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ON IRREDUCIBILITY OF STANDARD
MODULES FOR GENERIC REPRESENTATIONS

BY WILLIAM CASSELMAN AND FREYDOON SHAHIDI (*)

ABSTRACT. - In this paper the authors generalize a result of Vogan on irreducibility of standard modules for
generic representations from real groups to p-adic ones whenever the inducing data is supercuspidal. They also
prove injectivity for standard modules in this case. As applications, the authors prove a number of results relating
the poles of intertwining operators and points of reducibility of induced representations to the poles of L-functions
denned by the second author, modulo a conjecture on them whose validity for classical groups is also verified
here. A result on certain real groups with applications in liftings of automorphic forms from classical groups to
general linear groups via L-functions is also proved. © Elsevier, Paris

RESUME. - Dans cet article les auteurs generalisent un resultat de Vogan sur Firreductibilite des modules standards
pour les representations generiques des groupes reels vers les groupes j?-adiques quand 1'induite est supercuspidale.
Us prouvent egalement Finjectivite pour les modules standards dans ce cas. Les auteurs en deduisent quelques
resultats reliant les poles des operateurs d'entrelacement et les points d'irreductibilite des representations induites,
aux poles des fonctions L definies par Ie deuxieme auteur, modulo la validite d'une conjecture que 1'on verifie
ici pour les groupes classiques. On montre aussi un resultat sur certains groupes reels avec applications aux
correspondances des formes automorphes des groupes classiques vers les groupes lineaires via les fonctions L.
© Elsevier, Paris

Introduction

The purpose of this paper is to prove a number of results in representation theory and
harmonic analysis of local groups, some of which have important consequences in the
theory of automorphic forms.

More precisely, let G be a quasisplit connected reductive group over a local field F
of characteristic zero (real, complex, or p-adic) and let B = TU be a Borel subgroup
of G, where T is a maximal torus of B and U is its unipotent radical. Let Ao be
the maximal split torus of T. Fix a parabolic subgroup P of G defined over F with
a Levi decomposition P = MN, with T C M and N c U. Let a be an irreducible
tempered representation of M = M(.F) and choose v G a^, the complex dual of the
real Lie algebra of the split component A of M. (See Section 1). Let J(^a) be the
representation (unitarily) induced from v and cr. Assume v is in the positive Weyl chamber
(Section 1). Then J(^ a) is called a standard module. Let J(z/, a) be the (unique) Langlands
quotient of I {y , a) (cf. [4, 17, 28]). Up to conjugation of the data (y, a), every irreducible

(*) Partially supported by NSF Grant DMS-9622585.
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562 W. CASSELMAN AND F. SHAHIDI

admissible representation of G = G(F) is uniquely equivalent to a J(^,a). Moreover,
every irreducible admissible generic (having a Whittaker model) representation of G is a
J ( y ^ a) with a an irreducible generic tempered representation of M.

When F = R, it was proved by Vogan in [37] that if e7(^,a) is generic, then
J(^a) = J(^cr), i.e. I(^,a) is irreducible. The aim of this paper is to address this
question and related ones for p-adic groups. In fact, in this paper we prove (Theorems 2.2
and 3.4):

THEOREM 1. - Suppose a is an irreducible unitary generic supercuspidal representation
of M and fix v € d^ in the positive Weyl chamber.

a) Assume J(^,cr) is generic. Then J(^,cr) == J(^,a), i.e. J(^,cr) is irreducible.
b) Suppose J{y^ a) is not generic. Then the unique irreducible subspace of J(z^ a) is

generic.
Equivalently, irreducible generic subquotients of I{v^ a) are subrepresentations and are

therefore unique.

In the special case that P = B, i.e. is a minimal parabolic subgroup and a is an
unramified quasicharacter of M = T, Part a) of Theorem 1 was proved in [2], [20], and
[22], earlier, each using a different method. We refer to [3], [14], and [41] for G = GLn,
but general tempered a.

When G = Sp^n or 5'02n+i. part a) was recently proved in the generality of arbitrary
standard modules by Goran Muic in a very interesting manuscript [42]. As is the case with
our results, his proof is based on the theory of L-functions developed in [23].

Although the result stated above is only for inducing supercuspidal data, the theorem is
expected to be true in the generality of every standard module if part b) is formulated as:

1) Irreducible generic constituents of standard modules are subrepresentations. (See
the remark after Definition 3.1.)

We have called this statement the generalized injectivity conjecture (Conjecture 3.3) and
it is clear that it implies part a), i.e.

2) Standard modules for generic representations are irreducible.
Theorem 3.4 then proves this for inducing supercuspidal representations.
To state some applications of injectivity (e.g. Theorem 5.1), one needs to discuss a

conjecture (Conjecture 7.1 of [23]) whose validity also plays an important role in the
proofs given here and [42].

To explain the conjecture, assume P is maximal. But a is any irreducible admissible
generic representation of M. If r is the adjoint action of LM, the L-group of M on the
Lie algebra Ln of the L-group of N, then r = (D^i^, with r^s ordered as in [23],
i.e. according to the order of eigenvalues of LA in Ln. Finally, for each %, 1 < i < m,
let L(s^a^ri) be the local L-function attached to a and ri as in [23]. When F = R, the
L-functions are those of Artin (cf. [1,17,18,24]). (See Section 6 here and Theorem 3.5
and Section 7 of [23].) Conjecture 1.1 then demands that each L(s^a^ri) be holomorphic
for Re(s) > 0 whenever a is tempered.The normalized intertwining operators then satisfy
the last condition Rj set forth by Arthur in [I], whenever normalization is as in [19,23].
This conjecture has been verified in many cases in [23], including when m = 1 or a
is supercuspidal, and the subject matter of Section 4 of the present paper is to prove it
whenever G is of classical type. This includes all the quasisplit classical groups.
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IRREDUCIBILITY OF STANDARD MODULES 563

Next, let J(^,cr) be a standard module attached to a tempered representation a- of
M, where P = MN is the corresponding standard parabolic subgroup. Denote by WQ the
longest element in the Weyl group of Ao in G modulo that of Ao in M. Fix a representative
wo for WQ in G. Let A(^,cr,wo) be the standard intertwining operator from J(^,cr) into
J(wo(^),wo(cr)) (cf. Section 1). It is well defined since v is in the positive Weyl chamber.
But its continuation to all of a^ may have poles and that is where the problem lies. Assume
P is maximal. Let a be the unique simple root in N. Set p = {p, a)~1?, where p is half
the sum of roots in N. Fix s G C. We may take v = sa € a^. Then Re{s) > 0 since v
is in the positive Weyl chamber. Consider the operator

m

(3) ^] L(is, a, r^A^sa, a, Wo)
1=1

on I(sa^a).
The homomorphy of (3) for all s G C has important global consequences through

normalization of intertwining operators and Eisenstein series (cf. [II], [15], [19], [21],
[30], [31], [43]), and although at present we are unable to prove it in general, there are
practical instances when this can be accomplished. In fact, our Theorem 5.1 proves the
holomorphy of (3) on all of C under what we call injectivity (Definition 3.1) for all the
corresponding rank one standard modules. (See the remark after Definition 3.1.)

One important instance when Theorem 5.1 can be applied is when F == R or C, and
G = 502n, the split even special orthogonal group of rank n (Theorem 6.1). The case
in hand has an important application in the project of lifting automorphic forms from
classical groups to general linear groups as being pursued in [11, 30, 31], using the
converse theorem for L-functions [9].

To check that the hypothesis of Theorem 5.1 is satisfied, it is sufficient to prove that
standard modules for GLnW satisfy injectivity, i.e. their irreducible subrepresentations,
which turn out to be a single one, are all generic (large). A proof of this was communicated
to us by Vogan. We would like to thank him for providing us with a proof and allowing
us to include it here.

Vogan's proof is quite instructive. It relies on cohomological induction and is therefore
algebraic. On the other hand, after communications with him, the authors realized that
there is an analytic proof of Theorem 6.2 due to Jacquet and Shalika (Proposition 4.2 of
[13]) which relies on the theory of canonical extensions of Harish-Chandra modules as
developed by Casselman [6] and Wallach [40]. The existence of this second proof, which
in spirit is closer to our approach in Section 3, was envisioned and communicated by the
first author to several people, many years ago (cf. [7], for example).

Our final application, Proposition 5.3 (and 5.4), determines the points of reducibility for
every I(sa, a) in terms of poles of L-functions, but under the assumption of validity of (2).
When F = R, the assumption is already proved, and therefore Proposition 5.3 shows that

m
points of reducibility for I(sa,o-), Re(s) > 0, are precisely poles of ]~[ £(1 - %5,a,r,),

where Z-functions are those ofArtin, attached to a and r, by Langlands [T], [17], [18], [24].
Proof of Conjecture 1.1 for the classical groups, given in Section 4 here, relies to certain

extent, on what cuspidal inducing data for discrete series are. Except for Lemmas 4.1
and 4.6 of [34], we have relied entirely on our own method to determine them and our
results are quite parallel to those of Tadic [34], [35], [36]. The relation between our
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564 W. CASSELMAN AND F. SHAHIDI

two methods must certainly be explored further. (See Remarks 4.21, 4.22, and 4.23 here
and [42].) Lemma 4.1 has also been verified independently by Y. Zhang in a work in
progress, using results of Harish-Chandra and Silberger on special orbits (cf. [28]).

