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DIRICHLET MOTIVES VIA MODULAR CURVES

BY ANNETTE HUBER AND GUIDO KINGS

ABSTRACT. - Generalizing ideas of Anderson, Harder has proposed a construction of extensions of Tate-motives
(more precisely of Hodge structures and Galois modules, respectively) in terms of modular curves. The aim of
this paper is to construct directly those elements of motivic cohomology of SpecQ(/^v) {i.e. in J^(Spec<Q(/^v)))
which induce these extensions in absolute Hodge cohomology and continuous Galois cohomology. We give two
such constructions and prove that they are equivalent. The key ingredient is Beilinson's Eisenstein symbol in
motivic cohomology of powers of the universal elliptic curve over the modular curve. We also compute explicitly
the Harder-Anderson element in absolute Hodge cohomology. It is given in terms of Dinchlet-L-functions. As a
corollary, we get a new proof of Beilinson's conjecture for Dirichlet-L-functions. A second paper [HuK] treats
the explicit computation in the /-adic case. © Elsevier, Paris

RESUME. - Generalisant des idees de Anderson, Harder a propose une construction d'extensions de motifs de
Tate (plus precisement d'extensions de structure de Hodge et de modules galoisiens) par les courbes modulaires.
Le but de cet article est de trouver des elements dans la cohomologie motivique de Spec<Q(jLtjv) (c'est-a-dire dans
^(SpecQ^A^))) qui induisent ces extensions dans la cohomologie de Hodge absolue et dans la cohomologie
galoisienne continue. Nous donnerons deux constructions de tels elements et montrerons qu'elles sont equivalentes.
L'ingredient cle est le symbole d'Eisenstein, introduit par Beilinson, qui donne des elements dans la cohomologie
motivique de puissances de la courbe elliptique universelle sur la courbe modulaire. Nous calculons aussi 1'extension
de Harder-Anderson dans la cohomologie de Hodge absolue. Elle est donnee explicitement en utilisant les fonctions
L de Dirichlet. Comme corollaire nous obtenons une nouvelle demonstration de la conjecture de Beilinson sur
les fonctions L de Dirichlet. Dans un second article [HuK], nous calculerons explicitement la variante Z-adique.
© Elsevier, Pans

Introduction

Generalizing ideas of Anderson, Harder has proposed a construction of extensions
of motives of Dirichlet-Tate type in sheaf theoretic terms (cf. [Ha] Section 4.2 or the
review before Prop. 6.4). Let .M^-l) be the smooth /-adic sheaf on Yi(p) given as
fc-th symmetric power of the Tate module of the universal elliptic curve over Y\{p}.
Decomposing a certain (-adic cohomology group with coefficients in M,k under the Hecke-
algebra. Harder obtains (after extension of scalars to Q(/^,_i)), for each Dirichlet character
T] mod p with y/ (—l) = (—1)^ an extension of Galois-modules

0 — — Q ^ + l ) ( ^ ) — — E k ^ — — W ) — — 0 ,

i.e. elements in H^^^KQ/^p))^ Q^ + 1)) ^ Q(^p-i)- By the same method,
he also constructs a family of extensions of Hodge structures, i.e. elements in
H^(SpecQ(/^p)R,Q(fc + 1)) 0 Q(/^,-i) (absolute Hodge cohomology).
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314 A. HUBER AND G. KINGS

It is clear from the geometric nature of the construction that these extensions should
correspond to an extension in the conjectural category of motivic sheaves, i.e. to
elements in Ext^(sp^^(Q,Q(fc + 1)). Conjecturally, this group is isomorphic to
K2fe+i(SpecQ(^)))(g)Q. The main aim of this paper is to construct directly those elements
in K:2fc+i(SpecQ(/^)) 0 Q which induce the Harder-Anderson extensions. The k = 0-case
has already been treated by Brinkmann ([Br]).

In fact, we give in sections 3 and 4 two constructions on X{N) (N > 3) that produce
elements in K2fc+i(SpecQ(/^)) 0 Q = H^(SpecQ(^v), k + 1). They are shown to agree
(Prop. 5.2). We call these elements Harder-Anderson elements. We then identify their image
under the regulator maps to absolute Hodge cohomology and /-adic cohomology and show
that they induce Harder's elements. In the Hodge-theoretic setting, the extension class can
be computed and is given by Dirichlet L-series (Cor. 8.3). (For N = p this is also carried
out by a different method in [Ha]). The Harder-Anderson elements span the whole motivic
cohomology group. This gives a new proof of (the weak form of) Beilinson's conjecture
for Dirichlet series using automorphic methods. The original proof is due to Beilinson
(completed by Neukirch [Neu] and Esnault [Es]) in [Be2]. Deninger has shown this case
using elliptic curves with complex multiplication ([Del]). There is also an alternative
proof using ideas of Beilinson and Deligne that relies on the motivic polylogarithm in the
classical case ([HuW]). The proof given here can be seen as a byproduct of the existence
of the elliptic polylogarithm.

Elements in motivic cohomology are uniquely determined by their Hodge-theoretic
regulator. It was a conjecture of Bloch and Kato ([B1K] Conjecture 6.2) that the Beilinson
elements in K:2fc+i(SpecQ(/^v)) 0 Q are mapped to the Soule-Deligne elements in Galois
cohomology H^Q^), Q^fc+1)). This has been proved using the classical polylogarithm
([HuW] Corollary 9.7). As a corollary, we can identify the l-adic version of the Harder-
Anderson extension. It is given precisely by those Soule-Deligne elements (cf. Cor. 8.5).
In a second paper ([HuK]), we will show this equality directly without recourse to the
Ar-theoretic result. Harder has also announced that he can do this. Together with the
results of the present paper this will conversely give an alternative proof of Bloch-Kato's
compatibility conjecture 6.2 in [B1K].

We now sketch our motivic constructions. They both rely on the Eisenstein symbol in
H^^X^A; + 1), where X^ is the fc-fold fibred product of the universal elliptic curve
over the modular curve. It was defined by Beilinson [Be3]. The first construction closely
imitates Harder9 s. We begin with an Eisenstein class that has residue 0 at the cusp oo. It
then extends to a class on X^, a partial compactification of 3^ that is smooth. Restriction
to the fibre at oo gives a class in the cohomology of an TV-gon which can be projected
to an element in the cohomology of oo = SpecQ(^). This part of the paper can be
seen as a sequel to ScholFs [Sch]. A construction similar to ours but in terms of K-
theory with compact support was independently found by Scholl. One remark on the
use of compactifications may be necessary: we cannot use the Neron-model because the
restriction of our elements to the Neron-model vanishes. The next obvious choice would
be powers of the standard compactification of X. However, this is singular and cannot be
used for the AT-theoretic computations like localization sequences. Hence we end up with
desingularizations of such completions.
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DIRICHLET MOTIVES VIA MODULAR CURVES 315

The second construction is quite natural in terms of absolute cohomology and does not
need in fact such a precise understanding of the geometric situation. We begin with two
Eisenstein classes. One has residue zero at the cusp oo, the other has residue 1 there and
residue zero at all other cusps. We take their cup-product and take residue at oo of the
result. It lives in the same H^(oo,fc + 1) as the result of the first construction and in
fact we get the same element.

We want to give an overview of the article. We start by fixing the notation and
reviewing the Eisenstein-symbol (sections 1 and 2). In sections 3 to 5 we give the Harder-
Anderson and the cup-product constructions in terms of absolute cohomology and compare
them. The underlying sheaf theoretic extension is identified in section 6. This allows to
make the comparison with Harder's extensions explicit. Finally, we compute the Hodge-
theoretic extension class in terms of the cup-product construction (Section 7). We round
off by gathering the main results mentioned in this introduction in Section 8. There is
an appendix on a motivic version of a splitting of the weight filtration for certain toric
varieties. It is needed in order to imitate the Harder-Anderson construction in terms of
absolute cohomology.

We thank D. Blasius, G. Harder, K. Ktinnemann, D. Ramakrishnan, A. Scholl and J.
Wildeshaus for discussions on the subject and useful comments. The first author wants
to thank particularly D. Blasius and D. Ramakrishnan whose questions first started her
interest in Harder's construction.

1. Notations and conventions

Let N >_ 3 and B == SpecQ(/^v). Fix a primitive root of unity C, G Q(^). Let M. be ther^/
modular curve of elliptic curves E with level-TV-structure ( J . / N ) 2 -^ E[N}. It is naturally
a B-scheme which we also consider as a Q-scheme via the natural map B —^ SpecQ. Let
M. be its compactification. Furthermore, let TT : X —> M. be the universal elliptic curve
above M. and TT : X —> A4 its compactification. This is a generalized elliptic curve. Let
Cusp = A4 \ M. be the scheme of cusps. The standard Neron-TV-gon has a level-TV-
structure J . / N x J . / N C Gyn x J . / N over B where 1 \—> ^ in the first component and of

0

course 1 i—^ 1 in the second. This induces a section oo : B —^ Cusp. Let J\A == M. U oo as
open subscheme of M.. The notation can be read as ".M plus one point". The inclusion
into M. will be denoted j. We denote the fibre above oo by Xoo. It is a Neron-TV-gon.
We will also need the Neron model of X over .M, which we denote X. Its fibre at oo
is isomorphic to G>rn,B x J - / N . Finally, we consider, for k > 1, the fc-fold fibre products
of these objects over A^, namely X^ = X x^ X . . . x^ X, X = X x^-.. . x^- X and
X^ = X x^ X . . . x^- X. Whereas X itself is smooth over SpecQ, this is not true for
the higher X . Let p : X^ —> X be the canonical desingularization, which is obtained by
a sequence of blow-ups. For details see [Sch] section 2. X^ is always smooth. Let X^,,
X^ and Xoo be the fibres above oo. These objects organize into the following cartesian
diagram of B-schemes:

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPfiRIEURE



316 A. HUBER AND G. KINGS

- . ~ o
Our object of central interest is the smooth variety X^o = X x^- M' All these

J\A.
5-schemes have a canonical model over 1[1/N].

