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PERTURBATION AND ENERGY ESTIMATES

By NicoLas LERNER

ABSTRACT. — We prove in this paper that given a first order pseudo-differential operator P satisfying Nirenberg-
Treves condition (1)), there exists an L2-bounded operator R so that P + R is solvable. Solvability occurs with
the loss of two derivatives. We prove along the way a natural factorization result for operators satisfying condition
(¥). © Elsevier, Paris

RESUME. — On démontre que pour un opérateur pseudo-différentiel P de symbole dans la classe standard S},o’
satisfaisant la condition (1) de Nirenberg-Treves, il existe un opérateur pseudo-différentiel R de symbole dans la
classe S? 12.1/2 (donc borné sur L?), de sorte que ’opérateur P + R soit résoluble. On obtient la résolubilité au
prix de la perte de deux dérivées, c’est-2-dire des solutions u de régularité H*~! pour I’équation (P + R)u = f,
avec f dans H®. Ce résultat est stable pour des perturbations classiques, i.e. P + R + N est résoluble pour tout
opérateur pseudo-différentiel N de symbole dans la classe S?,(r L’élément-clé de la démonstration est un résultat
de factorisation pour des opérateurs satisfaisant la condition (¢). © Elsevier, Paris
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1. Introduction and main results

Let p be a complex-valued homogeneous symbol defined on the cotangent bundle of a
smooth manifold. We assume that p is of principal type, which means that the Hamiltonian
vector field H), is such that H, A L # 0, where L is the Liouville vector field. We shall
assume that p satisfies condition (1)), i.e. that Imp does not change sign from — to +
along oriented bicharacteristics of Rep. This was conjectured in the early seventies by
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844 N. LERNER

Nirenberg and Treves and it is still an open problem that condition (1)) for p is equivalent
to solvability for operators with principal symbol p . We refer the reader to [H2] for a
historical perspective on the study of this problem.

This condition was proved necessary for solvability by Moyer in dimension two and by
Hormander in the general case (Corollary 26.4.8 in [H1]). On the other hand, it was shown
that condition (v) implied solvability for differential operators (Nirenberg and Treves
([NT]) used an analyticity assumption, removed by Beals and Fefferman in [BF]), and
also when the total dimension is two ([L1]) or in various special cases ([H2], [L2], [L5],
[L6]). One can note that in all these cases, condition (1) implies “optimal” solvability
(solvability with a loss of one derivative), that the existence of H*torderP—1 golutions for
equations Pu = f with f € H®. It was proved in [L3] that (¢/) does not imply optimal
solvability: one should not expect solvability in its optimal version expressed above as
a consequence of the geometric condition (). The paper [L3] disproved various earlier
claims on this matter.

Dencker ([D1]) was able to prove that the counterexamples of [L3], although not
optimally solvable, were in fact solvable with a loss of two derivatives: he proved the
existence of HetorderP—2 golutions for equations Pu = f with f € H®, where P is the
operator constructed in [L3]. He had to overcome several specific difficulties with handling
these very weak estimates. First of all an a priori estimate yielding solvability of P with
loss of two derivatives should be of the type

(1.1) |1P*ullge > Cllullygesm—2, m = order P, C “large constant”,

and is not obviously invariant by pseudo-differential perturbation of order m — 1. Since the
operator P is assumed of principal type and acting on functions, lower-order terms do not
carry geometric significance since the subprincipal symbol is defined only on the doubly
characteristic set which is the empty set here. Thus inequality (1.1) has to be invariant
under classical pseudo-differential perturbations of order m — 1: to prove this, one should
somehow produce a different proof for each perturbation P+ R with R pseudo-differential
of order m — 1. Next, a very disturbing feature, clearly linked with the previous one, is
that microlocalization of (1.1) does not automatically provide a local estimate. In fact the
partitions of unity are made with operators of order O and thus generate commutators of
order m — 1. It is the same difficulty as above and one has to compensate the weakness of
the estimate by some regularity of the multiplier in the energy method. A generalization of
the results of [D1] is given in [L7]. Another difficulty is that the counterexample [L3] could
probably be modified to yield the existence of a first-order pseudo-differential operator P
with principal symbol satisfying condition (1)) and a L2-bounded operator R such that
no estimate of type (1.1) could be true for P* + R even if s + m — 2 is replaced by
s+m — N, N > 2. We shall neither prove nor use this here, but one should keep in mind
that to preserve a weak estimate of type (1.1) by a perturbation of order m — 1 (say by
an L2-bounded operator if s = 0 and m = 1) one has to be very careful in choosing the
type of perturbation. On the one hand, if the perturbation is a classical pseudo-differential
operator of order m — 1 the estimate must be preserved, and on the other hand, there are
perturbations of “order”m — 1, (e.g. L2-bounded operator if s = 0 and m = 1) which
could ruin any estimate of type (1.1).

In the present paper, we prove the following theorem.
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PERTURBATION AND ENERGY ESTIMATES 845

THEOREM 1.1. — Let P be a principal-type pseudo-differential operator of order 1 whose
principal symbol satisfies condition (v)). There exists an L2-bounded operator R such that
the equation (P + R)u = f has a local solution in H™! for f in L2

This is in fact a consequence of the more precise theorem which follows.

THEOREM 1.2. — Let q(t, z, £) be a real-valued continuous function defined on R x R™ x R™
such that

(1.2) q(t,z,6) >0 and s>t = q(s,z,&) > 0.
We assume that q is smooth with respect to x,£ and that for all o, (3,

fuglaﬁafq(t,x,m(l +1€) A < 0.

715

Then there exists a positive constant C and a symbol r(t,x, &) satisfying

(1.3) sup|920fr(t,z,€)| (1 +1¢1) 7" < o0,
t,z,&

such that for any uw € C3°((0,C1),L*([R")) (D, = —id; and a(x,D,) is the operator
with symbol a(z,£)),

(1.4) C / |Dyu +i(q + 7)(t, ¢, Dy )u|L2grydt > su£|u(t)|H—1(Rn).
R te

We note that the symbol 7(¢,-) is in the Calderén-Vaillancourt class S?/Z,l /2 and
in particular is L2-bounded. Moreover (1.2) is the expression of condition (¢) for the
operator D; — iq(t,z,D,). We shall see below (section 8) that the proof of theorem 1.2
follows the lines of the proof of the following theorem, expressed for pseudo-differential
operators with large parameter.

TueoreM 1.3. — Let q(t,z,&,A) be a real-valued continuous function defined on
R x R™ x R x [1,4+00). We assume that (1.2) is satisfied (for each A) and that

(1.5) sup 0207 q(t,z, &, A)|AT P < o0,

t,z,§,A

Then there exists a positive constant C and a symbol r(t,x, &, ) satisfying

18]=lo]

(1.6) sup|920fr(t, =, &, A)|[AT 7 < o,
t,x,€
such that for any uw € Cg°((0,C~1),L3(R")),
(1.7) C/|Dtu +i(q + 7)(t, 7, Dp)u|r2@nydt > A2 sup|u(t) |12 (jm).-
R teR

Let us observe that the power A~'/2 amounts to a loss of only 3/2 of derivatives and is
thus slightly better in these terms than theorem 1.2. Theorem 7.1 below gives also some
stability properties of the estimate (1.7) by pseudo-differential perturbation of order O.
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846 N. LERNER

The main step in the proofs of these theorems is to establish the following factorization
theorem (see theorems 7.1 and 8.3):

THEOREM 1.4. — Let q be a symbol satisfying the assumptions of theorem 1.3. There exist
selfadjoint operators (t), J(t) on L2(R™) with

(1.8) Id <Q@) <AId,  IT@)llgey <1 (J(t2) = I(t))(ta —t1) >0
and there exists an operator R(t) in L(L?) such that
(1.9) q(t, -, M) = Q(t)J(t) + R(t) = J()QE) + R (1),

where q¥ stands here for the operator with Weyl symbol q.

The factorization (1.9) is rather natural for functions ¢ satisfying (1.2): as a matter
of fact, property (1.2) is indeed true for nondecreasing functions of the variable ¢,
and also stable by multiplication by a nonnegative function. So all functions of type
q(t,z,€) = a(t,z,§) b(t,z,&) with a > 0 and 9b/dt > 0 satisfy (1.2). In fact such a
factorization is true for operators satisfying condition (P) (ruling out any change of sign of
Im p along the characteristics of Re p): in this case, the operator J(¢) above could be chosen
independent of ¢. A very important feature of this factorization is that it is a consequence
of a symbolic calculus which can be expressed in terms of a metric as introduced in [H1]
(section 18.6). We have already used some properties of this new metric to handle some
L? inequalities in [L6], improving results of [L5]. In particular the perturbation R(t) is in
a substantially better class than the S? /2,1/2 Set of symbols and belongs in fact to S(1, g),
where ¢ is an “admissible” metric on R?" with some asymptotic properties, i.e. such that
g < g° at some places (see definition 3.1 below).

Let us describe briefly the contents of the paper. We want to use energy inequalities for
D; + iq(t,z,D,) where g satisfies the assumptions of theorem 1.3. Using condition (1))
for the adjoint operator (i.e. (1.2)) we find a sign function s(¢, z, £) for q(t, z, ) increasing
with ¢: the product sq is |q| and 9s/dt > 0. To quantify this function s(t,-), we use
a positive quantization which amounts to regularizing s by convolution with a Gaussian
function prior to using Weyl's formula. Thus we begin with Section 2, devoted to the study
of Gaussian mollifiers for characteristic functions. We study Gaussian regularizations of
sign () where 3 is a coordinate (d3 # 0). In section 3, we introduce a new metric gttt
defining a pseudo-differential calculus on Ri"f for each real ¢. This metric is a refinement
of the Calderén-Zygmund metric defined by Beals and Fefferman in [BF]. In section 4, we
show that our function ¢(¢, -) behaves like a symbol with respect to this metric. In section 5,
we introduce the Wick quantization. Let ' be a positive definite quadratic form on R?"
and a be a bounded measurable function ; one defines the Wick(I') quantization of a as the
operator with Weyl symbol a * 2™ exp —27I". For a suitable choice of I' we show that the
Wick quantization of s(t,-) is the nondecreasing operator .J(t) appearing in theorem 1.4.
The more technical and lengthy section is the sixth one, in which a precise factorization
property for the symbol ¢ is proved. We give a factorization (see theorem 1.4) for the
operator QQ(¢) with Weyl symbol q(¢,z,&) so that Q(t) = Q(t)J(¢) + R(t), where R(t)
is an L2-bounded operator (in fact with symbol in S(1,g{*)) and Q(t) is positive. One
should think of the operator £)(¢) as “almost” scalar ; for instance, the bracket [2(¢), J(¢)]
is an L2-bounded operator. The seventh section is devoted to proving energy estimates
for a perturbation of Q(t), i.e. for Q(t)J(t). We use the energy method, i.e. we compute

4° SERIE — TOME 31 — 1998 — N°® 6



PERTURBATION AND ENERGY ESTIMATES 847

2Re (Dyu + iQ(t)J(t),iM (t)u) with a carefully chosen multiplier M (t). Some specific
technicalities at this stage are linked to the loss of derivatives and to proving stability of
our estimates by a class of zeroth-order perturbations. Section 8 deals with perturbations
of operators with homogeneous symbols. It turns out that some substantial work remains
to be done, even though the large parameter case was thoroughly investigated.

2. Gaussian mollifiers for characteristic functions

For £ € R, we set

2 6 2
(2.1) ao(é) = / sign (77)21/26‘27r|€ =l dn = / 23/2¢=2m {4t
R

0

Note that o¢ is odd, og(+00) = 1 and its derivative o, is in S(R) and is positive. We
consider now a smooth real-valued function b(x, ) defined on R? x [1, 00), in the symbol
class S(AY/2 IdxI2A~1). It means that b satisfies the estimates

(2.2) sup  |8kb(x, \)|ATEHE = 3, (b) < oo,
xeRd,AZI

for any integer k. We omit below the dependence of b on the parameter A and refer to
71 (b) as the semi-norms of b. We set up then, for (x,£) € R? xR, 8 € R,

(2~3) J(x’ 6) = // Sign ('I” + b(y)) 2‘d;—16—27r(|x—y|2+'£_7]'2)dyd?77
Re xR

(2.4) o(B,x) = /Jo (B+b(x+y)— b(x))E(y)dy, E(y) = 2%/2e~ 217,

Thus we have

(25) §(x,) = o (¢ + b(x), ).
Moreover,
(2.6) Bo(x,y) = b(x+y) — b(x) = /(%) - y + wo(x, )y’ A "V2,

where the bilinear form wy(x,y) = fol(l — )b (x + Oy)A1/2d0 satisfies the estimates

(2.7) 058 wo(x, ¥)] € A7 F Yesrs2(b),

following from (2.2). We have from Taylor’s formula and (2.4), (2.6),
28) a0 = [oo(t'0)- ¥ +unlx,¥)yA ) 2(r)dy

+ 0 //0 o608+ b(x +y) — b(x))E(y)dyd$,

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



848 N. LERNER

which implies, since o( is odd,
o1

(2.9) o(8,x)=A""? / / oo (b'(x) -y + Owo(x, y)y? A~ ?)wo(x, y)y?E(y)dyds
0

0 / /0 o0 (68 + Bo(x,¥))E(y)dydd.

