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GRASSMANN DUALITY FOR P-MODULES

BY CORRADO MARASTONI

ABSTRACT. - We generalize the main results on projective duality (see [2], [4], [12]) to the case of the
correspondence between "dual" Grassmann manifolds G and G*. The new aspect is that the "incidence variety"
S C G> x G* is no longer smooth, a fact which requires the tools of the theory of 6-functions ([7], [17]). In
particular, we obtain an equivalence between the categories of sheaves on G and G*, as well as between those
of P-modules; then, quantizing this equivalence, we explicitly calculate the transform of a P-module associated
to a holomorphic line bundle. © Elsevier, Paris

RESUME. - Nous generalisons les resultats principaux sur la dualite projective (voir [2], [4], [12]) au cas d'une
correspondance entre varietes de Grassmann "duales" G et G*. Le nouvel aspect est que la "variete d'incidence"
S C G x G* n'est plus lisse, ce qui demande de faire appel a la theorie des 6-fonctions ([7], [17]). En particulier,
nous obtenons une equivalence entre les categories des faisceaux sur G et G*, ainsi qu' entre celles des P-modules;
ensuite, en quantifiant cette equivalence, nous calculons explicitement la transformee d'un P-module associe a un
fibre holomorphe en droites. © Elsevier, Paris
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Introduction

The aim of this work is to extend some properties of the projective duality, i.e. the
natural correspondence between a complex projective space and its dual (see [2], [4]), to
the more general setting of "dual" complex Grassmann manifolds G and G*. The new
aspect in the general case is the non-smoothness of the "incidence variety" in G x G*: an
essential tool in treating these singularities will be the theory of 6-functions (see ([7], [17]).

Let V be a complex vector space of dimension n > 2, and p G Z such that 1 < p < |-.
We denote by G the Grassmann manifold of p-dimensional linear subspaces of V and
by G* the dual manifold of (n — j?)-subspaces; recall that G and G* are complex analytic
compact manifolds of complex dimension N = p{n — p), homogeneous under the action
of G = SL(V).

Integral transforms. - Let gi and q^ be the projections from G x G* onto G and G*.
Any object K of the derived category D^Ccxo*) of complexes of sheaves on G x G*
with bounded cohomology is the kernel of a sheaf integral transform

. o K : D^Ce) ̂  D^CG*), F o K = Rq^q^F 0 K).

Similarly, for any object /C of the derived category D^Pexo*) of complexes of left
P-modules on G x G* with bounded cohomology, one defines a D-module integral
transform of kernel /C

. o /c : D^PG) -^ D^Pe*), Mojc= ̂  (gi-1^^^

where gi~1 and ^2, are the inverse and direct image in the sense of P-modules. The
integral transforms from G" to G are defined in a similar way.

Kernels associated to the transversality relation. - Let

0 = {(x, y) G G x G* : x n y = {0}},

j : n ^-> G x G* the open embedding and S the complex hypersurface complementary
to Q; note that f2 (resp. S) is the open "transversality" (resp. closed "incidence") relation
in G x G*. In the case of projective duality (p = 1), the hypersurface S is smooth. This is
no longer true in the general case, where S admits a Whitney stratification by the locally
closed smooth submanifolds of G x G*

Sj = {(x,y) G G x G* :dim{xny) = j} (j = l , . . . ,p) .

Let us introduce the perverse sheaves

K^ = CQ ^J^CGXG* and K^ = RHom^C^, CcxG*) ^ -KW^CGXG*.
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GRASSMANN DUALITY FOR P-MODULES 461

Using the functor Thorn of Kashiwara (see [11]), we may consider the regular holonomic
P-modules

JC^ = Thorn(K^,OQ^) and /% = Thorn{K^ C G X G - ) .

Observe that /CQ is isomorphic to the sheaf 0GxG*(*5') of meromorphic functions on
G x G* with poles on S, and that /C^ is its dual in the sense of P-modules.

Equivalences of categories. - Using a geometric criterion, we show that the kernels KQ
and K^ (and, through Thorn, also /C^ and fC^) are "inverse" to each other:

THEOREM 1. - The sheaf (resp. T>-module) integral transforms defined by the kernels K^
and K- (resp. /C^ and 1C-) are quasi-inverse to each other, and thus define equivalences
of categories between D^Ce) and D^CG*) (resp. D^Pe) and D^PG*)^ as well as
between the full subcategories of objects with R- and C-constructible (resp. good coherent
and regular holonomic) cohomology.

Quantization. - Let us study the action of these functors on the family of P-modules
associated to holomorphic line bundles. The family of holomorphic line bundles on G is
described (up to isomorphism) by {OG(^) : ^ € Z}, where OG(^) is the -/^th tensor
power of the determinant of the tautological vector bundle on G (in particular, the canonical
bundle ^c is isomorphic to Oe( -n)). Hence one has the family of locally free P-modules
of rank one

W^=VG^OG^):^^I}.

Let A C Z, and set A* = -n - A. Following an approach proposed in [4], we will show
that the image ofV^-X) by the functors' o )C^ o r ' o 1C^ (according to A) is isomorphic
to PG*(—A*). In this direction, we observe that:

(1) The natural isomorphism

a^ :F(G x G*;/C^O)(-A,A*))-^HomDb(^)(PG*(-A*),PG(-A)o/C^),

where /C^°)(-A,A*) = ̂ ((^(-A) 0oo ̂ ) 0^-i^ ̂  ̂ -i^ ^'^(A*),
describes the P-linear morphisms between PG* (-A*) and PG(-A) o /CQ in terms of
twisted global sections of /C^ (one can argue similarly for /C^);

(2) the microlocal correspondence associated to ^

r*G^-5'5'(CQ)-^r*G*

(here the maps j?i and p^ are the natural projections, a is the antipodal map on T*G*
and p^ = a 0^2) induces a contact transformation between two open dense subsets
U C T*G and E7* C T*G* with an open dense subset A C T^ (G x G*) as graph.

The group G acts naturally on G x G* by the diagonal action, and (G; G x G*)
is a prehomogeneous space with open dense orbit 0 (see [17]) with associated
6-function b(s) = (s + 1) • • • (s + p). Using this fact, we find a G-invariant section
^ e HCxC^/C^-A^A*)) (resp. ̂  e r(GxG*;/%W°)(-A, A*)) ) which generates
/Co (resp. /C^) microlocally (i.e. as microdifferential module) on A for any A > -n + p
(resp. A G Z). Then, by Theorem 1 and the theory of [16], we prove that ajc^(s\) (resp.
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462 C. MARASTONI

c^^)) is an isomorphism for any A > -n +p (resp. A < -p), the inverse morphism
being the image of a^{s^) (resp. (^-(^A*)) by the functor - o /CQ (resp. - o /C^), and

^ ^
therefore we obtain:

THEOREM 2. - One has T>-linear isomorphisms:
(i) PG(-A)O/CQ^-PG*(-A*) for any \ > -n + p;

(ii) ^(-^O/C^^-PG^-A*) /ora^ A < -p.

5om^ applications. - In the case of projective duality (p = 1), let P = P71"1^),
P* = P^-^C)* and A C: P x P* the smooth incidence relation. Using the kernel
/C^ = Thom{Cf\[—l}^ Opxp*) ^ BA|PXP*» D'Agnolo and Schapira proved in [4] that
Pp(—A)o /CA <-:— Pp^—A*) for any —n + 1 ̂  A <, —1. From Theorem 2, we obtain the
following generalization with the kernel 1Cs = T/iom(C5[—l],0GxG*)^

^G(-A)o/C5-^PG*(-A*) for any -n+p < A < -L

Moreover, using the adjunction formulas of [3] and [II], we get the following
isomorphisms for any F € D^Cc) and —n -\- p < A < —p:

J;r(G; F 0 OG(A)) ^ OT(G*; (F o C^) 0 OG* (A*))[^V],
J?r(G; RHom(F, Oc(A))) ^ ^r(G*; RHom(F o C^, OG* (A*)))[-7V],

as well as similar isomorphisms when F G D^_^(Cc) with (g) and RTiom replaced
respectively by the functors (g) and Thorn (see [11]). Here, the calculation of the
transform F o CQ is essentially a geometrical problem. For example, let F = CD for
some D C G: then, for any y C G* one has (Cp o C^ c^ RTc{LD(y)', C), where
L[){y) = {x E D : x ny ^ {0}}. We give the following examples.

(1) Let 2^ 7^ 0 be a compact subset of G, and set

D* = {y € G* : x n y = {0} for any x G D}.

Let 5 = G* \ £^. We say (cf. [4, Ch. 5.1]) that D is ^-trivial if (a) RT(D', C) ^ C
and (b) RT(D \ Lp(^);C) ^ C for any y e D. (E.g. take D = {a;o} for some
XQ G G.) Let .D be ^-trivial, and let D* / 0: then .D (resp. D*) is contained
in an affine chart E C G (resp. £* C G*). Since Cp o C^ ^ Cp#, we get the
following isomorphisms:

R^(D^OE)^Rr^D#^OE^[N}
RT^OEW ^ j?r(^;o^),

where all complexes are concentrated in degree zero. This generalizes the results of
Martineau [14] (recovered in this language in [4]) on the "linearly convex" compact
subsets of the complex projective space.

(2) Let H be an Hermitian form of signature (p, n — p) on V, and let U = {x €
G : H\x is positive definite} and £/* = {y 6 G* : H\y is negative definite}; then U
(resp. [/*) is a relatively compact open subset of an affine chart E C G (resp.
£"* c G*). We prove that Cjj- o C^ ^ Cu*, and hence we get

RY(U^OE}^RT^^OE^[N\
Rr^ OE)[N] ̂  ar([/*; o^).
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GRASSMANN DUALITY FOR P-MODULES 463

Moreover, all these complexes are concentrated in degree zero.
(3) Finally, we give a "non-affine" example. Let z be an hyperplane of V, and consider the

embedded Grassmann manifolds G^ = [x G G : x C z} and G^ = [y G G* : y c ^}.
We show that CG, o CQ ^ CG*\G^[-2(^V - p)} and then we get the following
isomorphisms for any —n + p < \ < —p:

RF(G^ OG(A)) ^ ar(G:; Oe* (A*))[-(7V - 2j9 + 1)]
arG,(G;OG(A))^-RrG^(G*,0G*(A*))[7V-2^+l] .

Comments. - Let us recall the main results in the case of projective duality, where
the classical point of view was to consider the natural geometric correspondence between
P = P^C) and P* = P^C)* given by the smooth hypersurface S = A c P x P*.
(In the formalism of kernels, this correspondence is associated to K^ = Cp^[-l} and
/CA = 0A|pxp*-) Brylinski [2] obtained an equivalence of categories for perverse sheaves
on P and P* modulo constant sheaves, as well as for coherent P-modules modulo
flat holomorphic connections. D'Agnolo and Schapira [4] quantized the underlying contact
transformation using a suitable tv/isted form due to Leray [13] and proved the isomorphism
(no more modulo flat connections) of P-modules recalled above. Finally, Kashiwara and
Tanisaki [12] observed that the kernel associated to the open complementary of the
incidence relation and its dual give equivalences between some derived categories of
sheaves and P-modules on P and P* when n = 1.