We are going to do computations in absolute cohomology by which we mean Ext-groups
of Tate sheaves on the varieties. We will work in parallel in the following three settings:

1. Mixed algebraic Hodge modules over R (see [HuW] Definition A.2.4). They
carry a weight filtration. The corresponding absolute cohomology theory is
H%(y/R,R(m)) = Exr(R(0)y,R(0)y), the absolute Hodge cohomology over R
(he. cit. Definition A.2.6 or [Bel] §7 which gives the same thing by [HuW] A.2.7). It
agrees with Deligne cohomology over R for n < m (n <^ 2m if the variety is proper).

2. Mixed perverse Z-adic sheaves on varieties over Q as in [Hu2] section 3. A weight
filtration need not exist but we can speak of the weights of a given object. The
absolute cohomology theory is H^.(V,Q/(m)) = Ext^Q^O), Q(m)), horizontal
continuous /-adic cohomology (he. cit. Definition 5.1). For a variety V over Q, it is
given by the direct limit of the continuous /-adic cohomology groups of V, where V
runs through models of V which are of finite type over Z. It has a canonical map to
continuous Z-adic cohomology as defined by Jannsen ([J] sect. 3).

3. The conjectural theory of motivic sheaves. The corresponding absolute cohomology
is motivic cohomology, H^( • ,m). If V is a scheme of finite type over Z whose
irreducible components together with their iterated intersections are smooth over Z,
then let Vo be the disjoint union of the irreducible components of V. Let

H = cosqo(Vo/V).

This is a simplicial scheme, the Cech-nerve of the covering. As in [HuW] B.2.9
we can define motivic cohomology of V by H^(V,m) = GT^K^rn-niy^q. By
abuse of notation we will write H^(V,m) for the direct limit of the H^(V,m)
for all models of V.

There are higher Chem class maps

rn :H^(Y, m) -^ H%(V XQ R/R, R(m))
^:H^(y,m)-.H^(y,Q^(m)).

For the existence of localization sequences and their compatibility with regulators, we
again refer to [HuW], B.2.17, B.4.4, B.5.8 d).

For a morphism of varieties /, the functors f^ etc. denote the functors on the derived
category. Cohomology objects are perverse ones. Note that this leads to unfamiliar indexing.

4® SfiRIE - TOME 32 - 1999 - N° 3



DIRICHLET MOTIVES VIA MODULAR CURVES 317

We use the unified notations

f H%(V x R/R, R(m)) Hodge context
H^m) = { H^(V,Q^(m)) Z-adic context

H^(V,m) mod vie context
R Hodge context
Q^ ?-adic contextF =

If v : V —> SpecQ is a variety, let Fy •=- v*F be the object in the derived category
D(V) of Hodge modules respectively mixed perverse Z-adic sheaves. If V is smooth, then
this will be a Hodge module respectively a perverse sheaf up to shift of complexes. With
these conventions we put

Tjnnn _ un * 77- _ J ^ingW R) as a mixed K-Hodge structure over R
M ^; - ±1 v^v ^specQ - ^ H^(V^ Q^) as mixed Galois module

They carry a weight filtration. The absolute cohomology theories of 1. and 2. are part of a
Bloch-Ogus cohomology theory. In particular there is also absolute homology

Rn(V,m) = Homi)(v)(^*F(m)[n],z''F) = QomD<iSpecq)(v\Fv(m)[n},F)

and a canonical isomorphism between homology and cohomology in the smooth case.
Motivic cohomology is known to be a Bloch-Ogus cohomology theory at least when we
restrict to smooth varieties.

For a morphism f : X —> Y and a sheaf T on X, we also use the notation

BT{X/Y^)=f^
ET(x/y)=/A .

If y = B, we drop the Y from the notation. By adjointness we have the equalities

H^m) = Homp(B)(FB,^TW5)(m)H)
Kn{V,m) = Hom^(B)(FB(m)[n],D^Fy)

2. The Eisenstein symbol

We start by reviewing Beilinson's Eisenstein symbol [Be3]. There are several possible
conventions for the action of the group G L ' z ( Z / N ) on M. and the explicit parameterization
of 3^(0), which is important for the formulas for the Eisenstein symbol in Deligne
cohomology. We follow, with our approach, the one in [De2] (see also [Den-Sch]), whose
normalizations differ from the original ones in [Be3] and coincide with the ones in
[Ki2,Ki3]. Although the Eisenstein symbol was first constructed in mod vie cohomology,
we work with all absolute cohomologies at the same time.

The Eisenstein symbol is a splitting of a certain residue map, which we now recall
for the purpose of fixing some notations. Recall that X/M. denotes the Neron model of
X over M. Denote by Xcusp the fibre over Cusp. It has N connected components. Let
-^usp ^e ̂  component of the identity section. By our fixed choice of root of unity ^,

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPfiRIEURE



318 A. HUBER AND G. KINGS

the standard Neron-TV-gon over B has a canonical level-TV-structure, which gives rise to
a section oo : B —> Cusp. Denote by Isom the /^,B = Auta(G^)-torsor

Isom:=IsomB(G^X^)

so that we have a canonical isomorphism

a : Xoo -^ ((G^a x Z/AQ XB Isom)/AutB(G^) , (1)

Auta(G^) acting on both factors.
Now Cusp/Q is etale, hence completely described by the set

Cusp(Q) = ±U{I/N) \ GW/N) ,

where U = < M ^ ^ j e GL^ ^ with Gal(Q/Q)-action given via its quotient

Gal(Q(^v)/Q) as follows: fix the isomorphism Gal(Q(/^)/Q) ^ WN)\ such that
C ̂  C" ' for a (E (Z/7V)* and < G /^AT. Then let a e (Z/7V)* act via left multiplication

by ^ ^J on ±[/(Z/7V) \ GL^Z/TV). If we let P := J ̂  ^ e GL^l, then the
cusp oo is given by

oo(Q) = ±U(1/N) \ ± P { I / N )

and the set of closed points of Cusp is the set

. ±P{I/N)\GL^I/N).

We get

^Cusp = )[ 3^.00
ge±P{l/N)\GL^l/N)

so that

H-(Xcusp, *) - Ind^f/^H-(X^ *) .

Composing with (1) we get:

a* : H^Xcusp^^^Ind^y^H^ x 6^^) x Isom, *)A"ta(G^)=id

or more generally for fe > 1:

^* •• ̂ (^.^^^^^•((Z/TV x G^f x Isom,*)^^6-)^ .

For the special case H^G^ ̂  x Isom, fc) we have the residue map

1^(0^ x Isom, k) ̂  H°(Isom, 0)

induced by H^G^a, 1) -> H°(5,0) which in turn comes from the localization sequence
for the pair (A1, G^). This map becomes equivariant for the ©^-action on Gk if we let

4° SERIE - TOME 32 - 1999 - N° 3



DIRICHLET MOTIVES VIA MODULAR CURVES 319

r € 6k act via sgnr on H°(Isom,0). The map res is not equivariant for the natural
operation of Auta(G^), but induces rather

H'^B xIsom^^^^^^^^.H^Isom^O)^^6-^-1^ .

Let
H°(B,0)^ ^H^Isom^11^0-^-1^ ,

H°(Cusp,0)^ :=HO(Isomcusp(^,Xoc^),0)Aut(Gm)=(-l)fc .

Observe that (-1 ° ) € GI^Z/AQ acts via (-1)^ on H°(B,0)^.

Composing the boundary map S in the Gysin sequence for the pair (3^, X^) with residue
and projection to the cohomology of the identity component, one gets:

Hfc+l(X^fc+l)-^H<;(i^,A)re-s^tInd^7^) © H°(5,0)W
(Z/JV)'8

-Ind^zy^H0^^)^.

Note that the same map can be obtained from the Gysin sequence for the pair ((X0)^ 3^).
We put

Res := resoa*o($

which is a GL^(J./N)- and 6 ̂ -equivariant map

Res : H^X^ k + 1) -^ Ind^/^H^B, 0)^ .

The Eisenstein symbol for k ^ 1 is now a GL'z(1/N)- and ©^-equivariant splitting of Res:

fis : H°(Cusp, 0)^) = Ind^y^H0^, 0)^ —. H^X^ fc + 1)

with
Resofis = id ,

the motivic Eisenstein symbol constructed by Beilinson [Be3] section 3, respectively its
image under the regulator maps. The Eisenstein symbol is the main ingredient in the
constructions of this article.