Finally, since the ^-functions are supposed to remain the same for members of each
tempered L-packet (Conjecture 9.4 of [23]), one must explore the possibility of extending
such results to non-generic representations. The project which has been started in [10]
and is aimed at developing similar results for non-generic representations may eventually
provide us with some evidence in this direction.

The second author would like to thank Joachim Schwermer for his hospitality during
his visit to Eichstatt in the summer of 1993. In fact, his renewed interest on the problem
was fired up by questions posed to him by Schwermer.

We would like to thank David Collingwood, Birgit Speh, Marko Tadic, and David Vogan
for several useful communications. We would also like to thank Jean-Loup Waldspurger for
communicating to us Tadic'& original counterexamples to our original version of injectivity.

1. Notation and Preliminaries

Let F be a local field of characteristic zero. When F is nonarchimedean, we use q to
denote the number of elements in its residue field.

Throughout this paper, with the exception of Section 4, G denotes an arbitrary quasisplit
connected reductive algebraic group over F. Fix a Borel subgroup B and write B = TU,
where T is a maximal torus and U denotes the unipotent radical of B.

Fix a parabolic subgroup P == MN of G defined over F with N C U and T C M,
a Levi decomposition. Let Ao be the maximal F-split torus of T and denote by W(Ao)
the Weyl group of Ao in G. Let wo be the longest element in W(Ao) modulo that of
the Weyl group of Ao in M. Let '0 be a generic character of U = U(F) (cf. [8,23]) and
set ^M = ̂ \U D M. Suppose a is an irreducible admissible ^M-generic representation of
M = M(F). Changing the splitting in U we may assume that ^ and WQ are compatible
(cf. [23]).

Let X(M)p be the group of F-rational characters of M. Set

a* = X(M)F 0z

and
a^ = a* (g)R C.

As usual (cf. [23]), we let

I{y, a) = IndMTVfG^ ̂  ̂ p( )> 0 1,

where v G a^ with exp replacing q if F = R. Here Hp is the extension of the
homomorphism

HM : M -> a = Hom(X(M)F, R)

to P, extended trivially along N, where HM is defined by

^P(-)) ^ |̂ )|̂

for all x ^ X(M)F.
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IRREDUCIBILITY OF STANDARD MODULES 565

Suppose P = MN is maximal, M D T. Let r be the adjoint action of LM, the L-group
of M, on the Lie algebra Ln of the L-group of N. Then r = (]) r,, with r,'s irreducible,

1=1
ordered as in [23], i.e. according to the order of eigenvalues of LA in Ln. Here ̂  is the
L-group of A, the split component of M. It is contained in Ao. Finally, let L(5,a,r,)
be the local L-function attached to a and r, in [23]. (See Theorem 3.5 and Section 7 of
[23].) Conjecture 7.1 of [23] plays a crucial role in the present paper and therefore for the
convenience of the reader we state it here once more.

Conjecture 1.1. Assume a is tempered and Re(s) > 0. Then each L(s,a,ri) is
holomorphic, 1 < i < m.

Next, assume M is generated by a subset 6 of simple roots A of Ao in U. Fix
w G W{Ao) ^uch that w((9)_(: A and let w e G be a representative for w. Let
N^ = U D wNw~1, where N is unipotent subgroup opposed to N. Given / in the
space of J(^a), let

A{^,a,w)f(g)= f(w~lng)dn (g G (?)
J N -

denote the standard intertwining operator from I{y,a) into J(w(^),w(cr)). It converges
absolutely in some cone and extends to a meromorphic function of v G d^ (cf. [12, 16,
29]). The knowledge of its poles on all of a^ is very important and one of the aims of the
paper is to determine them in terms of L-functions mentioned before in certain cases.

When a is tempered the cone of convergence for v G a^ equals to what one usually
calls the positive Weyl chamber (a^ for a. Every v e (a^)+ satisfies Re(v,Ha} > 0
for every a G A - 0 and conversely, where H^ is the standard coroot attached to a and u
is realized as an element of (do),^. Here do is the real Lie algebra of Ao.

Suppose a is tempered and v e (a^. Then J(^,cr) has a unique quotient J(^cr),
called the Langlands quotient of J(^,a) (cf. [4, 17, 28]). Given an irreducible admissible
representation TT of G, there exists a parabolic subgroup P = MN, N c U, M D T,
an irreducible tempered representation a of M, and a v G (d^)+, such that TT = J(i^,a).
Moreover, by Rodier's Theorem, TT is generic only if a is.

Since a part of this paper is heavily based on material in [5] and [8], we will adopt their
notation in the following definitions for the convenience of the reader.

Let A be the set of simple roots for M^ = Ao in U = N^. Fix a subset 0 C A and let
P =Pe = M^N^ = MN, N^ c N^,, be the corresponding standard parabolic subgroup.
Let ^ be a nondegenerate character of A^>, extending a nondegenerate character ̂  = ̂ Me
of Me n N^. Let WQ be a representative for the element WQ of the Weyl group of Ao
which sends every root in A - 0 to a negative one, while wo(a) e A for all a e 0. Let
M' = M^^ and denote by P' = M'N', N' c N^,, the standard parabolic subgroup of
G having M' as its Levi factor. Assume ^ and WQ are compatible (cf. [23]). This can
always be achieved by changing the splitting in N(^.

Let (a,^(cr)) be an irreducible admissible ^-generic representation of M = Me. Fix
a Whittaker functional OM for a. Let P be the parabolic subgroup of G opposed to P.
Then P = MN, N = N_^. One can then define standard Whittaker functionals ^ and H
on I{a) = Ind(a|P,G) and I(a) = Ind(a|P,G), respectively by

(i-i) (f^}= I ^wa^o"1^), "M^
J N '

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



566 W. CASSELMAN AND F. SHAHIDI

f G J(a), as in [8, 25], and

(1.2) (7,») = / ^-\n){f{n)^ ^dn^
J N

when / G ^(cr). Both integrals are defined as principal values (cf. [8]).
Let

T:7(a)^J(a)

be the intertwining operator

(1.3) Tj{g) = ( ~f{ng)dn
J N

determined by the 7-((a)-valued functional

AN (7)- l~fWn.

Then T/(e) = A^(/). Let 7 be the constant defined by Rodier's theorem, i.e.

(1.4) T*^ = 7^.

Next let a' = wo(a) and let C^{(T') = C^(a',Wo"1) be the local coefficient attached to
a', Wo'1, and '0 (cf. [25]). More precisely it is defined by

{f^f)=C^af){A(a\w,)f^ n),ff rV\ _ r^ ( ̂ '\l \( ^1 ...-1\ fi
i ^ ^ l i

where A(cr',Wo"1) : Ind(a/ P^G) —> Ind((T|P,G?) is the standard intertwining operator
and W is the standard Whittaker functional on J(a') = Ind^'l?', G). Finally, let 7 = 7(0)
be as in equation (1.4). We have:

LEMMA 1.2. - 7 = C^^Wo'1)"1.

Proof. - Let 7(cr) = Ind(a|P,G) and let

T:7(a)^J(a)

be the intertwining operator (2.3). If

L^: J(a')^7(a)

is defined by L^f{g) = f(wog), then

(1.2.1) r.L^^A^Wo-1).

By definition

(1.2.2) <7,T*n}=7<7,"),

where 7 = ^wo/', // ^ ^(^/). Then

(1.2.3) {L^ff^}={ff^f)

4e SfiRIE - TOME 31 - 1998 - N° 4



IRREDUCIBILITY OF STANDARD MODULES 567

with 0' as above. Using (1.2.1) and (1.2.3), (1.2.2) implies

{A{a^w,l)ff^)=^f^f)^

from which the lemma is immediate.
If a is a ^-generic irreducible tempered representation of M and v G a^, we use

C^(^a) to simply denote the local coefficient [25] attached to V,(T, and wo, i.e. the
complex function defined by

(f^)=C^a){A^^wo)f^f},

where
A(^cr,Wo) : I{^a) -^ J(wo(^),Wo(cr))

is the standard intertwining operator defined earlier.

2. Irreducibility of standard modules

Let TT be an irreducible admissible generic representation of G. By Langlands
classification ([4, 17, 28]) there exists a standard parabolic subgroup P = MN of G
with split component A, an irreducible generic tempered representation a of M and a v in
the positive Weyl chamber of a^ such that TT = J(^,a), the (unique) Langlands quotient
of J(^cr). When F = R, in [37], Vogan proved:

THEOREM 2.1 (Vogan). - Assume F = R and TT = J(^cr) is generic. Then J{v,cr) =
J(^, a). In particular I(y^ o) is irreducible.