The main stimulus in doing this work was to understand the ideas and the results of [4]
in the more general situation of Grassmann manifolds. The alternative point of view of [12]
suggested to consider the kernels associated to the open transversality relation, a remark
that was necessary for the study of the general case, and turned out to be useful also for
the basic case of projective duality.

In the real case, similar results in the category of sheaves were obtained using the
transversality relation in Sato-Kashiwara-Kawai [16] for projective sphere bundles and in
Kashiwara-Schapira [10, Ex. III. 15] for real Grassmann manifolds.

The results of this paper have been announced in [15].

Acknowledgments. - My gratitude goes to Pierre Schapira, who introduced me into
the theory of integral transforms for P-modules and directed my research through his
suggestions and criticisms; to Masaki Kashiwara, for his inestimable help in ideas and
explanations; to Andrea D'Agnolo, for various fruitful conversations. Moreover, I would
like to thank the Laboratoire d'Analyse Algebrique of University Paris VI and the Research
Institute for Mathematical Sciences of Kyoto University for their hospitality and support.

1. Reviews on integral transforms for V- and £ -modules

1.1. Notations

We refer to [10] for the theory of sheaves in the framework of derived categories,
to [6] for the theory of P-modules and to [16] for the theory of £ -modules (see also [19]
and [18] for detailed expositions).
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464 C. MARASTONI

Geometry. - Given two manifolds X and V, we denote by r : X x Y —^ Y x X the
canonical map r ( x ^ y ) = { y ^ x ) , and by q\ and q^ the projections from X x Y onto X
and Y. If Z is another manifold, we denote by q^ (resp. 913, 923) the projection from
X x Y x Z onto X x Y (resp. X x Z, Y x Z). We denote by ^ : X -^ X x X
the diagonal embedding 6{x) = ( x ^ x ) , and we set Ax = 8(X). Let TT : T*X —^ X
be the cotangent bundle, ( • ) ° ' the antipodal map of T*X and T^X the conormal
bundle to a smooth submanifold V of X\ in particular, TJ^X represents the zero-
section of T*X, and we set T*X = T*X \ T^X. To a morphism / : Z -^ V of* <•/ <•
real analytic manifolds one associates the morphisms T*X <—X Xy r*y_4^*y ^
local symplectic coordinates (^;$) G T*X and {y\r]) e T*y, one has {x\^Y = (re; -^),
V^rr,/^);^) = {x^ f\x)(r])} and f^{x, f(x)',rf) = (/(re); 97). We denote by pi and ^2
the projections from T*(X x V) onto T*X and T*y, and by p^ (resp. ^13, ^23) the
projection from T*(X x Y x Z) onto T*(X x V) (resp. T*(X x Z), T*(V x Z)).

Sheaves. - Let X be a locally compact topological space, and let Mod(Cx) be the
category of sheaves of C-vector spaces on X. For a locally closed subset A of X,
we denote by CA the sheaf on X whose restriction to A is the constant sheaf with
fiber C and which is zero on X \ A. We denote by D^Cx) the derived category of
complexes in Mod(Cx) with bounded cohomology, and by D^_^(Cx) (resp. DJ^(Cx))
the full triangulated subcategory of D^Cx) whose objects have R- (resp. C-) constructible
cohomology groups. We shall consider the full subcategory Perv (Cx) of perverse sheaves
in D^(Cx). If F <E D^Cx), we denote by S S ( F ) the microsupport of F, which is a
closed conic involutive subset of T*X. The six classical operations in the derived category
of sheaves are RHom^ • , ' ) , • 0 •, Rf^, f~1, Rf\ and /', where / is a continuous map. The
duality functor RHom{', Cx) : D^Cx)015 -^ D^Cx) is denoted by D\ • ) for short.

V-modules. - Let X be a complex analytic manifold. We write dx = dimc{X). We
denote by Ox the sheaf of holomorphic functions, by ^x the canonical line bundle and
by Vx the sheaf of holomorphic linear partial differential operators on X. Let Mod(Px)
be the category of left Vx -modules, and let Modcoh(^x) be the thick subcategory
consisting of coherent objects. We shall consider in Modcoh('Px) the full subcategories
Modgood('Px) of good coherent objects (recall that a coherent Px -module M is good
if it admits, in a neighborhood of any compact subset of X, a finite filtration by
coherent Px-submodules Mk such that each quotient Mk/Mk-i can be endowed
with a good filtration), and MocU(Px) of regular holonomic objects. We denote by
D^^x) the derived category of complexes in Mod(Px) with bounded cohomology,
and by D^^x) (resp. D^^x), D^(Px)) the full triangulated subcategory whose
objects have coherent (resp. good, resp. regular holonomic) cohomology groups. Recall
the operations in the derived category of left P-modules RHom^x{' i ' )^ • ^^bx ' ' L~1

and /,, where / : X —> Y is a morphism of complex analytic manifolds. In particular, if
M G'D^Px) and Af <E D^Py), then

f-l^f=^X^Y^-^f~l^^

f^M = Rf,(Vy^x^M)

where VX^Y and Py^x are the transfer bimodules associated to /. The external product
is MSAf = VXXY ^VX^VY {M ̂  A/'). We denote by D(-) the duality functor
RHom^^^JCx) : D^x) -^ D^Px), where /Cx = ^x ^Ox ^l"1^] is the

4e SERIE - TOME 31 - 1998 - N° 4



GRASSMANN DUALITY FOR ^-MODULES 465

dualizing complex for left Vx -modules, and by S o l { ' ) the functor RT-Lomv^^', Ox) :
D^(Pjc) —^ D^Cx)013 of holomorphic solutions. Moreover, we shall consider the
functors

. 0 Ox : D^(Cx) ̂  D^Px)
Tfaom(., Ox) : D^Cx)015 ̂  D^Px)

of formal and moderate holomorphic cohomology, which allow one to treat C°° -functions
and distributions on a real analytic manifold in a functorial way (see Kashiwara
[7] for T H { ' ) = Thom(',0x) and Kashiwara-Schapira [11] for • |) Ox). Given
^ G ^oh(^)' we denote by char(.A/() the characteristic variety of M, which is
a closed conic involutive subvamety of T*X; recall that char(.M) = SS(Sol(M)). If
Y is a closed smooth complex submanifold of X of codimension d, we denote by
BY\X = R^[Y}(Ox)[d} ^ Tfaom(Cy[—d],(9jc) the regular holonomic Vx -module of
holomorphic hyperfunctions along Y. We denote B^\xxx by 0Ax f01' short.

S-modules. - Let <?jc denote the sheaf (on T*X) of microdifferential operators of finite
order on X, Mod(£x) the category of left fjc-modules, and D^f^) the derived category
of complexes in Mod(£x) with bounded cohomology. Given M € D^Pjc), we denote
by £M = £x ^-ipx Tr"1^ e Db(f^) the microlocalization of M. (In particular, if V
is a smooth complex submanifold of X we set Cyjjc = £BY\X, the sheaf of microfunctions
along V.) We use the same symbol to denote a section s of M and the image of s
by the canonical morphism TT'^-M —^ £M. The external product of M G D^fjc) and
AT G D^y) is .MKI^A/" = <?xxy ^^x^^y (•M ^ A/'). Moreover, given a morphism
/ : X —^ y, one defines the microlocal inverse and direct images as

fW - R'f^x^Y 0^-i^ /.-W),
/^ = RWv^x ̂ -.^ //-1^),

where fx^y and Sy^x are the microlocal transfer bimodules associated to /.

1.2. Kernels for sheaves and P-modules

We recall the language of integral transforms as treated in D'Agnolo-Schapira [3], [4], [5]
and Kashiwara-Schapira [11]. We also recall some results therein that we shall need in
the sequel.

In this section, the manifolds are assumed to be complex analytic and compact.

Kernels. - Let X, Y and Z be manifolds, and let K G D^Cxxv), K ' e D^Cyxz).
One defines the composition K o K ' as

K o K ' = Rq^ {q^K 0 q^K'} e D^Cxxz).

Similarly, let /C G D^Pxxr) and /C' G D^Pyx^). One defines the composition
/C o /€/ as

ICo K! = ^3, (^~1^ ̂ ^ g23-1^') e D^Pxxz).

Observe that these operations are associative.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



466 C. MARASTONI

PROPOSITION 1.1. - Let X and Y be manifolds.
(i) Let K (E D^(Cxxy) and K ' G D^(Cyxz), and assume

(1.1) (5W x T^Z) n (T^X x ^(JU) C Txxyxz(^ x Y x Z ) .

Then one has K o K ' G D^_^(Cxxz)- 7^ same result holds replacing "R — c"
by "C — c".

(ii) L^ /C G D^^xxy) ̂  ̂ / e D^O^xz), and assume

(1.2) (55(/C) x T^Z) n (T^X x 55(/C')) C T^y^(X x V x Z).

TT^n 6W^ has /Co ̂  G D^^Pxxz)- Moreover, the same holds if one replaces
"good" by "rh".

The functor of moderate cohomology. - Let us recall the Riemann-Hilbert correspondence
in the formulation of Kashiwara [8], which allows one to associate to any C-constructible
sheaf a regular holonomic P-module. Let X be a complex analytic manifold, and consider
the functors

Thom{., Ox) : D^^Cx)^ ̂  D^Px),
5o^(.):D^(^)-Db(Cx)op.

THEOREM 1.2. - ([8]) The functors Thom(', Ox) ^^ <5^( • ) are quasi-inverse to each
other, and define equivalences between D^.^Cx)013 and D^(Px)- Moreover, they induce
equivalences between the full subcategoriesPevv (Cx)015 and Modrh(^x)-
Hence, to K G D^_^(Cxxv) o11^ naturally associates /C = Thom(K,OxxY) ^
D^(Pxxv), and one has K ^ Sol(lC) and 5'5(A:) = char(/C).

Some commutation properties. - We observe the following commutation properties for
the operations introduced above.

PROPOSITION 1.3. - ([5]) Let X and Y be manifolds.
(i) Let K G D^(Cxxv) and K ' (E D^(Cyxz). and assume (1.1). Then one has

D\K o K ' ) ^ D'K o D'K'^dy}.
(ii) Let /C G D^^xxr) ̂  ̂  ^ D^ood(pyxz). ^^ a^Mm^ (1.2). Then one has

D(/CoK;') ^ D/CoD/C'.

PROPOSITION 1.4. - ([5]) Let K G D^_^(Cxxr) and K ' G D^_^(Cyxz). ̂ ^ t^ere
is a natural isomorphism in D^Pxxz)-'

Thom{K, Oxxv) £ Thorny, Oyxz) ̂  Thom{K o K ' , Oxxz)[-dy].