Recall from [Sch] that the group

r, := ((Z/AQ2 x ̂ k ̂  Gk

acts on the B-scheme 3^. Here (1/N)2 ^ X[N] acts by translation, ±1 G ^2 by
multiplication on X and @k acts by permuting the factors. Scholl introduced the character

£ '• Ffc ——> P.2

which is trivial on (Z/W)2^, the multiplication map on /^ and the sign character on 6^;.
Denote by V{e) the s-isotypical subspace of a vector space (over a field of characteristic 0)
with r\-action. We let Pe be the projector onto V{e). Res and Eis become r^-equivariant
if we let I\ act via e on Ind^^/^H^B, 0)^) ([Be3] 3.1). This implies P^oEis = fis.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



320 A. HUBER AND G. KINGS

3. Harder-Anderson elements in K-iheory

We want to show that, by restriction to a subspace of Ind^^^/^H^B^O)^), we can
actually get elements in H^X^ , fc+1), where X^ is the partial smooth compactification

M _M
including oo. Consider the partial Neron-model X\. As the computations of Scholl [Sch]
which lead to the isomorphism M

H^X^^H^X^)^)

(3.1.0 of toe. cit.) are completely local on Cusp, we get:

LEMMA 3.1. - The inclusion X^ ^ X^ induces an isomorphism
M M

H^X^^H^X^ *)(£).
M M

The subscheme X^ c X^ is obviously stabilized by ± P { I / N ) c GL^I/N). As in
M.

section 2, we define a (only ±P(Z/W)-equivariant) map

H^X^ fc + 1)res^* H°(S, 0)^) ,

which is still IVequivariant, if Fj, acts via e on H^^O)^. If we let again be
Res := resoa*o(?, we get a map

Res : H^X^ k + 1) —— H°(B, 0)^ .

For later use we denote by oo* the ±P(Z/AQ-morphism

oo* : Ind^/^H^B, 0)^) ^ H°(Cusp, 0)^) ̂  H°(B, 0)^) (2)

which is evaluation of / e Ind^^^H^S, 0)^) at ^ ^ e GI^Z/AQ.

Our aim is to prove:

PROPOSITION 3.2. - There is a commutative diagram of short exact sequences

0_ H^X^fc +!)(£)-. H^X^A; +!)(£)
A^

0^ H^^^ + l)(e)-^ H^1^, &+!)(£)

H^ ^(5,0)^ ^0
Too*

R^ Ind^%)H°(B,0)^ ^0
W^TT all maps are ±P{l/N)-equivariant.

4e S^RIE - TOME 32 - 1999 - N° 3



DIRICHLET MOTIVES VIA MODULAR CURVES 321

Proof. - Consider the r^-equi variant long exact localization sequence for the pair
(X^,^)

M

-^ H^X^ k) -^ H^^o , k + 1) ̂  H^X^ k + 1) ̂  H^X^, fc) -^o 5 '
M

and project to ^-eigenspaces. Because X^ ^ (2/W x Gm^B^ we have

H^X^fcK^O

and
H^X^AO^H^O)^ .

The same localization sequence for (3^,3^) is even right exact because Res has the
splitting Eis. This, together with the functoriality of the localization sequence, implies the
result. The ±P(Z/A^)-equivariance follows from the construction of Res. D

We identify the kernel of oo* with

ker oo* ^ H°(Cusp \ oo, O)^ .

COROLLARY 3.3. - The Eisenstein symbol induces a map

£is : H°(Cusp \ oo, 0)^ —— H^j^o ,k + l)(e) .0 , '

M

Proof. - This is (3.2) together with (3.1). D
In the appendix, we will establish the following: If V is B-variety whose irreducible

components and their iterated intersections are smooth over B, then there is a simplicial
variety WoV, called the weight zero part of V and a canonical morphism V —> WoV. It
induces maps on absolute and geometric cohomology by contravariant functoriality and
indeed H'(WoV) ^ WoQ^V) via the induced morphism.

PROPOSITION 3.4. - Let V be a proper variety whose irreducible components and their
iterated intersections are smooth tone varieties over B. In this case there exist projections

RT{V/B) -^ RT{WoV/B),

such that the induced map on cohomology is a projection to the weight zero part. In
particular, WoU^V) is a direct summand. Moreover, there are projections

H^V, m) -> ̂ {WoV, m) for all n, m

in all three absolute cohomology theories. These projections are compatible under
realization functors and the Leray spectral sequence. They are uniquely determined by this
property for n = m = dim(V) + 1. In particular, they are invariant under endomorphisms
ofV.

Proof. - See A. 12 and A. 14 D
Note that X^ and X^ are both of this special type (see the explicit description before
Lemma A.5). Moreover:

ANNALES SCIENTIFIQUES DE L'^COLE NORMALE SUPERIEURE



322 A. HUBER AND G. KINGS

^^ _i
PROPOSITION 3.5. - The morphism X^ —> X^ induces isomorphisms

WWXl) - WoIT(^) = (g H°(B)
z i+ . . .+Zfc=r ,

^•€{0,1}

^
H^Wo^ A; + 1) ^ H^WX^ fc + 1) ^ H1^, fc + 1).

Pwq/1 - This is A.6. Recall that by definition oo gives an isomorphism of Xoo with the
standard TV-gon. Q

We are now in a position to construct the Harder-Anderson elements.

DEFINITION 3.6. - Composing Wo with the map Sisfrom corollary 3.3 we get

Pir^ : H°(Cusp \ ex), 0) —> H^B, k + 1) .

Elements in the image of

r.Pir^ : H^(Cusp ^ oc, 0)^) - ̂ d^/^K^B^ 0)W __ H^(B, k + 1)

m motivic, absolute Hodge or continuous l-adic cohomology are called Harder-Anderson
elements.

4. The cup-product construction

We give a second construction of elements in H^B, k + 1) starting with the Eisenstein-
symbol. We will show in section 5 that it is equivalent to the one given before.

To work with elements in Ind^^(^)HO(B,0)(fc) we want to give a slightly different
description of this space. We have an identification

Ind^y^H0^ 0)W = (lnd%^H°(5,0)) -B=(-l)fc

-^Ind^^H^B^))^

with E = ^ j . This, together with the isomorphism H^(B, 0) = Q allows us to write

/. ,GL2(Z/AO.jO /D n^^ _ (Tnd^^/^oV^
^^(Z/AO -^.M^^ - ^^(z/AO ^)

As in Section 3, (2) we consider the projection

^^Ind^yH^O^'^H^O)^.

DEFINITION 4.1. - With the above identification, let /oo G (ind^^^q} be the
element such that

f00 (,0 1 ) = 1 '

f (~1 ° } - ( 1^J00^0 - l ) -(-1) '

f^(9')=Oforgi±P(I/N).

4" SfiRIE - TOME 32 - 1999 - N° 3



DIRICHLET MOTIVES VIA MODULAR CURVES 323

We also denote by foo the image of the above element under the regulator in all realisations,
so that we can write

f^ e (Ind%/(%JV)HO(B,0))(fc) - H^Cusp^) .

Now consider the map

fis(.) U <?is(/oo) : H°(Cusp \ oo, 0)W —— H^^X^ 2k + 2).

We compose it with push-forward for the smooth and proper map TT^ : X^ —-)• M. and
residue at infinity Res : H^A^fc + 2) -> ̂ {B,k + 1).

DEFINITION 4.2. - For k > 1 the composition Reso7r^(<?is(-) U £is(/oo) defines a map

Vn0^ :QO{C}lsp\oo,0){k) — — H ^ f c + l ) .

V^ ^a^ ^a^ an element in H^B^k + 1) is obtained by the cup-product construction if it
is in the image ofDir0^ on H^Cusp \ oo,0)^.

Note that this construction only involves smooth schemes.

Remark. - The same construction (without the restriction to keroo*) already appears in
Beilinson's [Be3] 2.3.1. However, he states that the result is always zero. This is false
as we shall show {cf. 8.4).

5. Cup-product vs. Harder-Anderson construction

We want to show that the cup-product construction is equivalent to the Harder-Anderson
construction. We do this for absolute Hodge cohomology and (-adic cohomology. Because
of the injectivity of the regulators, the final result will also hold in the motivic context.

We first use the fact that the Eisenstein symbol on H°(Cusp \ oo,0)^ lifts to
H^^X^o , f c + 1). Applying the Poincare duality isomorphism0 5 '

M\A

H^X^m) —> H2,+2-n(3^ k + 1 - m)

we can equivalently formulate the map in terms of cap-products rather than cup-products.
This will have advantages in dealing with the singular varieties that occur. In these terms
the cup-product construction is an application of the map

H^X^o, k + 1) x Hfc+i(X^ 0) ̂  Ho(X^ -k - 1)
M

^Ho(.M,-A;-l)^H-i(oo,-A;-l)
to (^(/^^(./oo^) where (^ is the Poincare dual and / E H°(Cusp \ oo,0)W.
£is(/) H • is compatible with the long exact homology sequence for the triple
(X^, X^o, X^). The connecting morphism and the functoriality of push-forward give

M
the commutative diagram

^is(/)n 7^
H^i(X^O) ——— Ho(X^-fc- l) —— Ho(.A<-fc-l)

6\ 6\ res
^ z*(^is(J))n ^ - ^ i

H,(X^O) ————— H-i(X^-fc-l) —— H-i(B,-fc-l)
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We now have reformulated the cup-product construction in terms on TV-gons.

Remark. - It is in applying the push-forward that we use the completeness of 3^, i.e.,
that the Neron-model would not do the job. This is not only a technical question - the
very fact that we have something interesting in H_i(X^, -k - 1) relies on the vanishing
of the corresponding element in the special fibre of the Neron model.

LEMMA 5.1. - The map
L > I -i, n^isC/oc^ ~, y

H^X^fc+l)——————H-i(X^-fc- l ) -^H-i(B,-fc- l )
factors through H^^o^o, k + 1) ^ H^oo, k + 1). The induced map is, up to its sign,
given by the Poincare duality isomorphism

H^B, k + 1) —> H-i(B, -k - 1).
Proof. - We abbreviate Xoo == ,/V, 3^ == ^fk. Our map

H^A/^ k + 1) x H,(A/^ 0) ̂  H_i(A^ -fc - 1) ̂  H-i(B, -fc - 1)
arises as the composition

r^ismtg^is^^ ^ ,̂
F(-fc - l)[-fc - 1] 0 F[fc] ——-——-—^ar(^) 0 Dffl:(^)

^ DEIXA^) ̂  T>oDJ^(A/'fc) = H°(B).