Now suppose F is p-adic. In this section we extend Theorem 2.1 to p-adic fields when
a is supercuspidal. More precisely, we prove:

THEOREM 2.2. — Let a be an irreducible generic unitary supercuspidal representation of
M. Assume J(^,cr) is generic. Then I{y^cr) =• J(^,a), i.e., I(v^(r) is irreducible.

Proof. - Assume a is ^-generic and let ^ be an extension of z^e (cf. Section 1).
Let C^(wo(^),wo(cr)) be the corresponding local coefficient, i.e. the complex number
defined by

(2.2.1) (//, n') = ̂ (woM, wo(a))(A(woM, wo(a), Wo-1)/', 0),

where f^' is the standard Whittaker functional on J(wo(^),wo(cr)). By Proposition 7.3
of [23], Conjecture 1.1 is true and therefore the denominator of C^(wo(^),wo(<7)) is a
product of the form

]"j£(l+^wo(cr),^-)~\
3

where ^-functions are as in [23] with Re (sj) > 0, since v is in the positive Weyl chamber
(Theorem 3.5 of [23], equation (3.11)). Again by Proposition 7.3 of [23], this product is
non-zero since these L-functions are holomorphic if Re(sj) > 0 (in fact if Re{sj) -^- —1,
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568 W. CASSELMAN AND F. SHAHIDI

a- being supercuspidal). In conclusion C^(wo(^),wo(cr)) is well defined whenever v is
in the positive Weyl chamber.

On the other hand, by Theorem 5.4.2.1 of [29], the operator A(wo(^),wo(a),Wo~1) is
holomorphic as long as a is unitary supercuspidal and v is regular, and in particular if v
is in the positive Weyl chamber. It now follows that the normalized operator

(2-2-2) Cv,(wo(^), wo(a))A(wo(^), wo(a), WQ1)

is well defined on all of J(wo(^),wo(cr)) if I(i^,a) is standard.
Choose // in the space of J(wo(^),wo(cr)) such that (f,^) / 0. Then by

equation (2.2.1), the image of /' under (2.2.2) is ^-generic.
Suppose J(^a) is ^-generic, but J(^cr) is reducible. The image of I(wo(i/),wo(a))

under (2.2.2) being ^-generic, will have an irreducible ^-generic subquotient which is
inequivalent to J(^cr) by uniqueness of Langlands quotient. This contradicts Rodier's
Theorem and proves the Theorem.

Remark 2.3. - The standard modules which are built by means of minimal parabolic
subgroups are clearly among special cases covered by Theorem 2.2, since quasicharacters
of A<^, the F-points of the split component of M^ are supercuspidal. When a is an
unramified character of A<^, the theorem was proved in [2], [20], and [22], earlier, each
using a very different method.

COROLLARY 2.4. - Let 7 be as in equation (1.4) and assume I(a) = lnd(a\P^G) is
standard. Then 7 / 0 .

Proof. - This follows from Lemma 1.2 and the fact that C^ (a') = C^(wo(a)) is well
defined which was observed in the proof of Theorem 2.2, if a is in the positive Weyl
chamber.

3. Generalized injectivity

In this section we will address a property of standard modules which implies Vogan's
theorem for them and is therefore rather stronger. It simply requires the generic constituents
of a standard module to become subrepresentations.

DEFINITION 3.1. - A standard module is said to satisfy injectivity if all its irreducible
subrepresentations are generic.

Remark. - When the inducing data is supercuspidal, we will show (Theorem 3.4) that
the corresponding standard module satisfies injectivity. We initially believed that every
standard module for a p-adic group satisfies injectivity. In fact, as opposed to the case of
real groups for which already the rank one quasisplit group (7(2,1) has standard modules
which do not satisfy injectivity [4], standard modules defined by supercuspidal data for
any p-adic quasisplit group do. But certain recent examples of Tadic for GSp^n^ n >_ 4,
has convinced us to contrary in general. In fact, Tadic has a class of counterexamples for
classical groups which are now included in his new version of [34]. What follows are
some low rank examples which were communicated to us by him.

The lowest rank examples of Tadic are for GSps{F) and SO^^F). In both groups
T = AQ acts transitively on the set of generic characters of U. Let a-o denote the Steinberg
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IRREDUCIBILITY OF STANDARD MODULES 569

representation of GLn(F)^ n = 3 or 4, a non-supercuspidal discrete series representation. If
G = GSps(F),\eta = ao0|det() |^ 01, a representation of GL^F)xGL^(F), the Siegel
Levi subgroup of GSps(F). On the other hand for G = SO^{F\ let a- = o-o 0 det( ) |^
denote one for GLs(F), the Siegel Levi subgroup of SOj(F). In either case, using Jacquet
modules, Tadic shows that the standard module J(a) has two (non-isomorphic) irreducible
subrepresentations. By the above remark one of them must be degenerate.

We therefore need the following definition.

DEFINITION 3.2. - A standard module is said to satisfy generalised injectivity if all its
generic constituents appear as subrepresentations.

CONJECTURE 3.3. - Every standard module satisfies generalised injectivity.

Remark. - The conjecture seems to be valid for real groups although no proof for it has
been published (private communications with Vogan). In this section we will prove the
conjecture when F is p-adic and the inducing data is supercuspidal.

THEOREM 3.4. - Let F be a p-adic field of characteristic zero and let G be a quasisplit
group over F. Let I{y^ a) be a standard module for G. Assume a is generic and
supercuspidal. Then the unique irreducible subrepresentation of I(i^,a) is generic, i.e.,
injectivity is valid for supercuspidal inducing data. In other words J(z^, a) injects into
Indu^G^ for every ip extending ^e, the character with respect to which a is generic.

We use notation as in Section 1. More precisely, let

^ =a^q^HM{ ) > .

Then we set J(cr^) = I(a^) and use I and V to denote I(a^) and the space
V(a^) = V(^a) of I(^a).

Since a^ is supercuspidal and regular. Proposition 6.4.1 of [5] implies that a^61/2

appears in VN = V^e, the Jacquet module of V with respect to N , with multiplicity one.
Consequently by Frobenius reciprocity V has a unique irreducible subspace. Theorem 3.4
then requires this subrepresentation to be generic and in particular it will be generic with
respect to every extension ^ of ^0. We start with two lemmas. Again the notation is
as in Section 1.

LEMMA 3.5. - Suppose f e Ind(cr|P, G) has support in PN. Then there exists
e = e(f) > 0 such that

(I(a)~f^) = 61p\a)a^a)(AN(7)^ OM)

for every a G Ae with \a(a)\ < £, a e A — 0. Here Ao is the split component of
M@, I = I{o'v), and 6p is the modulus character of P.

Proof. - Assume / is supported in PUJ. Then

{7(a)7,n)= / ^{^(/(na)^ ^dn
J N

= f ̂ (^^^(^(^(/(a-^a), ^M}dn
J N

= f ^(ana-^^Wa^a)^^), ̂ dn.
J N

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



570 W. CASSELMAN AND F. SHAHIDI

Now choose e small enough so that ^|ao;a~1 = 1, concluding the lemma.
Let V be the space of Z(cr^) and denote by V^o its Jacquet module with respect to

N = Ne, where 0 is the subset of A generating M = Me. The space of Whittaker
functionals on V^e is the dual of (V^J^^Men^ (notation as in [8]).

With notation as in [5] and [8], consider the diagram

V V^)/V^Ne)

^ ^ ^
^Ne ———^ ^0,M?

P\ \ P^
^ ^6 '

(^Ae)^,MonA^ ——^ ^,A^>

1
in which (f)e is defined by means of canonical liftings (cf. Section 4 of?]), exactly as in
the minimal case in [8]. It can be easily shown that ker (/?) C ker (p^ • <^), leading to the
well defined map (f)e of Proposition 6.4 of [8j. Consequently 0 • (f)e defines a functional
on (y/v^v^MonA^ and is therefore a Whittaker functional for V N ( ) ' Here 0 = A^(^,a)
is the canonical Whittaker functional for I ( y ^ < J ) defined in Section 1. We now restate
Proposition 6.4 of [8] in our case as follows.

LEMMA 3.6. - Given f in the space V of I(v^ a), there exists e > 0 such that

(I{a)f^)=^e{lNeWf)

for all a € Ae with |a(a)| < £, Va G A — 0. Here f is the image off in V^g.

Proof of Theorem 3.4. - By Proposition 6.4.1 of [5]

(3.4.1) I N = I N C = © (wa,)51/2,
wCH^(A)

where the sum is over the Weyl group of A in G. Since a^ is regular, each irreducible
subrepresentation appears with multiplicity one in (3.4.1). Given / 6 I{o~^), write

/- ©^
w

where fw is in {wa^)S1/2. Here f is the image of / in J^v. By Frobenius reciprocity

W^)7i = ̂ {m}6^\m)f{e} (m 6 Me}.