PROPOSITION 1.5. - ([5]) Let F G D^_^(Cx). Then, there is a natural isomorphism in
D^x);

Thom{D'F, Ox} ̂  DThom(F, Ox).
Integral transforms. - Let X and V be manifolds. By identifying {pt} x X to X and

{pt} x Y to Y above, one associates to any K G D^Cxxv) a functor

• o K : D^Cx) ̂  D^Cy), F o K = Rq^q^F 0 K},

called the ^/?^<3/ integral transform from X to Y of kernel K. Thus, if Z is another
manifold and K ' e Db(Cyxz), then {F o K) o K ' ^ F o (K o K ' ) in D1:>(C^).

4^^ SfiRIE - TOME 31 - 1998 - N° 4



GRASSMANN DUALITY FOR P-MODULES 467

Similarly, one associates to any 1C C D^P^xy) a functor

• o /C : D^) ̂  D^Py), .Mo/C= q^^M 0^ /C)

called the V-module integral transform from JC to Y of tem^/ /C; as above, given
1C' G Db(Pyxz), one has ( A ^ o ^ o ^ ' ^ A - l o (^o 1C') in D^P^).

From Proposition 1.1 and a well-known result we get

COROLLARY 1.6. - Let K e D^(Cxxv) ̂  1C = Thom^K.Oxxv) e D^(P^xy).
A.S'5'MW :̂

(1.3) 55(JQ n (T*X x T^V) c T^y(X x V).

TT^n;

(i) (/TO D^_^(Cx), then F o K G D^(Cy) fanrf a/w w^/z "R-c" replaced by
" C - c " ) ;

(ii) ;yA^e D^^x), ^^ A ^ o / C G D^^(Py) f^J ^/^ w^/z "g^J" r^/^c^
&^ " r h " ) , and

Sol{Mo)C) ̂  Sol{M) o K[dx}.

Invertible kernels. - When X = Y, the identity transforms are obtained for K = C^
and JC = Thom(C^[-dx},Oxxx) ^ B^. This leads immediately to the following
invertibility criterion, which we shall apply in the next section:

PROPOSITION 1.7. - (see [10, Corollary 3.6.5]) Let X and Y be manifolds.
(i) Let K C D^Cxxv), K ' G D^Cyxx) and assume that K o K ' ^ C^[l} and

K ' o K ^ CA^ [l\ for some I € Z. Then, the functors ' o K and ' o K ' are quasi-
inverse to each other and thus they are equivalences of categories between D^Cjc)
and D^Cy).

(ii) Let 1C G D^P^xy), ^ G Db(Pyxx) and assume that /Co/C' ^ B^ and
/C 'o /Cc^ BAY. Then, the functors • o /C <3nJ • o 1C' are quasi-inverse to each other
and thus they are equivalences of categories between D^P^) and D^Py).

Adjunction formulas. - Let X and Y be manifolds, and let 1C e D\(P^xy) and
^ = <?^(/C) e D^_,(Cxxy). Set

K = r ^ K e D^_,(Cyxx) and ^* = ^r.AT e D^_,(Cyxx).

One has the following adjunction formulas relating the transforms for sheaves and for
P-modules.

PROPOSITION 1.8. - ([4], [11]) Assume (1.3). For any M G D^P^) and G € D^Cy)
there are isomorphisms

ar(X; RHom^ {M, {G o K) 0 Ox))[^x]
^ ar(y;Ji7<om^(A1oK:,G00y)),

ar(X; RHom^ (M, RHom{G o K\ Ox)))[dx]
^ Rr{Y',RHom^{Mo /C,^^om(G,Oy)))[2dy].

Moreover, if G G D^_^(Cy) there are similar isomorphisms with 0 and RHom replaced
w

respectively by 0 and Thorn.
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1.3. Twisted sections and integral transforms of line bundles

In this section we still assume that the manifolds are complex analytic and compact.

Twisted sections and V-linear morphisms. - Let X and Y be manifolds. Given
JC G Modrh(PxxY), we set

/C^°)=/C^-^gr1^.

Let T and Q be holomorphic line bundles on X and Y respectively, and set

/C^°)(^) = gF1^-^ ^dx^ ̂ o. ̂ Q-

PROPOSITION 1.9. - ([4]) For any A4 G D^Dx) one has a natural isomorphism in
D^Py)

Mo)C ^ Rq2^qllM^^^dx^)'

The following proposition provides a description of the Vy -linear morphisms between
VQ and P^o /C in terms of twisted sections:

PROPOSITION 1.10. - ([4], [5]) There is a natural isomorphism

ajc : H°Rr{X x y;/^'0^^*)) ^->HoniDb(^)(P0,P^o /C).

Hence to any section 5 e H°Rr(X x V; /C^'0^, ̂ *)) one can associate a morphism
OK;(5) : VQ -^ V^olC in D^Py).

In particular, let X = V, /C = £?Ax an^ JF a holomorphic line bundle on X. By
Proposition 1.10 one gets a natural isomorphism

(1.4) a^ : F(X x X;^0^^*)) —> EndD.(p,)(P^).

We denote by 6x^ € F(X x X; B^'0^^^*)) the canonical section corresponding
to idpjF.

Composition of sections. - Let X, Y and Z be manifolds, 1C G D^^xxv) and
/C' ^ DbQQd(Pyxz). There is a natural C-linear morphism

(1.5) q^)C 0 q^^^ -^ VXXZ^XXYXZ ^xrxz (9l2~l/c ^xxrxz ^3-l^/)•

Assume that /C G Mody./,(Pxxy) and /C' e Mod^(Dyxz), and let '̂, Q and ^ be
holomorphic line bundles on X, V and Z. From (1.5) one gets a composition morphism

(1.6) . o . :HOR^(XxY^^dxJO\^^^)(S)HOR^(YxZ',JC^dY-o\GW)
-^ H°Rr{X x Z; (/Co /C')^0^^*)).

REMARK 1.11. - In the regular holonomic case, one can construct the above morphism
also with the functor Thom(',0), using Proposition 1.4 and the Leray-Grothendieck
integration morphism

T-) /r»(0,dy,0) //-» r 7 -l
^is^xxyxz ̂  ^xxzl-ayj.

4® SERIE - TOME 31 - 1998 - N° 4



GRASSMANN DUALITY FOR P-MODULES 469

The composition (1.6) is compatible with the isomorphism a:

PROPOSITION 1.12. - ([4]) Let s (E H°Rr{X x V;^^50)^^*)), t C H°Rr(Y x
Z;/^^'0^,?^*)), and denote by a^{s)o 1C' the image of the morphism a^{s) by the
functor ' o 1C'. Then one has

(a/c(5)o/C') oajc'W ^ ajc^jc^sot)

as Vz-linear morphisms from VH to " D T o (/Co A7).
In particular, we shall be concerned with the following special situation.

PROPOSITION 1.13. - Let 1C G Mod^(Pjcxy), /C' ^ Mod^(Pyxx), ̂  Q holomorphic
line bundles on X and Y respectively, s e F(X x V; /C^'0^, C?*)) anJ t G
r(V x X;/^'0)^^*)). Suppose that:

(i) K:o /C' ^ 2?Ax ^ J C ' o J C ^ B^\
(ii) 5 0 ^ = = ̂  ^- anJ ^ 0 5 = = SY,G (up to a nonzero multiplicative constant).
Then the morphisms

ajc(s) : VQ -^ T>^o 1C and a^{t) : VT -^ VG o 1C1

are isomorphisms (in particular, V^o 1C and VQ o 10' are concentrated in degree zero).

Proof. - By (1.4) and Proposition 1.12 we have (up to a nonzero multiplicative constant)

(ajc' (t) o /C) o ajc (s) = OQ (t o s) = id T>Q '

For the same reasons, we have (ajc{s) o /C') o ajc'(t) = a^(s o t) = idpjr. Applying
the functor • o /C, we get ajc(s) o (ajc'(t)o JC) = id^c^jc, and hence a^'{t}o 1C is a
two-sided inverse of ajc(s). One argues similarly for a^(t). D

1.4. Microlocal sections

Here we microlocalize the preceding construction, using some results of Sato-Kawai-
Kashiwara [16] and Kashiwara-Schapira [10].

We still assume that the manifolds are complex analytic and compact.
Let X, V and Z be manifolds, /C e Mod^(Pxxv), ^' e Mod^(Pyxz),

W = char {1C) and IV' == char (10'). Let ̂ ', ^ and U be holomorphic line bundles on X, V
and Z, and let 5 e H^RT^XxY^tC^^^.Q^) and^ e ̂ AnyxZ;/^'0)^^*)).

Composition of Lagrangians. - Let A (resp. A') be a Lagrangian submanifold of W
(resp. W). In [10] the composition of Lagrangians is described in a set-theoretical way, as

(1.7) A o A' - pi3(A X^Y A') C T*(X x Z),

where • x^y • denotes the fiber product with respect to the projections p^ : T*(X x V) —^
T*y (i.e. ^2 composed with the antipodal map a on r*V) and pi : r*(Y x Z) -> T*y.
In the smooth case, one has:

PROPOSITION 1.14. - ([10, Lemma 7.4.1]) Let A and A' be smooth Lagrangians, and
suppose that

(1.8) J^|A : A -> T*y and p^' : A' -. T*V are transversal.
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Then A o A' is a smooth Lagrangian.

Microlocal composition. - Let Sy : X x Y x Z —^ X x Y x Y x Z be the diagonal
embedding. One defines the microlocal composition of /C and K1 as

f/Co^C' = q^ ^(f/C^f/C') € D^fxxz).

PROPOSITION 1.15. - ([5]) Assuming (1.2), on^ has an isomorphism in D^fjcx^)

f/Co^'^^/Co/C') .

The composition morphism (1.6) can be microlocalized. Set

f/C^0)^*) = Tr-1^-1^^ »x) ̂ -i^-ox f/c ̂ -^-1^ ^~1^1^*.

We look at s and t as globally defined microlocal sections, i.e. s G H°RT(T*(X x
y);<SX^°)(.F^*)) and t G H°RT(T^Y x Z);<?/C'^°)(^*)).

Let [/x (resp. (7y, £/z) be an open subset of T*X (resp. T*y, T*Z) and set

Wu = w n (i^x x r*Y) and ^ = W n (r*y x Uz\
Let us suppose that Wu and W^ are smooth, and consider the restrictions s\wu ^
H^RT^Wu'^^^^.Q^} and t\wf, e H^RTiW^eiC'^^^GWY

PROPOSITION 1.16. - ([I], [10]) Assume (1.2), (1.8) and

(1.9) Wu C Ux x E/^
(1.10) pi :Wu -^ Ux is proper,

and the analogous conditions (1.9)' W{j C Uy x U^ and (1.10)' p^ : W{j -> Uz is
proper. Then:

(i) there is a ^ell-defined microlocal composition

. o^. :HOR^{Wu^)C{dx-o\J^,G^)^HOR^{W^£1C/{dY-o\QW)
-^ H°Rr(Wu o Wu',£{)Co K;')^'0^^^*));

(ii) one has

^Wu 0^ AW, = SO t\WuoW.(1 ^\W^ — o ^ ^\WuOWu1

where s o t is the composition (1.6).
We will not enter into details about these facts. We just mention that, since our kernels are

regular holonomic, then the statements follow from analogous statements for the perverse
sheaves K = Sol{JC) and K ' = Sol{1C'} by means of the microlocal analogous T^hom
of the functor Thorn, due to Andronikov [1] (e.g. one has £)C ^ Tfihorn^K^ Oxxv))' In
particular, using Proposition 1.15, the claim (i) follows from [1, Proposition 3.3.12], and
(ii) from an application of [10, Proposition 7.1.2] to the functor T^ihorn.
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Quantised contact transformations. - In the above situation, let Z = X, T-i = T,
Uz = Ux, A a smooth Lagrangian submanifold of W, W = W = trf'~l(W) and
A' = A == tr/~l{A). Assume the following:

(1.11) (W x T-xX) H (T^X x W) c T^y^X x Y x X)
(1.12) the maps pi\A '' A —^ Ux and J^IA : A —^ E/y are isomorphisms
(1.13) p^(Ux)=pa,-l(UY)=A.

