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A LIMITING CASE FOR VELOCITY AVERAGING

BY B. PERTHAME AND P. E. SOUGANIDIS

ABSTRACT. - We complete the theory of velocity averaging lemmas for transport equations by studying the
limiting case of a full space derivative in the source term. Although the compactness of averages does not hold any
longer, a specific estimate remains, which shows compactness of averages in more general situations than those
previously known. Our method is based on Calderon-Zygmund theory. © Elsevier, Paris

RESUME. - Nous completons les lemmes de moyenne pour les equations de transport en etudiant Ie cas limite
d'une derivee en espace dans Ie terme source. La compacite des moyennes ne peut etre obtenue, mais nous
demontrons une estimation specifique qui permet de montrer la compacite en moyenne dans les situations les plus
generales connues actuellement. Notre methode s'appuie sur la theorie de Calderon-Zygmund. © Elsevier, Paris

I. Introduction

We consider the regularity properties of averaged quantities like

(I.I) P(^x)= ( f(t,x,v)y{v)dv,

where </? is a given function and / : R x ff^ x R^ —)• R solves the transport equation

d

(1-2) ft+v^.f=^9^g^
j=i

and k stands for the multiindex (fci, k^ , . . . , kd) of length \k\ = fci + k^ + ... + kd, and
Qk Q ^ i . . . Qkd
"V ~V\ Vd'

Our goal is to study what remains from the velocity-averaging results i.e. improved
regularity of p compared to /, for the equation (1.2), where the source terms contains a
full space derivative, and f,gj e L^tR2^) with p e (l,oo).

The classical averaging results say quantities like p in (I.I) satisfy better estimates,
and hence are more regular, than f(t,x,v) itself. This phenomenon was discovered by
V. I. Agoshkov [1] and F. Golse, B. Perthame and R. Sends [11] where applications to
the analysis of transport equations were pointed out. The final form of such results was
established by F. Golse, P.-L. Lions, B. Perthame and R. Sends [12] when there are no
derivatives in the source term g. Two important steps are subsequently due to R. J. DiPema
and P.-L. Lions [6], [7] (velocity derivatives on g in an L2 framework), and R. J. DiPerna,
P.-L. Lions and Y. Meyer [8] (1̂  framework for general sources as in (1.2), but with less
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592 B. PERTHAME AND P. E. SOUGANIDIS

than a full derivative in space). The last result was developed in the context of Sobolev
spaces by M. Bezard [3] and was proved to be sharp by P.-L. Lions [13]. Applications of
the averaging method to the analysis of nonlinear transport equations are numerous; see for
example C. Bardos, F. Golse, B. Perthame and R. Sends [2], R. J. DiPema and P.-L. Lions
[6], [7]. Applications to hyperbolic equations are due to P.-L. Lions, B. Perthame and
E. Tadmor [14]. Extensions of averaging compactness to discrete times have been used by
L. Desvillettes and S. Mischler [5], and generalized by F. Bouchut and L. Desvillettes [4].

A limiting case of the averaging lemmas was obtained by P. Gerard [9], [10], who
showed that if the sequence {gn}n>_i is compact in L^R2^1), then the corresponding
averages supply a family pn which is compact in L^R6^1). Here, we develop a new
approach based on a combination of Calderon-Zygmund theory and the classical averaging
method in £2, which explains what remains true when g is merely bounded in Lp.

We denote C^(Bp) the space of Ck functions supported in BR where k is an integer
and BR is the ball of radius R and center 0 in R^. Also, p ' denotes the conjugate exponent
to p. Our result is

THEOREM 1. - For all 1 < p < +00, 0 < a < min(1, -L) and (p C C^\Bp), we have,

(1.3) ||p||^(^)<C(d,a^^J|^||^)||/||^^«^

with Qp = R^ x R, x BR, Mk,oo = IMk- + II-D^IL- and \\g\\Lp{Qn} =
Ej=i I I^ I I^ (OR)-

Remark. - 1. The constant C blows up for p —^ 1 (or + oo) and for a —^ 1 / p ' or
( l / p ) except for p = 2, a = j.

2. The inequality (1.3) is interesting for ' g small', then it improves the obvious inequality

II^HLP(R^-I) < II^HLP^R^II/II^CQ^)-

3. When p = 1, one cannot hope anything better than the trivial inequality
IHk1 < l l / lk 1 - But for p > 1, the value a = 1/p' is certainly allowed. A possible
direction could be the method of [3].

4. A derivative QtQ^go is also possible in the source terms of (I.I), the only difference
being that the constants will depend on R with a different homogeneity.

A direct application of the Theorem 1 gives the following compactness theorem,

THEOREM 2. - Let /n be bounded in LP(QR) with 1 < p < +00, and g1^ be relatively
compact in [^(Q^)]^ If fn,gn satisfy the equation ( I . I ) and (p G V\Bp), then p" is
relatively compact in ^(R^1).