On the other hand, from (2.4), (2.6), we get

1
(210)  o(8x)=au(®) + [[ oh(8+8Ba(x.3) Bo(x.y)=(y)dyas.
0
LEMMA 2.1. — Let b be a symbol satisfying (2.2). Then, if o is defined by (2.4), we have

(2.11) o(B,%) = Bo1(8,%) + A7?ro(x) = 00(B) + 02(6, %),

where ro € S(1,ldx|2X~1) with semi-norms depending only on the 7y in (2.2). Moreover
o1(B8,%x) > 0 and for all k,k,l nonnegative integers

sup |(950501)(8,%)[A\*/? = 4, < oo,

BeR,xeR?
(2.12) AL ;
sup  |B]'|(050%02)(B,%)| N2 =, < oo,
BeR,xeR?
A>1

depending only on the -y, in (2.2). Moreover, there exists a positive constant co depending
only on d,v1(b),v2(b), such that, for all positive C,

(2.13) inf  01(8,%x) > coe ™",
|Bl<cxerd
Proof. — From (2.9-10), (2.6), to get (2.11) one can take

(2.14) ro(X) = //o o(’)(b’(x) -y + Owp(x, y)y2)\“1/2)w0(x, y)y2E(y)dyds,
@15)  apx) = [[ o408+ Bolx.y)Ew)ayds,

(216)  oa(B,x) = / / o (8 + 0Bo(x, 7)) Bo(x, y)E(y)dydd.

Leibniz and Faa de Bruno formule yield the first property in (2.12) from (2.1-2) and (2.7).
From (2.15) and the positivity of oy, one gets the nonnegativity of o;. The second property
in (2.12) follows from the identity (By is given in (2.6))

1
(2.17)  PBos(B,x) = / /0 (8 + 8Bo(x,¥)) b (8 + 8Bo(x,¥)) Bo(x, y)Z(y)dydd

- / / 04 (8 + 0Bo(x,))0(Bo(x, y)) (y)dyds.

4¢ SERIE — TOME 31 — 1998 — N° 6



PERTURBATION AND ENERGY ESTIMATES 849

Since Bo(-,y) € S((1+]y|?),Idx!?A~1) and the functions sa}(s), op(s) are bounded with
all their derivatives, we obtain (2.12) using induction on [ to write 3'o2(8,%) in a way
similar to (2.17). On the other hand, from (2.15) and (2.1), using the nonnegativity of
0y, assuming |B] < C, we get

1
o1(8,%) > / / 10y1 < 1) o) (88 + Bo(x, y)) E(y)dyds,

so that, using |03+ Bo(x,y)| < C + 71 + 72 and the monotonicity on R, of
oh(s) = 23/2¢=2"s" we obtain (2.13), with

(2.18) cp = e—dmOn+n)Pg@+d)/2 / el gy
lyl<1

The proof of lemma 2.1 is complete.

LEMMA 2.2. — Using the same assumptions and notations as in lemma 2.1, we have

A28 = o (6, x)w(B,x) + (8, %)
(2.19) with inf w(B, )XY + 1) >0,

BERxE
A>1

) k=1 14k
sup  |(950%w)(B,%)| AT (1+(B8]) 7" < oo,
peRzeR’
(2.20) = )
sup | (950%r)(8,x)|A? < o0,
BER,xER?
A>1

where these quantities depend only on the 7 in (2.2). Moreover there exists ¢; > 0,
depending only on the v, in (2.2) such that for |B] > c¢1

(2.21) o8] > 2 5

Proof. — Let po be in C3°(R), nonnegative, identically 1 on [—1, 1], supported in [—2, 2].
Using the first equality in (2.11), we have for an arbitrary positive c,

A2 po(B[e)a(B,x) = X2 Bpo(B/€)or (B, %) + To(x)po(B/c)-
Thus using (2.12-13), which gives
(2:22) Yoo A2 < A2 (8,%) 7 < Aegtet®if |8 < 2,
we obtain
(2:23)  AY?Bpo(B/c) = (B, x)A201(8, %) po(B/c) — ro(x)01(8,%) " po(B/c)-
Moreover, using the second equality in (2.11), one gets, with p; = 1 — po, using oy odd

p1(B/c)o(B,x)AY?B = Pl(ﬂ/c))‘lmﬂ(ﬂo(ﬂ) +02(8, %))
(2.24) = p1(B/c)N\/?B sign B(oo(B) + sign Boa(B,x))

= NP25p1(6/<) sign | oa(pl) + £ L7

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



850 N. LERNER

Using the second inequality in (2.12), we note that, on the support of p;, where |3| > ¢,
the term between brackets satisfies

if ¢ is large enough (in fact if coo(c) > 2v(y,: from (2.1) we can assume this from now
on for a fixed ¢ = ¢;). We obtain from (2.24)

1 Iﬂloz(ﬂ,X)]_l
C1 ﬂ/cl

(2.25)  o0(B1) +

(2:26)  pa(B/er)a (B, x)A?B|a0(18]) + = A2Bp1(B/c1) sign B,

that is

1/2 e) = o(B.x e )N/2 o llﬂ{oz(ﬂ,X) !
@21 NPp(3fer) = a8 ) Ble) ¥ o) + L ZE ]

Adding up (2.23) and (2.27) we get
N28 = a(8,%) (X 201(8,%) ~ po(B/er)+
(2:28) p1(B/er) A2 8] [oo(lm) + l'ﬁ—'";/ﬂ—"l] )
—ro(x)a1(8, %)~ po(B/c1),

so that setting-up

(B, %) = N2a1(8,3) /) .
(2.29) +oa(Blen 181 aopl) + ~AZPH )

(230) T(/B? X) = _TO(X)Ul(ﬂvx)_IPO(ﬁ/cl)a

we obtain (2.19), which follows from (2.29) and (2.12). The estimates (2.20) are direct
consequences of the estimates for o; in (2.12-13), of (2.25) and the estimates for ¢ in
lemma 2.1. Moreover from (2.11), (2.25) we have for |G| > ¢;

(2.31) lo(B,x)| > o0(6]) — gl“@l‘gﬂzl(/ﬂc—’lx)—l > oo(c1) — %1?1 > ﬂg@.

The proof of lemma 2.2 is complete.
g
We examine now to which extent the previous results depend on the choice of the positive
definite quadratic form appearing in the integral of formula (2.3). This will not be used
before section 8 of the paper and could be omitted before the reader gets there. Anyhow it
clearly belongs to this section and we want to discuss this problem here. We set up then,
for (x,£) € R? x R, and a positive definite (d + 1) x (d + 1) matrix A with determinant 1

(2.32) A= (fg 2)

4° SERIE — TOME 31 — 1998 — N° 6
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where M is a d x d (positive definite) matrix, n is a column-vector in R?, o > 0. We
define also

(2.33)
]A(xa f) =
sign (77 + b(y)) 2%e~27r[M(x—y)'(x—y)+2n-(x—y)(ﬁ—n)+a(£~n)2]dyd,7‘
R xR
Using

My-y+2n-yn+an’ = (e’n+a’n-y)?+ (M - 'nn)y -y,
——
AT?

taking as new variables ¢ = a'/2p+ o~/?n -y and z = A, /%y we get from the
homogeneity of the sign and from det A = 1

jA(xa 5) =

sign (¢ — a” 24?0 g 4 012 + o/?0(AY 2 + x)) 255 2 (P HZ") 4z 4.
R4 xR

Using (2.1) this gives
(2.34) ja(x,§)
= / a0 [a1/2 (5 +b(AY?2+x) —a 1AV n. z)]z%e—%m?dz
R

We note that, according to (2.6-7), we have

b(AV?z +x) —b(x) —a1AY?n .z =
(%) - a~'n] - A1z + wo(x, 417°2)(4; )22/,

so that
(2.35) iat,§) = [ oolM2te " g
R

B
——
where [M] = [a1/2 (§ +b(x) +[t'(x) — a~'n] - A)?z + wo(x,A}/zz)(Ai/zz)Q)\‘l/Z) .
This is in fact a slight modification of (2.4) where o is replaced by the (still odd with

positive derivative) o o a/2. A simple inspection of the proofs of (2.8-9) yields the
result of lemma 2.1 for

(2.36) ja(x,€) = 0a(B,x)
with

(2.37)
UA(:B’ X) =

/ (09 0 a/?) (ﬁ + (%) = a"'n] - A1z + wo(x, A}/zz)(Ai/zz)z)\‘lﬂ)2%e_2’”z'2dz.
R ,

We could repeat lemmas 2.1-2 for o4 but we shall need only the following

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



852 N. LERNER

LeMMA 2.3. — Let A be a positive definite (d+ 1) x (d + 1) matrix given by (2.32) and b
be a symbol satisfying (2.2). Then, if 04 is defined by (2.37), we have

(2.38) 04(B,%) = Bo14(B,%) + X" ?roa(x) = (00 0 aV/?)(B) + 024(8, %),

where o4 € S(1,1dx12A™1) with semi-norms depending only on the vy in (2.2) and on the
norms of A, A~'. Moreover g14(3,x) > 0 and for all k

sup |(856£01A)(ﬂ7x)|’\k/2 < 00,
BER,xER?
A>1

sup  |B]'|(950%024)(B,%)| M/ < o0,
BER,x€R?
AST

depending only on the vy in (2.2) and on the norms of A, A™".

3. An admissible nonconformal metric

Let n be an integer and R?™® = R" x Rg be the standard phase space with its symplectic

form
¢= Y d¢Ada;.
1<j<n

We equip the phase space with a positive definite quadratic form I" such that I'* = T': it
means that there is a symplectic basis of R?® in which the matrix of I is the identity (see
(3.13) below or (18.5.7) in [H1] for a general definition of I'*). We consider now a smooth
real-valued function q(X,A) defined on R?" x [1,00), in the symbol class S(A,A™IT).
It means that ¢ satisfies the estimates

(3.1) sup  |0%q(X,A)|rA™HE = y,(q) < o0,
XeR2n A>1

for any integer k (the norm of the multi-linear form 8% ¢ is evaluated with respect to T').

As in the previous section, we omit below the dependence of ¢ upon A as well as the
index I' for the norms of multilinear forms.

DEFINITION 3.1. — Let X € R?® — gx be a mapping from R?" to the set of positive
definite quadratic forms on R2". The metric g is said to be admissible if g is slowly varying,
temperate (see [H11, chapters 1 and 18) and such that, for each X € R*™, gx < g%.

The proper class of the symbol ¢ is defined by the following metric, conformal to I,
(32) G = MX)7T, AX) = 1+ 1¢ QO+ la(X)]-

The metric G[)‘i-] is known to be admissible with constants depending only on v, £ = 0,1, 2
in (3.1) ([H1], section 26.10). Moreover ¢ belongs to S(A, G[q]) with the same semi-norms
as ¢ in S(A,A'T"). We define a new metric by

|dg(X) - T? I(T)

2n .
XX) + qOF T NE2 s g L eRT

(3.3) g(T) =
We drop the superscript [g] for g and G in the sequel of this section.
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LemMA 3.2. — Let q be a symbol satisfying (3.1). If G is defined by (3.2) and g by (3.3),
we have for A > 1,

(34)  yu(9)T'AT'T < G, <2g, <AL =4I° < 8g5 < 16GS, < 16901 (q)AT,

with ¥01(q) = 1+ v1(q)? + 70(q). Moreover, g is slowly varying and temperate.