For each w, let \w be a Whittaker functional for (wa^)^1/2. We will take Ai = ^IM' Write

^ • ^e = y C w A w ,
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using the fact that 0 • ̂  is a Whittaker functional for VN^. By Lemma 3.6 there exists
e = e{f) > 0 such that

(3.4.2) {I{a)f^) = n.^(J^(a)/) = ^^(wa)(a)51/2(a)<7„A,)
w

for all a € Ae = A with |a(a)| < e, Va G A - 0.
Next, choose / € ^(^) with support in PN such that T/(e) / 0. Such functions exist

by Lemma 4.2 of [27]. By Lemma 3.5 and equation (1.4), there exists e = e{f) > 0
such that

(3.4.3) <^)(m ") = 7^1/2(a)<(^7)(e), ̂ )

for a ^ Ae with ^(a)! < e, Va G A - 6.
Since a^ is regular. Theorem 5.4.2.1 of [29] implies that T ' L^ is well defined on

all of J(wo(^),wo(cr)) where

T : 7(a,) -^ J(a,)

is defined by (1.3) and

^wo ^ -f(<^) = ̂ (wo(^),wo(cr)) ̂  7(a^)

is as in Lemma 1.2. Consequently / = Tf is well defined and belongs to J(cr^). Comparing
(3.4.3) with (3.4.2) and using the regularity of a^, one has ci = 7 which is non-zero by
Corollary 2.4. We can therefore write

(3.4.4) <J(a)/, n) = 7a^l/2(a)</(e), ̂ ) + ̂  ̂  . (wa^a^/^aX/w, A,).
w^l

Since v is in the positive Weyl chamber, the term

7^1/2(^(/(e)^M)

is now a leading term as |a(a)| —^ 0, a € A^, Va G A - 0, if (/(e), ^M) 7^ 0-
Suppose 0 / / G V is such that {I(g)f,a} = 0 for all g € G. Then IVj = 0,

where Wf{g) = (I{g)f,fl), i.e., 0 / / lies in the kernel of f \—^ Wf into Ind^G'0
or injectivity fails.

We may assume </(e), ̂ ) 7^ 0. Then for a e Ae with |a(a)| < e = £(/), Va G A - 0,

0 = <J(a)/, ̂ ) = 7^^1/2(^</(^, "M) + • • •

with ^o•^61/2(a)(f{e)^M), a non-zero leading term as |a(a)| H-^ 0, Va G A — 0. This
is a contradiction.
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4. Proof of Conjecture 1.1 for Groups of Classical Type

Throughout this paper, a classical group is a connected algebraic group, fixing a non-
degenerate bilinear form of either symmetric, alternating, or Hermitian type. The group G
will be called of classical type if there exists a product of classical groups whose derived
group is a covering, as an algebraic group, of the derived group of G. We will further
assume that G is quasisplit. The purpose of this section is to prove Conjecture 1.1 when
G is of classical type.

Let G be a quasi-split classical group over a p-adic field F of characteristic zero. Let
a^ be a discrete series representation of G = G(F). Choose a Levi subgroup

M = GLr, x . . . x GL^ x G°

of G, with G° classical. When G is the unitary group defined by a quadratic extension
E/F,GLr, must be replaced by Res^GL^. The reader must be warned that a^ is a
pure symbol and is neither the dual nor the contragredient of a representation 02. Choose
an irreducible supercuspidal representation 02 = pi (g ) . . . 0/^ 0r of M = M(F) such that

a^ C Ind^a2 0 1.

Next, let ao be an irreducible unitary supercuspidal representation of GLt(F). Assume
r is generic. Let a^ be a discrete series representation of GLu(F) with t\u, defined by
means of (TO as in [3, 41]. (See below.)

We are interested in the Rankin-Selberg product factors for a\ x a^. More precisely
we want to study

L(s,a^ x^) (50 C)

as defined by the 7-function 7(5, a^ x o-^^p) of Theorem 3.5 of [23]. (See Section 7.)
Here 7(5, a\ x a^^p) is 7(5, a\ 0 a^ r^ ̂ ) of cases B^ C^ Dn - 1, ̂  - 4, and
^Dn - 1, chosen according to G. For the sake of simplicity, from now on, we drop the
dependence on ^p from 7(5,0^ x a^^p). As in Corollary 5.6 of [26] we have:

n

(4.1) 7(5, ao x (T^) = 7(5, ao x r) ]"J 7(5, (TO x pj)^{s, (TO x p j )
j=i

for the pair (o-o,^).
For each j, 1 < j < n, choose an irreducible unitary supercuspidal representation poj

and a real number ^ such that pj = poj 0 |det( )|^:
Let p = pi 0 ... 0 pn and set

n

(4.2) 77(5, ao, r, p) = Z<5, ao x r) JJ L(s + ̂ , ao x poj)L(s - ̂ ,0-0 x poj).
j=i

The reader must realize that when we are in the unitary case An - 4 of [23], po j must
be replaced by poj throughout, where poj denotes the Galois conjugate of poj under the
non-trivial element of the Galois group of the defining quadratic extension.
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If A{s) and B(s) are two rational functions in q~8, we use A(s) ~ B{s) if they are
equal up to a monomial in q~8. Then from (4.1) and (4.2) we have

(4.3) 7(5, o-o x a^) ~ 77(5 - 1, ao, r, p ) / r ] ( s , (TO, r, p).

Now suppose a^ is the unique discrete series constituent of

^^L^.N^l^--^^)^^

where nG£i(F) has b factors with 6 = u/t and cr, = o-o 0 | det( )|(&+1)/2-^ l < z ^ &.
(See [3, 41].)

Then
b

7(5, ̂  x ^v) = n 7(^ + (b + 1)/2 - z, ao x ^v)
1=1

b

=JJ 7(5,0, X CT^)

i=l
b

~ J]y?(5 + {b + 1)/2 - z - l,ao,T,/))/^(5 + (& + 1)/2 - z,<7o,T,p).
1=1

Define £(5,cr^ x a^)~1 as the numerator of 7(5, a^ x a^) as in [23]. We shall prove:

THEOREM 4.1. - The L-function L(s,a^ x a^) is holomorphic for Re(5) > 0,
i.e. Conjecture 1.1 is valid.

The following corollary is then a consequence of part 2 of Theorem 3.5 of [23] and
Theorem 4.1 here since the local coefficients for groups of classical type are just a product
of those for classical groups. Observe that it states a result on the holomorphy of local
coefficients which is usually deep.

COROLLARY 4.2. - Let G be of classical type. Then the corresponding local coefficient
for any parabolic subgroup and any generic tempered representation of its Levi factor is
holomorphic for v G '^o(((x^)+)•

By Lemma 4.1 of [34], representations poj are all self-contragredient. In fact, although
in [34] this is only proved for symplectic and odd special orthogonal groups, we have
been assured by Tadic that similar results can be proved for other classical groups. Similar
remark applies to Lemma 4.6 of [34]. (See Remark 4.21 below.) Lemma 4.1 has also been
verified independently in a work in progress by Y. Zhang, using results of Harish-Chandra
and Silberger on special orbits (cf. [28]).

The L-functions in the product
n

JJ L{s + VJ,(JQ x poj)L(s - V j , ao x poj)
.7=1

are non-trivial only if (TO 0 |det( )\so^ ^ poj for some SQJ C %R. We therefore may
assume, by shifting 5 by 5oj 6 %R, that (TO is self-dual and poj ^ ao. We shall therefore
need to study products of type

n

L(5, (TO x r) TT L(5 + V j , (TO x ao)L{s - V j , (TO x 0-0),
j-.=i
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where ao ^ (TO and ^ G R. Observe that we may need to study these products with
different values of s. But Re(s) will be the same for all such products.

Given t G C, set

L(t) = L{t, ao x ao)

whose dependence on (TO is understood.

DEFINITION 4.3. - By a chain based on a-o or a cro-chain (simply a chain if 0-0 is fixed),
we mean a sequence of representations

aj =ao0 |det ( )p (^- e R )

for which vj - ̂ -i = 1 for all possible j. If (TO is understood to be fixed, we use {^}^=i
to denote a chain based on ao. This is what is called a segment in [34] and [41].

Using results from [23], we shall first prove that one only needs a union of certain
special types of chains to obtain all the induced representations which have discrete series
subrepresentation. Our main tool is the following theorem whose proof is an application
of Proposition 7.2.b of [23],, One observes that by Proposition 7.3 of [23] the assumption
on L{s^(T,r^) = L(s^ao^r^) is in fact satisfied.

THEOREM 4.4. — Define L^s^ (TO x a^) as the inverse of the numerator 0/7(5, (TO x a^),
where a^ is in the discrete series and o-o is irreducible unitary supercuspidal. Then
L{s,(To x a^) is holomorphic for Re(^) > 0.

We start with the following lemma.

