ < C\\{P + zYu\\^, u e s. (c.8)

Using this estimate we now start to consider the existence of solutions to (C.I). Let
v G H^1, and consider the antilinear form: ^ : S 3 cf) ̂  (v\(/)). Then

\W)\ < IHIH ÎHIH^ < c711^;llH^ lll(p+^)*^llH^/•

By the Hahn-Banach theorem, there exist u e H^ with \\u\\^ < C[H|y-i, such that
^W = (u\(P + ^)*^), V^) e 5. Consequently, we have shown:
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PROPOSITION C.I. - There exists a constant Co > 0, such that if z^ > Co, and v C H^1,
then there exists u G H^, such that

(P+ z)u = v,

in the sense of distributions, and

IMIn^ < ColMIn^ (c-9)

Notice that this applies if v G L2, since v then also belongs to H^1, and

lhllH-<ll(|D.|+v^r)-^ll<—=lhll.zl v 1

Consequently, for v e L2, we get a solution n € H^ of (C.I), which satisfies

V^II^HH^ < Co\\v\\,

or more explicitly,

^ilHI+v^ll|D.HI<o(i)lhll- (ctl0)
In order to complete most of the L2-theory, we have to consider the regularity of

H^-solutions of (C.I). Let u G H1, v <E L2 and assume that (C.I) holds. Let \ C Cg^R^)
be equal to 1 near 0 and put XR^} = x(^). R ^ L using the fact that ^ §row at

most linearly, we see that

[p^]=^0(l).9<c^+0(l).

where 0(1) indicate functions which belong to some bounded set in C^°. It follows that

(P + Z){XRU) = XRV + 0 (-) ' Q < ̂  + <^(1)^ (c-11)

so the RHS is 0(1) in L2. Since ^J?ZA has compact support, the local ellipticity implies
that \RU G H2 and we can apply the basic a priori estimate, with v replaced by the RHS
of the preceding equation, and we get:

\\XRU\\2^ + ZI\\XRU\\^ + zl\\XRU\\2 + ll̂ i (^D,) + z^RU\\2 (C.12)
^oodK+lHFHi).

Here (^(x,D^ + ̂ )x^ = XJ?(^i(^.D^) + z^u + 0(l)n, so

\\XRU\\^ + ̂ HX^HHI + ̂ illx^ll + \\XR^W + ̂ )^|| (C.13)

<0(l)(|H|+|M|Hi).

Letting R tend to infinity, we see that u G H2, (^(x,Dx) + ^2)^ ^ L2. and

1 1 ^ 1 1 ^ + v^TIMlHi + ̂ ill^ll +11(^(^0.) + ̂ 11 ^ o(i)(ll^ll + IHI^).
Possibly after increasing Co, we get:
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PROPOSITION C.2. - There exists a constant Co > 0, such that if z^ > Co, and
u G H1 solves (C.I) in the sense of distributions with v G L2, then we have u € H2,
(^i(rc,Da.) + z^)u € L2, and

IHIH2 + v^TIHlHi + ^ilHI + IK^D,) + Z2)u\\ < Co|HI (C.14)

Notice that (C.14) implies uniqueness. Summing up, we have proved:

THEOREM C.3. - There exists Co > 0, such that if z^ > Co, and v G L2, then (C.I) has a
unique solution u of class H1. Moreover u G H2, (^i(^, Da;) + z^}u C L2 and (C.14) holds.

When v has more regularity, we can differentiate (C.I). If for instance v G H1, we get
for every a € N^ of length 1:

(P - z^u) = D^ - [P, D^u, (C.15)

[P, D0] = zKrr, D), D-] + [V, D0] G ̂  C^ + C,°°,
and

and knowing that u € H2, we see that the RHS of (C.15) is in L2. Since we also know that
D^u e H1, the preceding proposition implies that D^u G H2, (z/i(a;,D) + z^^u G L2.
By iteration, we get:

THEOREM C.4. - Let Co be as in the preceding theorem, let m G N, v G H^, ^i > (7o
and let u be the solution of (C.I), given by the preceding theorem. Then u G H77^2,
(^i(rc,D) + ^2)^ € H^ a^ w^ tov^

||^||H-+2 + V^II^HH^I +^l|H|H- + ||(^1 (^,D^)+^)^||H- <C^||?;||H-. (C.16)