(In other words, (1.12) says that A is the graph of a contact transformation p^\\ o pi\^1

between Ux and Uy, and 1.13) means that there is no "interference" of W \ A over
Ux and ?7y.)

PROPOSITION 1.17. - Let A° = A o A, and assume (1.11), (1.12) and (1.13). TT^z;
(i) A° is a smooth Lagrangian submanifold ofT^^ (X x X). Moreover, the composition

S\A o^ t\^ is a ^ell-defined section of ffoJ^^(AO;f(K:oK; /)<dx 'o)(J•^*)) and
coincides "with s o t\^o\

(ii) if s\\ generates £)C on A and t\. generates £KJ on A, then the section s\^o^t\^
generates £(JCo J C ' ) on A°.

Proof. - (i) A° is a Lagrangian submanifold of T^ {X x X) since A and A are graphs
of contact transformations, and is smooth by Proposition 1.14, since (1.12) implies (1.8).
Conditions (1.19) and (1.10) are satisfied since Wu = A and W[j = A by (1.12) and (1.13),
and (1.11) is nothing but (1.2). Then we may apply Proposition 1.16. The claim (ii) follows
from the theory of [16]. D

2. Invertible kernels associated to an open relation

Following an idea of [12] (already introduced in [16] and [10, Ex. III. 15] in the real
case), we introduce a pair of kernels defined by an open relation between two manifolds,
and we study necessary geometrical conditions for their invertibility.

2.1. A geometric criterion

Let X and Y be real analytic compact orientable manifolds of the same dimension n,
0 an open subanalytic subset of X x Y. Set 0 = r(0), and denote by j (resp. j) the
embedding of 0 into X x Y (resp. of 0 into Y x X). For any x G X we set

^ - - { y e Y : { x ^ y ) ^ f l } c Y ^

and similarly for y G Y. Let us consider the kernels

(2.1) K^ = C^ = xT'Cxxr e D^(Cxxv),
(2.2) K^ = D'C,, ̂  Rj.r'CxxY C D^_,(Cxxy).

Following a suggestion of M. Kashiwara, we shall give a geometric criterion which
ensures that

K^ o K^ ̂  CA, [-n] and K^ o K^ ̂  C^ [-n].
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We shall consider the following geometrical hypotheses.

(2.3) X is simply connected;
/9 A\ prm . r ^ - J ° for x ^ xl •(2.4) MX^C^,)-^ ^^, -
(2.4) SS(C^) H (T^X x T*y) C T^y{X x V),

and the similar conditions (2.3)', (2.4)' and (2.5)' obtained from above by interchanging X
and V.

REMARK 2.1. - We observe the following facts.
(i) Let x / x ' \ then, applying the functor I?r(f^; • ) to the exact sequence

0 —> C^n^/ —^ CQ, —^ CQ,\^, —^ 0,

one sees that (2.4) is equivalent to requiring that the natural morphism

i?r(o,; c^) ̂  ar(o, \ a,/; c^\^)
is an isomorphism.

(ii) (2.5) implies (1.1) for Z = X, K = K^ and K ' = K^ since SS{K^) =
^SS^K^. (Recall that, if F e D^(Cx), then SS(DfF) = ^(F)0.)

LEMMA 2.2. - A^Mm^ (2.3), (2.4), and (2.5). TT^n

K^oK^^C^[-n}.

Proof. - We set

C = ̂  o ̂  = Rq^.C^ Co = -D'C^^ 0 C^xx.

Our first aim is to prove that C\u = 0, where U = (X x X) \ Ax. Let [ x , x " ) G (7 (i.e.
rr / x'\ and consider the diagram

{ x } x Y x { x ' } ̂  X x V x { ^ } -^ X x Y x X

^[ . , -4^'^i . ^i 913.
{^ }x{^} ^ X x { ^ } ^-^ X x X .

Sometimes we shall identify {x} x Y x { x ' } with Y.

LEMMA 2.3. - Let X and Y be real analytic compact manifolds, U a subanalytic open
subset of X x X, Co G D^(Cxxrxx) and C = Rqi3\Co G D^(Cxxx). Then
C\u = 0 if and only if RTiY'^^C^ = 0 for any { x , x ' ) G U.

Proof of the lemma. - First note that, if Z is a real analytic manifold and F G D^(Cz),
one has F = 0 ^ DF =-- 0 (where DF = RHom{F,ujz) and ujz = orz[dz\ is the
dualizing complex) ̂  i^DF = Di[F = 0 for any z C Z ^ i[F = 0 for any z G Z. In
our case, let us first suppose that U == t/i x U^ for some open subsets (7i and ̂  of X.
Then we have that C\u = 0 ̂  (%^ o %(^/^))(7 = i[^^^'C = 0 for any { x , x ' ) ^ U ^
i^,C = 0 for any x ' e U^ ^ ^'^x10 = \^x^x' ^131 Co = 0 for any [ x , x ' ) e ?7
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^ ^(^''a"))!^l,,)^'C° = ^rO^,1,,)^) = 0 for any ( x , x ' ) e U (for the last
equivalence, note that the projections are proper and the square diagrams are cartesian).
As for the general case, it suffices to note that U is covered by open subsets of the form
U\ x U-i. The lemma is proved.

Therefore, let us verify that RT(Y-^,^,C^ = 0. We have:

^,Co ^ ̂ ,RHom(C^^, Cnxx) (by (2.5))

^ R'Hom(^:;,lC^^, 4,'Cnxx) (as a sheaf on X x Y x X)
^ RHom^i^C^^C^x)

^ RHom{Cxx^,, Cn) (identifying X x Y x { x ' } to X x V)
^ D'Cxxn,, ® Co (by (2.5)).

Then we get

^(^ ̂ ^L'Co) ^ RT(Y; D'C^, 0 Cn.) (identifying {x} x Y to V)
^RF^D'C^,)
^ Rr(^; C^, Y[-n\ (by Poincare duality),

where ( • ) * = Hom(.,C), and therefore RT{Y-^,^,C^ = 0 by (2.4). Thus the
support of C is contained in A^-, and hence

C ^ C ® CA^

= Rqw. (D'C^^ ® Cnxx) ® CA^

^ ^gi3! (-D'C^^ 0 C^xx 0 C(^xy)x^x)

^^^(^C^^^Cnxxx).

Now, SS(C^^) = T^X x V-^CQ) and SS(C^,x) = SS(Cn) x^ T^X (we
mean that the fiber product over T*X is made with respect to the natural projection and
the antipodal map): hence, by (2.5) we have SS{C^^) D SS(Cnxxx) C T^^y(X x Y),
and we get

C ^ RqiyR-Hom{C^^,C^^x),

Since 0 Xjc X is a closed subset of X x 0, we obtain

C ^ <7i3!CnxxX ^ R6\Rqv.Cn.

Since gi is proper, we have SS{Rq^Cn) C ^^^^-^^(Cn) = ^^^^-^^(Cn) n
{T*X x T^Y)), and thus SS(qi,C^ C T^X by (2.5)\ In other words, Rqv.Cn is
locally constant on X, and hence constant by (2.3). Let x e X: since (Rqv.Ca)^ c±
-Rrc(Oa,;CnJ ^ ^r(^;CnJ*[-TO] ^ C[-n] by Poincare duality and (2.4), we get
Rqv.Ca ^ Cx[-n\, and thus C ^ C^^[-n\. Q
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2.2. The complex case

Let X and Y be complex analytic compact manifolds of the same complex dimension
n, and let 0 be an open subset of X x Y such that the complementary closed set
S = {X x Y) \ 0 is complex analytic (in particular, 0 is subanalytic). Then, the kernels
introduced in (2.1)-(2.2) have C-constructible cohomology groups. Therefore, by the
Riemann-Hilbert correspondence, we have the associated P-module kernels

(2.6) /C^ - Thom(K^ Oxxv) e D^(Pxxv),
(2.7) /% == Thom{K^ Oxxr) e D^(Pxxv).

THEOREM 2.4. - Assume (2.3), (2.4), (2.5) and (2.3)', (2.4)', (2.5)'. Then:
(i) the functors

. o K^ : D^Cx) ̂  D^Cy) anJ • o^ : D^Cy) ̂  D^Cx)

<3r^ quasi-inverse to each other, and thus they define equivalences of categories
between D^Cx) and D^Cy). Moreover, they induce equivalences between
D^-c(Cx) and D^_,(Cy), as well as between D^_,(Cx) and D^_,(Cy);

(ii) the functors

. o /Q, : D^Px) -^ D^Py) ^nrf • o /C^ : D^Py) ̂  D^Px)

ar^ quasi-inverse to each other, and thus they define equivalences of categories
between D^Px) and D^Py). Moreover, they induce equivalences between
D^ood(^x) and D^(^)- ̂  ̂ ll as between ̂ rh^x) and D^(Py).

Proof. - We have K^ o K^ ^ C^ [-2n] and K^ o K^ ^ C^ [-2n] by Lemma 2.2.
Then, by Proposition 1.4 we obtain /C^o /C^^ B^x and 1C-0-K'^ ^ B^Y' Finally, we
apply Proposition 1.7 and Corollary 1.6.

3. Grassmann duality

Let us apply the abstract construction above to the case of a pair of "dual" Grassmann
manifolds of a fixed complex vector space.

3.1. Perverse sheaves associated to the transversality relation

Let n and p be positive integers such that n > 2 and 1 < p < n/2, and let V be a
n-dimensional complex vector space. We set

G = {x : x is a p-dimensional subspace of V},
G*= {y : y is a (n - p) -dimensional subspace of V},
n={ (^ )GGxG* : x n y = { 0 } } ,

S = (Gx G*)\«.

In other words, G is the Grassmann manifold of p-subspaces of V, G* is the "dual"
Grassmann manifold of (n — j?)-subspaces (which is canonically isomorphic to the
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Grassmann manifold of j?-subspaces of the dual vector space V*), 0 is the open
"transversality" relation in G x G* and S is the "incidence" relation, a closed complex
hypersurface of G x G*. We denote by j : ^ ̂  G x G* the embedding, and by ?2, S
and J the similar objects in G* x G. Recall that G and G* are both complex analytic (in
fact, also algebraic) compact manifolds of dimension N = p{n — p).