LEMMA 4.5. - Fix complex numbers p, and v and let a^ = o-o 0 |det( )|^ and
a^ = (TO ̂  | det( )\^. Then L(s, (TO x (T^)~1 and L(s, (TO x cr^)"1 have a factor in common
as polynomials in q~8 if and only if a^, ̂  (Ty. In this case L(s^ao x (T^) = L^s^ao x ( T y ) .

Proof, - The L-function L{s,ao x ao) = n(1 ~ 7?(^7)(?-s)~l» where the product is over
r]

the group of all the unramified characters which fix (TQ. Then

L{s, (TO x (T^) = L(s + ^, ao x o-o)

-n^-w0^)^)"1-'r]
where ^ 0 = 1 1 ^ while

L(S,(TO x (T^ = 1[[{1 - rfrio^q-8

^

where rjo = | |^. If they have any factors in common, then rjo/rfo w1^ ^ave to belong to
the group of unramified stabilizers of a and conversely.

Let {^j}^=i be a chain based on a self-dual irreducible supercuspidal representation
o-o of GLt{F). Let a^ be a discrete series representation of G. Assume there exists a
Levi subgroup M of G which is a direct product of an n-product of GLf with a Levi
subgroup M' of a smaller rank similar classical group and an irreducible supercuspidal
representation a^ of M' = W^F) such that a^ can be embedded as a subrepresentation of
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the representation of G induced from (n^=i ^o ̂  | det( )|^) 0 a^ of ]"[ GLt(F) x M1.
We then say a^ is partially supported by the chain {^}7^.

DEFINITION 4.6. - Let {^-}^i be a ao-chain. We shall call

7^1 r } - TT L{s ~ uj ~ ws + yj ~ 1)
7<°5 ^l? • • • i ^n) — I | ~T~(————r-,-7—;——^———

,=l ^ - ̂ W + ̂ )

^ L(s -i^n- l)L{s + ^i - 1)
L(5-^i)£(5+^)

the 7-function of the chain {^ j}^ i .

DEFINITION 4.7. - Two ao-chains are called 7-equivalent, if they have equal ^-functions.

LEMMA 4.8. - Every non-positive chain is ^/-equivalent to a non-negative one.

Proof. - Use 7(5; ̂ i , . . . , u^) = 7(^; -^n, • . . , -^i).

LEMMA 4.9. - If there exists only one chain {^}^=i with z/i >_ 0 g^'vm^ ̂  ao-support
of a^, then either v\ = 0, ^i = 1/2, or ^i = 1.

Proof. - If z/i > 0, then by Theorem 4.4, L{s - ^i) must not appear in 7(5, o-o x a^).
By Lemma 4.5 we may assume that, either L{s — ^i)~1 cancels L{s + v\ — 1)~1, or
it divides L{s - I,(TQ x r)~1. In the first case, again by Lemma 4.5, we may assume
z^i - 1 = -^i, since their difference fixes o-o. The other case could only possibly happen
if z^i = 1. One needs only to observe that L{s,ao x r) has no poles for s G (-1,0), a
consequence of Proposition 7.3 of [23].

DEFINITION 4.10. - Fix o-o. Let {^}^=i be a non-negative chain in the ao-support of a^.
We shall say {^j}^=i is regular if either ^i = 1/2 or v^ = 0, or z/i = 1 and L{s)~1 divides
L{s,ao x r)~1 (Lemma 4.9). Observe that by [23] this last condition (on L-functions)
implies that the representation induced from (o-o 0 |det( )|) 0 T, i.e. va^ xi T in the
notation of [34], is reducible. (See Theorem 3.3 of [34].)

DEFINITION 4.11. - Fix (TQ. Let {^j}^i and {^k}T=i be a pair of non-negative chains
in the o-o-support of a^. Assume neither ^i = 1/2 nor v[ = 1/2. We then call {^} and
{z^} a pair of singular chains, or a singular pair, if ;/i + y[ = 1.

Remark. - In view of Lemma 4.6 of [34] and Theorem 8.1 of [23], either ̂  = 0 and
y[ = 1, or z/i = 1 and v[ = 0.

LEMMA 4.12. - If{vj}^^ and {;4}^i ^^ members of a singular pair, then

7(5,^1,... , z^)7(5, ̂ , . . . , z/J,

w/n'c/i w^ ^/za// ca// ̂  ^/-function for the singular pair, is nonzero for Re(^) > 0.

LEMMA 4.13. - Every chain -which is neither non-negative nor non-positive is ^-equivalent
to either a singular pair or a pair of regular chains starting at 1/2, with ^/-function given
as the product of their ^-functions.
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Proof. - Let {^}^ be such a chain. Then

Vn > ̂ n-1 > . . . > ^ > 0 > Z^_i > . . . > ^i.

The pair

{ ^ , . . . , ̂ } U {-^-i,.. . , -^i}

is a pair of non-negative chains. The initial points for these are ^ and -^-i, and
Vi — vi-\ = 1 implies that the pair is singular, unless ^ = —^-i = 1/2. Moreover

7(5; ̂ i, . . . , ̂ n) = 7(5; ̂  . . • , ̂ n)7(^; -^-1, • • • , -^l).

Then {^j}^=i is 7-equivalent to the pair { ^ , . . . , ̂ } U { — ^ _ i , . . . , —^i}.

DEFINITION 4.14. - Let {^-}^=i and {^}^Li be a pair of o-o-chains in the ao-support of
a^. We shall say {^j}^=i can be completed to {^}^Li, if m ^ n and z^ = v'^.

PROPOSITION 4.15. - Every non-negative chain can be completed to either a regular chain,
a member of a singular pair, or a chain whose initial point is negative.

Proof. - Let {^-}^i be a non-negative chain. Write

7(5:^1,...,^) =
L{s -Vn- l)L(s + ^i - 1)

L(s - J^i)L(s + Vn)

Assume {vj} is not of the types mentioned in the proposition and in particular if v\ = 1,
then L(s — 1)~1 does not divide L(s — 1, OQ x r)~1. By Theorem 4.4, L{s — z/i) must be
cancelled by the 7-function of another chain {^}^Lr Write

, . L(s - ̂
7(5;^,...,^) =

L ( s - ^ - l ) L ( s ^ ^ - l )
^m) — T / , , /£(^-^)£(.+0

By Lemma 4.5, we may assume that either ^i = v'^ + 1 or v\ + v[ = 1. Suppose
^ = ̂  + 1. We can then complete {^j}^=i to the chain {^j}^=i U {^}^Li. Observe that

7(5;^i,.. . ,^)7(5;^,.. . ,^)

is equal to the 7-function of { ^ j } ^ i U {^}^Li. We can therefore replace the two
chains with their union and continue with the argument if v[ > 0. If v\ + u[ = 1 and
v[ > 0, we then have a singular pair since we may assume v\ 7^ i^[. Otherwise, we can
consider {-^k}t=m ^d ̂ n complete {^}^=i to the chain {^j}^i U {-^k}i=m^ slnce

v\ = 1 + (-^). By Lemma 4.8, 7(5; ̂ , . . . , v'^) = 7(5; -^,..., -^) and therefore
again 7(5; ^ i , . . . , ̂ )7(5; v'^ ..., ̂ ) is equal to the 7-function of the union. We now
use the induction if —^ > 0.

PROPOSITION 4.16. - Fix o-o. Then every ao-chain is ^/-equivalent to a chain which can
be completed to a chain "which is ^-equivalent to either a regular chain, a pair of regular
chains, or a singular pair of chains.

Proof. - By Lemma 4.13, every chain with both positive and negative terms is 7-
equivalent to either a singular pair or a pair of regular chains starting at 1/2. Moreover,
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by Lemma 4.8, every non-positive chain can be replaced by a non-negative one. We now
apply Proposition 4.15, and Lemma 4.13, if there are any mixed chains.

We are now ready to prove Theorem 4.1.

LEMMA 4.17. - The product

b

JJ L(s + (& + 1)/2 - i - 1, ao x r ) / L ( s + (& + 1)/2 - z, (TO x r)
i=l

is non-zero for Re(^) > 0.

Proof. - Clear.
We now consider contributions from cro-chains.

LEMMA 4.18. - Let {^}^=i be a regular chain with ̂  = 0 or 1/2. Then

b

J j7 (>+(&+l) /2 -z ;^ . . . , ^ )
z=l

is non-zero for Re(.s) > 0.

Proof. - The product

r̂ -rj L(s + (b + 1)/2 - i - v, - l)L(s + (& + 1)/2 - i + ̂  - 1)

i111 ^ + (6 +1)/2 - % - ̂ W^ + (6 +1)/2 -z + ^-)
can be written with a numerator (a polynomial in q~8) as

n

J] £(5 + (b + 1)/2 - 1 - ̂ r^ + (6 + 1)/2 - 1 + ^•)-1

j=i
n

= U £(5 + (& + 1)/2 - j - z.i)-1^ + (6 + 1)/2 - 2 + j + ^i)-1.
j=i

We shall show that every factor which has a zero at s with Re{s) > 0, cancels with a
factor from the denominator.