Note first that any map F[k] -^ DRT^) factors through r^-fcD^T^). Any map
F{-k -^ l)[-k - 1] -^ RT^) factors even through T^M^A/^) because die weights of
H^^A/^) are smaller than fc+1 < 2fc+2. Finally, a map ^^(A/'A;)0Da^(A/'A;) -^ H°(B)
factors through T>o(^^(A/'fc) 0 D,Rr(A^)). Putting this information together we see that
our cap-product factors through the geometric cap-product

Hfc(A/•fc)0H,(A/•fc)—.Ho(A/•fe).
£is(fooV : F -^ Rk^) has to respect weights, i.e. it must factor through Or^H^A/^) =
iU^X5)- Hence only the weight zero part of H^A/^) contributes. The map of the
proposition factors as stated through the projection to the weight zero part of A/^.
^(/oo^ gives an identification of Gr^H^A/^) with Ho(B). Using the dual identification
for ^oH^A/^) (as we did when we specified it in the remark after A. 14) our map is
identified with the cap-product for B. D

PROPOSITION 5.2. - The maps
Pir^Pir^ : H?(Cusp \ 00,0)^ ^ H^(B, k + 1)

are equal in motivic, absolute Hodge and continuous l-adic cohomology. We denote the
map simply Pir.

Proof. - As the regulator maps are injective on H^I^fc + 1), it is enough to prove
equality in the realizations. We have shown that

pi,cup^v ^ ,*(^(y) n ̂ isC^

=Wo(r(^s(/))n^isOoo) (5.1)
^ir^n^isa^ .

By the last lemma this implies the equality. D
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6. The sheaf theoretic interpretation

We are going to represent the Harder-Anderson extensions by explicit Yoneda-extensions.
This is done by reinterpreting all objects sheaf-theoretically. We start by collecting the main

0

ingredients. Let j : M —^ M be the inclusion. Let e be the character defined in section 3.

LEMMA 6.1. - The following isomorphisms of sheaves on B hold:

^{Mj^F^e) = H^A^Sym^Tr.Fx),

^k{MJ^F^)(e)=^

H^K^H0^),
H^o )(e) = 0.

M

Proof. - Analyzing the operation of r^ on the different cohomology groups of an elliptic,
0

curve respectively on Neron-^V-gons, we get for (perverse!) cohomology on M,\

H\Me) = H^F^
HlW^Je)=Hl^F^=F^

whereas the er-eigenspaces of the other cohomology objects vanish, (ff2^^ corresponds
to R^TV^F^I} in usual cohomology.) The sign-eigenspace of the symmetric group translates
into the symmetric power because of the anti-commutativity of the cup-product. Hence:

H^^F^e) = Sym^Tr^
H^F^k (e) = Syni^TT.F^ = F^

and again the 6-eigenspaces of the other cohomology objects vanish. By the Leray spectral
sequence this implies the first three equalities. By [Sch] 1.2.1, the group H^X^e)
vanishes. Using the localization sequence we see easily that this implies the same vanishing
for X\. D

M
~ _^ o

Recall the map p : X" —> X .We also need its base change with oo or M' The lemma
and Proposition A.5 imply that we have the commutative diagram

IVoH^)(6) ^ W^^^e)
T T
I J'

H^Ke) ^- H^X^)
In particular poo is injective and can be identified with the inclusion of the weight
zero part. We now recommend to the reader to write out the big diagram containing
the above square, the e-eigenspaces of the long exact sequences for the triples
U^F^ -^ ^F^k —^ i^1lF^k ) and {J^F^ —^ ^F^k —^ i^F^k ) as well as
the other maps considered below! In particular, we have °°

H^)- -. H^^Sym^W ^ H^(Xy- -. H^X^

-T T- k T
H^)6 ^ H^j'Sym^Tr.Fx)6 ^ H^^X^)6 ^ H^1^)5
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poo has a section (the projection to the weight zero part), hence there is also a projection
inverse to p o on lm(dY. Recall that for each / e H°(Cusp \ oo^O)^ the Eisenstein

M,

symbol £is{f) defines a map F{-k - 1) ^ H^+^X^ )(e). Its image in H^X^e)
•̂  ~

vanishes for weight reasons. Hence it factors through Im(d)(e) and using the projection it
factors even through lm(d){e). Pull-back via this map induces a Yoneda-extension

0 —— H°(B) —— Ef —— F{-k - 1) —— 0 (*^)

where we fix an isomorphism H°(X^)(e) with H°(B).

PROPOSITION 6.2. - The Harder-Anderson element Pir"^/) for f e H°(Cusp \ oo,0)
as in 3.6 is given by the above Yoneda-extension (^f).

Proof. - A priori, the Harder-Anderson extension is given by a composition of morphisms
in the derived category of sheaves on SpecQ:

F(-k - l)[-k - 1] -. BL{X\) - RT^) -^ T>^oEE(X^) = W^^^-k]
M.

The additional truncation r>k does not change the composition. From the above
considerations, we see that the compositions

F{-k - 1) -^ H^^ ) ̂  H^X^),
^ ^ M

H^ ) -^ H^^X^) -. WoH^) - ̂ oHfc(^)(£)
A l̂

vanish. Hence the assumptions of the small lemma below are valid and we see that we
find the Harder-Anderson extension as pull-back and push-out in the diagram

^oH^)

H'(X^) —— H^^J.TT^) —— H^^)r
F(-fc-l)

Everything factors through ^-eigenspaces. From there it is an easy exercise that the push-out
can be identified as we did. D

LEMMA 6.3. - Let D be a triangulated category with a t-structure. Let (A —^ B —> C) be
a distinguished triangle. Let F and W be objects in the heart of the t-structure. Suppose we
are given morphisms f : F —> C and w : A—^W in D such that the induced compositions
F -^ H°(C) -> H\A) andH-\C) -. H°(A) -^ W vanish. Then the 1-extension defined
by the composition F —^ C —^ A[l] —^ W[l] is represented by the push-out via w and
pull-back via f of the exact sequence

H°{A) -^ H°(B) -. H°{C).

Proof. - Apply the truncation functor r>o to B and C. Extend to a morphism of
triangles (A,S,C) ̂  (A',T>oB,T>o). Obviously H\A') ̂  ^^/ImH-^C). By our
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assumption on w it factors through A'. We apply the dual manipulation using r<o. Hence
we can assume without loss of generality that the A, B, C are in the heart. The equivalence
of Yondeda-extensions with morphisms in the derived category identifies C —> A[l] with
the short exact sequence. The lemma follows by functoriality. D

Now we want to show how the construction given here relates to Harder's original one,
e.g. in [Ha] 4.2. He uses Y-^(p) where p is a prime. The scheme of cusps is decomposed
as Soo U So. He starts with the canonical module Mk on Y^[p\ i.e., with Syn^^TT^F^.
(In the identification in [Ha] 4.2.1 we have to take the antisymmetric part rather than
the symmetric part because cup-product is anti-commutative.) He forms M^ on Yi(p) by
extending via j^ at the cusp Soo and via j[ at So. Harder then considers the mixed object
H^^Vi^M^). It is mixed of weights 0 (corresponding to the image of H(X^)(£)),
k + 1 (the cuspidal part of cohomology) and 2k 4- 2 (preimage of H(X^)). Analysis of
the operation of the Hecke-algebra first splits off the cuspidal part as a direct summand.
We are left with an extension

0 ̂  H°(So, 0) ̂  E -^ H°(Soo, -k - 1) -. 0

which can be decomposed into the eigen-components under the Hecke-algebra after
extension of scalars to Q(/^,_i). This yields extensions

0 _ Q _ EB[X) - H°(SpecQO^ -k - 1)(^) -> 0

for Dirichlet characters \ satisfying •)((—l)={—l)k.

PROPOSITION 6.4. - Let H = ( J C GL^I/p) be the covering group of

M. = Y(p) over Y^{p}. For w = ( r ^ ^ l ^ f w be the function on GL^(J./p) defined by

fw{g) = J00(5^) for foo as in 4.1. The dual of the Harder-Anderson elementT)iTHA(fw)
induces the extension classes constructed by Harder ([Ha]) 4.2 in the Hodge or l-adic
realisation by projecting to H-invariants and decomposing under the Galois group.