Group actions. - The grassmannians G and G* are homogeneous manifolds under the
natural action of the complex Lie group G = SL(V), whose associated Lie algebra is
Q = sl(V) = [a G Endc(V) : tr (a) == 0}. The group G acts naturally also on G x G* with
the diagonal action g{x^ y ) = ( g x ^ g y ) , and the set of G-orbits is {^2, 5i , . . . , 5p}, where

(3.1) S, = {(x, y) G G x G* : dim{x H y) = j } (j = 1 , . . . ,p)

is a locally closed smooth submanifold of G x G* (with codmiGxG*5j = J 2 ) ' ' m particular,
note that (G,G x G*) is a prehomogeneous space (see [17]) with open dense orbit Q.
Similar considerations hold for the diagonal action of G on G x G, where the G-orbits
are {{x,x') G G x G : dim(x D x ' ) = j} for j = 0 , . . . , p (in particular, for j = p,
one obtains Ac).

Homogeneous coordinates. - Let us consider the manifold of p-frames in V

Fp(V) = {v = (^ i , . . . , Vp) G ̂  : ^i A . . . A Vp ^ 0},

an open dense subset of Y23 ^ C^ (e.g. Fi(V) = V \ {0}). There are GLp(C) -bundles

^^ q:Fp(V)^G, q(v)= (v^...,Vp),
{ ) 9* : F,(V^ - G*, g*(^*) = (v^..., v^.

We introduce a system of Stiefel (resp. dual Stiefel) coordinates [$] on G (resp. [77] on G*),
i.e. a system of GLp{C) -homogeneous coordinates on Fp(V) (resp. on Fp(V")). In other
words, fixed any basis { z ? i , . . . ,z^} of V, the matrix ^ G Mp^(C) is associated to the
j?-subspace x of V spanned by its p row vectors ( ^ i , . . . , ^p), while 77 G Mn,p(C) denotes
the {n — ^)-subspace y of V orthogonal to the p-subspace of V* spanned by the p column
vectors (771 , . . . , rjp) of 77 in the dual basis {v^,..., v^} of V*. It is clear that

(i) these coordinates satisfy the homogeneity conditions [A^] = [^] and [7?A'] = [77]
for any A, A' G G£p(C);

(ii) If x = [^] and y = [77], then for any g G G one has ^rc = [^] and gy = t^"^]
(note that g^rj = t(t7/^-l)).

Geometry. - We observe the following geometrical facts.
(1) The closed complex hypersurface S is the set of zeros of the homogeneous equation

in G x G*

(3.3) /(:r(0^(77)) = det(^),

where ^77 is the usual product of matrices; observe that

f(A^ r ] A ' ) = (det A)(det A')/^ rj) for any A, A' G G^(C),

and that / is G-invariant (for the diagonal action on G x G*), i.e.

f{gx, gy) = f(x, y) for any x G G, y G G* and g G G.
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(2) A subanalytic stratification of S is given by S = IJ^Li ^ j '
(3) The projections

q^\Q : Q -^ G, ^IQ : ̂  -^ G*

have affine fibers. Namely, let re G G and fix any basis in V such that x = [lp,0],
where lp is the identity matrix of GLp(C): then, setting f^ = {^/ G G* : (a;, ^/) G f^},
one has

^ =^^]:MGM,-^(C)^C7V.

Kernels associated to Q. - The open subset 0 of G x G* defines integral transforms
between G and G* by means of the kernels introduced in (2.1) and (2.2):

K^ = C^ = j.r^GxG* and ^ = D'C^ ^ RJ^CG^ .

Since fl is the complementary of a closed complex hypersurface, the kernel K^ is
a perverse object of D^CexG*) (see for example Kashiwara-Schapira [10, ch. X]) and
hence so is K^ by duality. By the Riemann-Hilbert correspondence, we get the associate
regular holonomic P-modules

JCfl = Thom(K^OQ^) and ^ = Thom(K^OQ^).

REMARK 3.1. - By definition of Thorn, the sections of /CQ are the meromorphic functions
on G x G* with singularities along S (i.e. /CQ ^ OGXG* (*^) m the more classical notation
of Appendix A), and /C^ :̂  D/C^ by Proposition 1.5.

REMARK 3.2. - For p = 1 one obtains the projective duality between a complex (n - 1)-
dimensional projective space P and its dual P*. In this case, 5' is a smooth hypersurface
of P x P* (see [2], [4]).

3.2. Microlocal geometry

In order to study the microlocal geometry of our correspondence, we use the action
of the group G.

Group actions and microlocal geometry. - Let X be a complex analytic manifold
with a transitive action of a simply connected complex Lie group G with Lie algebra
Q. Let Q x TX -^ TX be the tangent action and p : T*X -^ g* be the moment
map. Since the G-action on X is transitive, T*X is identified to a subset of X x 0*
by the map (TT,/?). Let Y be another complex analytic manifold with a transitive
G-action, and let 5' be a smooth G-orbit in X x Y for the diagonal action. One
has T^X x V) ^ T^X x Y) ^ T*X x T*y, and T*X x T*y is embedded in
{X x V) x (fl* x 0*) by the map ^X^Y.PX.PY\ Let p = (x,y^,rj) G T*(X x Y)
with $,T/ e s*: recalling that the pairing T(X x V) x T*(X x Y) -^ C is related to the
pairings TX x T*X ̂  C and TY x T*y ̂  C by ((^w); (^y?)) = (^) + (w,^), we
observe that p G T^(X x Y) if and only if (x,y) G 5 and rj == —$.
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In our case (where G = SL(V), Q = s\(V), X = G and Y = G*) the above
considerations lead to the following useful identifications, where we identify g* with g
by the Killing form:

(3.4) TG ̂  {(a-; 0 : x € G, ^ e 5l(V), a- C ker(Q, im (Q C a;}
^ {(a;; a) : a; £ G, o- G Home (I:, a;)},

TG* ̂  {(y;r)) : y e G*, r, e sl(V), y C ker(»?), im (?7) C y}
^ { (y ; /3 ) :2 /GG* , /?e Hornet, y)},

r^.(G x G*) ̂  {(a-,y;a,/?) : (x,y) e ̂ , 3 7 e Homc(^,a-n y)

^•"^-^^^•^y^^ /^-^^^ny^y}
^ {(a;,2/;7) : {x,y) € S,, 7 (= Homc(^,a; n y)l,

and the projections from T^ (G x G*) on T*G and T*G* are given by

pi:r^.(GxG*)-r*G, p^y,^={x;a:^^^^xny^x),
(3.5)

^ : T^.(G x G*) - T*G*, p^x^) =(y^:^^^^xny^y)^

where z -^ ̂  and -^ -^ ̂  (resp. a; H ?/ ^ rr and a: H y ^ y) are the natural
projection (resp. injection) maps.

REMARK 3.3. - With these ide-ntifications, one can easily prove that the stratification
S == [fj^Sj satisfies the /^-condition (see [10, Definition 8.3.19])

(r^.(G x G*) + r^(G x G*)) H T,-\S,) C r^(G x G*) for any 1 < j < k < ̂

and hence is a Whitney stratification of S.

Microlocal G-actions. - The G-actions on G, G* and G x G* induce also
natural G-actions on T*G and T^ .(G x G*). In the description above, one has e.g.
g(x,a) = (gx.ga) where ga G Homc(-^c) is defined as follows: the isomorphism g
induces natural isomorphisms g / G Hornet, x) and g " G Romc(x,gx), and one sets
ga = g " o a o g ' ~ 1 . It follows that the G-orbits in T*G are

{Or; a) G T*G : rank (a) = j} (j = 0 , . . . ,p}

and the G-orbits in T^ .(G x G*) are

{(^;7) e T^.(G x G*) : rank (7) = 1} (I = 0,... J).

One argues similarly for T*(G x G): in particular, the G-orbits in T^ (G x G) ^ T*G
are {(x,x',a, -a) : x G G, a G Homc^aQ, rank (a) = j} (j = 0, .°. ,p).

The b-function associated to f. - We have just observed that (G,G x G*) is a
prehomogeneous space. Let us compute the associated 6-function bf{s) (see Appendix A).
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(V
Since the problem is local, we choose local coordinates ( l p , a ' , a " ) in G and b'

vw
in G* (where a" ,b" G Mp(C), a' <E Mp^_2p(C) and 6' C M^_2p,p(C)). The function
J(^?7) becomes

(3.6) f ( a ' , a " , b1\ b") - det(6" + a'b' + a").

By means of the change of variables

(a', a " , b^ b") ̂  (a', a", 6'J"), ^(a', a", b\ b") = b" + a'b' + a",

one has f [ a ' ^ a " ^V ^ b " ) = det^"), and hence we are locally in the situation of the
determinant function in X = Cp (see Proposition A.6). Hence we have

(3.7) ^(5)=(5+1). . .0,+^).

The characteristic variety. — Set

W =-- SS(C^) = char (/C^) C T*(G x G*).

PROPOSITION 3.4. - One has

(3.8) W := T^(G x G*) U |j T^.(G x G*).
j=i

Proof. - The inclusion C holds since the S j ' s form a Whitney stratification of S (see
Remark 3.3); on the other hand, by (3.6) the prehomogeneous space (G, G x G*) is locally
isomorphic to {GLp^C}^^ ) (where the invariant function is the determinant), and then
the opposite inclusion follows from the the theory of [17] since (GLp(C), CP ) is regular
and the conormal bundles to the orbits are good Lagrangians (see [9]). D

The irreducible components of W are

AP^XC^X^

A,=T^.(GxG*)={(^;7) : (^) G U .̂5,, 7 e Homc(^^n^),

rank7 < j } (j = I,...,;?- 1),

A,=T^(GxG*).

Therefore (see Appendix A) the local ^-functions on the A/s are

(39) &Ao (.)=!,
b ^ ( s ) = ( s + l ) - - - ( s + j ) ( j= l , . . . ,p ) ,

The contact transformation. - The microlocal correspondence associated to our
transforms is

(3.10) T*G^-W^T*G*
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(recall that p^ denotes the composition of ^2 with the antipodal map a of T*G*). Let us
consider the open dense subsets

U = {(a:; a) G T*G : rank a = p} C T*G,
(3.11) [/* = {(^/;/?) e T*G* : rank/3 = p} C T*G*

A = {(^;7) ^ ̂ (G x G*) : rank7 -p} C T^(G x G*).

Note that A is a G-orbit in T^(G x G*).

PROPOSITION 3.5. - Conditions (1.11), (1.12) and (1.13) are satisfied in our case.

Proof. - This follows easily from (3.8), (3.4) and (3.5). D

EXAMPLE 3.6. - In the case of project! ve duality, the microlocal correspondence (3.10)
induces a globally defined contact transformation between T*P and T*P*, since
A = T^(P x P*) (see [4]). The 6-function is bf(s) = 5 + 1 .