Since j > l,b > 1, and ^i ^ 0, (6 + 1)/2 - 2 + j + z^i > 0 which allows us to
disregard factors

n

n^+(6+l ) /2-2+j+^i ) - 1 .
j=i

We must therefore consider those factors for which

( & + l ) / 2 - ^ - ^ i < 0

or
n > j > (&+ 1)/2 - ̂ i.
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Let bo be the first integer strictly greater than (6 + 1)/2 - z^i. We may assume 60 < n.
The product is then over bo < j <, n, i.e. we need to consider:

L{s + (6 + 1)/2 - 60 - ̂ i)~1 . . . L{s + (6 + 1)/2 - n - ̂ i)-1.

The denominator is the product
n

JJ L(s +{b+ 1)/2 -b-j- ̂ )~lL(s + (6 + 1)/2 - & + j - 2 + ̂ i)-1.
3=1

For 1̂ 1 = 0,

, _ f fc±3 6 = odd
^o-^ ^even,

while for v\ = 1/2

f ̂  b = odd
^^ ^,^

It is easiest to consider four cases:

Case 1. - ̂ i = 0 and b is odd. Then bo = b^3 and the numerator of concern is

L{s - I)-1... L(s - (n - (6 + 1)/2))-1.

The denominator gives
n

n £(5 - 6/2 + 1/2 - j)-1!^ - 6/2 - 3/2 + j)-1-
j=i

Given an integer i, 1 < ^ < n - Hl, either -^ < Hl, in which case j = b^3 - ̂  will
satisfy 1 <^ j < n, using 60 ^ n, and L^-^)"1 will be cancelled by L^-^^-S^+j')"1;
or b^1 < i <n — 6^1, in which case the integer j = i — b-^- satisfies l < j < n — 6 < n
and L{s — i}~1 cancels off L{s — 6/2 + 1/2 — j)~1, proving the lemma in the first case.

Case 2. - v\ = 0 and 6 is even. Then 60 = b^2 and the numerator is

L{s - 1/2)-1... L(s + (6 + 1)/2 - n)-1.

The denominator is
n

]^[L{s - 6/2 + 1/2 -j)-1^ - b/2 - 3/2 +j)-1-
.7=1

Given 1/2 < i < n - HL1, half of an odd integer, either i <_ (6 + 1)/2, in which case
the integer j = (6 + 3)/2 - i will satisfy 1 < j < (6 + 1)/2 < n, using 60 < n, and
L{s - t)-1 will be cancelled by L{s - 6/2 - 3/2 + j)~1; or b^- ^ i < n - HJ-, in
which case the integer j = t - (6 - 1)/2 satisfies l < j < , n - b < n and L(s - l)~1

cancels L{s - 6/2 + 1/2 - j)~1.
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Case 3. - ^i = 1/2 and b is odd. Then &o = ̂  and the numerator is

L(s-l/2)-l...L(s-^b/2-n)-\

while the denominator equals
n

I] L(s - b/2 - j^L^s - b/2 - 1 + j)-1.
j=i

As in Case 2, given 1/2 < ^ < n - (b/2), half of an odd integer, either i ̂  b/2 for
which the integer j = ̂  - t satisfies 1 <, j ^ (b + 1)/2 ^ n and £(^ - ̂ )-1 cancels
L(s - b/2 - 1 + j)-1, or 6/2 < t < n - (b/2), in which case the integer j = t - (b/2)
satisfies l < j < n - b < n and L(s - £)~1 cancels L(s - (b/2) - j)~1.

Case 4. - ^i = 1/2 and b is even. Then bo = (b + 2)/2 and the numerator is

L(s-l)-1 . . .£(5+&/2-n)-1 .

Given 1 < i < n- (b/2), an integer, either i ̂  b/2 for which the integer j == (6+2)/2-^
will satisfy 1 ̂  j ^ 6/2 < n and L(s -i)-1 will be cancelled by L(s - b/2 -1 +j)-1, or
6/2 < t < n - (b/2), in which case the integer j = i - (b/2) satisfies l<j<n-b<n
and L(s - i}-1 is cancelled by L(s - (b/2) - j)-1.

The lemma is now complete.

LEMMA 4.19. - Let {^}7=i and {^}^i be a singular pair. Then

b

J] -r(s + (b + 1)/2 - %; ̂ ..., ̂ (s + (6 + 1)/2 - ,; ̂  . . . , ̂ )
1=1

^ non-zero for Re(s) > 0.

Pwo/. - It is enough to prove the same statement for

b

J] L(s + (b + 1)/2 - z - ̂  - l ) / L ( s + (6 + 1)/2 - i + ̂ ),
i=i

as well as for
b

n^+(6+l ) /2 -z -^- l ) /^+(6+l ) /2 -z+^) .
1=1

Suppose Vn > (b - 2)/2. Then

(b + 1)/2 - % + ̂  > b - (1/2) - i > -1/2.

By Theorem 8.1 of [23] and Lemma 4.6 of [34], v^ is a half integer, since r is generic.
Consequently

( & + l ) / 2 - z + ^ ^ 0 ,

proving the lemma in this case.
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Now suppose 0 < Vn < (6 — 2)/2. Given an integer j, b > j > (b + 1)/2 + v^, choose
an integer i, 2vn being an integer, such that i == j — 2vn — 1. Then

b > i = j - 2vn - 1 > (6 + 1)/2 - i/n - 1
>(6+1) /2 - (&-2 ) /2 -1
=1/2.

This implies that i > 1 since it is an integer. Consequently the factor L(s + (b + 1)/2 —
J + ^n)~1 is cancelled off by L(s + (& + 1)/2 — i — Vn — I)"1' The lemma is now proved.

LEMMA 4.20. - Let ljH}^iiLEMMA 4.20. - Let l ) {^}^= i be the union of all the regular 0-Q-chams with y[ = 1,
^=1

1 <_ i < c, which appear in the support of a^. Then the product of

b c

^Ih( s +(6+ l)/2-^ ' H^i)
i=l ^=1

with
b

JJ L(s + (b + 1)/2 - % - 1, ao x r ) / L { s + (& + 1)/2 - z, (TO x r)
1=1

is non-^ero for Re(s) > 0.

Proof. - Going back over the proof of Lemma 4.9, using Theorem 4.4, it follows that
in fact L^s)'0 divides L^s.o-o x r)~1. Set

0(s,o-o x r ) = L(.s,o-o x TVLO)0.

Then both

b

Y[ 0{s + (b + 1)/2 - i - 1, ao x r ) / e ( s + (& + 1)/2 - z, ao x r)
1=1

(Lemma 4.17) and

c b

]̂ [ J ]£( ,+(6+l) /2-z-<-! ) /£( .+(6+l) /2-z+^)
^=1 i=i

(Proof of Lemma 4.19) are non-zero for Re(.s) > 0 and their product is equal to the
product in the statement of the lemma.

Theorem 4.1 is now a consequence of Proposition 4.16, and Lemmas 4.17, 4.18, 4.19,
and 4.20, applied to every regular chain or singular pair.

REMARK 4.21. - Lemmas 4.1 and 4.6 of [34] have a similar proof which is a
clever application of Casselman's square integrability criterion [5]. It extends to other
classical groups which are not discussed in [34] as well, when the lemmas are formulated
appropriately. The only change is in the case of unitary groups which implies po,j ^ Poj'
This is precisely what is needed for obtaining our results.
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REMARK 4.22. - The regular chains and singular pairs defined here are the same as those
defined by Tadic in [34] which is the same as in [5], and that is how we chose these
terminologies. In fact our Proposition 4.16 proves some of the results of [34]. Observe that
Proposition 4.16 is based on Theorem 4.4 which was proved in [23].

REMARK 4.23. - Muic [42] now also has a proof of Theorem 4.1 when G = Sp^ or
SO-zn+i- His proof, although quite different, also relies on the results of [23]. The paper
contains some very interesting results for these groups.

(See the introduction here.)

5. Applications

In this section we prove a result which determines the poles of intertwining operators in
terms of those of L-functions whenever injectivity (Definition 3.1) holds in a certain level.
We then apply this result to determine the poles of intertwining operators in terms of Artin
L-functions in an important archimedean case (Theorem 6.1, Section 6).

Let G be again a quasisplit connected reductive algebraic group over a local field F of
characteristic zero as in Sections 1-3. Fix a Borel subgroup B and write B = TU, where
T is a maximal torus and U denotes the unipotent radical of B.

Fix a F-parabolic subgroup P = MN with N c U and T c M, a Levi decomposition.
Let Ao, W{Ao), ^, ^M, ci*, o^, all be as in Section 1. Suppose TT is an irreducible
admissible -0M-generic representation of M = M(F). Let J(^,7r), v G a^, be as in
Section 1.

Assume P is maximal and let a be the unique simple root in N. As in [23], let
a = (p,a)~1 ' p, where p is half the sum of roots in N. Given s € C, sd G a^. Let
A(s5,7r,wo) be the standard intertwining operator from I(sa,7r) into J(wo(5a),wo(7r)),
where WQ is a representative for WQ.