Proof. - We first have to understand the cusps of Y{p) relative to those of Y-^(p). There
is one ff-orbit above Soo. It is isomorphic to U/ie±ro/p)\a- ^ ' ^ere are (p - 1)/2 more

A *\orbits, each of them mapping to one copy of SpecQ C So. The group P ( l / p ) = ( ^
operates from the right on Cusp. It respects the cusps in the ff-orbit of oo. Note that the
operation here is the same as the operation of the Galois group which was by ( ) from

the left. On the other hand P ( I / p ) operates simply transitively on the ff-orbits above So.
On Yi(p) we consider the continuation of Mjc via j\ at Soo and via j^ at So. Note that

we have exchanged the roles of 0 and oo with regard to Harder's construction. But this is
(up to a twist) the dual of the original one because the canonical module is dual to Mk(k)
whereas j\ and j^ are exchanged. We can repeat the construction for Y{p), i.e., we consider
the canonical module on the modular curve and extend by j\ at all cusps above Soo and
by j^ at all others. By taking H -invariants we can pass from Y{p) to Y^(p). Cohomology
of the mixed sheaf can be identified with an explicit extension as in the beginning of this
section. After splitting off the cuspidal cohomology, we are now dealing with an extension

0 ̂  H°(oo • H, 0) -> E -^ H°(Cusp \ oo • H, -k - 1) ̂  0. (*)
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The construction of Pir11^/^) given in this article means push-out via the projection to oo,
i.e., H°(oo • H, 0) -^ H°(B, 0) and pull-back under f^ : H°(J3) -^ H°(Cusp \ oo • H, 0).
Moreover, we project to H -invariants in order to get something coming from Y^_{p).
Taking H -invariants turns the first map into an isomorphism. Note that the decomposition
of H°(B,0) under P(l/p) is the same as the decomposition under the operation of the
Galois group. On the other hand the H -invariants of H°(Cusp \ oo • ff, -k - 1) are
given by H°(Eo,-fc - 1). We apply the projection to the P(Z/p)-eigencomponents in
H°(Cusp \oo' H ^ — k — 1) to the H -invariant map associated to fw. The result is non-zero
and hence an isomorphism. Note finally that in Harder's construction the decomposition
under P { l / p ) / H is the same as under the Hecke-algebra on Y^{p). These considerations
give the identification we claimed. D

7. The absolute Hodge-realization of the cup-product construction

In this section we prepare the computation of VlT(j^p{f). After Proposition 5.2, stating
that Pir^/) = Pir^/), and after Harder's computation [Ha] 4.3, it should be no
surprise that Viv^^f) can be expressed in terms of special values of the Dirichlet L-
series. Note that Harder does only a very special case and that our method of construction
is completely different. We think that the following computation sheds some additional
light on the nature of our construction.

Realization of the Eisenstein symbol

Let us start by recalling the realization of the Eisenstein symbol in absolute Hodge
cohomology. As in section 2 we follow [De2].

Let ^ := {r e C | Imr > 0} be the upper half plane with the usual action of
( a b} G SL2(R) : T ̂  ̂ . Consider the action of f(^), ( a b}} e Z2 x SL2(Z)
v ^ / v \ ^on C x V):

( a b\. . __ ( z ar-h b\
[c d ) ^ ^ ' - {^r^d-crTd) '

( ] { z , r ) := (z-\-m-nr,r) .
\n /

Then we have:

X^C) = 1^ x SL2(Z) \ (C^ x ^) x {(l/N)^ x GW/N)) .

As in [De2] (and [Be3]) consider (±U = ±(1 *V:

^(C) = 1^ x ±U(1} \ (C^ x ^) x ((Z/iV)^ x GL2(Z/AQ)

together with its projection pk : ^^(C) -^ X^C). Let q := exp{2mr) and ^ i , . . . , Zk be
the coordinates on Ck. We recall the identification from section 4:

T iGL2(Z/N)TjO / D ^(fc) ^ f^^W^a}ma^p^^^^t},^) - \^^p(z/N) H )
(fc)
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For any function / G (ind^" ̂ Q) consider the holomorphic form on ^(C)

(g, ̂  . . . ̂ ) ̂  Eis^/)^) := pfc* ((2^)-/(^dg A cbi A . . . A dzk\ .

As in [De2] 3.7. this is:

Ei/yx,)^ E (c^^^-^-.
7V ^^ZASL^Z)^^ q

where 7 = I , ). This is a holomorphic fc+1-form on ^(C). Let R(fe) := (271-?)^ and\^c ri/

TTfc : C-^ FS(fc), a^^a+^l)^).

On C-valued differential forms this induces

^k''^^ ^(^+ {-l)kuJ)

Recall that any element in H^^X^ fc + 1) is of the form T] where 77 is an R-valued C°°-
fc-form on X^C) with dr] = TT^CA;, where a; is a holomorphic k + 1-form with logarithmic
poles along ^(C) \ ^^(C) (see [Den-Sch] for this description).

LEMMA 7.1. - The class ofEis^f) G H^+1(XA;, k + 1) ^ represented by a real analytic,
R{k)-valued differential k-form, also called <fis^(/) on 3^(0), such that

d^(/)=7r,Eis^(/).

Proof. - This is [Be3] theorem 3.1.7 and 2.2. D

Remark. - Note that formula (3.16) in [De2] is not correct. There is a factor -^ missing
which is due to the fact that the residue of dq in loc. cit. is N. The map res in [Be3] 2.1.2
differs from Deninger's by this factor ^ due to ramification at the cusp oo.

This form can be constructed as follows: define {ZQ := r),

k

4:=-(27T^. ^(-l^TTO-^:

r,s=0

where y , := Im(^),C^ := (( fc+l)^))" 1 and

^ := ̂ (d ̂ ) A . . . A d 'zl A .. . A d 'z^^

where the sum is over the exterior products of r factors dz and k — r factors d^, the
d^s^ being omitted. Then we get

d^ = TTfc ((271-%)^— A d^i A ... A dzk } .
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LEMMA 7.2. - The differential form <fis^(/) is given explicitly by the series

^ E A7^7*(4).
7C±£/(Z)\SL2(Z)

Proof. - This is [Be3] 2.2. Q
For later use we need a formula for the projection of <?is^(/) into the relative differential

forms for X(C) —> A^(C). A straightforward calculation gives, with rj^~3 as above (cf
[De2] 3.12),

^ f fV^ - (^ î̂ ) V (k\ -1 .-,^(/)(,)= ^^ ^(J „z^
j=o

Y^ f( ^(cT+dp' (c^+d)^\ . .
^ f{w \cr\-d\W moddT,dT. (3)

^7€±£/(Z)\SL2(Z) lc/ l a l /

Cup-products

The next thing we need to recall is the explicit formula for the cup-product of two Deligne
cohomology classes from [Den-Sch], 2.5. For cohomology classes 7^, let a;, be the unique
holomorphic solution of dr]i = Tr^i). The cup-product 771 U rj^ G H^^X^A; + 2)
is then given by

7/1 A TTfc+l^ + (-l)^1^^!^! A 7^2

(c/ [Den-Sch]).
If we apply this to the Eisenstein symbols <?is^(/,) (with /i,/2 being in

^d^f/^Q^^- we get

^(/i) A Tr^iEis^) + (-l^Tr^iEis^/i) A fis^) .

Push-forward to .M

Denote by £is^°\fi) (resp. fis^'^C,)), % = 1,2, the (fc, 0) resp. the (0, fc)-component
of £is^{fi) along the fibres of ^ : X^C) -^ A^((C). Then one has

^i4(A)Ufis^(/2))=

j^ [^'^(/i) A E^(/2) + (-l)^1^50^/!) A Eis^

+(-l)fc+lEisfc(A) A ^is^)(/2)+Eisfc(A) A £is^°\f,)] . (4)

The formula for <?is^(/,) gives, 2/0 := Imr:

*̂.«'(/,)(,),(2,,)*̂  ^ /.(,,)(̂ ^̂  (s,
v ^€±£7(1)^2(2) |^T-ha|
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and

c - ( o , f c ) . ^ _ ^ ^k -^Vo \^ /z(7^)(cr + d)kdz^ A ... A dzj,
^ W - (27TZ) ̂ j^ ^ ————————CT+d|W)———————— •

v ' / 7€±£7(Z)\SL2(Z) 1 ' 1

In order to compute TT^ of the summands in the formula for £is^(/i) Ufis^(/2)» we need:

LEMMA 7.3.
k

7T^(d^i A d^i A ... A dzk A d^) = ̂  .
TT'0

Proof. - Let (r,^) € f) x GL^(J./N). Then the fiber of 7r1 over (r,^) is isomorphic
to C/1Z + (-T-)Z. Because d^ A d^ = -2%d.r A dy and 7r^(drc A d?/) = (27r%)-1 and
, , /-I Rer\ .det n T = -Imr = -2/0 we get\^ U imr )

^(dz^dz)^^ .
TT

This implies the result. D
Write:

^r f^^.- l v /^X^T^)'
^ ^^ ^/ •- TV 2^ |cT + dl2^2

'^^^ZASL.W '^^"l

and
^/r ^ 1 \-^ fm9)E{f^T^g):=^ ^

y\e±^)\SL.(z)(CT+a;

This, together with lemma 7.3 gives:
/ -I \A;+l/9/,,-^2fc-l-fc,,fe+l

^(^(A) A Tr.^Eis^^)) = ̂  (^^ yo

.[^(A^^)^^^^)^-^^!^^)^^^^)^"!

and
/'9 •\2fc l-fc fc+l

^((-l^Tr^Eis^A) Afis^/2)) = ' ^^^

[^(A,T^)^(/2,T^)^-^(7r,T^)^(/2^^)^]

Residue computation

The next thing we are going to do is to give a formula for the residue in terms of the
Fourier coefficients of the Eisenstein series involved. To compute the residue of

^(fis^(/i) U fis^(/2)) C H^(A^e/R, R(fc + 2))

first observe that for k > 0

H^(.MR/R, R(fc + 2)) ^ H5(.M(C), R(fc + l)f00
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and

/ \^
H^(^/R,R(fc+l))^H^(5(C),R(fc))^= © R(fc) .

\(reB(C) /

Here, Ha(...) denotes singular cohomology, Foo is the complex conjugation on M{C}
and B(C) and ( . . . ) denotes the complex conjugation on R(k + 1) == (27^%)fc+lR and
R(fe) = (271-%)^. The residue is given via this identification by the zeroth Fourier coefficient

res(^(^(A)Ufis^(/2))(T^))

= ——— ! ^(fi4(A) U^(/2))(^o^o^)ZTrm jR/^v.z

where r = a;o + ^o and ^/o > 0 is fixed. The result is then independent of yo.