There remains to make two routine extensions. The first one concerns the decay of u if
v decays. Let / : [1, +oo[-^]0, +oo[ with /, 1/f bounded by some constant that will not
enter into the estimates and assume that / is smooth with f^(t) = (^(l)/^)^. Then
f((x))~1 o P o f((x)) has the same properties as P. We can approximate the function
F(t) = t by functions f^t) = t / ( l + et\ 0 < e < 1, for which f^(t) = OkWfeWt^
uniformly w.r.t. c. Prom this it is easy to see that we can gain power decay for u, if v has
such a power decay. More precisely, we can prove the following theorem, where we let
Qk,m ̂  ^^ ^ ^ N denote the weighted Sobolev space of all u e S/ s.t. (a^D^ E L2

for [a| < m:

THEOREM C.5. - Same as the preceding theorem after the substitutions: m i—» (fc, m) G N2,
^m ^ Qk,m^ ^m+i ^ Qk,m+i^ jpn+2 ^ jjfc,m+2 everywhere.

The second extension concerns parameters. Let W C R^ be open, and let
v { x ^ y ^ Q < 9x) be a complex vector field, V = V{x,y). We assume

V, Iim/, VRez^ 6 C?:)(RN x W), (C.17)

Re^ = 0{{x)). (C.18)

Of course, we have the estimate in (C.18) for every fixed y, by (C.17), but the point of
(C.18) is that the estimate holds uniformly with respect to y . It is clear that the preceding
estimates hold uniformly with respect to y. If the function v = v ( x ^ y ) depends sufficiently
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smoothly on y, we can also differentiate the equation (C.I) with repect to y, and we get
the following result:

THEOREM C.6. - There exist Ck > 0 for all k € N such that the following holds: Let
l^ fc, m G N, and let v = v{x^y) be a measurable function on R^ x W, such that
D^v € H^R^) with locally bounded norm, for y (E W, |/?| < L Let z^ > Ck and
let u = u{x^y), be the unique solution of (C.I) which belongs to H1 for every y. Then
D^u C H^^2, ^{x,y,D^ + ̂ )D^ G H^ for |/3| < i with locally bounded norms
for y € W, and we have

E (IP^HH^ + ̂ HD^HH Î + ̂ i||D |̂|H^+ (C.19)
1/3|<^

||(^(^^D,)+^)D^||H.-)<C,^ ̂  HD^HH^, yeW^
w<^

where C^^,m is independent of y.
We return temporarily to the parameter independent situation. By combining Theorem

C.3 and the second important a-priori estimate (C.6), we see that P is a closed unbounded
operator on L^R^) with domain [u e H2; v^u e L2}, such that [z e C; z^ < -Co} is
contained in the resolvent set and such that for z\ > Co:

II^+P)-1!!^)^^-^. (c.20)
z\ — UQ

We can apply the Hille-Yoshida theorem to conclude that —P is the generator of a strongly
continuous semi-group,

[O^+oo^t^T^e-^ (C.21)

with
le-^llr^) < e^. (C.22)

Applying Theorem 4 with m = 0, and the observation leading to that result, we see that
e"^ is also a strongly continuous semigroup on H^'0 for every k G N, and

lle-^Hrd^o) < e^. (C.23)

To obtain this, we consider P as an unbounded operator in H^'0 with the analogous domain,
and we identify the two semigroups using a limiting sequence of weights as above. In both
cases, we notice that e"^ is a strongly continuous semigroup on T^P^ for every fixed m.
Playing with fc,m, we conclude that if u e ^(R^), then e-^u € C°°([0, ̂ -oo^R^))
and we have in the classical sense:

(9+P(xW\e-tpu{x))=0 (C.24)
\Ui /

We now consider equations in tube domains and we start by applying the L2 theory
above. Let W CC R^ be open, connected and satisfy a cone condition, so that if
u e 6^(0), 0 = R^+W and m > N, then u e C(H). Let V{z) e 0^(0; MatM(C)) be
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holomorphic in 0 and let v^z, Q <^_9z) = ̂ f Vj{z)9 < 9zj have holomorphic coefficients
Vj which are also of class C00^), and which satisfy:

Inû  VRe^ e C^(H). (C.25)

A typical example of such a vector field is v{z, ̂ ) = Ef ^<9 < 9^j' If ^ is holomorphic
in 0, we notice that

/ 0\ / 9\ ( Q Q\
'^^^='^^a.^='R^^a.^^ (c-26)

where we write z = x + iy, and where

^-^)=E^)^ (C.27)

( r\ r\ \ -/V '~\ / '"t \!/R a;)y' ̂ ' ̂ ) = E(Re(^/.•(^))^ + (Im^^))^} (c-28)
^R is the real vector field determined by the direction (^i,.., v^) ^ CN ^ R2^.

Let ^m(0) = [u e Hm(0);^ is holomorphic }, m e N, ^(^) = ̂ °(0) and more
generally for k,m e N:

^'m(^) = {u G H7"^);^ is holomorphic, (^D^ e L^^), |a| < m}.

Similarly, define

R^^) = {u e H7"^); (^^D^ e L2^), |a| < m}.

Let

( .Q \

P=-Ac+^ ^^)+V(^), (C.29)oz )

P = - A R + ? + y , (C.30)

where Ac = Ef(^)2. AR = ̂ (^)2. Notice that our two Laplace operators
have the same action'on holomorphic functions. For this reason we shall sometimes
drop the subscripts R, C. Also, ^when u is holomorphic, Pu = Pu. We can apply
the preceding results and see that P : H°(^) -^ H°(0) is a closed operator with domain
{u e H2^);^^, y , -^)u € H°(n)} and resolvent set containing the half plane z^ < -Co.
Moreover ||(P - z)~^ ^J/(-Co^ ^i) for z in that half plane. We have the completely
analogous result for P : H^° -> H^°. If v e 7^°(^), let u e P(P) be the solution of
(P - z)u = v for ^i < -Co. Notice that ^j- formally commutes with P. If W CC TV,
0' = R^ + iW\ then ^^ e H^^), and we get (P - z)(^u) = 0, implying -^u = 0
in ^/ and hence in 0 if we take a sequence of 0' converging to ^. We have shown that
u is holomorphic and (P — z)u = v. We get

THEOREM C.7. - P : 7^(0) -^ ^(0) ^ a closed operator with domain

{u G 7^(n); ̂ ,9 < 9^ e ̂ °(0)}
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and resolvent set containing the half-plane Z]_ < -Co. Moreover ||(P - ^)-1|| <
I/{—Co — z\) for z in that half-plane. The same result is valid with the substitutions:
H0 ^ 7 °̂, H2 ̂  H^, Co ̂  Ck.

The Hille-Yoshida theorem allows us to define the strongly continuous semigroup
Tt = e-^ : H^t) -^ ^(»), t > 0, with He-^HrCH^)) < e00^ and more generally
lle'^II^CH^o) < e0^. Notice also that Tt acts as a strongly continuous semi-group in the
domain of any positive integer power of P : ̂ fc'0 —> ^~^k'o. It follows that if u € S{^1) in
the sense that u 6 C°°(n) and all derivatives tend to zero at infinity faster than any negative
power of {z), and if u is holomorphic in ^, then e-^u G C°°([0, +oo[;5(n) H Hol(^)),
and the heat equation (^ + P)e~tpu = 0 holds in the classical sense. Moreover for such
u's we also have e'^Pzi = Pe'^u.

Finally, we are ready for the L°° estimates, but we will have to add an assumption
about u and an assumption about V.

There is a real vector field fim C1^ with smooth coefficients (C.31)
of at most linear growth, such that ^|Q = ^R,

If z 6 n, then exp(-tfi)(z) G ^, t > 0. (C.32)

Now equip CM with some norm and view correspondingly CN as a Banach space B,
with dual B*. Let (u\v) be the corresponding sesquilinear scalar product on B x B*. We
view V(z) as a map B —> B, and make the following assumption on V:

There exists 8 > 0, such that if z G H, u e B, v (E B*, and (C.33)
Re(^) = ||^||B||^HB. then Re(Y(^|^) > ( ^ H ^ H B H ^ H B * .