As in Section 1, denote by LM, the L-group of M and let Ln be the Lie algebra of
m

the L-group of N. Let r be the adjoint action of LM on Ln and decompose r = Q) r^,

with ordering as in [23]. For each z, 1 < i < m, let L{s,a,ri) be the local L-function
defined in [23]. (See Section 1 here.) It is defined to agree completely with Langlands
definition of L-functions whenever there is a parametrization. In particular the L-function
for arbitrary a is just the analytic continuation of the one attached to the tempered inducing
data through the product formula (cf. part 3 of Theorem 3.5 and equation 7.10 of [23]).
(See also Theorem 5.2 of [26].)

Next, embed TT as a subrepresentation of a module

IM^.CT) = IndM^fM^ ̂  1,

where a is in the discrete series and v is in the closure of the negative Weyl chamber
of Oe (Langlands classification). Here dg is the real Lie algebra of the split component
Ae of the center of Me.

As usual fix s G C. Embed I(sa, TI-) ̂  I{sa + v, a), where sa in I(sa + v, a) denotes
an extension of sa to a^. Let WQ denote the longest element in the Weyl group of Ao in
G modulo that of Ao in M. Fix a reduced decomposition WQ = Wn-i... wi with respect
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to the Levi subgroup M^ of G (Lemma 2.1.1 of [25]). For each j, 2 < j < n — 1,
there exists a unique simple root aj such that Wj^aj) < 0. Let wj = W y - i . . .wi with
wi == 1. Let f^ = 0j U {c^}, where 0 ^ = 0 and 6^-+i = Wj(0j), 1 < j ^ n - 1. The
group MQ^ contains M^ as the Levi subgroup of a maximal parabolic subgroup. For each
j\ ay = Wj{a^) is an unramified twist of a discrete series of M^. Let J^(ay) denote the
corresponding induced representation of M^. Write J^(a^) = J(^,cr^), where cr^ is in
the discrete series. Up to an unramified twist a^ is unique. We will assume that for each
j, a'j is such that every standard module of M^ which has a'y as its tempered inducing
data satisfies injectivity (Definition 3.1).

THEOREM 5.1. - Suppose Conjecture 1.1 is valid -whenever F is p-adic, e.g. G is classical.
Moreover assume for each j every standard module of MQ^ which has a'y as its tempered
inducing data satisfies injectivity (Definition 3.1). Then

m

JJ L{is, TT, r^A^sa, TT, wo)
1=1

is entire.

Proof. - The intertwining operator A(5a,7r,wo) is a restriction of the product of rank
one operators A{^j^a^Wj)^ 1 <: j <: n — 1. So are the L-functions L(5,7r,r^), of course
under validity of Conjecture 1.1 if F is non-archimedean (Part 3 of Theorem 3.5 and
equation (7.10) of [23], as well as Theorem 5.2 of [26]). One must therefore prove the
following lemma.

THEOREM 5.2. - Theorem 5.1 is valid if7r is in the discrete series.

Proof. - We need to show that if I{sa^7r) satisfies injectivity for all s G C, with
Re(^) > 0, then the theorem is valid.

m
If Re(^) > 0, then A(5Q,7r,wo) and ]~[ £(%5,7r,r^) are both holomorphic. For s with

_ i=l _
Re(^) = 0 which is a pole of A(5a,7r,wo), I{sa^) is irreducible by the theory of
Ji-groups. Consequently the local coefficient C^^sa^ir) must have a zero of the same

m
multiplicity (cf. equation (1.2) of [23] and Section 1 here). Since ]~[ £(1 - %5,7r , r^)

1=1
m

is holomorphic for Re(.s) = 0, the same is true about f] L(is^7r^ri)~1. It remains to
1=1

consider the case of Re(5) < 0.
Suppose Re(^) > 0. Given / in an irreducible subspace of I{sa^7r), there exists a ^

extending ^M such that \^(sa,7r){f) / 0 by injectivity assumption. Thus it follows from

(5.1) A^(5a, TI-) = C^{sa, 7r)\^{wo{sa), wo(7r))A(5a, TT, wo)

and equation (3.11) of Theorem 3.5 of [23] that C^{sa,7r)A{sa,7r^wo) must never be
zero for Re(^) > 0. Using

C'^(wo(5a),wo(7^))A(wo(<55),wo(7^),Wo"l)C7^(55,7^)A(55,7^,wo) = I

it is now clear that

C^{wo(sa), wo{7r))A(wo{sa), wo(7r), w^1))
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is holomorphic for Re(^) > 0. This implies that

m

JJ L(l - is, TT, ri)/L{is, TT, r,) • A(5a, TT, wo)
1=1

is holomorphic whenever Re(.s) < 0, completing the lemma.
With respect to reducibility of standard modules one has the following

PROPOSITION 5.3. - Let F be any local field. But in the case of p-adic F, assume that
G satisfies Conjecture 1.1. Let P = MN be a maximal parabolic subgroup of G and
fix a generic irreducible tempered representation a- of M. Suppose Re(s) > 0. Assume
Vegan's theorem is valid for every I(sa,a), i.e. if J(sa,a) is generic, then I{sa,a) is

m
irreducible. Then I(sa, a) is irreducible if and only if ]~[ £(1 - is, a, r^)"1 ̂  0. When F is

i=l
archimedean, the L-functions are those ofArtin attached by Langlands and the assumption
is already a theorem (Theorem 6.1 of [37]).

Proof. - If I{sa, a) is reducible, then by our assumption (Vogan's Theorem 6.1 of [37]
if F is archimedean) its Langlands quotient is not generic. Consequently

\^{wo(sa), Wo(a))A(sa, a, wo)

will be identically zero. But X^(sa^a) is not zero. Consequently
m

C^{sa,a,WQ)~1 = 0 which implies f] ̂ l - is,a,ri)~1 = 0 (equations (3.11) and (7.4)
i=l

m
of [23]) since ]~[ L{is,a,ri)~1 is non-zero for Re(<?) > 0.

i=l

Conversely suppose I{sa,a) is irreducible. Then \^(wo(sa),wo{a))A{sa,a,wo) is
m

never zero and therefore n -H1 - ̂ ,cr,r,)~1 -^ 0 since \^(sa,a) is holomorphic.
1=1

More generally we have the following conditional reducibility criteria for representations
induced from irreducible generic quasi-tempered representations. Applying standard
arguments, such as inducing in stages for singular parameters, we may assume that
their complex parameters are in the positive Weyl chamber.

PROPOSITION 5.4. - Let F be any local field. Suppose Vegan's theorem is valid for the
standard modules of G. Let P = MN be an arbitrary parabolic subgroup of G, P D B,
and fix an irreducible \-generic tempered representation ofM. Let v G a^ be in the positive
Weyl chamber of the split component ofM.. Let C^(^a) be the local coefficient attached
to v^a, and '0. Then J(^,a) is irreducible if and only if C^^a)"1 7^ 0.

Proof. - Exactly as in Proposition 5.3.

6. An Important Archimedean Case

In this section we will apply Theorem 5.1 to an important special case when F is
archimedean. The case in hand has an important application in lifting of automorphic
forms from classical groups to GLr as being pursued in [11,30,31], using the converse
theorem [9].
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More precisely, let F = R or C and let G = SO^ the split special orthogonal group of
rank n. We will be concerned only with its Siegel parabolic subgroup P = MN for which
M ^ GLn. Let a be an irreducible admissible generic representation of M = GLn(F).

Let WF be the Well group of F/F (cf. [1,17,18,24]) and fix a representation

(f):WF-^LM= GLn(C)

which parametrizes a as in [17]. Given a representation r of LM = GL^(C), let L(s, r • (f)}
be the Artin L-function attached to the representation r • (f) of Wp. (See [1, 18, 24].) Finally,
note that the adjoint action of LM = GLn(C) on Ln, the Lie algebra of the L-group of N,
is equal to A2^, the exterior square representation of GLn{C) (cf. [27]). We shall prove:

THEOREM 6.1. - Let G = SO-zn and F = R or C. Assume P = MN is the Siegel
parabolic subgroup of G. Let a be an irreducible admissible generic representation of M.
Choose the homomorphism (representation)

( j ) : WF -^ GLn(C)

parametrizing a. Let A{sa. cr.wo) be the standard intertwining operator discussed before.
Then as a function of s

L(s, A2?^ ' (j^^A^sa, a, Wo)

is entire, where (f) is the contragredient of (f).

Proof. - By Vogan's results (Theorem 6.2.f of [37]) and the fact that 7?-groups for GLn
are trivial, one concludes that a is in fact a full induced representation, induced from
a tensor product of essentially discrete series representations of a product ]~[^ GL^(F).
Since F = R or C, m, == 1 or 2.