In particular, by Proposition 1.17 (i), A° = A o A is a smooth Lagrangian submanifold
of TIJG x G*). In fact, A° is the open dense G-orbit in T^(G x G*):

Ao ^ {(x,x',a,-a) : x G G, a e Homc^,^), 3y e G*

(3.12) s . t x c y ^ 37Glso(^.r) : a : ^ ^ ^ ^ x }

== {(.r,rr; a, —a) : x G G, a G Homc(-^-,a:), ranka = p}.

3.3. Equivalences of derived categories

We show that the geometric hypotheses for the invertibility of K^ and K^ are fulfilled
in this case.

LEMMA 3.7. - The triplet (G,G*;^) satisfies hypotheses (2.3), (2.4), (2.5) and (2.3)',
(2.4V, (2.5)'.

Proof. - The hypotheses are symmetric in G and G*; hence it is enough to check
(2.3), (2.4) and (2.5).

Condition (2.3) is clearly verified.
In the above description (3.4) of T^ .(G x G*), notice that if a = 0, then 7 = 0 and

then also (3 = 0. Thus,

T^.(G x G*) n (T^G x T*G*) C T^(G x G*)

for any j = 1,... ,p , and hence (2.5) is satisfied thanks to (3.8).
Finally, in order to prove (2.4), let x , x ' e G with x ^- x'\ in general, we have

dim(a; n x ' ) = j with 0 < j < p - 1, and hence let us choose a basis { ^ i , . . . , v^} of V
such that x = { ^ i , . . . , Vp) and x ' = ( v i , . . . , Vj, V p ^ , . . . , v^p-j)' In Stiefel coordinates,
we have

( l j 0 0 0\ , , /L 0 0 0\
"(o 1,_, 0 o) and — — ( o 0 !„_, 0>
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where the orders of the row blocks are j and p - j, and the orders of the column blocks
are ^ P ~ 3. P ~ 3 and n - 2p + j. On the other hand, f^ is an affine chart of G* (and
hence .RT(^; CoJ ^ C): in terms of dual Stiefel coordinates, we have

f (1J ° \\
^={y(b)= ° \-3 \^CN^

oi 03 [
[ \^ ^ ) }

where the orders of the row blocks are j, p — j, p — j and n — 2p + j, and the orders of
the column blocks are j and p — j. Thus, we have ^a; \ !T /̂ = {y(b) e ̂  : dei(b^) = 0},
a closed conic subset of f^. Therefore we have Rr(Slx \ ̂ o^ CQ^\^,) ^ C, and hence
JZr(^a.; Cf^,) = 0. The proof is complete. D

THEOREM 3.8.
(i) The functors • o K^ and ' o K^ are quasi-inverse to each other, and thus they define

equivalences of categories between D^Ce) and D^CG*). Moreover, they induce
equivalences between D^(CG) and D^_^(CG*) as well as between D^_^(Ce)
and^_^\

(ii) Similarly, the functors ' o /CQ and ' o /C*- are quasi-inverse to each other, and thus
they define equivalences of categories between D^Pe) and D^PG*)- Moreover,
they induce equivalences between D^^(PG) and D^^PG*) as well as between
D^(PG) andB^D^

Proof. - This is a consequence of Lemma 3.7 and Theorem 2.4.

REMARK 3.9. - One has char (K,^o)C^) C W o W (see (1.7)), where W = char (^)
^-^- ^

and W =* ^^(TV) = char (/Ct). In fact, this is a bad estimation in our case (due to the
non-smoothness of W), since one can compute that

WoW ^ [ ( x , x ' ^ } : x , x ' G G , 5eHomc(^7^nrr')} C T*(G x G)

whereas char(/Coo /Ct) = char^Ae) = ^AG^ x (^) ^Y Theorem 3.8.

3.4. Quantization

In this section we want to describe concretely the action of the quasi-inverse functors
• ° K'0 and • o /C^ on a certain class of locally free P-modules. More precisely, we
consider the P-modules T><Q 0e^ T associated to a holomorphic line bundle T on G.

The holomorphic line bundles on G. - It is well-known that the Picard group Pic (G)
of G (i.e., the set of isomorphism classes of holomorphic line bundles on G endowed with
the operation 0og) is isomorphic to Z. In fact one has

P i c ( G ) = { 0 G ( A ) : A 6 Z } ,

where 0^(\} is the holomorphic line bundle on G whose sections over an open subset U
are (see (3.2))

r([/;0G(A)) = {s C Y{q-\U^O^v)) : s(Av) = (detA)^(^) VA e GL^(C)}.
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REMARK 3.10. - One has OQ ^ OG(O), ̂  ^ O^-n) and OG(A)* ^ Oc(-A) for
any A G Z. Moreover, OG(-I) is the determinant of the tautological holomorphic vector
bundle of rank p on G, i.e. the subbundle of G x V whose fiber over x G G is the
j)-vector space x C V itself.

A generalisation of Le r a y ' s form. - Since ^e ^ OG(-^), there is a natural isomorphism
of holomorphic line bundles (determined up to a nonzero multiplicative constant)
^G ^OG^^W —^ ^G, which holds in particular at the level of global sections:

F(G, ̂ c ̂ oMn)) -^ r(G, Oc) ̂  c.
Hence we get a nowhere vanishing section

(3.13) ^ G F(G^G ^e0G(n)),

which generalizes in a natural way the twisted form (see Leray [13])
n-l

^P = £(-1)^- ̂ o A ... A ̂  A ... A d^_i G F(P, Qp 00p0p(n))
j=o

on the complex projective space P 3 [$o,. • . , ̂ n-i] when p = 1.

Quantisation. - Let us set

A* = -n - \.

To any OQ^X) one associates the locally free VQ -module of rank one

PG(A)=^G^OG<W),

and similarly for G*. Our aim is to show that the image of PG(-A) by the integral
transforms ' o JC^ or • o )C^ (according to X) is isomorphic to PG*(-A*). An initial
remark is the concentration in degree zero of these transforms (this will also follow later
by other methods, using Proposition 1.13).

PROPOSITION 3.11. - For any p. ̂ 1 the VQ.-modules VG^O 1C^ and VG^O )C^ are
concentrated in degree zero.

Proof. - It is convenient to work in the algebraic setting. Let Gal be the algebraic
manifold underlying to G, 0^ the structural sheaf, f^ the canonical sheaf and P^
the sheaf of linear algebraic differential operators on Gai. The canonical morphism of
C-ringed spaces G —^ Gai defines a canonical functor (')an '• D^P^) —^ D^Pe).
Since PG^O/C^ ^ (^(^2 ̂ )an, where /C^ ^ .M-^xG* (recall that /C^ ^
0GxG*(*5')), it is enough to show that 2^(/^)o/C^ is concentrated in degree zero.
Set qi = q^ (i = 1,2). From an algebraic analogous of Proposition 1.9, recalling that
^ ^ O^(-n) and that q^ is proper we get:

m1^)^^ ^ R^RJ.J~\q^O^^ - n) 0^-î  0^)

^ Rq^i1^1^ - n) 0^-i^ C^).

Then the conclusion follows since q^ has affine fibers. Using Proposition 1.3, one may
argue by duality for PG(^) 9. /%. D
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Let us write for short

ICW\^^=)CW\0^)^0^^)).

PROPOSITION 3.12. - There is a natural isomorphism

a^:^(GxG*;4N'o)(-A,A*))^HomI^.^)(PG*(-A*)^G(-A)^^),

and a similar isomorphism a^ with /CQ replaced by JC^.

Proof. - Apply Proposition 1.10 for X = G, Y = G*, /C = /C^ (resp. /C = /%),
T = OG(-A) and Q = OG. (-A*). D

By (1.6), (1.4) and Theorem 3.8 we get the following composition morphism, where
we write a-\ = OQ^-X} for short:

r(G x G^/C^^-A^A*)) 0:T(G* x G^^-A^A))

^r(G x G;B^O)(-A,A))^ EndDb(^)(2)e(-A)),

and similarly for /CQ. Our aims are:
(1) to find some sections

sx G F(G x G^/C^'^-A^A*)) and ^ G F(G x G*; /C^'^-A, A*))

(and, in the other direction, similar sections s\* G F(G* x G ^ ^ ' ^ — A ^ A ) ) and
s^ G F(G* x G;/C^°)(-A*,A));

(2) to show that they are microlocal generators of the regular holonomic £ -modules <?/C^
and f/C^ on A (the graph of the contact transformation in (3.11));

(3) to show that s\ o s^ --= &G,-A and s^ o s\ = ̂ ©^-A* (up to a nonzero multiplicative
constant).

Let /($, 77) be the function on G x G* defined in (3.3), and let P{s) = P(^, rj^ c^, 9^; s)
be a section of PGXG* [s] such that P^)/^1 = bf^s)/8, where ^(^) = (^ + 1) - • (s -\-p)
is the 6-function associated to /. Recall (see Appendix A) that )C^ = OGXG^*^).
and that /C^ = ]^.(OQ^G^(^S)) has a canonical generator V^- and a canonical section
^ar/ = IT^i^-W for ^y a ^ ^i- we set:

^(^^) = /(^)^e(O C r(G x G^^^^-A^A*))

f/(^-y,^) ^^),r(o.6.;^.»)(-^.)),
[a-^y^^O ( A * < O )

where c^(^) is the twisted form on G described in (3.13).

REMARK 3.13. - We have observed that the prehomogeneous space (G',G x G*) is
locally isomorphic to (GLp(C), O32). Therefore in our case the operator P is locally the
determinant of a matrix of partial derivatives (see Remark A.7) and hence it does not
depend on s. In particular, one has c^Yy = PaYf for any a G Z>i.

LEMMA 3.14. - The section s\ (resp. s\) is a generator of <?/CQ (resp. £)C^) on A for
any A > —n-\-p (resp. for any A G ~B-}.
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Proof. - Let b^s) be the local ^-function on A: then one has b^s) = bf(s) =
(s + 1) • • . (s +j?) since A is contained in the conormal bundle 7^ (G x G*), and Sp is the
orbit of minimal dimension (see (3.9)). By Proposition A.5, the section /(^, rj)^ generates
<?/CQ on A if and only if &A(A* - v) / 0 for any v G Z>i, i.e. if and only if A > -n-\-p. On
the other hand, the section /(^ 77)^* V^ generates <SX^ on A if and only if ^(A + ^) 7^ 0
for any z/ e Z>o, i.e. if and only if A ^ 0. Finally, the section 9^ is a generator of <?/%
on A for any a G Z>o, since the principal symbol cr(P) does not vanish on A: namely, for
any (x,y^) G A (where 7 : -^ —>a;, see (3.11)) one has a(P)(x,y'^) = det(7) / 0. D

PROPOSITION 3.15. - For any A > -n+p, one has s^os^ = (?G,-A and s^ os^ = (?G*,-A*
(up to a multiplicative constant).