In fact (3.1) implies A(X) < ~01(¢)A, which gives the first inequality in (3.4). Moreover,
from the expression of A in (3.2), one gets 1 < A(X)Y2 4 |g(X)| < 2A\(X) and
|¢’(X)|? < A(X); this implies the second and third inequality in (3.4). The other inequalities
follow then from the definition of g°. Let us prove now that g is slowly varying: let r be
a positive number and assume g, (X —Y) < r, that is

¢ (X)(X -Y)P? rx-v) .
AX) +1g(X)F - AMX)Y2 +g(X)]

Since G < 2g, and since G is slowly varying, we can assume that r is small enough
(say 2r < 719) to ensure that Gx ~ Gy, ie. the ratios Gx(T)/Gy(T) = AY)/\(X) are
bounded above and below by constants depending only on the 4 in (3.1). From Taylor’s
formula and (3.1), we have

lg(2)| < 1g(Y)] + |¢'(X)-(Y = X)| + 72(a)T(Y - X)/2.
Then we obtain, from gx(Y — X) < r,

AX)V2 +g(X)] < /
CLA)Y2 + 1g(¥)] + 2 (MX)Y2 + 1g(X)]) + 72(q) 7(AX)Y2 + |g(X)]) /2,

where C; > 1 depends only on the 7, in (3.1). This gives
(3.5)  2r < min(1/2,1/7:(q),70) = AY3(X) + |g(X)| < 4C, (A3(Y) + |g(V)]).

We have then, under this condition on r,

|4/ (X). T + 92(2)*T(Y = X)I(T) I(T)
AX) + g(X)? AV2(X) + |a(X)]
2 (M2(X) + g(X)I(T)

< 6402 gx (T) + 6472(q)*r DT B S (64C2 + 12872(q)*r) 9x (T),

thus proving that g is slowly varying.

gv(T) < 64C} +4C;

We must now verify that g is temperate. Going back to (3.3), we check

( l¢'(V).TJ? + 72(¢)’T(X = Y)I(T) { A(Y) + |q(Y)?
ox(T) <2 ) + WP nnb“w%ﬁewn
+ |9
B +MYvﬂ§@gw§¥x;ﬂ+mum)
\ Sgy(T)(]."‘F(X—Y)) (/\((‘X;—II(QIE_X% I)CZa

where C, depends only on 72(¢). Moreover, we have, using (3.1), (3.2) and Taylor’s
formula (first order for ¢, second order for gq),

AY)+|g(¥)P = 1+1d (V)P +1a(Y) | +a(Y)I? < (AX)+]g(X)P) (1+T(X -¥))*Cs,
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where C'3 depends only on the 7. Thus we obtain immediately from the above inequality
and (3.6) that

9x(T) w3
o (T) <C(14+T(X -Y))",

which implies, from the third inequality in (3.4), that

9x(T)
gy (T)

which is the temperance of the metric g (Cs depends only on the ~;). The proof of
lemma 3.2 is complete.

< Cs(1+2¢%(X - Y))?,

O

Remark 3.3. — The metric G separates the phase space into specific regions, depending
on the fact that the dominant term in the expression (3.2) of A\(X) is |¢(X)], |¢'(X)|?
or 1. In fact, following lemma 26.10.2 in [H1], one gets G-elliptic regions in which
Clg(X)| > AMX). In such places, the metric g is equivalent to G, ie. the ratios
9x(T)/Gx(T) are bounded above and below by fixed constants. This is also the case
for the G-negligible regions, in which A(X) is bounded above. In fact, in both cases
A(X)Y2 +|q(X)] is equivalent to A(X) and since |¢'(X) - T|? < v2A(X)[(T), we get the
equivalence of g and G there. The metric g is not equivalent to G on G-non-degenerate
regions, that is on places where |¢'(X)|? is the dominant term in (3.2). For instance,
if ¢ were the linear form A/2¢;, the metric ¢ would be, with symplectic coordinates
(.’L’l,fl,Xl) € RxR x R2n—2’

|d&i* | Jda® + [dX PP JdX P
= 2 1/2 > =
1+&  AV2(1+1&4)) A

G,

when |&] <« Y2

LEMMA 3.4. — Let g/2 be the admissible metric defined in (3.3). We define the positive
numbers | by

(3.7) u(X)? = 4 inf[g% (T)/9x(T)].
We have, with a constant C depending only on the 7, in (3.1),

(38) 1< p(X) < 4A(X),

(3.9) lg(X)| +1 > MX)/2 = Gx < 29x < 4(1+ 497)Gx,

310 IOOF 2 XX)/2 and lq(0)] A0 = 07 < MO <

! 2 -1 IU‘(X)Z
(3.11) |¢'(X)|* 2 M(X)/2 and |g(X)| > )\(X)l/2 = < W <C,
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(312) |g(X)| S CAX)Pu(X)*?,  |¢(X) T| < CAXX)3u(X)*2gx (T)"2.

Proof. — The inequality (3.8) follows from (3.4), and (3.9) from (3.1-4). To get (3.10),
we note that the linear form L = ¢/(X)A(X)~'/2 has a T norm in [27%/2,1]. Let e; be
the unit vector (for I') such that L(e;) = ||L||. Since I' = T'*, we can identify T with
the matrix I, and ¢ with the matrix

0 I,
-1, 0)°

Take now €; = ¢ep; this is a unit vector orthogonal to e;. Moreover, the space
V = (span{ey, gel})lr is a symplectic space for the restriction of ¢ since it is invariant
by ¢: for z € V one has (¢z,e1) = —(z,ce1) = 0 and (sz,ce1)p = (T, e1) = 0. One
can then choose in V a symplectic basis €, ...,€,,€a,...,e,, orthonormal for I". The
matrix of ¢ in the basis €;,e1,€z,...,€,,€2,...,€, is then

0

0 In—l
e 0

-1 0
0

In fact, we proved the more invariantly stated lemma:

LEMMA 3.5. — Let (E,<) be a 2n dimensional symplectic space, i.e. ¢ : E — E* with
¢ = —¢* and ¢ non degenerate. Let I be a positive definite quadratic form on E, i.e.
I':E— E*withT =T" and (U'z,x)p. p > 0 for z # 0. We define

(313) re= g*]-—‘—lc, or (FCT, T)E* E~ sup (ch U>2E* E»
’ (CUU) gu p=1 ’

and we assume that T is symplectic, i.e. T = T. Let e; € E such that (T'e;, el)E*’E =1
Then there exists a basis of E (€1,€2,...,€n,€1,€2,...,€,) orthonormal for I' and
symplectic, i.e.

(s€jrer)pe g = Oiks  (S€jr€k)pe g =0,  (s€j,€x)p. g =0.

The argument is the same as above with ¢; = I'"lge;.

Going back to the proof of (3.10), we get that (X is fixed), using (91,y1,7,y’) as
coordinates in the base (eq,€1,€2,...€n,€2,...€n),

_AL®L T dmPAILIE 1A+ idy 1 + |y
T A41g12 T AY24g A+1g? AL/2 g ’

g9x

so that, since q| < A, the metric g is equivalent to g:

A |dy1]2 +1dY712
Atig? - A2 4g)

. 1. .
(3.14) g=|dm|? 39<9<2j,

with symplectic coordinates (n1,y1,Y’ = (y',7')); this gives (3.10) and (3.11). The
inequalities (3.12) are obvious if (3.9) is satisfied. Moreover, from the definition of A in

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



856 N. LERNER

(32), 1g1 + 1 < X\/2 implies |¢'|? > A/2. If (3.10) is satisfied, we get the first part of
(3.12), and to check the second part, we note from (3.3), that

(3.15) |¢'(X) - T|? < gx(T) (MX) +]a(X)[?).

If (3.10) is satisfied, this gives (3.12). If (3.11) is satisfied, then |q|2A~! is equivalent to p?
which gives |q| equivalent to A\}/342/3, If (3.11) is satisfied, since (3.15) is a consequence
of (3.3), it is enough to check that A\1/2 + ¢, is controlled by A'/3u2/3  which is obvious
since |q| > A'Y/? and |q| is equivalent to A1/32/3 there. This gives (3.12) under (3.11).
The proof of lemma 3.4 is complete.

O

4. Symbol classes

LEMMA 4.1. — Let q be a symbol satisfying (3.1). If g is defined by (3.3), A by (3.2), p by
(3.7), then q € S(A\Y/3u?/3, g) with the same semi-norms as q in (3.1).

Proof. — We have to find constants C}, such that, for all X, 7T in R?",
(41) ¢ (X)T*| < XX)V2u(X)* 2 gx (T)*/2Cy.
This is obvious if X is a G-elliptic or a G-negligible point, i.e. if (3.9) is satisfied since
g € S(\,G). If X is a G-non degenerate point, i.e. if (3.10) or (3.11) are satisfied, (4.1)
follows from (3.12) for 0 < k < 1. Let us check (4.1) for £ > 2 when (3.10) or (3.11)
are satisfied. We know from (3.1) that
l¢® (X)T*| < AVED(T)H? .

Moreover, from (3.3), we have

P(T)k/Z
k/2

It suffices then to prove, for k£ > 2, that
—k/2
e A1TF < CRAY323 (/\1/2 + I(II) ,

that is, to verify

!
(w2 +1al)™ (0724 lgl) < AFTIN2C oy

Since k—2 > 0 and |q| < A < Ao (see lemma 3.2), it is enough to check that AY/2 +|q|
is controlled by A'/34%/3. When (3.10) is satisfied it amounts to controling A'/2 which is
there equivalent to x? being equivalent to A\'/342/3; when (3.11) is satisfied it amounts to
controling || which is there equivalent to A}/342/3. The proof of lemma 4.1 is complete.

a
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LEMMA 4.2. — Let f be a bounded smooth function of one real variable so that f' belongs
to the Schwartz space S(R). Let q be a symbol satisfying (3.1) and g be the metric defined
in (3.3). Take MX) € S(M(X),Gx) so that A(X) > doA(X) for some positive constant
do (e.g M(X) = /1+]¢(X)|% +]q(X)]?). We have

(4.2) a(X) = F(MX)7? ¢(X)) € 5(1,9),

with semi-norms depending only on those of q in (3.1), on the L norm of f, on semi-norms

of f' in S(R) and on do.

Proof. — The fact that /1 +]¢'(X)[f +|g(X)|? belongs to S(,G) is a standard
consequence of the slowly varying property for G. Since ¢ € S(A,G) and f' € S(R),
the estimates implying (4.2) are trivially satisfied when (3.9) is satisfied. Assuming
thus that X is G-non-degenerate (i.e. that (3.10) or (3.11) are satisfied), we set
B(X) = A(X)"Y2 ¢(X) € S(A\'/2,g) and we start from Faa de Bruno’s formula,

k!
(k) k (r) (t)ply 1)l
oM (X)TF = > r!h!---lr!f (B) BWTh  BUIT
Lh+...+lL =k
I; >1
that is
(4.3) N
aPX)T = Y Wﬁf(r)(B) (B'(X).T)*BUs+b+ BT
h=...=l,=1"" "

S+ls+1+...+lr=k
L>2 ifj>s+1

Consequently, from B € S(\Y/2,G), one gets
(4.4)
o™ (X)T*| <

! s+1 1 Iy s
> wo . o |fO(BXO)] 1B'(X).TI° MR )R,
rlgyq!--- 1!
h=..=l,=1""
s+lgpr+...+lL =k
;>2 ifj>s+1
We obtain thus
(45)
o™ (X)T*| <
AT
! r—s 1 —s
S B m)| IBCOIE AT (1)
Plapnl 0]

llz...:lszl'SH.H' )

S+l5+1+...+lr:k
;>2 ifj>s+1
<C ST F(BX))| IB'(X).T) AT I(T)
1<r<k
0<s<r
k>s+2(r—s)

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



858 N. LERNER

. . -k —k . .

Since k > s+ 2(r — s) = 2r — s, i.e. since r < 5 , the inequality (4.5) implies,
. . 2 4

with d; depending only on k,

(4.6) PXOTH <de Y. |FO(BX)] 1B/(X).TIEATI(T)

0<s<r<k, r>1

Let us assume first that |B(X)| < 1 : from (3.10) and (3.14) we get that gx(T)'/? is
equivalent to

F(T)1/2
/4 7

|B'(X).T| +
so that (4.6) gives the estimates for (4.2) in this case. When |B(X)| > 1, we saw in (3.14)

and (3.11) that gx(7)'/? was equivalent to

|B'(X).T| L(T)'/?
IB(X)| — AVAB(X)V>

Since f’ is in the Schwartz space S(R) and r > 1 in (4.6), we can control any power of
B and get (4.2). The proof of lemma 4.2 is complete.

|

5. Wick quantization

Before defining the Wick quantization, we recall the usual quantization formula,

ale, D, Yu(z) = / / (e a(€)dE,  a(E) = / 2Ty () dy,

and the Weyl formula
a®u(z) = // 621‘"(1_!/)50/(#,5) u(y)dy d€.