The outline of the paper is as follows: Theorem 1 is proved in Section II. In Section III,
we present some extensions, where v • Va; in (I.I) is replaced by a(v) ' Va;. This turns out
to be a natural structure in several applications (see [14]).
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A LIMITING CASE FOR VELOCITY AVERAGING 593

II. The Proofs of Theorems 1 and 2

Our approach differs somewhat of that initiated in [11] and [12] and used afterwards.
Here, we do not split the integral (1.2) in two parts depending on the Fourier frequencies.
Instead we perturb directly the equation (I.I) to make it elliptic. The perturbation parameter
is not only related to Fourier frequencies, as it is done usually, but also to the L^-norms
of / and g.

We divide this section in three subsections. First, we present the method together with
technical lemmas. Then, we prove these lemmas in subsections 2 and 3.

11.1. Method of proof

Denoting f(r^^v) the Fourier transform of / in the (t,rr) variables, the equation (I.I)
yields

d

(r+^o7=E^fc
.7=1

which can be rewritten for (3 > 0 as

7[(T+^o2+02 |^|2]=^|^|27+E^(T+^^^••j=i
In other words

d

(n.i) y= /o+^ / ,
j=i

with

(H.2) f.=(^f^^ where 50 =/,

and, for 1 < j < , d,

fll 3) f - —i^±^L_^.[ ) j 3 ~ (T+^^+^l2 vgr

We study separately the operators (7j)o<j<d which are defined by

(11.4) Pj(t^) = j y{v)fj{t,x,v)dv

:=Tjgj(x,t).

We need the following two lemmas, which we state below and then prove in Subsections
11.2 and 11.3.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



594 B. PERTHAME AND P. E. SOUGANIDIS

LEMMA 3. - Let (3 > 0 and p C (l,oo). Then:

(0 ll/o(-^)||LP(R^i) < C(d,p)\\go{',',v)\\Lp^d+i) for allv C R^,
(ii) llpoll^(R^i) < c^^ll^ll^)/?1/2!!/!!^^),
and thus, for all 0 < a < min (-1, ^-),
(iii) IIPollLP(^i) < C{d^R, MW\\f\\L^Q^ •

LEMMA 4. - Let 0 < /? < 1 ̂ 6? j? e (1, oo). T/i^n, /or <3/Z 1 <, j <, d,

(i) HP.HL.(R^) < c^p^ji^ii^)/?-'^-1!^!!^^),
(ii) I|P,I|L.(R^) ^ G^^II^II^)/?-'^-^^!!^^),
unJ ^M.y, /or all 0 < a < min ( ]-, ^-),

(iii) ||P,HLP(^I) < C^a^^JI^II^)/?"-'^-1!^!!^^).

We now continue with the proof of Theorem 1. It is obtained combining these two
lemmas. The average in (I.I) is exactly, with the notations (11.4),

P=^P^

and it is upper bounded by (we only use (iii) in the above lemmas)

(11.5) ||p||LP(R^)<G(^a,p,I^J|^||^)[/3a||^o||LP(Q,)+.^||^

Next, choosing (3 as

(ii.6) /^1+1 = ibiwimi^
we obtain Theorem 1 for H ^ H L P / H / U L P < 1- If /3 > 1» we just use the Remark 2 after
Theorem 1. This completes the proof.

11.2. The Proof of Lemma 3

1. We fix v G R^, change the variables and define
o Q Q Q

Go{y,s)= g o ( y - { - v ^ - ^ ) and Fo(y,s) = fo[y + V y .).

We have

/?-^o=<9Jo+^V,/o,as
therefore the equation (11.2) for fo writes

d2

V^-FO + ^yFo = A^C?o-
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Hence, denoting Go and Fo the Fourier transforms in {y, s) of Go and Fo, we have

w^)= ̂ S^o )̂.
It then follows from the Calderon-Zygmund Theorem (see E. Stein [15] for instance)
that ||Fo||Lp < C^^IIGollLp. This estimate rewritten in variables {x,t) yields the first
statement. We also deduce, for later purposes, that for all g € (1,+00),

(11-7) ll^ollz^+i) ^ C{d,q) j \\fo{x,v,t)\\L<i(Rd+i^(v)dv

<C{d^M^R7\\go\\L^Q^

2. Using the averaging technique we obtain from (11.2) with a = — and ^i = —^,

i?.(Mi2 <:s\^s^"\(^f^y^
^)IMI^--/,(,4^/1^

Since the above integral in v^ is proportional to /?, we obtain (ii), i.e.

(11.8) UML^i) ^ CW^goh^w

3. Interpolating (11.7) and (11.8) with

1 6 1 - 0 , 0- = - + ———, and a = -,p 2 q ' 2 '

we obtain (iii).
4. Note that a = 0 corresponds to q = p, a = -^ corresponds to the (forbidden) cases

q = 1 and p < 2 and a = 1- corresponds to the case q = +00, p > 2. •

11.3. The Proof of Lemma 4

We begin by the proof of the case k == 0. It follows the lines of that of Lemma 3.
We change variables and obtain

F^a)^^!^G^'(T)'
which gives (i) in place of (11.7) because Tj simply scales like /^To. For the estimate
(ii), we have

?0= !v——^^^/"(r+v.^+m9^
ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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and thus 1^1^/1,^/^^,•"' ° " y tio+«,w+ip°°"
and (ii) follows. We obtain (iii) by optimizing the value of f3.