LEMMA 7.4. - If we denote by ao(. . .) = ^ JR/NZ(- • O^o ̂  0-^ Fourier coefficient
of a function, then the formula

, , /9 -\2fc l-fc fc+l
reso^(fis^(A) Ufis^(/2)) = v ^ , '/0

/C T -L

[(-l)fc+l(ao(^(A,T^))ao(^(/2,T^))+ao(^(A^^))ao(^(72^^)))

+ao(^(A,T^))ao(^(/2,T^))+ao(^(7l,7r^))ao(ffca2,T^))]

/?0/^5'.

Proof. - The residue of the products ek{f^,T,g)Ek{f^r,g)^- etc. is the 0-th Fourier
coefficient of this product of two absolutely and uniformly convergent series on compact
sets. Hence it is given by

^a,(^(/i,r^))a-,(^(/2,T^)) .

As the residue is independent of yo > 0 and the n-th Fourier coefficients of ^{f-^.r.g)
and ^(/i^T,^) grow like ^n-e-^0-71! for yo -^ oo (see [Fr] III.4.4), only the 0-th Fourier
coefficients matter for the computation of the residue. D

Before we can write down the Fourier coefficients of our Eisenstein series, we need
some more notation.

Let (p : ( I / N ) 2 -^ C be any function. Then for g e GL^l/N) we put

(g^)(x) = ̂ (g^x)

and for Res > 1

T.(^ ^._Y^(M)L{^s):=^
fl8

d>l a
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We introduce the partial Fourier transforms (here C is the TV-root of unity chosen as above)

P^b)= ^ ^b)^
dei/N

P2^b)= ^ ^d)^
d ^ I / N

and the symplectic Fourier transform

<?M)=-^ E ^^^
(a,fc)€(Z/N)2

<?M)=^

Let ^(a,b) := <^(&,a), then P^(p = {PI^Y and Pi^ = P2(^). Note also that the
functional equation for L{ip^s) implies that if ^(—c, —d) = (—1)^(0, d), then

^.i-^'-1'^-1'1^).
Let

Q^) [(Z/AT)2] := {y : (Z/7V)2 ̂  Q | y(-c, -d) = (-1)^(0, d)} .

DEFINITION 7.5. - 77(e horospherical map is defined as

.W
^QW^/^-^^nd^yQ)

v^{g^m\y, |———> ^g^ -^L(P2(a</7t), -fc - 1) L

Note that

-1-,_^^ , ,, ^fc t-^ / _ , . ,5 fe+2(<^^(p^-.-i)^ E '̂̂ P .̂^,?(^,-^-1)=^
(*i,t2)e(z/7V)2

Here Bfc+2(^) is the k + 2-th Bernoulli polynomial and < x >:= x — \x\ is the difference
between x and the largest integer smaller than x. Following the arguments in [Be3] 3.1 or
[Sch-Sch] 7.5 one sees that this map is actually surjective.

We want to apply this to the function /oo ^ (Ind^z2/(^/)N)Q) defined in 4.1.

LEMMA 7.6. - (cf. [Sch-Sch] 7.5) For any Dirichlet character ^ : (Z/AQ* -^ C*
considered as a function on J . / N extended by zero, consider

^(a^) ''=xW.

a) Then P2{Px nas ae8ree 0-
b) The element

2 ^ -k\P^{a,V}
^^-WINY ? W^-k-1)

^ (_ i )= ( - i ) f c

is in Q^^Z/TV)2] and has degree 0.
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C) ^oo) = /oo.

Proof. - For a) we check

^ ?2^(a, 6) = ̂  ̂ x)^ = N2 . ̂ (0) = 0 .
Q)^ :c,a,6

A straightforward computation shows that for o = f a \\c d )

^WW=[z:X^L{p^-k-^ c = o

f O c ^ O .

Observe that for ^(-1) = (-I)*'

.̂-^-^ '̂'̂ ly'̂ ,̂ .)
so that L(P^, -k - 1) ^ 0. It follows that

/ , / , Jtt(Z/A07 S xW=f^g) forc=0,
e^Kg) = < u { / ) ̂ ^

I 0 = /oo(5) for c ̂  0.

As

£(?2^, -^ - 1) = -N^ ^ xW" Bk+2(< ̂  >)

(ti,<2)e(z/jv)2 ";+2

it is easy to see that for a e Gal(Q/Q)

o"(y?oo)(a,6) = ^00(0,6) .

D
We now want to apply lemma 7.4 to compute the residue of

^(^(/)U^(/oo)).

For this we must write the series ̂ (/i, y^) and Ek{fi,T,g) in a different way with the
help of the horospherical map Q. Choose y> e ^W[{I/N)2}, such that

e(y) = / G H ^ (Cusp ^ 00,0)^).

Then we have

^ y (_i)W^(fc+i) (^(^^(c^'+rf)"
' 5/ (27^+2———— 2^ ————CT+d^———

' ' (c,d)€Z^(0,0) I ' I

and

E^fra}- (-^^(fc+l) V- {9V){d,c)
u ' '^ - ———(27^2——— 2^ (cT+rf)W

' ' (c,d)€Z2\(0,0) '- ' /
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LEMMA 7.7. - For g € ±P(1/N) and ^ € Q^^Z/TV)2] m'r/z ^((/?) = / and
f G H°(Cusp\ oo,0)W

f — nA;+i.A;-i j\rk-i(L. i i \ „_,

• ^f^- 2^(L)^ ^^^^^
_ - f c - l A r f c - l / i L i - | \ ^^

"o^^^'^) = ̂ ^^^^^'^^

f 1 for ff 6 P(Z/^V)
ao(^(/oo,T,ff))-^

K-l)*' forge-PWN)
00(^(700,^5)) = (-l^ao^/oo,^))

aQ{E\f^g)} = ao(^(7,^,ff)) = 0 .

Proof. - We do the computation, which is standard, only in the case of £k{f,T,g)•.

^ gy^c^CT+dY t . -^ ̂  ̂ ^((^(cT+cO^
^ |CT + d|^+2 = 2 • L{9{p ̂  + 2) + 2 ̂  ̂

(c,d)^(0,0) ' I c>l deZ ' • I

and the 0-th Fourier coefficient of the second summand is

2 ( ^^^(d,c)(cT+cOfc^/-^s i-^i2"2 d'0
^-2-'S'^ \^ gy(rf,c) /' (^o+^j/o)fc ,
"^fe^.c cfe+2 Al^+^012^2 "0

2^ ^fi(g^)(0,c) /• (1-^
^yo^1^ cfc+l , /Rli-^l2^2

=^^£(P1(^)'A;+1)•
Hence

fflo(^(/,T,ff))

=(-l)t^t+•)^•^^(-l)^^)•t"^^^•)
= ̂ .^ft '̂). -^ -') + ('l)^^"'" t(P.(^).t +1 ) .

But e{<p) <= H°(Cusp \ oo,0)(fc), so that

9 — ^'z(p2(ffyt)' ~k ~1) is zero on ± ̂ y^) •
For the other series, observe that

^=(-1)^00 •

a
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8. The main theorems

Identify the C-valued points of the cusp oo = B with

B(C) = ±U(I/N) \ ±P(1/N) = U(1/N) \ P ( I / N ) .

Then we can write

( \^
H^(Bn/R ,R( fc+ l ) )^ © R(fc)

\[7(Z/AO\P(Z/AO /

and accordingly we consider elements in H^(BR/R,R(A; + 1)) as R(fc)-valued functions
on U ( I / N ) \ P(1/N) invariant under ~F^.

Lemmas 7.4-7.7 together give the following theorem:

THEOREM 8.1. - Let f e H^(Cusp \ oo,0)^) and y € Q^[(Z/7V)2] be such
that g{(p) = f under the horospherical map (cf. definition 7.5). Then, with the above
identification, for each g C P(1/N)

r^Pir(^))(p) = rnViT(f)(g) = (-l)^1^-1^?!^), k + 1)

in H^(BR/R,R( fc+ l ) ) .
The following lemma allows us to make the L-value in the above theorem more explicit*

Recall that with our notations the value of the (k + l)-th poly logarithm function at the
root of unity (^ux for u e J . / N is

L(C,A;+1),

if C" denotes denotes also the function ^{x.y) = ̂  (cf. [Neu] p. 221).

LEMMA 8.2. - Let 6^,v) be the delta function at (u, v) G (Z/7V)2. Then for g = I j

'C^ v=0W^W}=^ ^,

Hence
LW^^^f^^ "-»

t 0 v -f- 0

Proof. - This is a straightforward computation. D

COROLLARY 8.3. - For u / 0, let

(-i)^ o) - (-l)fc+lAr2
^-^M-Tr^E^Nk-i v"'"^ i.^-fe+i

v-^O

^ :=^n + (-l)^-n) € Q^ [(Z/AT)2]
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and for g = ( a b} G P{1/N)

^Pir(^) = J [L(C^ k + 1) + (-1)^(0-^ fc + 1)] .

Proof. - ̂ (^)(id) = 0 by the distribution relation for Bernoulli polynomials. Using the
last lemma we get the explicit value. D

Remark. - The parametrization of H^(BR/R, IR(fc + 1)) used in [HuW] is translated to
ours by projecting z G C to —^{z + (—1)^) G R(fc). Hence the corollary is the same
as the result in [HuW] corollary 9.6 a).

We are now in a position to prove that our elements span the vector space H^(B, fc+1).

PROPOSITION 8.4. - The image of the map

QW [(Z/AQ2] ̂  H^(B, Q(fc + 1))r^ R^Bn/^ R(k + 1)),

spans the R vector space H^(BR/IR, R(fc + 1)). In particular

H^(Cusp -v c», 0)W ̂  H^(B, Q(fc + 1))
/ ̂  Pir(/)

;5 surjective.