Let u(t^z) e C°°([0,+oo[;<S(0;B)) be holomorphic in ^, and assume that u solves
the equation:

Q
.u+Pu=0. (C.34)
at

Let
m{t)=snp\\u(z)\\B. (C.35)

zW

Notice that

m(t} = max Re{u(t,z)\e), (C.36)
(^,e)€Ox5(B*)

where 5(B*) = [e e B*; ||e||B* = 1}. Let M(t) be the set of points in H x 5(B*), where
the maximum is attained in (C.36). It follows that m{t) is a locally Lipschitz function on
[0,+oo[ whose (a.e. defined) derivative satisfies:

( r\ \

m'{t) <, sup Re —u{t,z)\e}. (C.37)
(.E,e)€M(t) dt )

Consider,

Re{Pu(t,z)\e)

=-ARRe(^(t^)|e)+^R^^,^^)Re(^^)|e)+Re(y(^^^)|^
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If ( z ^ e ) € M{t), then w ^-> Re(u(w)\e) has a maximum at ^, so —/\-^Re(u{t,z)\e) > 0.
On the other hand the assumptions (C.32) imply that ^Re{u(z)\e) ^ 0, and since
Re{u(t,z)\e) = \\u(t,z)\\B\\e\\B^ we have Re(V{z)u(t,z)\e) > 6\\u(t,z)\\B\\e\\B^ From
(C.34), we get Re(|^[e) = -Re(Pu|e), so for (z,e) € M(t}: Re(^|e) < -6m{t), so
(C.37) implies that

m^t) ^ -5m(^ (C.38)

and hence that m{t) < e'^rr^O).
Summing up, we have shown that if u G <S(0) is holomorphic in 0, then

supHe-^^lla ^ e^sup|Ka:)||B. (C.39)
a-GO a;60

For the same u's we have Pe~tpu = e'^Pu = —-^e'^u, so if we put

we get

/.oo
Qu= \ e-^udt,

Jo

/*00 0

PQ-u = QPn = - / —(e"^) d^ = ̂ .
Jo ob

(C.40)

We also have,

sup ||Q^)||B < \ sup ||̂ )||B. (C.41)
z^ 0 z^

Put /,(^) = ̂ , and F,(x) = f,((x/C}) (with (x) = \/1 + rr2) where C is large
enough, so that the latter function is well-defined in 0, when 0 < e < 1. Then (C.39)
remains valid if we replace P by Pg~1 o P o Pg and 6 by 6 / 2 , provided that e is small
enough. Examining the earlier arguments, we see that (C.41) also holds with Q replaced
by F^1 o Q o Fe and with 8 replaced by 6 / 2 .

Definition. - Let uj^u € Cfc(f^) D Hol(O), for j G N. We say that uj —> u narrowly
when j —^ oo if sup^ ||z^||j3 is bounded by a constant independent of j and uj —> u
uniformly on every compact subset of 0.

Let Uj^u e <?(f2) H Hoi and assume that uj —> u narrowly, when j —> oo. Then
sup^ [[Pg""^^ — u)\\B —> 0, so sup^ \\F^l(Quj — Qu)\\B —^ and we see that Quj —> Qu
narrowly when j —> oo. In other words, Q preserves narrow convergence of sequences in
<?(0) with limits in the same space. From (C.40), we then get:

THEOREM C.8. -Let E C ChW H Hol(n) be the closure ofS(Ti) D Hol(O) for narrow
convergence. Then:

a) Q : E -> E is well-defined and (C.41) holds for u e E.
b) If v e E, then PQv = v,
c) Let u 6 E and assume that there is a sequence uj G 5(0) D Hoi (0) with uj —> u and

Puj —> Pu narrowly (so that Pu G E). Then, QPu = u.
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Naturally we want to know if there is a simpler characterization of the spaces that
appear here.

PROPOSITION C.9. - IfW is starshaped with respect to y = 0, then E = Cb(n) H Hol(^).

Proof. - Let u C (^(H) H Hol(O). Then Uj -^ u narrowly, where Uj{z) = u(0jz) and
63 = (1 - ^)- Put Uj(z) = e-^^/^u^z) e <?(H) H Hol(O), where C > 0 is sufficiently
large and ej \ 0. Then uj —> u narrowly. D

We leave the following question open until an answer is needed: Make the assumptions
of the last proposition and assume that Q^u, Pu e Cb{Tl) D Hoi (Q), for \a\ < 2. Is it true
that u satisfies the assumption of c) in the last theorem?