It may be useful at this point to notice that the definition of the Weyl quantization of
the phase space £ @ E*, where F is a n-dimensional real vector space (the configuration
space), can be given without further structure. Although it is clear with the formula above,
we can use as well the following definition of the Weyl quantization, due to Unterberger
[Un]: for a € S'(E & E*)

a”’ = / a(X)2"oxdX,
EQE*
where the phase symmetry ox is defined as the unitary and selfadjoint operator on L?(E)
oxu(y) = w2z — y)e ¥ Ve where X = (z,&).
Naturally the symplectic structure on E @ E* is given by the standard relation

[(X.Y] = <§7y>1;’E* - <77a33>E,E*a for X = (z,8), Y = (y,m),
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and the measure dX on the phase space is chosen as the n'" exterior product of the
symplectic form divided by n!, which is also the tensor product of any Haar measure on F
with its dual measure on E*. A tempered distribution o can be quantized since it is easily
checked that X € E® E* — (chu,v)Lz(E) € S(Ea E*) if u,v € S(E).

On the other hand the definition of the Wick quantization below requires the introduction
of a symplectic norm (as defined in lemma 3.5) on the phase space. So as in section 3
and 4, we assume that the phase space R®" is equipped with a symplectic norm I'. The
following definition is a regularization of the formula above for the Weyl quantization and
contains also some classical properties.

DEFINITION 5.1. — Let Y = (y,n) be a point in R?". The operator Y. is defined as
[2"6_2"F('“Y)]w. This is a rank-one orthogonal projection: ¥%u = (Wru)(Y)mi ¢ with
(Wru)(Y) = <u,731;<p>L2(Rn), where o(z) = 24e="%" and 7L is a metaplectic affine
transformation quantifying the affine symplectic map X — T'Y2(X —Y) (when T' = 1d,
Ty P(E) = oz — y)e%”(x_%’")). Let a be in L>°(R®"). The Wick quantization of a with
respect to I is defined as

(5.1) aWick(D) — / a(Y)2Ldy.
R27

PROPOSITION 5.2. — Let a be in L=(R?"). Then aV'**() = Wa*Wr and 1WVik(D) =
Id 12 (rn) where Wr is the isometric mapping from L*(R™) to L?(R?") given above, and a*
the operator of multiplication by a in L?(R*™). The operator nf; = WrW? is the orthogonal
projection on a closed proper subspace H of 12(R?"). Moreover, we have

(5.2) 1™ O £ 2 gnyy < Nl oey, 6(X) > 0 = a™iHE) > 0,

n ~ZI0(Y—-2)
c(re@ny)) < 2% :

Proof. — This proposition is classical and easy, except possibly for the last property.
For Y,Z € R?" a straightforward computation shows that the Weyl symbol of Y17 is,
as a function of the variable X € R?",

(5.3) (2

(5.4) 6—%F(Y—Z)6—2i7r[X—Y,X—Z]2ne—27rI‘(X—Xgé),

where [-,-] stands for the symplectic form. Since for the Weyl quantization, one has
el 22y < 2"llallLigeny, We get the result.
O
PROPOSITION 5.3. — Let p be a symbol in S(A, A~1T") (see (3.1) for the definition of a class
of symbols with a large parameter \). Then pWVik(T) = p 4 r(p)* withr(p) € S(1,A7'T)
so that the mapping p «— 7(p) is continuous. Moreover, r(p) = 0 if p is a linear form or
a constant.

Proof. — From the definition above, one has p*WViex(') = 5w with

p(X) = / p(X +Y) 2T Wondy =
R

2n

1
(5.5) p(X) + / / (1—0)p"(X +0Y)Y2e~2"T(2nqy d6.
0 JR2"
r(B)(X)
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Thus, from the estimates on p, we get that,

[T(P)(k)(X)l S’Yk+2(p)/\1—k_;£/ llee"z”F(Y)T_ldY,

R2n

which implies 7 € S(1, A~'T). The last point in the proposition follows from (5.5), which
shows that r(p) depends linearly on p”.

O

6. A factorization result

We consider in this section a smooth real-valued function ¢(t, X,A) defined on
R: x R%¥ x [1,00) which satisfies (3.1) uniformly in ¢, i.e.

(61) sup Ia.l)c{Q(t?Xu A)lFA—1+§ = ’Yk(Q) < 09,
teR, X eR2 A>1

where T is a symplectic norm on R?"(see §3). Moreover, we assume that 7 — 4q satisfies
condition (7)) (from now on, we omit the dependence of ¢ on A),

(6.2) q(t,X)>0and s >t = ¢(s,X) > 0.
Let us consider, for t fixed, the function
(6.3) Mt X) = 1+ Ja(t, X)| + Id) (¢, X)IE.

We have, according to (3.2),

(6.4) q(t, X) € S(A(t, X), /\(tle) _ G[}%(t,~)]>.

Following section 3, the metric G19(+)} is slowly varying on R2?, satisfies the uncertainty
principle (G < G°), and is temperate. All the metrics G14(*)] are conformal and have the
same “median symplectic” norm T', according to lemma 3.2. The metric G194 defines
the proper class of the symbol ¢(,-) : this is a metric on the phase space R?", depending
on t € R. We shall refer below to G14(:)] as the proper metric of the symbol ¢ at the level
t. We define now the bounded measurable functions

_ [inf{t € (—1,41), q(t, X) > 0} if this set is not empty,
(6.5) b(X) = { 1 if this set is empty,
and
1 if t > 0(X),
(6.6) so(t,X)=4¢ 0 ift=0(X),
-1 ift<6(X).

We get from (6.2) and (6.6) that for s = sg, for all t,¢1,t, € (—1,1), X € R?",

(6.7)  q(t,X)s(t, X) = [q(t. X1, (s(t2, X) = s(t1, X)) (t2 — 1) > 0,s(t, X)| < 1.
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LeMMA 6.1. — Let s be any measurable function satisfying (6.7). We define J(t) as the
operator (depending on the function s and on the symplectic norm T')

Wick(T) _

(68) I = (506,20) " = (10,50)" 70,50 = [ se1) 27 TNy,

where the Wick quantization is given in (5.1). The symbol J(t, X) belongs to S(1,T") with
semi-norms bounded by constants depending only on the dimension n. The operator J(t)
is bounded selfadjoint on L2(R™) and such that

(6.9) IOl ey S 1 0 St = J(t1) < J(t2).

The expression of the Weyl symbol in (6.8) follows from definition 5.1. The convolution
formula in (6.8) implies readily the statement on the symbol class. Property (5.2) implies
the first statement in (6.9) and J is selfadjoint since its Weyl symbol is real-valued. Since
the function s(¢, X') used in the lemma satisfies (6.7), it is nondecreasing as a function of
t and we have that ¢, < t,, implies that for all X € R?", s(t;, X) < s(ty, X). Since the
Wick quantization is nonnegative (second property in (5.2)), we obtain that

(S(tg, ) - S(tl, ‘))WiCk(F) Z 0.

The proof is complete.
|

Note. — We could have taken 3 = sy for the proof of the lemma and the remaining part
of this section. However, we want to emphasize the fact that only property (6.7) is used.
This fact will be important in section 8 when the symplectic metric will be allowed to
vary. From now on in this section, we suppose that the variable ¢ is fixed. We consider a
partition of unity subordinated to the metric G[)%(t")] defined in (6.4). The following lemma
is classical for an admissible metric (see section 18.4 in [H1]).

LEMMA 6.2. — Let t be a number in (—1,1). There exists a sequence (X, ),en of points
in the phase space R?" and positive numbers ro, No, such that the following properties are
satisfied (G, = A;'T, A\, = M(X,), will stand for G[;gt")] defined in (6.4)). We define
U,, U, Ur* as the G, balls with center X,, and radius rq, 2ro,4r. There exist two families
of nonnegative smooth functions on R*™, (x,)ven, (¥)ven such that

(6.10) ZX:/(X) =1, suppx, CU,,¥, =1 on U}, suppy, C U™

Moreover, x,,%, € S(1,G,) with semi-norms bounded independently of v (in fact
depending only on the vy in (6.1)). The overlap of the balls U}* is bounded, i.e.

() Uz #0 = t\ < No.
veN

Moreover, Gx ~ G, all over U}* (i.e. the ratios Gx(T)/G,(T) are bounded above and
below by a fixed constant, provided that X € U}*), so that 1,,q € S(\,, G,) uniformly (in
fact with semi-norms depending only on the vy in (6.1)).
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It should be kept in mind that the partition (x,) as well as %, and the choice of X,
depend on ¢ ; we omit this dependence for simplicity of notation. We shall prove also the
following convenient lemma, a version of which is given in [BC] (lemme 7.9) and which
appears essentially as a consequence of Cotlar’s lemma (see e.g. lemme 4.2.3 in [BL]).

LEMMA 6.3. — Let G be an admissible metric on R*" and Y, x,(z,£) = 1 be a partition

of unity related to G as in the previous lemma. There exists a positive constant C such
that for all u € L*(R")

_ 2 2 2
(6.11) c 1||u|}L2(R") < Z ”X:fu”B(R“) < C”“”LZ(R")'

The right inequality is indeed a direct consequence of Cotlar’s lemma so we leave it to
the reader and provide a proof of the more involved left inequality. Let us recall first (see
Théoréme 3.2.2 in [BL] or (18.6.10) in [H1]), using notations of lemma 6.2, that for
(6.12)

Ay =14+ (G, ANGHUT -U") =142 inf [G;(YM —T)+Gf,(T—Y,,)],

TGRZn
Y, eU;", Y, eU”

there exists Ny > 1 such that

(6.13) supz A;,fv" = Cp < +o00.
s v

The fact that G is temperate and the so-called confinement estimates of Théoreme 2.2.1 in
[BL] are useful to get that for all N > 1, there exists Cy such that

Now since the x, are real-valued and a partition of unity, we obtain with L2(R") norms
and dot products

(6.15)
(Ru,u)
2 w w « NO - w \
P =3 Guoguy < Y0 (F—) Il + Y (),
v, 1124 PN
v, with Al:wscx Wlth Apy>e

where « is a positive parameter to be chosen later. We check now the self-adjoint operator
R defined above: from Cotlar’s lemma

o  w w. wil/2
(6.16) ”R“[,(]}) < sup [ Z 10, X, X0 X “L:/(L2) )
With 2,000 >e Syt s
and since
w2 w oW Wq W w
(6.17) 130, X3, x5 X “[:(L2) < Wiz 1D I I Iba Xzl x|

B _ _ 2
< ONAZY Cx AN Cy AN sup 1P,
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we get that for N/4 = Ny

w

”R”c(m) < CI%JM Sup |[X,

1/2 — — —
Ve s AT agany]
With Apove >a Vit
(6.18) < O sup [ | *a NS T ALNATY DALY < GO sup 1Y oG
v

m

We choose now the parameter « so that Cj:’]/\;t sup||x’,j’||1/ > a2 = 1/2 and we get
from (6.15) and (6.18) that

(6.19) P 3 () Il +

with a,, <a

The kernel A, is of Schur type on I?(N) from (6.13) and thus we obtain
(6.20) ol < 2a™Go 3wl

which is the statement of the lemma. The proof is complete.
O
Let us now fix notations for the symbol ¢(¢,-) in its proper class G[)‘é(t")] defined in
(6.4). We use the notations of lemma 6.2 and sum-up below a construction due to Beals
and Fefferman [BF], using the terminology of Hormander (lemma 26.10.2 in [H1]). Let
r1 < 1/2 be a positive number. We shall say that
- v is an elliptic-plus index (v € E for short) whenever q(t, X,) > r1\,,

v is an elliptic-minus index (v € E_) whenever q(t, X,) < —ri),,
- v is a nondegenerate index (v € D) whenever
lq(t, X,)| < A, and |¢ (¢, X,)|3 > A, /4,
- v is an L2-bounded index (v € L) in the remaining cases whenever
la(t, X,)| < riA, and |gk (, X)) [F < A /4
which imply from (6.3) that A, < 1+ 3\, /4, i.e. A\, < 4.
One can choose r; depending only on g so that, with £ = F,L UE_,

if v € By, for X € U, q(t, X) = A e0,(X)

(6.21) with eg, € S(1,G,) and r1/2 < eg, (X) < 2y,
(6.22) if v € D, for X € U, q(t, X) = \t/*Be0,(X)
’ with ep, € S(1,G,) and 1/4 < e, (X) < 4,
(6.23) with 8, = & +b,(z1,2',¢),b, € S(A/%,G,),
——

X

where (z1,2',§1,€') are linear symplectic coordinates in (R x R"~!) x (R x R*~1)
orthonormal for I' (see lemma 3.5). Of course the semi-norms of ey, and b, above
are bounded independently of v by constants depending on the semi-norms of ¢ in (6.1).
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However the choice of coordinates in (6.23) depends on the box U}, but these coordinates
are deduced from the “standard” ones by a symplectic matrix also orthogonal for I". Note
also that we assume that b, is defined globally on R?® which is easy to achieve by
multiplication by a suitable cut-off function.