Proof. - We prove this after extension of scalars to Q and show that we get a non trivial
element in each \ eigenspace, for ^(—1) = (—1)*. Consider the function

^ :- ^ $u®x("),
uei/N

for ^(-1) = (-1)^ Then for 5 = ( " ^ e P(Z/Ar) we get

Pir^(^))(ff) = ̂  ̂ (C0", & + 1) ® x(u) 6 (®^^)\p(z/^R(A;)) °0 ̂  Q '
H v /

because
^ ^(C——, k + 1) 0 ̂ (n) = (-1)^ ̂  L^-, fc + 1) 0 x(u).

u u

But that this is non zero is shown in [Neu] p. 221. The second statement of the proposition
follows from B Orel's theorem, which states that

H^(B, Q(fc + 1)) 0Q R ̂  H^(B(C), RW)^-

is an isomorphism. D
Another application of corollary 8.3 above is that we can identify the /-adic realization

of our elements with the help of [HuW]. To state the result, recall that we fixed a primitive
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N-th root of unity C ^ Q(^7v) and recall that Kummer theory allows us to identify
H^(B, Q^(fc + 1)) with a Q^ subspace of

/ / \ \Gal(Q(^oc,C)/Q(C))

limQ(^,C)7(Q(^,C)T^^ ^.Q^\v>i 7 /
PROPOSITION 8.5. - With ^u as in corollary 8.3 we have

1 / _
nPir(̂ ,)) = . ^ [l-a]^^

A^fc!
< a ' = C -

Pwo/. - This is corollary 9.7 in [HuW], once we have shown that Pir(^(^)) agrees
with Ck+i^) (notation of /oc. cit.) in H^(B,/i; + 1). The injectivity of the regulator
implies that this can be checked in the absolute Hodge cohomology. There the result
follows from corollary 8.3 above and corollary 9.6 a) of loc. cit.. D

Remark. - According to proposition 8.4 the Pir(^) generate the image of Pir. Hence
this proposition computes the Z-adic regulators of all Harder-Anderson elements. In a
second paper we will give a direct computation of the Z-adic realization ([HuK]). Harder
has also announced that he can do this. Conversely this will give an alternative proof of
[HuW] 9.7, i.e., of [B1K] Conjecture 6.2.

The final application concerns the Beilinson conjecture for Dirichlet characters. Recall
that the Beilinson Q-structure on

H^(Bn/R, R{k + 1)) ^ H^(B(C), R(k)f-

is given by the Q-subspace

H^(B(C),Q(A;)f°° cR°B(B(C)Wf- .

This induces a Q-structure in each ^-eigenspace in H^(B(C), R^))^ 0q)Q. The Beilinson
conjecture compares this Q-structure with the one coming from ^-theory. Let / be the
conductor of the Dirichlet character \. We define

a(v) - ̂  n l-^1^^w ' ~ 2 11 1 - xW •p\N
P\f

PROPOSITION 8.6. - For ̂  = Eu ^H ^ XW and ^(-1) = (-1)^ the formula

^Pir(a(x)^)(id) = (27^z)fc£/(^, -k)

holds, where L\^ -k) is the derivative of the L-function L{\, s) at s = -k. In particular
Beilinson's conjecture is true for ^.

Proof. - This is theorem 4.4 in [Neu] together with the formula for Pir^^) in the
proof of proposition 8.4. D

Remark. - The above corollary has first been obtained by Beilinson [Be2] (with some
subsequent work by Neukirch and Esnault) by completely different methods. See [Neu] and
[Be2] for this approach. Another approach, following ideas of Deligne and Beilinson, was
worked out in [HuW]. A third version, due to Deninger [Del], starts from the Eisenstein
symbol for elliptic curves with complex multiplication.
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A. The weight-zero part of cohomology

In the main part, we construct and we identify elements in H^^X^fc + 1) which
we want to project to ^(B.k + 1). This corresponds to a projection from the motive
/^(X^) to h°(B). In order to do so we define and compute here in the appendix the
"weight-zero-part of cohomology" and afterwards construct a projection to it.

All schemes in this section are B-schemes where for the purpose of the appendix B
can be the spectrum of any number field.

DEFINITION A.I. - Let V be a B-scheme -whose irreducible components C\,..., CK and
their iterated intersections are smooth and geometrically irreducible over B. Let VQ be the
disjoint union of these irreducible components. Let V be the simplicial scheme given by the
Cech-nerve of the cover VQ —^ V, i.e.,

Vs =VQ Xy ... Xy VQ s + 1 factors

= [_[ ^n...n^ .
to,...,*s

Let WoV be the simplicial scheme given by

jxr ~\r _ T T DT^{ connected components of Ctg n...nCtg }

to,...,^

There is a natural map V, —f WoV given by the structural map of each connected component.
We call WoV the weight-zero-part of V.

LEMMA A.2. - Letv : V -^ B be as in the definition. Then ̂ (WoV) -^ ̂ (V) induces
an isomorphism ]T(WoV) -. Wo]T(V)

Proof. - Note that ̂ (V) = ̂ (V) because of cohomological descent for proper maps
(Mayer-Vietoris for closed covers in our case). The morphism is induced by the canonical
projection V —> WoV. We consider the skeletal spectral sequence for H* attached to V

E^ =]y(Vq)=>]p^q(v).
All Vs are smooth. Hence

!TjO/ D \#{ connected components of Vs} if y> _ 0

w^nw= -w l i n -0
0 else.

This is precisely what appears in the £'i-term of the same spectral sequence for WoV. The
differentials of the spectral sequence are strictly compatible with the weight filtration. The
isomorphism for the weight-zero part on the £'i-term induces one on the limit terms. D

Remark. — Note that the skeletal spectral sequence for WoV degenerates at £'2, i.e.,

WWV) = ^(H^lW^No)

where H°(Woys)seNo is the cohomological complex attached to the cosimplicial object.
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DEFINITION A.3. - Let V and WoV be as above. Then we call H^WoV^m) the
weight-zero-part of the absolute cohomology of V.

Remark. - There is a natural map ^{W^V^m) —^ ^(V^m). It is not injective in
general.

PROPOSITION. - Let V and V be proper varieties that satisfy the condition of A.I. Let us
be given a morphism p : V —» V such that

1. p is an isomorphism on an open subscheme U of V;
2. Z = V \ U is smooth;
3. p \z is Zariski-locally afibration with fibre X, i.e., it is locally isomorphic to X x Z;

H°(B) ifn=0,
4. Wojr^X) = ]T(B) =

0 else.
Then WoV^iV) ^ Wolf^Y') and the weight zero part ofW{V, m) agrees with the weight
^ero part of H^V, m) for all n, m G Z.

Proof. - First we want to reduce the question on motivic cohomology to the one
in absolute Hodge cohomology. For each m we apply the functor H^( ( • , m) to
WoVg' —^ Wo Vs. The only one non-trivial contributions are for * = 0 in the case
m = 0 respectively * = 1 in the case m > 0. Hence the skeletal spectral sequence
for H^(W"oV,m) degenerates again at E^ and we have

W^{W^m)=Wl-e{W^(W^m)} .

Here e = 0,1 accordingly. Computing these cohomology groups is purely a combinatorial
question. We have the same combinatorics in absolute Hodge cohomology, hence it
suffices to consider the question there.

Instead of attacking the combinatorics of the situation, we now use sheaf theoretic
methods. By the Leray spectral sequence and Lemma A.2 it suffices to show that all
WoV_\p^) are isomorphisms. For the triple i : Z-^V^-U we have the exact triangle
j\j"Fu —^ Fv —^ i^Fz which induces a long exact sequence

. . . _ H^(;7) -. ir(y) -. IT(Z) -> S+^c/) - . • • • .
The corresponding sequence for V reads

. . . -> R^(U) -^ H^y') -^ ir^-^Z)) -> R^\U) - > ' • ' .

To prove equality of the weight zero part for V and V it suffices to do so for Z and
Z ' = p"1^). In this case we can use the Leray spectral sequence for p^. The higher direct
images of F z ' are variations of Hodge structures (respectively smooth Z-adic sheaves).
Their fibre in a point of Z is IT(^C). If J^ is a (perverse) sheaf on Z whose weights
are > 0, then the same is true for its H*(Z,.F) because Z was assumed smooth. Hence
we only have to consider the weight zero part of the W ( p ^ F z ' ) . By assumption on the
cohomology of the fibre it agrees with W^Fz). This proves the claim. D

Remark. - The weight zero part of motivic and absolute Hodge cohomology is compatible
under the regulator maps which are even isomorphisms if m / 1. Note that the argument
in the proof does not use the isomorphy.

4° SERIE - TOME 32 - 1999 - N° 3



DIRICHLET MOTIVES VIA MODULAR CURVES 341

Let J\f be the Neron-A^-gon over B and A/^ its fc-th power. In the notation of the
main part of the article this is X^. It is given Zariski-locally by the equation x^y^ = 0
in Ej, = B [ x ^ , y ^ , . . . ,Xk,yk}/{x^ = . . . = XkVk)- Let ^k = X^ be the preimage of
A/^ in the desingularization of X ([Sch] section 2 and 3). We apply our concept to the
cohomology of A/^ and J \ / ' k .

PROPOSITION A.5. - The morphism Afk —^ Afk induces an isomorphism on the weight
zero part of cohomology.