Acknowledgements

We thank B. Helffer for first pointing out the possible applications of the results here to
statistical mechanics. We thank the Institut Henri Poincare for hospitality while this work
is being finished. The second author also thanks J. M. Bismut for useful conversations
regarding supersymmetry. We acknowledge the support of the European Network TMR
program FMRX-CT 960001.

REFERENCES

[A] P. ANDERSON, Absence of diffusion in certain random lattices, Phys. Rev. 109, 1492 (1958).
[AM] M. AIZENMAN and S. MOLCHANOV, Localization at large disorder and at extreme energies: an elementary

derivation, Commun. Math. Phys. 157, 245 (1993).
[Be] F. A. BEREZIN, The method of second quantisation. New York: Academic press, 1966.
[BCKP] A. BOVIER, M. CAMPANINO, A. KLEIN, and F. PEREZ, Smoothness of the density of states in the Anderson

model at high disorder, Commun. Math. Phys. 114 439-461, (1988).
[CFS] F. CONSTANTINESCU, J. FROHLICH, and T. SPENCER, Analyticity of the density of states and replica method

for random Schrodinger operators on a lattice, J. Stat. Phys. 34 571-596, (1984).
[DK] H. VON DREIFUS and A. KLEIN, A new proof of localization in the Anderson tight binding model, Commun.

Math. Phys. 124, 285-299 (1989).
[Ec] E. N. ECONOMU, Green's functions in quantum physics. Springer Series in Solid State Sciences 7, 1979.
[FMSS] J. FROHLICH, F. MARTINELLI, E. SCOPPOLA and T. SPENCER, Constructive proof of localization in Anderson

tight binding model, Commun. Math. Phys. 101, 21-46 (1985).
[FS] J. FROHLICH and T. SPENCER, Absence of diffusion in the Anderson tight binding model for large disorder

or low energy, Commun. Math. Phys. 88, 151-184 (1983).
[HS] B. HELFFER and J. SJOSTRAND, On the correlation for Kac-like models in the convex case, J. of Stat. Phys.

(1994).
[K] A. KLEIN, The supersymmetric replica trick and smoothness of the density of states for the random

Schrodinger operators. Proceedings of Symposium in Pure Mathematics, 51, 1990.
[KS] A. KLEIN and A. SPIES, Smoothness of the density of states in the Anderson model on a one dimensional

strip. Annals of Physics 183, 352-398 (1988).
[Sl] J. SJOSTRAND, Ferromagnetic integrals, correlations and maximum principle, Ann. Inst. Fourier 44,

601-628 (1994).
[S2] J. SJOSTRAND, Correlation asymptotics and Witten Laplacians, Algebra and Analysis 8 (1996).
[SW] J. SJOSTRAND and W. M. WANG, Exponential decay of averaged Green functions for the random Schrodinger

operators, a direct approach, Ann. Scient. Ec. Norm. Sup., 32 (1999)
[Sp] T. SPENCER, The Schrodinger equation with a random potential-a mathematical review, Les Houches

XLIII, K. Osterwalder, R. Stora (eds.) (1984).
[V] T. VORONOV, Geometric integration theory on supermanifolds. Mathematical Physics Review, USSR

Academy of Sciences, Moscow, 1993.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPfiRIEURE



414 J. SJOSTRAND AND W.-M. WANG

[Wl] W. M. WANG, Asymptotic expansion/or the density of states of the magnetic Schrodinger operator with a
random potential. Common. Math. Phys. 172, 401-425 (1995).

[W2] W. M. WANG, Supersymmetry and density of states of the magnetic Schrodinger operator with a random
potential revisited, (submitted).

(Manuscript received December 1st, 1997;
accepted, after revision, October 26, 1998.)

J. SJOSTRAND
Centre de Mathematiques,

Ecole Polytechnique,
F-91128 Palaiseau cedex, France

and UMR 7640, CNRS
W.-M. WANG

Dept. de Mathematiques,
Universite de Paris Sud,

F-91405 Orsay cedex, France
and URA 760, CNRS

^ SERIE - TOME 32 - 1999 - N° 3