Note. — In the sequel of this paper, the notation 3, will always refer to (3, (X), that is
to the function defined on the phase space R*" given by (6.23). In particular, starting from
the functions w and o defined on R x R?"~! in section 2 (with d = 2n — 1) we define
below w(8,,x) and o(/3,,x) as functions on the phase space R?" given respectively by
w(B,(X),x) and o(B,(X),x).

We are now ready for the definition of the operator

(6.24) .
W, = ey k@ if veky,
Q(t) = ZXEJWVXZ}: with w, = [“)(ﬁuax)ev"/)u]w + ag,, if veD,
v W, = Id, if vel,

where x, and 9, are defined in lemma 6.2 ; the symbols e, will be chosen later and we
assume only here that e, € S(1,G,) uniformly and is uniformly elliptic, i.e. satisfies for
all v, z,€, e, (z,£) > ¢o > 0. The function w(f,,x) is defined in lemma 2.2 and (2.29) and
B, is given in (6.23). The symbol ag, belongs to S(1,g), (g = gl4®1 is defined in (3.3))
and is given below; the metric g is given by (3.3) from ¢ = q(¢,-): g is an admissible
metric on Rg"s depending on the real variable ¢. From lemmas 4.2, 2.2 and 3.6 there exists
a positive constant c¢; such that, for all v € D, the symbol

w(ﬁll7 X)63V¢u - Cl)‘lll/Z(l + ﬁz)l/zelﬂ/}u
(6.25) 2 a e) O |
belongs to S(A'/2u*/% ¢) and is nonnegative.

The Fefferman-Phong inequality applied to this second-order (in fact A'/3u2/3 < u? from
lemma 3.5) nonnegative symbol implies that there exists a,, € S(1,g) whose semi-norms
depend only on those of v, and b, in (6.23), thus eventually only on those of ¢ in
(6.1), such that

(6.26) a¥ + (w(B,, x)esth,) " — A2 [(1+ B2)%e,,]" >0,
and consequently
(6.27) [a, +1]" + (w(By, X)esth,)” > Id +e A2 [(1+ B2) e, ]

Assuming as we may, using the ellipticity of e,, that e 1, = 62, with 6, € S(1,G,)
uniformly, supp 8, C U}*, we get from (6.27)

(6.28) [a,+1]"+(w(By, X)esth)” > Id +er X2 [(1+582)Y26,]" [(1+82)1/46,]" +r),
where r, € S(1,g). We can then choose ag, in (6.24)

(6.29) apy =a, +1+ ||r,,H£(L2)

in such a way that for

(6.30) veDW,>Id +a A2 [(14 82)Y*6,]° [(1 + 82)/46,]" > 1d .

Our main statement for this section is contained in the following proposition.
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PROPOSITION 6.4. — The Weyl symbol QU(t, X) of the operator Q(t) defined by (6.24)
belongs to S(AY/3u?3,g), where g = gla®) in (3.3) (cf. (3.7) for the definition of ).
Moreover there exist positive constants cg, c; and a nonnegative constant Cy such that

(6.31) Q) >cold and Qt,X)+ Co > e A(t, X)3u(t, X)¥3.

The Weyl symbol J(t,X) of the operator J(t) defined in lemma 6.1 belongs to S(1,g)
and the Poisson bracket

(6.32) {Qt,X),J(t,X)} € S(1,9).

One can choose the elliptic symbols e, in (6.24) so that

(6.33) q(t, X) — Q(t, X)J(t,X) € S(1,9).
Eventually, with Q(t) = q(t,X)" one gets

(6.34) Q(t) = Qt)J(t) + R(t) = J(t)QUt) + R* (1),

where the Weyl symbol R(t, X) of R(t) belongs to S(1,g) and thus R(t) is L2-bounded.

Proof. — Let w, be the Weyl symbol of W,. We note from (6.24), lemmas 4.2, 2.2
and (6.23) that

(6.35) w, € S(AY3u2/3 g) uniformly.

We compute, using the fact that self-adjoint operators have real Weyl symbols, setting
L = 2w

1 1 -
Xofwix, = [quu‘l‘ﬂ{xu,wu}""ru] Ix, = X,%&J,,-{-X,,Re Tv+(5)2{{xuawv}axu}+rv’

and we notice that the remainder

1 .
ZXVRG’I’,, + (a)z{{XWWV}aXV} +7, € S(lag)a

since each term of the series is confined in U, with respect to g, and belongs to S(1, g).
Thus, we get that

(6.36) Qt, X) =Y x2(X)w, (X) + r1(X),m1 € S(1,9).

v

From (6.35) and (6.36) we get that Q(t,X) € S(A\Y/3u?/3,g). To prove the first part
of (6.31), we note that, using lemma 6.3, it is enough to prove the same for each W,.
For v € DU L, it follows from (6.30) and (6.24), whereas for v € EL, we use only
el‘,NiCk(F) > cXViCk(F) = ¢o Id. Moreover, from (6.24-25), there exists a positive constant c;
and a nonnegative constant C; such that for X € U},

wy (X) + C1 > el M(X)Y3u(X)¥3
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so that (6.36) implies
Qt X) 2 M)V u(X)*2 Y eaxy(X) +r2(X), 2 € 8(1,9)

which gives with (a positive ¢;) and a nonnegative C
Qt, X) + Co > e A(X)Y3u(X)?/3

which is the result of the second part in (6.31).

We check now the Weyl symbol of J(t), using the notations of (6.21-22). We note in
particular that, from (6.21-22) and (6.7) we get that the the L> function s(¢, X) satisfies

veD, X eU), = s(t,X) = sign 3,
veFEy, X el = s(t,X)=+1.

v

(6.37)

We have thus from (6.8)

J(t, X) = sx2me ™™ = ", [sx 2"e 2]

= 3 [(0) * 2] + 3 s [((1— h)s) 27>
ij Xo [£th, %27 + Z Xv [(4 sign (8,)) x 2"e >

veEs veD
2 [s) #2707 4 Y [((1 = ph)s) 27,

= fLXv (£, 277> + Zuxy [sign (8,) * 272"

639+ 30wl — 1) s 5) « 2] 4 3 [(s) 2707
+ fxu [((1—4,)s) * 2"e™2"T] v
1

=2 X"er > xv[sign (B,) * 2"e ]
fEiZ Xo [£( = 1) x ZH;;F] + > xo [((y — 1) sign (8,)) 2"~
+ u:z‘:;., [(Wys) *2me™?™T] + Z X,,V[e(g — ,)s) x 272,

We shall give the same treatment to the third, fourth and sixth term in (6.38). We claim
that for any sequence c, of uniformly L°° functions

(6.39) Yo (M=) e) x 27> € S(A=,G) = (] SA,6).

N>0

Since G, = AT, x, is supported in U, and
(6.40) (1 =) c) *27e72"T] € S(1,T)
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uniformly, it suffices to estimate the following for all positive N:

(6.41) AN

XU(X)/CV(Y)(]. — wV(Y))zne—zﬂ—r(X_y)dY ‘

Since in this expression

(6.42) Y¢U; and X € U,
we have
(6.43) (X —Y)>r2\, whichimplies A < C(rg,N) "X,

yielding the desired estimate for (6.41). The fifth term in (6.38) is easy to handle, since
for v € L we have that G, ~ G5, ~ I' and A, ~ 1 in the sense of lemma 6.2 so that,
for all k&, N we have

(6.44) sup |[(1,s) * 27e=27T]® (X)TH| G, (T) 2\ < +oo,

X €eR2n

that is the estimates yielding

(6.45) > xu [(Whys) x 272 € S(AT,G).

veL

We have proved so far from (6.38-45) that
(6.46)

JtX) =Y Exu+ > xo[sign(B,) *2"e 2] +r_oo, with r_oe € (A7, G).
veEE L veD

According to (6.23) and lemma 6.5 below (it follows in fact directly from (2.3), (2.4),
lemma 2.1 and lemma 4.2) we have, using lemma 3.4,

(647)  sign(B,)+ 2" = o(B,,x) € 5 (1, R : )

L+62 A2 +18,1)

so that

(6.48) > xulsign (8,) * 2" ™) = > xu(X)o(By,x) € S(1,9).

veD veD

The identities (6.46-47-48) prove that

(6.49) J(t, X) e S(1,9).

Let us verify now claim (6.32) in Proposition 6.4. Note that since J appears as an operator
of order 0 (i.e. with symbol in S(1 = u°, g)) and Q as an operator of order 2 (i.e. with
symbol in S(u?,g)), the symbolic calculus for the metric g would give a priori this

commutator in S(u!,g). The sequel will show that the very particular structure of the
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operators {2 and J yields the key improvement (6.32). From (6.24) and (6.36), we know
that the Weyl symbol of Q(t) is

Ot X) = > x2(X0)hen(X) + D xUX) w(By,x) e (X) +1o(X),
(650) veE4 veD
with 79 € S(1,9),

where w(f3,,x) is given in lemma 2.2 and (2.29) and ¢, € S(1,G,) uniformly and is

uniformly elliptic, i.e. satisfies for all v,x,&, e,(z,£) > co > 0. The following identity
for Poisson bracket

(6.51) {X2b,a} = Zb{x,xa} + x{b, xa} + xa{x,b}

and (6.50) imply

({Q(t, X), J(t, X)}
= Z {Xlzl(X))\,,e,,(X),J(t,X)}
veE+
+ 3 {2(X) (B, x) e(X), J(t X)) + {ro, J}
(6.52) 4 veb
= Z 2>‘V6V{XV)XVJ} + XV{AVell?XVJ} + XVJ{XVa/\ueu}
veE}
+ z 2‘-‘)(,81/, ) ev{Xw XVJ} + Xu{w(ﬂva ) 6,,,)(,,]}
veD
L +XV']{XV7w(IBV7 ) 6,,} + {T07 J}

We can use the calculations in (6.38) giving x,(X)J(t, X) = x.[s * 2"¢~2"T] to obtain

(6.53) v € Ey implies x,(X)J(t, X) = £x.(X) + S(A™>=,G),

(6.54) v € D implies x,(X)J(¢t,X) = x,(X)o(B,,x) + S(A™,G).
Looking now at (6.52) we have from (6.53-54) and (6.49)

(6.55) {forv € Ey,

)\,,e,,{x,,,x,,J} = :l:/\ue,,{x,,,x,,} +5(A=,G) € S(A™*=,G),

6.56 for v € F4,
( . ) XV{/\uewXuJ} = iXV{/\VeuaXV} + S()\—oo’ G) € S(LG)’

6.57 forv e Fy,
(6:57) XoJ{xv, Aver } = Exu{x0, Mven } + S(A™°,G) € S(1,G),

(6.58) {for veD,

w(By,*) eV{Xw XVJ} = w(By, ) 6.,X.,{Xu,0'(ﬁy, )} + S(A™*,G),
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(6.59) {for veD,

Xu{w(ﬂua ) evaXuJ} = X,,{w(ﬂ,,, ) eu,XuU(ﬂua )} + S()‘_OO’G)»

forv € D,
(6.60) { Xo d{ X, w(Bs,") &} = x00(Bu, )X, w(Bo, ) &} + S(A™=,G),

(6.61) {ro,J} € S(1,9).

To get (6.32), we only need to examine the Poisson brackets in the right-hand side of
(6.58-59-60). We shall first prove the following lemma

LEMMA 6.5. — The symbols o(f3,,-) and w(B,,-) defined in lemmas (2.1-2) and (2.11),
(2.29) with 8, defined in (6.23) satisfy uniformly on U}*

U(ﬂua ) € S(LQV),

(6.62) w(By,-) € SV *(1+ 8212, g,),
{6(131'7 ')7w(ﬂua )} (S S(]-?gl/)v

with

_dB, ®dB, T

(669 RS R VE F R ey

We prove first the second statement in (6.62) (the proof has the same flavour as
lemma 4.2). Using the estimates (2.20) and (6.23) for b, the derivative D*w(g,,x)T*
is a sum of terms

(6.64) OLOPWT %) . BEITHL with ky +... 4k, + 1=k,
which is smaller than the absolute value of

(dB - TY ki) .. fITH=1=3(1 4| B]) =P AV/2-V/2D(T)/
(6.65) kjt1,.kp are all > 2
with j+ Tt tk 4=k
The absolute value of this term is bounded above by

()\1/2)1)-1'—(16—1—]‘)—1

|dg- T

0T |ﬁ|)1 (1 +Iﬂ|)j“l’ A/2=ki41/2  \1/2=kp/2 ) =1/2 I‘(T)(k—j)/2

214 8))

which is
|dg - T|?
(1+1B1)

dg-T|i (T k=02 ke ke
VR Gy (e ) AT 0O

A1+ 81) (1+|81)7PA@=R)/2p(T)E=0)/2

k4j—2p
3

1
< X211 8 Do) (0

)
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which gives w(f,,-) € S(AJ/*(1+B2)Y/2, g,) since from (6.65) we have j +2(p— j) < k,
ie. k+37—2p > 0 and

(6.66) on Uz* the ratio 3, /A+/* is bounded.