Proof. - We consider the situation Zariski-locally. A/^ is obtained as a sequence of
blow-ups in smooth subvarieties ([Sch] 3.0 and 2.1.1). The exceptional fibres of these
blow-ups are project! ve cones

F, = {[^i : ti : . . . : Si : ti] | 51^1 = ... Siti} C P2'-1 i = k, k - 1 , . . . , 2

By the previous proposition it suffices to show that WoH71^) = H^B).
We prove this by induction on i. Note that Fi is Zariski-locally isomorphic to I^-i. For
i = 1 it is smooth and there is nothing to prove. If i > 2 we can desingularize it by a
sequence of blow-ups. The exceptional fibres are F ^ ' s for i' < i. By inductive hypothesis
and the previous proposition the weight zero part is unchanged. Hence the weight zero
part of Fi agrees with the weight zero part of a smooth variety. This gives the desired
computation. D

LEMMA A.6.

WoH^A/^) = IVoH^A/^) ^ (j) H°(B)
z i + . . . + z f c = r z

z , e { o , i }

Proof. - In the k = 1 case we see easily by closed Mayer-Vietoris that

H°(A/") = H^AQ ^ H°(B) and H^AQ ^ H0^^-!)^ .

A/^ is a fc-fold product over B. By the Ktinneth formula the general case follows. D

Remark. - The isomorphism in the lemma depends on choices which can be made
uniformly for all cohomology theories.

Now we construct the promised projection to the weight zero part of cohomology. It will
correspond to a splitting of the weight filtration. Such a splitting does of course not exist for
general varieties. If V is smooth and proper and geometrically irreducible above B, then the
choice of a B-point in V induces such a splitting. In general this splitting depends on the
choice of a point. However, if V is rational, then the splitting becomes canonical because
two points are homotopic. Or expressed differently, we have a splitting of Chow motives.
We will give an ad-hoc version of the same idea for our singular varieties (cf. A. 11).

DEFINITION A.7. - By path we mean a variety L whose irreducible components L i , . . . Ln
are isomorphic to A^ and whose singular locus consist of L\ D L^, . . . , Ln-i H Ln where
each of these intersections is isomorphic to B. This means that L(C) is contractible. A graph
is a variety which consist of finitely many paths which are glued together in simple double
points. A graph G is called simply connected ifG XB C(C) is in the classical topology.
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If V is a variety, we say that two points Pi, P^ can be joined by a path if there is a path
L and a map L —> V such that Pi and P^ are in the image of L. We say that V is pathwise
connected ;/ any two points can be joined by a path.

Remark. - A simply connected graph G has the cohomological type of the point B
in all cohomology theories in section 1. In absolute Hodge and Z-adic cohomology this
is a consequence of Mayer-Vietoris for closed covers. In the motivic case it was built
into our definition.

LEMMA A. 8. - Smooth complete tone varieties over B are pathwise connected.

Proof. - Recall that such a variety has a cover by finitely many A^ where d is the
dimension. All these A^ intersect in one and the same torus G^. Now consider two points
PI and ?2 m V- Pick a point S in the torus. Join Pi to S by the A1 defined by them in the
copy of A^ containing Pi. Do the same thing for ?2. This gives the required path joining
PI and ?2. D

LEMMA A.9. - Let V be a pathwise connected variety over B. Suppose we are given
finitely many simply connected graphs G\,..., Gn mapping to V. Then there is simply
connected graph G containing the Gi as disjoint subvarieties such that there is a map
G -—> V extending the ones on the Gi's.

Proof. - Pick two points in each of the Gi. Let Pi and Qi be their images in V. Join Pi
to Qz+i by a path. Clearly this solves the question. D

PROPOSITION A. 10. - Let V be a variety such that all irreducible components and all
connected components of their iterated intersections are pathwise connected and smooth.
Then there is simplicial variety G, and a map g : G —^ V such that for each connected
component D ofWoVs, the inverse image g~~lD in Gs is a simply connected graph.

Proof. - Denote the irreducible components by Ci for 1 < i <^ n. For simplicity let us
assume that the iterated intersections f^ ^ (7^ are connected. The same method works
in general. We want to define simply connected graphs G^o,...,^- They will only depend
on the set { % o ? • • • 5 is}' Hence it suffices to construct by (descending) induction the graphs
G^o<...<^ corresponding to the Q^ ^ ^ C^. We start with s = n — 1 (the maximal
possible set of indices). If the intersection is non-empty, chose two arbitrary points and
join them by a path. For general s take the disjoint union of the graphs G ffco<•••<^+l where
the tuples ko < ... < fcg+i are mapped to %o < • - • < is by any of the boundary maps of
the simplicial object. If there is more than one component extend this to one big, simply
connected graph. If the union of graphs is empty but C\io< <^ ^j ls not? P10^ a P^h. It
is easy to see that this construction serves the purpose. D

Remark. - Each Gs is a graph by construction but not simply connected. It reflects
precisely the incidence relations between the irreducible components of V.

PROPOSITION A. 1 1 . —IfV is as in the previous proposition, there is then a projection from
the cohomology of V to its weight zero part.

Proof. - We first show that G,-^V -^ WoV induces an isomorphism in all cohomology
theories. In order to see this, consider the skeletal spectral sequences for WoV and G,.
Recall that the connected components of WoVs have the same cohomological type as those
of Gs. Hence g induces the projection. D
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Remark. - A priori this projection will depend on the simplicial graph that was chosen.
However, on geometric cohomology, this gives a splitting of the weight filtration which
is necessarily unique.

We can apply these results to A/^ and A/^ because all their irreducible components and
their iterated intersections are smooth complete toric varieties. We get:

THEOREM A. 12. - For A/'k andM^ there is a projection on the weight zero part of absolute
cohomology compatible with a splitting of the weight filtration on geometric cohomology.
It is also compatible under regulators.

It is uniquely determined by these properties on H^^A/"^ fe + 1) respectively
H^A/^fc+l).

Proof. - We can apply the previous proposition together with Lemma A.8 in order to
construct the splitting. For uniqueness we first consider the Hodge case. As absolute Hodge
cohomology has cohomological dimension one, we get a canonical short exact sequence

0 -^ Ext^l^-fc - l^H^A^)) -^ H^A^, k + 1)

-^ Hom(R(-A; - l^H^A/^)) -^ 0 .

The last group vanishes for weight reasons: as A/^ is only fc-dimensional, the weights
of H^^A/^)) are at most 2k whereas H(-k - 1) has weight 2k + 2. A splitting of
H^^A/^fc +1) which is compatible with the splitting on geometric cohomology is
uniquely determined by the unique splitting of H^(A/^).

In the Z-adic situation we can apply the same argument. A priori there might be a
contribution of Ext^Q^-fc - l^H^^A/'^)), but Q^(-fc) does not occur in H^'^A/^),
hence we have again

H^A^^ 1) = Ext^Q^-fc - l),!^)) .

For the motivic case we show that the map H^(A/^,fc + 1) —^ H^^A/^fc + 1) is
injective. We use the simplicial version

A/?= [_[ c^n...nc^
to,...,ts

where Ci are the irreducible components of J\l'k. Recall that all components of A/^ are
smooth complete toric varieties. In order to compute the cohomology, by [HuW] B.6.2,
it is enough to consider only part of A^,

str(A^-)= [J ^n...n^ .
tQ<...<ts

The connected components of str(A/^) have dimension < k - s. We argue in the skeletal
spectral sequence

E^ = H^(str(A^), k + 1) => H^A/-^ k + 1)

By Lemma A. 13 below the Z-adic regulator tensored with Q^ is an isomorphism on the
initial terms with the two exceptions

EW=Q^^,k+l),
^^H^A/o'^+l).
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All differentials vanish on these terms, hence we have the same behaviour for all E^.
The arguments for A/^ are the same. D

We now give the lemma used in the last proof.

LEMMA A. 13. - Let V be a smooth and complete tone variety of dimension d < k
over B. Then:

1. The absolute cohomology groups H*(V, k + 1) vanish for * > 2 f e + 2 ( / ' d = f c and
for * > 2d + 1 if d < k.

2. The Beilinson regulator on Wj^(V^k +1) tensored with R is an isomorphism with
the exception of H^fT, k + 1) if d = k.

3. The l-adic regulator tensored with Q^ is an isomorphism with exception of
H2^'1^ k + 1) and H^^y, k + 1) for k = d. It is injective in these exceptional
cases.

Proof. - We can decompose V as a Chow-motive ([Kk] Appendix). We get

h(V) = © Q(-z^
0<^i<d

for appropriate Vi ^ 0. Hence

H^(Y^+1)= © H^OB^+l-zr[n—2t t
1M\V ̂  "T" ± } - ^P ^M

0<i^d

H^(B, k + 1 - n—i-)v^ if n - 1 even, n ̂  2d + 1,
z^

0 else.

By the results for the Beilinson regulator for number fields we get an isomorphism with
the only exception for k + 1 — ?—1 = 1, hence i = k = d.

The same computation works in the Z-adic context; the extra term Hj^(5,1) appears as
i = k = d, n = 2k + 2. D

All in all we get the desired map.

PROPOSITION A. 14. - There is a projection from H^A/^m) (resp. H*(A/^,m)) to the
weight zero part which in both cases is isomorphic to

IP+^oA/^ m) = H'+W-A/^ rn) ̂  Q) W{B, m)
zi+. . .+^=n

^•€{0,1}

where e = 0 for m = 0, e = 1 /or m >_ 1 (respectively m > 1 in the l-adic case).

Proof. - The projection was constructed in proj. The explicit computation is a
consequence of A.6 for Z-adic and absolute Hodge cohomology. By comparing the
combinatorics in the Hodge case to the motivic case the latter follows. Note that the
m = 1-case in Z-adic cohomology can be treated but is more complicated to write out. D

Remark. - We will have to know the explicit identification of H^^WoA/^, k + 1) with
H^B, fc+1). We use the one that is induced on geometric cohomology by the k-th power of

H^^H^G^-^H^A/')

where the first map is (dual to) residue at zero.
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