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FILTRATIONS AND TILTING MODULES

BY HENNING HAAHR ANDERSEN

ABSTRACT. - In this paper we consider the modular analogue of a recent theorem by Soergel on tilting modules
for quantum groups at roots of 1. The modular case is the case of a semisimple algebraic group over a field
of characteristic p > 0. A natural conjecture is that the tilting modules in this situation should have the same
characters as in the quantum case as long as the highest weights belong to the lowest p2-alcove.

The character of a tilting module Q (modular or quantized) is determined by the spaces of homomorphisms from
the Weyl modulus into Q. We introduce a "Jantzen type" filtration on each such Horn-space and we prove that
if these nitrations behave in the expected way with respect to translations through walls then Soergel's theorem
and its modular analogue follow.

Our nitrations also exist outside the lowest p2-alcove but it is still a wide open problem to find a conjecture
for the characters of tilting modules here.

RESUME. - Soit G un groupe algebrique semi-simple defini sur un corps de caracteristique p > 0. Le caractere
d'un G-module basculant Q est determine par les espaces des homomorphismes des modules de Weyl dans Q.
Nous avons ici construit certaines nitrations de « type Jantzen » pour ces espaces.

Si notre filtration respecte les foncteurs de translations alors il est possible de calculer les caracteres pour tous
les G-modules basculants avec poids dominants dans la p2-alcove principale. En fait, 1'hypothese implique que
F analogue de la conjecture de Soergel aux modules de groupes quantiques dans les racines de 1'unite est vrai. Dans
le cas quantique (ou notre filtration existe aussi) Soergel a verifie sa conjecture avec une methode differente.

Introduction

In his recent preprint [Sol] Soergel has come up with a conjecture about the characters
of tilting modules for quantum groups at roots of 1. Even more recently [So2] he has
proved this conjecture by exploring a result of Arkhipov [Ar] applied to affine Kac-Moody
algebras (and then using the equivalence [KL2] between the category of finite dimensional
modules for the quantum group and a certain negative level category for the corresponding
affine Kac-Moody algebra).

There is an obvious analogous conjecture for the modular case when the highest weights
of the tilting modules are assumed to be in the lowest p2-alcove. Unfortunately, Soergel's
proof does not carry over to this case nor does it throw any light on the mystery of
what happens when we move outside this p2 -alcove (this phenomena has no counterpart
for quantum groups).

Soergel's theorem and the analogous modular conjecture give the tilting characters
in terms of the Kazhdan-Lusztig polynomials [KL1] attached to the affine Weyl group
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354 H. H. ANDERSEN

in question. They are in fact stronger than the Lusztig conjectures (a theorem in the
quantum case and for large primes also in the modular case [AJS]) about the irreducible
characters. Moreover, Mathieu has demonstrated [Ma] that the decomposition behaviour for
tilting modules for the general linear groups have interesting applications to the modular
representations for symmetric groups. For this however, it is necessary to have information
for all dominant weights -not just for those in the lowest p2 -alcove.

In this paper we consider mainly the modular case (in the last section we outline briefly
how our approach works in the quantum case). Let G be a reductive group over an
algebraically closed field k of positive characteristic p. We construct filtrations of some
Horn-spaces associated with tilting modules for G?Zp. the algebraic group over the p-adics
corresponding to G and we study how these filtrations behave with respect to translation
functors. Our main result says that if this behaviour is decent (see Section 3.1 for the
precise meaning of this) then the modular analoque of SoergeFs theorem is true.

Unfortunately, we cannot prove this behaviour and so we have to leave it as a conjecture
to the reader. We have some partial results, some evidence and some applications.

In Section 1 we give the construction and first properties of our filtrations. Then in
Section 2 we study the effect of translation (wall-crossing) on the filtrations. In both these
sections we work with general tilting modules (i.e. no restriction on the weights). In fact,
it would be extremely interesting to have a conjecture about the decomposition of tilting
modules for G also outside the lowest p2 -alcove but so far we haven't been able to come
up with any (cf. also Remark 1.1 ii)). The above mentioned conjecture as well as the
derivation of SoergeFs conjecture from it can be found in Section 3 (where we do restrict
to the lowest j^-alcove). Finally in Section 4 we treat the quantum case.

1. Filtrations

1.1. Let G denote a semi-simple algebraic group over an algebraically closed field k of
characteristic p > 0. We shall use the standard notation T, R, J?+, S, W, X = X(T), X4',
X-i, p, G\ etc. (as in [Ja]) for a maximal torus, the root system attached to (G, T), a set of
positive roots, the corresponding simple roots, the Weyl group, the set of weights, dominant
weights, restricted weights, half the sum of the positive roots, the Frobenius kernel, etc.

For A G X^ we have a Weyl module Vk (A), an induced module ff^(A), and a simple
module L^(A), all with highest weight A.

Recall that a G-module Q is called tilting [Do] if it allows two filtrations

0 = FQ C Fi C . . . C Fr = Q

and
0 = FO c F[ c ... C F; = Q

with F,/F,-i ^ Vfc(A,), resp. F'JF^ ^ H^z\ i = 1,2,. . . ,r for some A,,^ (E X+.
Then for each y E X^ the two numbers

#{i\\, = u} and #{^ = v}

coincide. We denote it [Q : Vfc(^)].
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FILTRATIONS AND TILTING MODULES 355

For each A G X4' we have a unique indecomposable tilting module T^(A) with
dimTfc(A)A = 1. If Q is an arbitrary tilting module we can therefore write

Q = © [Q : Tfc(A)]r,(A)
A£X+

for some [Q : T/,(A)] e N.