To get the first statement in (6.62), one needs only to repeat a simpler version of the
calculations above using the first equality in (2.11) and (2.12) for |3,| < 1 and the second
equality in (2.11) and (2.12) for |8, | > 1. We compute now the Poisson bracket, using
{/8) 18} = 05
(6.67)
{Cf(ﬁ,_X),UJ(ﬂ,X)}
_ o098, 0 ox] [owdB  ow ox
IRE) of  Ix O o or Ox Oz
dwop  dw x| 0008 05 Ox
108 0¢  Ox O¢ 0B dxr 0Ox Oz
_[2008] [dw ox] oo ox] [0wdp 0w ox
| 08 0¢ ox Oz ox 0¢ 08 0x Ox Oz
10008] [07 ox] _[dw Ox] [0008 0o Ox
LGﬁnaé ox Ox 6); 0¢ 0 0xr 0x gw

_[2008) [ow ox] Too ox] [owdp] [d0 0x] [0w 0x
~ 9B o¢ ox Oz ox 0¢ 00 0z ox 0¢ ox Oz

Ow dp3 do 0Ox Ow 0x do 003 Oow 0Ox do Ox
TIESEORI ROy

~ v - / ~

v

II4 Hs Hﬁ

We have from lemmas 2.1-2 and (6.23)

oo _ op
— e S(1+I8)7"9), == €S(1,9),
(6.68) {gg (( N~ 9) o€ (1,9)

22 es(+IA9), o €S(L)

} - I-—-[1 € S(lvg))
ox

oo _ ox
& € S(/\ 1/279)7 —8— € S(l,g),
(6.69) { 5% o 4 = I e S5(1,9),
%ES(A ag)a %GS(I,Q)
97 ¢ s(A112,g) X ¢ 5(1,9)
(6.70) 4 &% o g = Y = ;e 5(Lg),
&-ES((HWI),Q) C S(A'2,g), 55 € 5(1:9)

0
{%ES()‘I/zag)a a_fes(lag)a

— € S(A71%y), (—9-;—( € S(1,9)

} - H4 € S(l,g),
9]
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—— €S5((1+181),9), =7 €5(1,9),
gf; . gg = II; € 5(1,9),
%65((1+|ﬂ|) .9), %65(1»9)

ox ox
_GS 1+|ﬁ|7 7'_€Sla 7_651)
{ ox € S(L+181),9), 57 € S(1.g). 5 € S( g>} L mesto

5 €52 g) cs(@ 18D ),

which gives (6.62) from (6.67). The proof of lemma 6.5. is complete.
|
Note also that from (6.68-70) above, one gets by direct computation

(6.71) {w(Bus)sxv} € 5(1,9), {0 (By,-),en } € SATV2(1 41871, 9).

Looking back at (6.52) and (6.58-59-60), omitting the index v of f,, and writing for
each symbol its weight m in the class S(m,g), we see that using lemma 6.5, (6.23),
(6.66) and (6.68-71)

(6.72)
W(,B,') eVXV{XmU(/87')}
12 Lapp (HIBDTE O ATVZ NTHE AUz
AMZ(148]) 1 A AN A AN
_w ol B L e Gwbea) o
= WX eXel WXy 55 T g x 0 Ox ox O€ 90
'Xu{w(ﬁa ) ews X0 (B, )}
={w,xp}oexy + xwow {es,x0}
—— —— SN ——
1 1 N/2(LHB) A
(673) ﬁ ’\—1/2(1+,/8,)_1 1 1
—— NN~
+ xiw {ev,o} + xies{w,0}€S(,9),
<~
. A/2(1+8])

xv0 (B, '){wa(ﬂa ) eu}
(6.74) = xvoe, {0, w(B,)) + o {xv,e.} € 5(1,9).

1 1 AL/2(148]))  a-1
We reach the conclusion of (6.32).

From (6.36), (6.24) the Weyl symbol Q(t, X) of Q(t) is
(6.75)

Qt, X) =
{ Y 2OMes (X) + 3 X )08 x)e,(X) + 1, (with 7 € S(1,9)),

vEEL veD

so that from (6.49)
(6.76)
Qt, X)J(t,X)
= > x(X)J(E XA en (X)X (X) + D xu (X) T (, X)w(By, X)en (X)xu (X) + 11,
veEE L veD
) (with 7 € S(1,9)).
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According to the calculations in (6.38-45), we have
(6.77)
forv e Ey, x,(X)J(t,X) = £x,+7,,and for v € D, x,(X)J(t, X) = xo0(By, ) +70,

in such a way that ZueEiUD 7, € S(1,9). Plugging (6.77) in (6.76) we obtain

(6.78) Qt, X)J(t,X) = > £he,(X)x(X)*+ Y 0(By, X)w(By, X)en (X)x0 (X)?

veEy veD
+re, with 7 € S(1,9).

Using (2.19) and (6.21-22), we get
(6.79)
Q(t, X)J (¢, X)

= > q(t, X)eo, (X) e, (X)xu(X)? + D alt, X)eow (X) e (X)X (X)* + 73,
veBy veD
€ (with 3 € S(1,9)),

that is

(6.80)
Q(t, X)J(t, X)

=q(t, X)| D eon(X) e (X)xu(X)” + D €0 (X) e (X)X (X)?| + 3.

vEE 4 veD

Let us introduce the symbol
(6.81) ofX) = Z X2 (X).

We have a, ! € S(1,G) since for X € R?", setting Nx = {v, X € U,}, we know from
lemma 6.2 that ANy < N, which implies

1= ZXV(X) — Z XV(X) < [ Z XV(X)2]1/2N01/2 _ a(X)1/2N01/2
veENx veNx
— a(X) > Nyt >o.
We can now choose the elliptic symbols e, in (6.24) to be

(6.82) er(X) = a(X) ™! e, (X).

From (6.82) and (6.80), we obtain

(6.83)
Q(t, X)J(t, X)

=1t )| 3 a(X) (0 + 3 000 X + T al) X 44
vEE 4 veD veL
=q(t,X)+ry, withry € S(1,9),
which proves (6.33). The Weyl symbol of the selfadjoint operator Q(¢)J(t) + J(¢)Q(¢) is
(6.84) 20(t, X)J(t, X) + 75, with r5 € S(1,g),
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since (¢, X) € S(u?,g) and J(t,X) € S(1,g). The latter implies also that the Weyl
symbol of the antiadjoint operator [€2(t),.J(¢)] is, up to a symbol in S(1,g),

(6.85) %{Q(t,X),J(t,X)}

But we have just proved above the assertion (6.32) that (6.85) was indeed itself in S(1,g).
Putting together this and (6.83-84), we obtain with Ry € Op(S(1,g)) selfadjoint

g Q0= 5000+ HO9(0) + Fole)

= Q(t)J (1) + Ro + 5[J(5), D] = (1) J (1) + Ro(t) +iSo(t),
with Rg, Sy € or(S(1,g)) selfadjoint. Eventually taking adjoints we get also
(6.87) Q(t) = J(H)QUL) + Ro(t) —iSo(t).

The proof of proposition 6.4 is complete.
O
Let po be a C5°(R) nonnegative function identically 1 on [—1, 1], supported in [—2,2].
Using the notations of (6.24), (6.35) and (6.50), we define with p; = 1 — pg, ¢ chosen in
(2.25) (such that cog(c) > 27551, ¢f (2.1)),

(6.88) Q. X)= Q9 X) + QU (t, X) with
(6.89) QO(t, X) = ro(X) + > xo(X)w(By x)ew (X)po(Bu/c),
veD

(6.90) QO X) = D XXM (X) + D X (X, x)en(X)pr(By /o).

veE L veD

LEMMA 6.6. — The operator Q0 (t) whose Weyl symbol Q) (t, X) is given by (6.89)
satisfies
12Dl sy < CoAM?,
where A is given in (6.1) and Cy is a semi-norm of q in (6.1).
From (6.50) we know that o € S(1,g) and thus 7§ is L?>-bounded. From lemma 2.2,

we know that |w(f,,x)| < CAY?(1 +18,1). Since A, < o1(¢)A from lemma 3.2 and
e, € S(1,G,) uniformly (cf: (6.24) and (6.82)), we obtain that

AP0(B,,x)en(X)po(B/c) € S(1, )

uniformly, using lemma 4.2 to estimates the derivatives. Thus the operator whose Weyl
symbol is

AT (X)w(Bu, x)en(X)po( By /)

veD

is bounded on L2. The proof of lemma 6.6 is complete.
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LEMMA 6.7. — With J(t) defined in (6.8) and QM) (t) with symbol (6.90), the symbol
of J()QW(#)J(¢) is QU (¢, X)J(t, X)2 up to a symbol in S(1,g). Moreover, there exist
positive constants Cy,Cy depending only on the semi-norms of q in (6.1) such that the
operator

1
JB)QM (1) J(t) — HQ(I)U) +C, > 0.
1

Proof. — Using the calculations of (6.52), the identities (6.55-60) and (6.68-70), we
obtain that the Poisson bracket {J(t, X), Q") (¢, X)} is in S(1,g) which gives readily,
using (6.49), that the symbol of J(t)QM)(¢)J(t) is indeed QM (¢, X)J(t,X)2, up to a
symbol in S(1,g). Moreover, from the calculations in (6.38),

(6.91) veE:r = J(t,X)*x,(X) = xu(X) + 1, (X),
where r, € S(A™%°, g). From (6.38), (6.47) and lemma 2.2

(6.92) veD= Jt,X)*x,(X)=x,(X)o(B,,%x)? +r,(X),
where r, € S(A™>°,g). Using (2.21) in lemma 2.2, we get that

T X700, X) - 490 x)

is bounded from below. The Fefferman-Phong inequality gives the result of the lemma.
O

7. Energy estimates for perturbations of operators with large parameters

In this section and the following one, we improve some estimates obtained by Dencker
in [D2] (Theorem A2). We keep using the notations of section 6. From (6.34) in proposition
6.4 we consider gl9(t)! the admissible metric on R>" defined for each ¢t € R by (3.3)
for g(t,-) and H = L*(R")

(7.1) Q) = Q(t)J(t) = Q(t) — R(t), with R(t) € Op(S(1,g1"M)) c L(H).

We compute for u € C3°(R,H) with L?(R,’H) dot products, T' a real parameter,
Dt - —Z@/@t,

Lu iMu

(7.2) 2Re <6tu OB () L/ DA 2 sign (— Tya(t) >

- <ju, u> FATYu(T))2, + 2T QT u) + <30A‘1/2Re (QJ)u,u>,

where 2Re (2J) = (QJ) + (QJ)* = QJ + JQ and sy = sign(t — T'). We have, using
s3 = 1 and (6.31),

JQJ + 259A1/?Re ()
(7.3) = (JQU2 4 5oA=V/2Q1/2)(QU2] 4 5oA-1/201/2) — A-1Q)
> —AT10.
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From lemma 6.1 the operator J(t) is bounded nondecreasing with ¢, although not a priori
differentiable. The term <j u, u ) in (7.2) should be understood as a distribution derivative.
It is an elementary matter (see e.g. lemma 2.3.1 in [L1]) to prove that for u € C3°(R, H),

(7.4) 2Re (Dyu,iJu) = (Ju,u) = -2 /R (@eu(t), T (t)u(t)),, dt > 0.
From (7.2-4) we get
(7.5) 2Re<iu,iMu> > AV2u(T) |2, - é / A~HQ(E)ult), u(t)),, dt+ = (]QJu u).
From (6.88-90) and the estimates of lemmas 6.6 and 6.7, we get
([ A HQ()ut), ult),, dt
- / AHQO@u(t), u(t))de+ / A (@0 @), u®) d
< CO/A—I/Znu(t)u; dt + /A‘lCl<J(t)Q(1)(t)J(t)u(t),u(t)>H dt

(7.6)
+ / AL Collu(t)|[%, dt

= AV2(Co + €10y V) / ()|, dt

\ / A- 101 QW (1) J (¢ )u(t),u(t)>H dt.