2. Next, we prove (i) for |fc| = 1, for instance k = (1,0,. . .) . We need a preliminary
step. Using Green's formula, we have

^=-/^<7^W^

- / .(TTT-IW^ + 2 / ̂ ^m "dv-
This defines three operators, S - ^ ^ S ^ ^ S ^ for which we may apply the same proof as for
(11.7), but with different powers of /3. The only scaling factors in f3 play a role to estimate
the different operators S^. The operator 5i scales as Tj for k = 0 and, as in (11.7),
its 2^-norm is C{R)(3~1. The operator S^ scales like /^To and, in place of (11.7), its
L^-norm is C(R)(3~2. Finally 53 scales like S^ and has a 7^-norm C(R)l3~2. This gives
the point (i) for |fc| = 1.

3. For other values of k, we always obtain an operator of L^-norm of order (3~1

corresponding to the term containing |̂ , and a term of L^-norm of order (3~^~1,
corresponding to the term containing

^(T+^Q'^1^
[...]1^1+1

This last term corresponds to the general cases of (i).
4. When considering the L2 norms by averaging, we obtain as before that 6'i, like Tj

for k = 0, has T^-norm of order C(R)/3~1/2 (this gives the dominant term for (3 > 1),
while the I^-norms of 62 iind 63 are of order C^Ji)/?"3/2 and give the dominant terms
for (3 < 1. Again, this generalizes to other values of k as indicated above, thus proving
(ii). The end of the proof is the same as for Lemma 3.

III. Extensions

In this section we extend the main result to another situation typical to kinetic equations.
Using the same notations as before, we consider a solution / to the equation

(,n.i) I^M.V./^^,
.7=1 J

where v G R71 and a : R71 -> R^ is continuous. We also need a nondegeneracy assumption
(see the remark below) which we express in the way it comes in the proof.For all R > 0,
there exists a constant CR > 0 and a 8 > 0 such that

r vacR , v^e^-1, V/?G(O,I) ,
(IIL2) { r / ^ ^1-1

^[l+(^+^)] dy<W6.
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Notice that, for a(v) = v and n = d, we recover the case of Theorem 1 and (III.2)
holds with 8 = 1 .

We have:

THEOREM 5. — Assume the assumptions and notations of Theorem 1, and (III.2). Then
i— as <x6

(in.3) llpllL^R^i)^^^^^)!!/!!^^1!^!!^^.
THEOREM 6. - Assume, instead of ( I I I . 2 ) that

sup / [l+fa+^^T^^O, -
x^-\aenJ\v\<R L v P > J ^°

and let /n be bounded in LP(QR) for some p C (1, +00) and g71 be relatively compact in
[LP^QR^. Iff, ̂  satisfy the equation ( I I L I ) , then p" is relatively compact in ̂ (R^).

Remark. - The non-degeneracy assumptions on a(v\ could also be expressed more
classically in other terms. Arguing as in [12], it is possible to prove that the condition (III.2)
is equivalent to

Va € R, V/3 € (0,1), V^ € ̂ -\ meas{v; \v\ < R, \a + a(v).xl < /?} < W6

for the same value 8 as in (III.2) (and such a S has to be less than 2). While the condition
in Theorem 6 is equivalent to

Va G R, V;c e ̂ "^ a + a(v).x / 0 for a.e. v G R^.

We only indicate the main steps of the proof of these theorems. To prove the Theorem
5, we use the same notations as in section II. Again, we only need to treat the case
\\9\\Lp < \\f\\Lp (/? < 1). the result in the other case being obvious (see the remark 2 after
the Theorem 1). First, the estimates (11.7) and (i) of Lemma 4 remain unchanged, since we
only need to replace v by a{v). Next, the averaging case is modified to yield

(in.4) \\po\\mn^) ^c^6/2!!/!^),
and

(IIL5) INlL.(R^) < ^-lfcl-l|b,•||^(Q,).

Here, the largest integrals of the type (III.2) are those arising in estimating Tp j > 1, for
k = 0 or S^ for |fc| > 0. Finally, interpolating as before, we obtain

lho||LP(Rd+l) < c(36a\\f\\LP{QR)

and
ll^llLp^i)^^-^^1)!^!!^^).

The Theorem 5 follows by choosing (3 as in (11.6).

To prove the Theorem 6, we first reduce it to the case when gn —> 0 in [^(Qj?)]^ by
substracting the limits to the equation. Then, by choosing /3 small so that | |p^||LP(Rd+ l)
is small thanks to the assumption of Theorem 6 and to the inequality corresponding to
(III.4). Then, by a choosing n large enough the terms ||^||^p(Rd+i) can also be made as
small as we want (see (III.5)), and the result follows.

ANNALES SCIENTIFIQUES DE L'fiCOLE NORMALE SUP^RIEURE
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