Proof. - We shall only prove that s\ o s^ = (?G,-A for any A > -n +p, since the other
statement can be verified by similar arguments. By Proposition 3.5, the conditions (1.11),
(3.12) and (3.13) are satisfied. Therefore, setting A° = A o A c T^(G> x G) (see (3.12))
and recalling that IC^olC^ ^ B^ (Theorem 3.8), by Proposition 1.17 (i) we get
that SX\A o^ ^v|^ is a well-defined section of nA0;^'0^-^ A)) and coincides with
s\ ° ^*|A°- Moreover, by Lemma 3.14 and Proposition 1.17 (ii) the section s\ o s^\^o
is a generator of C^ on A° for any A > -n + p. Since C^ is simple and A° is a
G-orbit of T^(G x G), there is a unique G-invariant generator (up to a multiplicative
constant) of r(A°; C^'° (-A, A)). (Namely, a generator u is univoquely determined by its
principal symbol a(u), and if u^ and u^ are G-invariant generators on the G-orbit A°,
then a(u^) = ca(u^) on A° for some nonzero constant c: this implies 14 = cu^.) The
restriction of the canonical section (^-A^O is obviously G-invariant, and so is s\ o s^ \^o
by construction: therefore we get s^ o s^\^o = SG,-\\AO for any A ^ -n + p (up to a
multiplicative constant). Finally, since A° is a nonempty (in fact, dense) open subset of
r^(G x G) and both ^ o s^ and (?G,-A are globally defined sections of C^°\-\,\),
they coincide (up to a nonzero multiplicative constant) on all of T^ (G x G) by analytic
continuation. Q

One proves in a similar way that s\ o s\- = (?G,-A and s\. o s^ = (?G,-A*. By
Propositions 3.15 and 1.13 we get that a^(sx) (resp. a^(^)) is invertible for any
A > -n +p (resp. A < -p), the inverse morphism being the image of ajc^{s^) (resp.
(^^-(^A*)) by the functor - o /C^ (resp. - o /C^) and hence we obtain:

THEOREM 3.16. - One has V-linear isomorphisms:
(i) PG(-A)OK:Q^-PG*(-A*) for any A > -n + p;

(ii) PG(-A)O^<-^-PG*(-A*) for any A < -p.

REMARK 3.17.

(1) In fact, the statement (ii) of Theorem 3.16 is an immediate consequence of (i) and
Proposition 3, since in our case the dualizing complex !CG is isomorphic to ̂ (^[AH.

(2) Observe that there is an overlap in the ranges of A in (i) and (ii), which are both
valid for -n + p < A < -p (recall that we assumed p < n/2).
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Applying S o l ( ' ) to both sides of (i) and (ii) in Theorem 3.16 and recalling Corollary 1.6,
we obtain the analogous results for the complexes of solutions:

COROLLARY 3.18. - One has C-linear isomorphisms:
(i) Oc(A) o K^ ^OG*(A*)[-TV] for any X > -n +p;

(ii) OG(A) o K^ -^ OG* (A*)[-7V] for any A < -p.

4. Applications

4.1. Integral transforms defined by the incidence relation

Let us treat the integral transform given by the regular holonomic kernel JCs =
Tfaom(C.s[-l],OGxG*), which is used in the classical approach to projective duality
(see [2], [4]). We recall the following well-known fact (Bott-Cartan-Serre) on the twisted
holomorphic cohomology of G:

f O for A < 0,r ( G ; 0 G ( A ) ) =
[̂ / 0 and finite dimensional for A > 0,

IF(G; Oc(A)) = 0 for 0 < j < N and for every A,
(4.1)

^(G^of^y^nG^A*)),
where N = OQ and (•)' denotes the dual of a finite dimensional complex vector space.
In particular, from (4.1) one has
(4.2) J?r(G;0G(A)) =^r(G*;0G*(A*))=0 for any -n+1 < A < -1.
Applying the functor P G ( — A ) O Thom(', OGXG*) to the distinguished triangle

(4.3) Cs[-l} -^ C^ ̂  CGXG* ̂
we get

(4.4) Pc(-A) o OGXG* ^ ^G(-A) o /Q, ̂  PG(-A) o 1Cs -^ .
On the other hand, we have
(4.5) PG(-A)O OOXG* ^ ^2!(9^1^G(-A) ̂ -î  0^1)

^ J^g2!(9^10G(A*) 0^-î  OGXG*)

^Ar(G;OG(A*))00G*,
where the first isomorphism is in Proposition 1.9, the second holds since OG ^ O^—n)
and the third follows from the analytic Ktinneth formula and the finiteness (see (4.1))
of the holomorphic cohomology of G. Hence by (4.4) and (4.5) we may conclude that
PG(-A)O/CS ^ ^c(-A)o/C^ if and only if Jir(G; OG(A*)) = 0. By (4.4), this is
verified when —n + 1 < A* < —1, i.e. —n + 1 < A < —1. One can argue similarly for
the kernel /C^ = Thom{D'Cs[—^}^ OGXG*) (or again by duality, using Proposition 1.3)
and therefore, by Theorem 1.3 we get

PROPOSITION 4.1. - One has V-linear isomorphisms:
(i) PG(-A) o 1Cs ^— Z>G* (-A*) for any -n + p < A < -1;

(ii) PG(-A)O^^-PG*(-A*) for any -n + 1 < A < -p.
REMARK 4.2. - When p == 1 one has 1Cs ^ /C^ ^ ^S|PXP*. and we recover Theorem 4.3

of D'Agnolo-Schapira [4].
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4.2. Adjunction formulas and examples

From Proposition 1.8, we get the following adjunction formulas.

PROPOSITION 4.3. - For any -n + p < \ < -p and F e D^Ce) we have isomorphisms

M\G; F 0 Oe(A)) ^ J?r(G*; (F o C^) 0 Oe* (A*))[^],
JZr(G; RHorn{F, Oe(A))) ^ ar(G*; RHorn{F o C^ 0^ (A*)))[-7V],

anJ similarly for (g) an^ RHorn replaced by |) a^zJ Tfaom n^n F e D^(Ce).

Pwo/. - In order to obtain the formulas for (g) and (g) (resp. for RHorn and Thorn)
apply Proposition 1.8 for X = G*, V = G, M = 2^*(-A*), ^ = ̂  (resp. 1C = ̂ )
and hence K = C^ (resp. ^* = C^). Finally, recall Theorem 3.16. D

Let us give some applications of these formulas with F = CD, for D a compact subset
of G. Note that for any y G G* one has

(4.6) (CD o C^)y ^ J?r,(^(^); C), Li,(y) = [x G D : x n y = 0}.

(1) ^-trivial compact subsets. Here we argue in the spirit of [4, Section 5.1]. Let D c G
be compact, and set

D^ = {y e G* : x n y = 0 for any re e jD}

and D = G* \ D*. Observe that for any y e D* one has Lo(y) = D. Moreover, it is
immediate to verify that D is nonempty (resp. affine) if and only if D* is affine (resp.
nonempty). (Here "affine" means "contained in an affine chart".)

DEFINITION 4.4 (cf. [4, Definition 5.11). - Let D be a compact nonempty subset ofG. We
say that D is ^-trivial if(i) Rr(D; C) ^ C and ( i i ) RT{D \ L^^y)', C) ^ Cfor any y G D.

REMARK 4.5. - In the case p == 1, the ^-triviality implies the "linear convexity" a la
Martineau, i.e. D^ = D (see [4, Proposition 5.3]).

LEMMA 4.6. - Let D be an ^-trivial compact subset of G, and assume that D^ / 0.
Then CD o CQ ^ C^>#.

Proof. -Let us compute CooCs. Seig = q2\q^^}ns'' since Q^WHS = q^{D\ from
the natural morphism id -^ g^g-1 one gets Cg -^ g^Cy-i^^ ^ CD o Cs, which is an

isomorphism by (ii). Applying the functor CD o • to the triangle C^ -^ CGXG* -^ C^ -^
and noticing that Cp o CGXG* ^ jRr(J9; C^) (g) CG* ^ CG* by (i), the lemma follows. D

REMARK 4.7. - Since CQ o D'C_ ^ CAG[-2^V], by Lemma 4.6 one gets Cp# o ̂ 'C~ ^
C^[-2A^]. Q

Applying Proposition 4.3 and Lemma 4.6 we get the following result:

COROLLARY 4.8. - Let D be a compact ^-trivial subset ofG, and assume that D* / 0.
Let XQ C D, yo e D* and consider E = {x e G : x n yo = {0}} ^ CN and
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£* = {y G G* : a:o H y = {0}} ^ CN. Then D C E, D* C £* W ̂  has the
following isomorphisms:

RF(D^OE) ̂  RT^D*;OE^[N}
Rr^OEW ^ ar(£^;o^).

Moreover, all complexes are in concentrated in degree zero.
In the case p = 1, these isomorphisms were firstly obtained by Martineau [14], and

reformulated in this language by D'Agnolo-Schapira [4, Theorem 5.5].

EXAMPLE 4.9. - Let XQ e G, and set D = {xo}: then D is obviously ^-trivial, and
D* = E* ^ CN. In this case, Corollary 4.8 gives well-known identifications: e.g., one
has RT{{xo}^ OE) ̂  C{z] (the convergent power series in z = (^ i , . . . , z^) € E ^ C^)
and RT^E^,OE^[N\ ̂  r(E*;^y (the analytic functionals of Martineau).
(2) Indefinite Hermitian form. Let H be an Hermitian form of signature (p,n - p) on V,
and set

U = [x C G : ff|, > 0},
(7* = Q/ G G* : J^ < 0}.

(Here, and in what follows, > 0, > 0, < 0, < 0 mean positive or negative
(semi)definiteness.)

REMARK 4.10. - We observe the following facts.
(i) Let H = ( ^ °^ ), where the orders of the diagonal blocks are p and n - p, and

consider the affine charts E = {x = [lp,A] G G : A e Mp^-p(C)} and E* =
{y = [^] € G* : B e M^-^p(C)}. Then (7 (resp. ?7*) is a relatively compact
subset of E (resp. £*). More precisely, one has U = {x =• [lp, A] : lp - AA* > 0}
and U" = {y = [^] : lp - BB* > 0}, where ( • ) * = : t^").