Moreover from (6.88-90), lemma 6.5 and the estimate (6.9) we obtain

(THRO@IBu),u(®)) = O Ou(b), uw(t))y~(TOL O Eu(t), u(t))
< (TR (@Yu(t), ult))y, + Coh 2T (Bu(t) 3,
(7.7) < (TR (Eu(t), u(t))y, + Cod Ju(t) 13-

From (7.5-7), we get

A~Y2u(T) 2, + (JQJu w) < = [ ATHQU (L), u(t),, dt+2Re<Eu,iMu>

C

<L
2
c

< A‘1/2(00+C'102 A~Y24 0, )/H“ ||H df+ (JQJu,u)—i—QRe <Jiu,iMu>,

N =

that is, with 6 standing for the diameter of the support of u, choosing T so that
u(T) |3 = suplu(t)].

(7.8)
A_1/2 supteRlu(t)ﬁi []. - 9( o+ C1Cs + C()Cl)/Q] + (QJU, J'll,> [3/2 - A"101/2]

< 2Re <iu, 'éMu>.

We can now prove the following theorem, implying theorems 1.3 and 1.4 in the introduction,
and summarize the situation.
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THEOREM 7.1. — Let q be a symbol satisfying (6.1), Q(t) be the operator with Weyl
symbol q(t,-) and L = D; + iQ(t) with Dy = —i0/0t. There exists an operator
R(t) € Op(S(1,99®M)) such that

Qt) = Qt)J(t) + R(t) = J(#)Q(t) + R*(¢)
where the nondecreasing operator J(t) is defined in (6.8), the positive operator §)(t) is
given in (6.24) and their main properties are described in proposition 6.4 and lemmas
6.6-7. We set
L =D, +iQt)J(t) = L —iR(t).

There exists a positive constant C depending only on the semi-norms of q in (6.1)
such that for all uw € CP(R,H), with H = L*(R"), and assuming A > C and
§ = diameter (suppu) < C71,

(7.9) 9_1A—1/2||UHL2(H,H) < C”E’U’HLQ(H,H)'

Moreover the estimate (~7.9) is true under the same assumptions (with an a priori different
C) with L replaced by L + Ny(t) where the operator Ny(t) has a Weyl symbol No(t, X, A)
satisfying

(7.10) sup |95 No(t, X, A)|rA% < oo,
teR,XeR2 A>1

where T' is the symplectic norm occurring in (6.1).

Proof. — From (7.2) and lemma 6.1, we have, using A > 1, [| M (¢)|| ;(3,) < 3/2. Assuming
(7.11) 0(Co + C1Cy + CpCy) <land A > C,

we get from (7.8) the inequality

3 A [Lu(®) et suplu®)

(7.12) > %A‘l/Q sup|u(t) |3, + (QJu, Ju)
teR

1
> —A~V2sup|u(t) |3,
2 teR
which 1is

(7.13) 6 /

| Lu(t)]»dt > A™Y2 sup|u(t) | ».
Jr teR

The Cauchy-Schwarz inequality and (7.13) yield eventually
GHEUHLQ(R,H) 2 ”u”LQ(H,H)A_lme_lv
which is the estimate (7.9).
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Let ao(t, X, A) and bo(¢, X, A) be real-valued in S(1, A'T) (i.e. satisfying (7.10)). We
shall use the notation

(7.14) S(A™,ATT) = S

for the class of symbols p(t, X, A) so that (7.10) is satisfied for A~p(¢, X, A). We set

(7.15) uo(t, X) = exp(— /O t bo(s,X)ds).

The symbols 1y and 1/uy belong to S° locally in t (i.e. (7.10) is satisfied for ¢ in a
bounded set) with semi-norms depending only on those of by. We calculate

. bo \ ,
(7.16) (u0)“Dy (1/ug)® = Dy — i (uo)w(u_(;> =D, —ib¥ + 1",

where r_; € S~1, with semi-norms depending only on those of by. We have for ¢ defined
in (6.1) (in particular ¢ is real-valued),

(7.17) (o) (Detiq® +a -+t ) (1/u0)” = Detag+(uo)* (ig" ) (1/uo)" +0p(S ™)

Let us now recall the following simple formula from the Weyl symbolic calculus: for
P1,p2 € Sm175m2

) ) w i ‘
(7.18)  pipy = (pufip2)” = (P1p2 + Z{Plypz} + P) , p € SMtmT2ly = 24,

From this we find, with obvious notations,
(7.19)

1 1 . 11 1 1 _ . 1 _
UoﬁiQﬁ%: [uoiQ-l'z{Uo,lQ}'l'S 1]u—0+z{uozqa%}+5 1=ZQ+7r—u0{u0’q}+S t
———
real-valued

This implies from (7.17)
(7.20)

(o)™ (Dt+iq‘”+a})”+ib5"> (1/u0)” = Dy+a,+ig+O0p(S~1), ao; € S° and real-valued.
LEMMA 7.2. — Let g be a symbol in S(1,T). Then, using the above notations
(7.21) (uo)al (1/up)” = af + A=*/?0p(S(1,1).

In fact we apply proposition 18.5.7 in [H1] to g; = A™!I" and g, = I to obtain first
uglag = ugag + A~2ag, with &g € S(1,T), so that applying the same proposition once
more and the calculus in the S(1,I") class we get

ugfiarg 1/‘LL0 =OZQ+A_1/26-V0, éo € S(l,F),
—— N~

S(1,T) S(1,A-1T)

which concludes the proof of the lemma.
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Going back to L and Ny = a¥ + iby defined in theorem 7.1, we get

L=L-iR,
where R € S(1,¢9) C S(1,I") from lemma 3.2. Thus from (7.20) and lemma 7.2

(o) (L +a + by (1/uo)”
(7.22) = L —iR+al + A~Y/20p(S(1,T)) + Op(S~1)

=L+ a})“l + A_1/2R00

where ao; is real-valued and belongs to S°, Rgy has a symbol in S(1,T") which implies
in particular that it is L2-bounded. It suffices then to prove (7.12) for L + ag, since the
term A~'/2Rg, could be absorbed by shrinking the diameter of the support of the function
u. To prove this estimate, we need to go back to our proof at the beginning of the section
and check the structure of the multiplier M in (7.2). In fact one needs only to check from
(7.8) that the extra term introduced by ag; can be absorbed in the left-hand side. From
(7.8), under the assumptions (7.10) we have

(7.23)

A% suplu(t)|?, < 4Re <f/u, zMu>
teR

= 4Re <E + agu, zMu> —4Re <a}flu, iJu + %A—1/2 sign (t — T)u>
Since ag; is real valued we have
4Re <a6”1u, iJu + %A_I/Q sign (¢ — T)u> = 2([agy, Ju, u).

Moreover, since .J(t) has a symbol in S(1,¢l®)) ¢ S(1,T) from lemma 3.2 and
ag1 € S° = S(1,A7'T"), we apply the proposition 18.5.7 in [H1] to get that the bracket
[ay,, J(t)]AY/? is bounded on L2: shrinking the diameter of the support of the function
u, the inequality (7.23) implies

A2 sup|u(t)|?, < 8Re <l~/ + ag u, zMu> < 12||(L + agy)ull 11 g 20 SUP|u(t) |2,
teR teER

that is

(7.24) A‘”"’ﬁgglU(t)lu < 12(|(L + a8y ull 11 grey-

Using (7.22) we would get the desired estimate for L + Ny if we were able to prove the
invertibility of ' and (1/u)". Since the Poisson bracket {ug,uy'} = 0, we have
(7.25) ul (1/uo)® =Id +A~2rY, with o € S°,

whose semi-norms depend only of those of by. This ensures that wg and (1/ug)" are both
invertible operators with spectra in (1/2,2) provided A is large enough with respect to a
finite number of semi-norms of by. The proof of theorem 7.1 is complete.

O
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8. Energy estimates for perturbations of operators with homogeneous symbols

Let M be a smooth manifold of dimension d = n + 1 and L a principal type
classical pseudo-differential operator whose principal symbol satisfies condition (3)) on
a neighborhood of a point -, in the cosphere bundle. Let m be the order of L. We
know (see e.g. [H1], section 26.4) that there exists an elliptic pseudo-differential operator
E of order (1 — m), an invertible Fourier integral operator U, of order 0, a classical
pseudo-differential operator R such that there exists a compact neighborhood K, of g
satisfying WEF(R) N Ky = (0 with

(8.1) UsELUg = D¢ +iq(t, ,§)" + ro(t,x,7,8)" + r(t,z,7,§)" + R

where (t,z,7,&) are homogeneous symplectic coordinates ((£,7) € R? are dual variables
as well as (z,€) € R?"), ¢ is a real-valued symbol of degree 1, o is a complex-valued
symbol of degree 0, r is a symbol of order -1. Condition (¢) reads

(8.2) q(t,z,6) >0, s>t = q(s,z,&) > 0.

Using the Malgrange-Weierstrass preparation theorem as in the remark following
theorem 26.4.7" page 103 in [H1], we can as well assume that 7o in (8.1) does not
depend on 7. This means that solvability of L* at v, with loss of 1+ & derivatives (x < 1)
amounts to proving under (8.2) and for r¢ of order O the existence of a positive C' such
that for all u € C°(R?¢) with diameter(suppu) < 1/C,

(8.3) Cll(De +ig(t, 2, €)" + rolt, 2, 6)" )ull ., > llully-..
We consider now the classical admissible metrics on Rj‘-:{":(z’ﬁ)

Gx =1dz1? + (1+1¢]) 1dgf2 = (1+1¢]) Tk,

(8:4) Ty = (1+1€))idel? + (1+€]) 7 de]® = T

We have the following equality of class of symbols referring to the standard 5)s:
S((l + [£|)m’ g) = STO? S((l + lgl)m’r> = 51772,1/2‘

In fact it will be enough for our purpose to use as G boxes the classical Littlewood-Paley
decomposition: one can find g, @, po, ¢, Py, ® € C5°(R™) valued in [0, 1] such that

> k(€)= 1, 0i(€) = w(€27%) for k > 1, suppyp C {1/2 <[¢] <2},
keN

(B5) 3 gu(e) = d(e27) for k> 1, supp € {1/4 < |€] < 4}, supp o € b5 (1),
(€)= B(£27F) for k> 1, supp® C {1/8 <|€| < 8}, suppdx C D, (1).

Moreover we shall need some global versions of the metrics introduced in section 3.

PROPOSITION 8.1. — Let q(t, x, £) be a real-valued symbol in S(1+1£|,G) (uniformly with
respect to t) satisfying (8.2) and let GX*} and g\*} be the metrics on R*" defined by (I'x
is defined in (8.4))

8.6) G =\t X)'Tx, with \(t, X) = 1 +q(t, X)| +

NG ol
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dyq(t, X) - TP I'y(T)
(- X) + gt X)P ™ A8 X2 + Jq(t, X)]

The metrics G and g'*) are admissible (see definition 3.1).

It is a well-known fact for the metric (8.6) (see [H1], section 26.10) so we give the
proof only for (8.7). After lemma 3.2, the only point to be checked is the temperance of
g, that is the comparison of gy with gy. When Gy (X —Y) < 1, the proof of lemma 3.2
works. When Gy (X —Y) > 1, we have (X = (2,£),Y = (y,1))

Px(X =Y) > AX) = 1+]€]. and 1 <[y — €] +[€] < (1HEDVTx (X = V)12 +1¢]

. T e R?™.

87 g N =+

which gives
AX)+AY) S Tx(X=Y)+1+(1/2)(1+IEN + (1/2)T e (X =Y ) +[¢] < 30x (X -Y).
Using now lemma 3.2 we have (C, C'y are some semi-norms of q)

QX(T) 2F};(T) FX (T)
gy (T) = CyIA(Y) 1Ty (T) Ty (T) <C3(1+Tx(X —Y))

which implies the temperance of g since from lemma 3.1, I'x- is controlled by ¢%. The
proof of proposition 8.1 is complete.