Going back to Theorem 5.1, we only need to prove that the inject! vity holds in each
of the rank one cases. Then G is either GLmW, m = 2,3,4, GL^(C), or finally
split 504(R). The Levi subgroups for m = 3 and 4 are GL^ x GL^ and GL^ x GL^,
respectively, while that of SO^ is the Levi subgroup of the Siegel parabolic subgroup,
i.e. M ̂  GL^. The L-functions in [23] are now precisely those of Artin mentioned above
(Theorem 3.5 of [23]).

We shall now check the injectivity in each of the above cases. More precisely, we must
show that in each case, every representation induced from an essentially discrete series
data whose central character is in the positive Weyl chamber, i.e. a standard representation,
contains no non-generic irreducible subspaces.

When G = GL^ this is well known. Suppose G = 504 (R). Realize the (topological)
connected component of G as the quotient of SL^(R) x SL'z(R) by {±1}. The (topological)
connected component of M = GL^(R) is the image of SL^{R) x R* with R* realized as
the diagonal subgroup of the second SL^(R) in this product. The induction corresponds
to a principal series in 5'£2(R). The injectivity is then a consequence of the same fact
for SL^ (R).

It remains to consider GL^W with m = 3 or 4. The result must be contained somewhere
in Speh's thesis [32]. In fact m = 3 is clearly there. But, one expects it to be valid for any
standard module of GL^(R) for arbitrary m, and this is in fact the case and a proof of it
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was first communicated to us by Vogan. Here we include his unpublished proof of this fact
in which any inaccuracy or shortfall is our responsibility and none his. We are indebted to
him for providing us with a proof. Later, we realized, that there is also an analytic proof,
based on the theory of canonical models [6, 40], due to Jacquet and Shalika [13].

THEOREM 6.2 (Vogan, Jacquet-Shalika [13]). - Let I be a standard module of
G = GLn(R). Then every non-zero irreducible subrepresentation of I is large, i.e. generic.
In particular, I has a unique irreducible subrepresentation.

Proof (Vogan). - Let Q be the complexified Lie algebra of G. Let K be a maximal
compact subgroup of G. We need Jantzen-Zuckerman translation functors '0 and (f) on the
category of (5,AT)-modules of finite length. Then

(6.2.1) Hom^((7, ̂ V) ̂  Hom^W V)

for any pair {U^V) of finite length {Q^K) -modules, i.e. ( / ) is the adjoint of '0. Similarly
we have

(6.2.2) Hom^(E/, <f>V) ̂  Hom^W V)'

(See §4.5 and §7.4 of [39].) Throughout the proof, we shall call (6.2.1) and (6.2.2), the
adjointness property. The proof is in several steps.

We first reduce to the regular infinitesimal characters. Let X be a standard module with
a singular infinitesimal character. Let Z be a standard module with a regular infinitesimal
character such that X = ̂ (Z). Fix an irreducible subrepresentation W of X. Then by
adjointness there is a non-zero (^, K)-msip from (f)(W) into Z. Assuming the theorem for
Z, this implies that (f)(W) has a large composition factor. But then W itself must be large
since tensoring with a finite-dimensional representation does not change largeness.

From now on we shall assume X to have a regular infinitesimal character which we
shall fix throughout. Suppose that X = X(^) for a regular character 7 of H, a 0-stable
Cartan subgroup of G with a 0-stable Lie algebra f). Here 0 is a fixed Cartan involution
fixing the Lie algebra of K. (See [39] for notation and terminology.) The proof will
proceed by induction on the size of the A-parameter of the inducing data (with respect
to the norm coming from the Killing form) of the standard module X (for our fixed
regular infinitesimal character). Assume the size of A-parameter is not minimal. Then by
Proposition 8.2.7 of [39] there is a standard representation Y with the same infinitesimal
character as X and a translation to a complex root-wall functor ^ with adjoint <f) such that

0 --, X -> <^(V) -^ V -> 0.

The standard representation Y then has a smaller size A-parameter. Now suppose W is
an irreducible subrepresentation of X. Then it is one of ^(Y). Applying adjointness
to the non-zero map

W -^ (f)^(Y)

implies the existence of a non-zero map from ^(W) into Y. Consequently (f)^(W)
contains as a subquotient an irreducible subrepresentation of Y which by induction is
large. Again W must be large.
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It remains to prove the theorem when the size of the A-parameter is minimal. Here we
need to use Zuckerman derived functors and finally the fact that G = GL^W.

Now assume that the size of the A-parameter of X is minimal. Let q = I + u be the
(9-stable parabolic subalgebra of Q defined as follows. The subalgebra I is the Lie algebra
of the levi subgroup L which centralizes the Lie algebra t of T = H D K in G. The Cartan
subgroup H is then maximally split in L and the roots of f) in [ are exactly the real roots
of () in Q. To define u, fix a generic element Z of t, i.e. one that vanishes only on the real
roots of t) in Q. Let u be spanned by the root spaces of roots a such that

(a,7|t)>0,

or
(a^\i)=0

and a(Z) > 0, where 7 is the infinitesimal character of X(^). We need

LEMMA 6.3. - Suppose the A-parameter of X(^) is minimal. Let 7 be the infinitesimal
character of X(^). Then:

(6.3) Every non-real positive integral root a for ^f is a root in u.

Proof. - Suppose

(7,0^) = m

is a positive integer for some non-real root a, where

o^ = 2a/(a, a)

is the corresponding coroot and ( , ) is the Killing form. By definition (7,0^) =
(7,0^) = m. If (<9a,7) > 0, then

2(a,7|i) = (a+(9a,7) > 0

and thus a is in u. Assume (Oa,^) = (Oa,^) < 0. After changing the roles of a and
6a, if necessary, we may assume

(6.3.1) {7,-^) >m.

The parameter 7' = 7 - ma is a regular character with the same infinitesimal character
as 7. Moreover, the (squared) length of the corresponding A-parameter is one fourth of

liy-^'lF-h-^-^a-^)!!2.
By two-dimensional geometry

ny-^'i^h-^ii
if and only if

(6.3.2) 2(7 - 07, a - 0a) > m\\a - Oa\\2,

which we shall now prove, getting a contradiction to minimality of ||7 - 0^\\.
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The left hand side of (6.3.2) is equal to

(6.3.3) 4(7, a) - 4(7, 0a) ^ 2m(a, a) + 2m(a, a)

= 4m(Q/, a),

using (6.3.1). Now the right hand side of (6.3.3) can be written as

4m||l/2(a + 6a)\\2 + 4m||l/2(a - 0a)\\2 > m\\a - Oa\\2

since a is not real, proving (6.3.2) and completing the lemma.

Let 7q be, for example, as in Lemma 8.1.2 of [39], and let XL == ^i/(7q). the standard
representation of L, defined by 7q. Then by Zuckerman's cohomological induction (cf. [39]),
X = ̂ XL, where Ti3 is the appropriate exact cohomological functor of Zuckerman
(Lemma 6.3 here. Definition 6.5.1, Corollary 8.1.15, and Situation 9.3.8 of [39], and
Proposition 4.11 of [38]).

By Theorem 6.2.e of [37] all the irreducible subspaces of XL = ^i/(7q) which is a
minimal principal series (roots of (} in I are real roots of (} in Q and H is split in L) are large.

It remains to show that for G = GL^(R), the functor Ti3 preserves largeness.

Let G be a quasisplit real (linear) group and let TT be an irreducible admissible
representation of G. Then TT is given as the Langlands quotient ^(7) of a standard
module ^(7), where 7 is a character of a 0-stable Cartan subgroup H whose complexified
Lie algebra is (). Let R(^f) be the set of integral roots of () in Q with respect to 7, the
infinitesimal character of ^(7) v/hich we may assume to be regular. Let R^^) be the set
of positive roots in ^(7). By [37], TT is large if (cf. Definition 8.6.5 and Theorem 8.6.6
of [39] and Theorem 6.2.f of [37]):

1) If a G R^^) is a simple non-real root, then Oa G R^f^f).
2) If a G R^^) is a simple real root, then a fails to satisfy the parity condition

defined in Definition 8.3.11 of [39].
3) If a G R^^) is a simple imaginary root, then a is non-compact.
Suppose now that Y is an irreducible subrepresentation of X = V s XL. By Lemma 6.3,

'R8 restricted to the infinitesimal character 7q is exact and carries irreducible representations
to irreducible representations. Therefore there is an irreducible subrepresentation YL of XL
with V = T^YL. As we discussed above (Theorem 6.2.e of [37]), YL is large. Write
YL = X^(7q). Since YL has infinitesimal character 7q, the corresponding regular character
7' for G satisfies (6.3) as 7 and. Y = X(V). We need to check the conditions 1)-3) for
V to be large. Because of (6.3), R^(^) = ^(7q) U ̂ (7'), where ^(7') is the set of
integral roots in u with respect to 7'. Clearly R^^) contains no real roots (u is 0-stable)
and is 0-stable. But simple roots of .R^^), are then those of R^^) plus a subset of
^(7'). It is therefore clear that conditions (1) and (2) above for Y is inherited from YL.
In the case of GLn(K), every imaginary root is non-compact and therefore condition 3)
is empty. The theorem is now complete.
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