(ii) The real Lie group SU{p, n - p) is a real form of the complex semisimple Lie
group SL{n,C), which acts transitively on 6 and G*. The SU{p,n - p) -orbits
in G and G* are

Up^qi = {x G G : H\^ has signature (p\q')}^
Up.^ = {y e G* : ̂  has signature (j/W)}

for p ' + g7 < p and j/' < p, q" > n - 2p and p " + g" < n - p. In particular, one
has U = Upft and (7* = [/o*n-p-

LEMMA 4.11. - One has Cjj- o CQ ^ C^y*.
Pwo/. - (M. Kashiwara) We argue on each SU(p,n - ̂ )-orbit in G*. Let y G (7*, /,,

and let us calculate (C^r o C^) ^ RYc{Ljj{y); C). We may suppose that the dual Stiefel
coordinates of y are °̂ , and that H is associated to the hermitian (n x n)-matrix

/I 0 0 0 0 0 \
0 - 1 0 0 0 0
0 0 0 1 0 0M
0 0 1 0 0 0H —

0 0 0 0 1 0
\0 0 0 0 0 -I/
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where the orders of the diagonal blocks are p " , q", n-p-p"-q", n-p-p"-q", g//-n+2p
and p " . The generic element of Ey = [x e G : x D y = 0} ̂  C^ has Stiefel coordinates

(^11 ^i2 ai3 1 0 0'
X = fl2l 022 (223 0 1 0

^31 ^32 ^33 0 0 1^

where the orders of the row blocks are n - p - p " - q11, q" - n + 2p and p", and the orders
of the column blocks_are p", q", n - p - p " - q", n - p - p" - q", q" - n + 2p and p " .
The condition x e U is expressible as the positive semidefiniteness of the hermitian
{p x p)-matrix XMnX* =

^ll^ll* - ̂ 12^12* + ai3* + ai3 (211021* - ai2022* + 023* ^11031* - a^G^* + 033* '

^21^11* — ^22^12* + ^23 ^21^21* — 0^2^22* + 1 ^21^31* — ^22^32*

^31^11* — ^32^12* + ^33 ^31^21* - ̂ 32^22* ^31^31* — ^32^32* — 1

where the orders of the diagonal blocks are n - p - p " - q", q" - n + 2p and p " .
Let p " + q" < n - p, i.e. suppose that H \y is degenerate. Then, up to a change of
coordinates, it is not restrictive to suppose XMnX" = ( x. j[)with x e R, y G C^"1

and A a positive semidefinite hermitian (p - 1) x (p - 1)-matrix. Since for any fixed y
and A the set {x e R : ( ^ ^ > 0} is either empty or a closed half real line, and
CT^^C) = 0, we get RF^L^y^C) - 0.

Therefore, we may suppose that n - p - p " - q" = 0, and hence we write

^ ^ /an 012 1 0\
^021 022 0 l } '

where the orders of the row blocks are p - p " and p"\ and the orders of the column blocks
are j/', n - p - p11, p - p " and p " . Set u = (a^1} and v = {a^\ One has

Ljj{y) = [a = (u^v) G Ey : uu" + (; _°̂  - ̂ * ^ o}.

For fixed UQ, L-^{y) n {u = uo} is a compact subset in the space of v stable under
multiplication by c G C with |c| < 1. Moreover, Ljj{y} n [u = uo} / 0 if and
only if uu* + ( ^ _°^) >. 0. Therefore, it is not restrictive to set v = 0, i.e. we have
RT^L^y^C) ^ 7?r,(Z;C), where

Z=L=(all}:nn^(l °)>ol .I \a^j \0 - 1 ) - J

Observe that Z is closed. If p " -^ 0, then clearly 0 ^ Z. In addition, Z is stable under
multiplication by t G R^~ with ^ > 1. Therefore the fibers of the natural map Z —^ Z/R+
are closed half real lines, and one has again RTc(Z', C) = 0. Finally, \ip" = 0 (and hence
V ^ V^n-p = E/*) one has Z = {a € Mp^-p(C) : 1-aa* ^ 0}, and thus RT^Z', C) ^ C.
Since C^- o C^ is locally constant on the SU (p, n - p)-orbits, the proof is complete. D

By Proposition 4.3 and Lemma 4.11 we get:
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COROLLARY 4.12. - One has the following isomorphisms:

Rr(U^OE)^RW^O^)[N]
RT^E; OE)[N] ̂  Jir(E/*; 0^).

Moreover, all these complexes are concentrated in degree zero.
(3) Embedded Grassmann manifolds. Let us give a "non-affine" example. Fix any
hyperplane z C V and set

G>z = {x G 6 : x C z}

G: = Q/ G G* :,/ c z}.

Then Gz (resp. G^) is the Grassmann manifold of p- (resp. (n — j?)-)subspaces of ^,
and hence its complex dimension is N — p (resp. N — (n — p)). It is easy to verify that
LG, {y) = 0 if y ^ G", and LG, {y) ̂  CN~P otherwise. Since CG, o CQ is locally constant
on G* \ G^, which is simply connected, we get

LEMMA 4.13. - One has CG, o CQ ^ C,Q.\^[-2{N - p}}.
We then obtain

COROLLARY 4.14. - For any —n-\-p<\< —p one has the following isomorphisms:

ar(G,; Oc(A)) ^ ar(G:; OG* (A*))[-(TV - 2p +1)]
arG,(G;OG(A))^^rG^(G*,0G*(A*))[^-2j9+l] .

Proof. - One has the distinguished triangle CG*\G^ —> CG* —^ CG^ ^-^. Applying
the functor RFc{ • ; OG*(A*)) and recalling (4.2), the first isomorphism follows from
Proposition 4.3 and Lemma 4.13, and the second is proved similarly by using the functor
ar(.;0G*(A*)). D

EXAMPLE 4.15. - Let P be a m-dimensional projective space and let P' be a (m — 1)-
dimensional projective space embedded in P. Applying Corollary 4.14 for n = m + 1
and p = 1, we recover that for any -m < A < -1 the complex R'^(Pf',Op{\)) (resp.
J?rp/(P; Op (A))) is concentrated in degree m — 1 (resp. 1) and is infinite dimensional.

Appendix A

A. 6-functions

In this appendix we recall the results on the theory of Bemstein-Sato's 6-functions
which are used here. We refer to the works of Kashiwara [7] and Sato-Kashiwara-
Kimura-Oshima [17] for the proofs of the statements below, and to Kashiwara [9] for
an introductory exposition,,

Let X be a complex analytic manifold, Xo E X, and let / E {Ox)xo be a germ of
holomorphic function at Xo such that f(xo) = 0. Set S = /"^O) and 0 = X \ S.

Let Jf = (/) C Ox, and let

Ox(0 = \^HomoAJ^Ox)
n€N
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be the sheaf of meromorphic functions on X with singularities on S. Recall that Ox(*5'),
and its dual DOx(^S), are regular holonomic left T>x -modules. There is a natural
injective morphism Ox —^ Ox(^S).

The b-function. - Let s be an indeterminate on Pjc, and set Vx[s] = Vx ^c C[s}.
We define the ideal

l={P{x,a^s) e Vx[s\: P(s)f(x)8 = o for s e z>o, x e n}

and we set

A^^xMA^xMA

where /s is the canonical generator 1 + Z.

DEFINITION A.I. - The 6-function bf(s) associated to f is the monic generator of the
ideal of polynomials b(s) in C[s] such that

((A.I) P{x, 9,; s)f(x)^1 = b{s)f{xY, s G Z, x G ^

/or ^m^ P{x,9^s) G PxM.
For a G C, set

I(a) = {^, 9,) G Px; 3 Q{x, 9^ s) G Z s.t. ̂  9,) = Q(rc, 9^ a)}

and define

Ma=^xA(a)=2^a,

where Ua is the canonical generator 1 + Z(a) of A^a- Observe that in general one has
Z(a) ^ T{a) = {R{x,8^) G T>x : R(x,9^) f{xY = 0, a: G ^}, and hence the natural
morphism .Ma —^ Vx/I^ci) is not necessarily an isomorphism.

PROPOSITION A.2. - Let a C Z.
(i) Ifbf(a - v) / 0/or <my ^ € Z>i, r^n Ma ^ Ox(*Sf);

(ii) 7/' bf{a + ^) / 0 /or ^ny ^ <E Z>o, r/i^ A^a ^ DOx(*S').

REMARK A.3. - Let us note some consequences of Proposition A.2.
(i) By Kashiwara [7], the roots of bf(s) are negative and rational. Therefore, one has

Mo^DOx (0.

The image of u° by this natural isomorphism provides a canonical generator of
D0^(*5'), which is usually denoted by Yf by analogy with the smooth case.

(ii) Moreover, for any a e Z>i one gets a canonical section Q^f of DO^*,?) as
follows. Let P(s) = P{x,9^s) e ^x[s} be an operator satisfying (A.I). Since

P(^-a) . . .P(^-l) / s=6^-a). . .^-l)^-^
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the section Q'^f8 = nj=i P(s - j) f8 e AT does not depend on P. Hence, one
obtains the desired section as the image of c^/5 by the canonical morphism
^ -^ D0x(*5), R(s)f8 ^ RWYf, i.e.

a

(A.2) 9aYf=]^P(-j)Y^
j^

Observe that c^Yy is not necessarily a generator of DOx(^S), even on a single
irreducible component of W = cha.rDOx(^S) (see below).

Local b-functions. - The above considerations can be refined microlocally. In other
words, let A be a good irreducible component of W = cb.a.vOx^S): then one can ask
only whether

£Ox^S)^£Ma on A.

(Recall that we set £M = £x 07r-ipx ^r"1^ for a Px-module M.)

PROPOSITION A.4. - If A is a good Lagrangian, there exists a monic polynomial b^{s)
of degree m^ (where m^ is the order of zero of f o 7r\w along A) and an invertible
microdifferential operator I\ of order m^ such that P\f8^1 = b^{s)f8 on A.

This polynomial, which in fact divides bf{s), is called the local b-function of / along
A. One has a microlocal analogue of Proposition A.2.

PROPOSITION A.5. - Let a C Z.
(i) Ifb^a -v}+ Ofor any v <E Z>i, then £Ma ^ £Ox{^S) on A;

(ii) ffb^a + v) / Ofor any v G l>o, then £Ma ^ £^Px^S) on A.
When all irreducible components { A i , . . . ,Ar} of W are good Lagrangians, then b{s)

is the least common multiple of the b^s.
If two components A^ and A^; (1 ^ i,j < r) have good intersection, and m^ > m^ ,

then it is possible to calculate the ratio b^(s)/bAj(s) (see e.g. [17]). This gives an useful
algorithm to compute the local ^-functions, as well as the 6-function itself.

We refer to Kashiwara [9] for some examples. In particular, let us recall one of these
results, which is useful for our purposes:

PROPOSITION A.6. - Let X = Mn(C) = C"2 and f(x) = det(rr). Then the b-function
associated to f is bf(s) = n^i^ + j0-

REMARK A.7. - In this case, observe that:
(i) as an operator satisfying (A.I) one can choose P(x',9x) = det(<9a;), where

9x == (9x,j)ij=i,...,n' In particular, P does not depend on 5, and therefore
Q^f = det^Q^Yf for any a € Z>i.

(ii) One has a natural action of G = SLn(C) on X, and (C?,X) is a prehomogeneous
space with open dense orbit ^ = [x G X : x is nonsingular} = X\f~l(G). The
other G-orbits in X are the locally closed submanifolds Sj; = {x e X : rank {x) =
n - J } 0' = l , . . . ,n) .

(iii) Moreover, (G,X) is a regular prehomogeneous space (see [17]), and this implies
the equality

n

W = char Ox^S) = T^X U |j T^X.
j=i
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The irreducible components of W are Ao = T^X, A^ = TJTX (j = 1, . . . , n - 1)
and Ayi = T^X. One can check that the Ao, Ai, . . . , A^-i, An are good
Lagrangeans, that the multiplicity of zero of / o TV on Aj is m^ = j and that the
pairs (A^_i, Aj) have good intersection for j = 1, . . . , n. The local 6-functions are
b^{s) = 1 and b^(s) = nLi(5 + ^) 0' = 1,... ,ri).
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