3/2

<60, T (X =)

Going back to section 5, we recall that we can define the Wick quantization with respect
to any symplectic norm. We shall consider the symplectic norms, slightly abusing notations
of (8.4) (here the index £ is an integer)

(8.8) [y = 2Mdz1? + 275d€)?, ke N

and refer to formula (5.1) for the Wick(I';) quantization. One should notice that the metric
T" is uniformly equivalent to I';, on the support of ®,. Since &, is identically 1 on the
support of ¢y, this implies that the metric G[®+)9(t)] (resp. gl®+(a(t:)]) defined in (3.2)
(resp. (3.3)) is uniformly equivalent to G (resp. ¢*!) defined in (8.6) (resp. (8.7)) on
the support of ¢y.

We use the definition (6.5-6) for s(¢, X), and #(X) defined with respect to ¢q. We note
that since (6.7) is satisfied for s and g, it is also satisfied for s and ¢, with (here ®x(z, &)
stands for ®(&))

(8.9) (. X) = @(X)q(t, X).
The symbol g¢;, satisfies the estimates (6.1) with I" replaced by I'y, and A = 2*. We set
(8.10) Ji(t) = s(t, ) Wik,

Note here that the operators Ji () are the Wick(I'y) quantizations of the same function
s(t, X). We apply proposition 6.4 to qx(t,-) to get with a positive constant ; and a
nonnegative constant Cj

(8.11) D (X)g(t, X) = Qu(t, X)Ju(t, X) + Ri(t, X)

(812) Qu(t, X) € SN2/, g™ 1) Qu(t, X) + Co > (b, X)M2 (8, X))/,
(8.13) J(t, X) € 5(179['1>k(~)q<t,-)])7 {Qk(t’X)’Jk(t’X)} c S(l,g[‘w‘)q““”),
(8.14) Ri(t,X) € S(1, gl®rOattly,
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where A\, and py stand here for the functions A and p defined respectively in (3.2) and
(3.7) with respect to the metric gl?+()a®I] I fact the constants ¢, c; and Cj given by
(6.31) in proposition 6.4 depend only on the semi-norms of the symbol which is here
®4.q(t,-). These constants can be chosen independently of k since the semi-norms of ®q
are bounded from above independently of k.

LEMMA 8.2. — Let Ji.(t) be given by (8.10) and ¢y, by (8.5). We define J (t) as the operator
(8.15)

T =Y arnmey = (7(X)), TX) = 3 6 (e, X) + R(t, X),

k>0 k>0

with R(t, X) € S((1+1&|)~L, ). The symbol J (t, X) belongs to S(1,1') with semi-norms
bounded by constants depending only on the dimension n and on the choice of functions ¢g
and ¢ in (8.5). The operator J (t) is bounded selfadjoint on 1.2(R™) and such that

(8.16) IT Ol gy <6, 1 < ta = T(t1) < T (t2).

From (8.10), lemma 6.1, ¢¢}" = [¢k(£)¢,(§)]w =0 for k > | + 4, ¢, real-valued and

Z¢i(€) S 1+ Z 12k—2§]£]§2k+2 S 6

k>0 E>1

we get that J(t) is a bounded self-adjoint operator on L?(R"™) nondecreasing with ¢
from (6.9). Since the Weyl symbol Ji(¢, X) of Jx(t) belongs to S(1,T'x) the symbol
dr(O Tk (t, 2, &)tdr (&) € S(1,T) belongs to S(1,I';) and is rapidly decreasing outside
the support of ¢, so that J(t, X) € S(1,T'). More precisely, we have with A, = 2*

J(t.X) = ;¢kﬂJkﬁ¢k [¢ka + %{fﬁk, Jka‘l‘}A]:l"'k:l o
1
= ijm%Jk Gt {de it o)

modulo a symbol in S((1 +1¢|)71,T). Since 3, {{¢w, e}, dx} itself is in S((1 +
[£]1)71,T), we get (8.15). The proof of lemma 8.2 is complete.

O
We have thus using (8.11-14) and (8.5),

J(t, X)
= Z Pr(X)(@r(X)g(t, X) — Ri(t, X) + CoJi(t, X)) (Qu(t, X) + Co) " + R(t, X)
%

= q(t, X) Y (X)) (Q(t, X) + Co) ™!
k
+ > R(X) (Ut X) + Co) (= Ri(t, X) + Codi(t, X)) + R(t, X).

Since Gt} and ¢{*} are respectively equivalent to GI[®+()a(t:)] and ¢(®x()a(t)] on the
support of ¢, we can set

-1

s A= (TR0 )] esory
k
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so that
T, X) = q(t, X) At X) ™ + S(ATV2u722 g) + S((1+1¢) 7, T)

which gives

A(t, X)TJ (t, X)
(8.18) = q(t, X) + S(1,9) + S((1+1¢]) AV, T)
=q(t,X)+ S(1,T).

With 7y = J — R (see (8.15)), we take now a look at the Poisson bracket

{A Jo} = A{T0, A7} = A {$i T (S + Co) '}
k,l
= A? Z {d2 Tk, 67} (U + Co) ™ + {hp i, (U + Co) 7' 7
|k —1l<4
=AY {G ) (U Co) A YT {0 Co g} + Co)

N\ -

|k—”§4 S(A‘l,g) S()\_l/;:L‘Q/S,g) |k—l|§4

since ¢, = $(£A;") and

2
N—— REP ¢

-0 N~
€5(Lg) esa-1,6)

The first term in factor of A% above is an element of S(AY3u2/3A=1 ¢) C S(1,¢) since
A and p are bounded above by A. We thus get that modulo S(1,g)

{AZ}=A > {u i} (u+ Co) 2 ¢7

|k — <4 _
=AY {07} T+ Co) g +A* > {Qu, T F(u+Co) i
|k—lls4S(A1/3y2/3A—1,g) 5()\—2/3‘;—4/3&) |k —ll<4

The first term is thus in S(1,g). Eventually, we obtain modulo S(1,g)

A %t= > {0 Ik} (2 + Co) 2 A%

|k —ll<4 S(Lg)

If we go back now to the definition (8.10) of J;, we get that, for |k — [| < 4 the operator
Ji(t) is defined as s(t,-)™Vi*("+) where the norm I'; is equivalent to I';. Using the
calculations (6.38-46) this does not affect .J; except for the term with sign 3, in (6.46)
which is convoluted with a different Gaussian function with an equivalent profile I'j
instead of I';. Using lemma 2.3, we get the identity (6.54) with o replaced by o4 where
A= Fl_l/ZFkI‘l'l/z. Since |k — | < 4 the norms of A and A~! are bounded above by
2%. Eventually we obtain that

(8.19) {A T} € S(1,9).
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We check now using Jp € S(1,¢) and (8.17-19),

S(1,T)
'A(ta X)ﬁj(t7 X) = A{tv {()ﬁjﬂ(ta X) + A(tv X)ttR(fa X)
= A(t, X)Jo(t, X) + Z{A(t,X), Jo(t. X)} +S(1,9) + S(L,T)

= A(t, X)To(t, X) + 5(1,T)
— A(t, X)T(t, X) + S(1,T) = q(t. X) + S(1,T).

We obtain
(8.20) q(t, )" = [A(t,-) + C1]* T (t,-)" + Op(S(1,T)),

where C is a constant such that A(¢, ) +C; > 0 which follows from the Fefferman-Phong
inequality (applicable here since A/32/3 < ;?). We can now prove the following theorem

THEOREM 8.3. — Let q be a symbol satisfying the assumptions of proposition 8.1, Q(t) be
the operator with Weyl symbol q(t,-) and L = Dy, + iQ(t) with Dy = —i0/0t. There exists
an operator R(t) € Op(S(l,F)) (see (8.4)) such that

Q) = A(H) T (t) + Ro(t)
where the nondecreasing operator J (t) is defined in (8.15), the positive operator
(8.21) Ai(t) = Ai(t, )Y = A(t, )" + Cy > 1d
is given in (8.17),(8.20). In particular from proposition 8.1
(8.22) Ai(t, X) € S(AMY3p23, gty € S(1+1€1,T).

We set

L =D, +iA(t)T({t) = L —iRo(t).

There exists a positive constant C depending only on the semi-norms of q such that for all
u € CP(R"*Y) with § =diameter(suppu) < C1,

(8.23) C“i’unH‘/?(R”H) 2 “u”H'l/z(R’“rl)’

Proof. — It remains only to prove (8.23). We shall essentially repeat the arguments of
section 7. We set H = L*(R) and we compute for u € C°(R,H) with L*(R,H) dot
products, T' a real parameter, A = [(1+£|*)Y2]", Q(t) = Q(t) — Ro (1),

iMu

(8.24) 2Re <Dtu +iQ)u(t), iT (H)u(t) +i(1 /2)7\: sign (t — T)u(t§>

= <ju,u> + ATV 2(T) |3, 4+ 2(T AL T u, u) + (soRe (A" ALT )u, u),
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where 2Re (A7 A7) = (AP AL T) + (AP AL = AP AT + JAA! and sp =
sign (¢ — T'). We have, using s3 = 1 and (8.21),

JALT + 2s9Re /(A_1A1‘7)
(TALM? + soA T A2 (AVPT + 504 2AY) — ATTA AT

(8.25) =
> —A—1A1A~1 .

From lemma 8.2 the operator 7(¢) is bounded nondecreasing with ¢ so that arguing like
in (7.4) we get that

<ju,u> > 0.

From (8.24-25) we get
(8.26)

2Re <f1u, zMu> > A~V 2u(T)|3, - % / (AT AL (DA u(t), u(t)),, dt+ %(jfhju, u).

Since A, is a pseudo-differential operator with symbol in S(AY/3u2/3 ¢) c S(1 +|€|,T)
(cf. (8.17) and proposition 8.1), we obtain

/(A“lAlA“lu(t),u(t»Hdt

_ <A—1/2A1A—1/2A—1/2u(t>,A-l/2u(t)>
< Cyf sup| A1 2u(t) |3,
t

H

We eventually get, with § standing for the diameter of the support of w,
-1/2 2 3 Gy -1/2 2 o
|A=120(T)|3, + i(jAlju,u) < TsuplA u(t)|?, + 2Re <Lu, z./\/lu>,
t
so that choosing T so that [A=Y2u(T) |4 = sup,| A= 2u(t) |4,
(8.27) sup| A1 2u(t)|3,[1 — 0C>/2] < 2Re <f1u,zMu>
teR

Assuming 0Cy; < 1, we get from (8.27),
€ Op(5(L,1))
—N——

4/|A1/2Eu(t)lﬁdt sup‘ A2 MAL? A’l/zu(t)< > sup| A1 2u(t)|3,.
R teR H o teR

The operator A~'/2M(t)A'/? has a symbol in S(1,T) for each ¢ since it is the case for
J(t) (lemma 8.2); its semi-norms are also bounded from above independently of ¢ since
it is true for J(t). Consequently we obtain

(8.28) 03/‘A1/2iu(t)|ndt > sup|A™V2u(t) | 5.
R teR
The Cauchy-Schwarz inequality gives

G§/|A1/2iu(t)|%dt > /\A"1/2u(t)|3idt0“2,
R R
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which implies
(8‘29) C3”LU“HI/'-’ Rrt1) 2 9_1|]u“H_1/2 Rn+1)
( ) ( )

which is (8.23). The proof of theorem 8.3 is complete. To get theorem 1.2 in the
introduction, one needs to add the following

Remark 8.4. — 1t is indeed possible to find for each real number s € [0, 1] a perturbation
Ks(t) with symbol uniformly in Op(S(1,T")) such that

(8.30) \ CllLu + Kyullgs gury > 07|l Heot (Rn1) -

For this purpose, we write (8.28) as

(831) Cs / 'Al/z(L — iRO)AS_1/2u(t) lHdt > SupiA_l/zAs_l/zu(t)IH,
R ter

and we note that
A1/2(L _ iRo)As_1/2
— AsAl/Z—s(L _ Z~720)As—1/2
= A7 Dy iQ(E) + A2 QA2 - AV R,

The operator [A*/27* Q] has a symbol in S((1+|€])'/27%,G) defined in (8.4) whereas the
symbol of AY275RyA*~/2 is in S(1,T) defined in proposition 8.1. We define then

K, = i[AY275 QIA®™Y/2 — AY23Ro A2 € OpS(1,T).

The inequality (8.31) and the previous identities give for any real s
(8.32) 03/|A5(L + K )u(t)|ndt > sup| A~ u(t) |z,
R teR

yielding (8.30) for 1 > s > 0.

Remark 8.5. — One could prove as we did in theorem 7.1 that the estimates (8.30) are
stable by a perturbation with symbol in S(1, G). The proof follows the lines of lemma 7.2.
It seems also possible to reduce the loss of derivatives from 2 to 3/2 as it is done in
theorem 7.1. This would prove that the perturbation K, of the previous remark could be
chosen independently of s.
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