PROBLEM. - Determine [Tfc(A) : ^fc(^)] for all \,v € ^+ (this is of course equivalent
to finding the character of Tfc(A) for all A <E X+).

Remarks. - (i) If ^ € ^+ is minimal (either with respect to the usual ordering < in
X^ or with respect to the strong linkage relation) then Vk(v} = Tk(v) = Lk{y) = H^(v}.
Suppose all fundamental weights o^ are minimal. Then the problem above is equivalent to
determining [(^Vfc^)0^ '' ^fc(A)] for all ai € N, A € X~^~. It also amounts to the same
to determine [T^) 0 V^) : Tfc(A)] for all \v G X^, i = 1 , . . . , r.

(ii) Suppose p ^ 2h - 2. Then it is known C^ e.g. [Ja], II.11.11) that for A G Xi the
module Tk{{p — l)p + A) is indecomposable when restricted to G\ (as a GiT-module we
have in fact that Tk((p - l)p + A) is the projective cover of Lk((p - l)p + A)). If M is
an indecomposable G/G]_ -module then by looking at the endomorphism rings it is easy
to see that Tk((p - l)p + A) (g) M is indecomposable as a G-module. If M is tilting (for
G/G-i) so is this tensor product (because Tk((p — l)p + A) is a summand of St^ 0 Tfc(A),
where St^ = H°({p - l)p). Recall that St^ 0 ff^)^ ^ H^p^ + p) - p\v e X+).
Hence we have (compare [Do])

Tk({p - 1)P + A) 0 Tk(^ ^ Tfc(p(^ + p] - p + A)

for all A G Xi, ^ G Z+.
This fact shows that (at least when p > 2h — 2) it is enough in the above problem to

consider the following two sets of A's
(a) X, + (p - l)p.
(b) [v G Z+K^Q^) < p - 2 for some a <E S}.

1.2. Let Zp be the ring of p-adic integers and let Gzp denote the algebraic group over
Zp corresponding to G. Then the Weyl modules and the induced modules lift to modules
for Gzp, i.e. for each A € X^~ there exist C?Zp -modules Vz;p(A) and H^ (A) with

VZ,(A) 0 fc ^ Vfc(A) and ^(A) 0 k ^ ff^(A).

These Gzp -modules have the usual universal properties. Moreover, we have

rZ., i f % = 0 , A = LA,
(1) Ext^ (yz,(A),^(^))^ p , .p p f 0 , otherwise.

The tilting modules Tfc(A) also lift to C?Zp. In fact, the Ringel construction (which
even works over Z, see [Do]) gives an indecomposable tilting C?Zp -module Tzp(A) with
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356 H. H. ANDERSEN

rkTzp(A)A = 1. It follows easily that Tzp(A) 0 k ^ Tfc(A) (note for instance that since
Endcz^CTz^A)) is local the same is tme about EndGzp(Tzp(A)) (g) fc ^ Endc(Tfc(A))) .

Standard arguments show that Tzp (A) is the unique tilting Gzp-module with Tz (A)(g)fc ^
Tfc(A) and that any tilting Gzp -module Q may be decomposed

Q= © a,rz,(A)
ACX+

for some (unique) a\ e N (clearly a\ = [Q (g) fc : Tfc(A)]).

1.3. From now on we fix a generator c\ for Hom^z (^Zp(A), ff^ (A)) for each A e X^
(see 1.2 (1)).

Let Q be a tilting module for G. By 1.2 there exists a unique lift Q of Q to G?z .
For each A G X"^ we set

F,(Q)=Hom^(yz,(A),Q)

and
^A(Q) = ^A(O) 0 A; ^ Homc,(y,(A), Q)

(the isomorphims comes from 1.2 (1)).
Then F\{Q} is a free Zp-module of rank equal to [Q : Vfc(A)] (again using 1.2 (1)).

We define a filtration of F\(Q) by setting

F^QY = {(^ e FA(O)| ̂  o (^ e j^'Z^ for all ^ G Hom^(Q,^(A))}

and we denote by F\(Q)3 the subspace in F\(Q) spanned by the image of F\{Q)3. Note
that F^{QY = 0 for j > 0.

1.4. Let Q and Q be as in 1.3. For A € X+ we set

^(Q)=Hom^(0,^(A)).

Then 1.2 (1) shows that E),{Q) is a free Zp -module of rank equal to [Q : Vfc(A)]. We let
E\{QY denote the dual module. Then we have a Zp-linear map

^ : F^Q) -^ E^QY

given by

<^): ̂  ̂  ^ o ̂  ^ e FA(Q), ^ e Ex{Q).
Here ^ o y? is identified with a e Zp if '0 o (p = ac\. When tensored by Qp we see
that (f)\ becomes an isomorphism (because Q 0 Qp = (B;JQ : Vfc(A)]VQp(A) where
1i/Qp(^) = ^Zp(A) 0 Qp is the irreducible GQ^ -module of highest weight A). Hence the
usual arguments (see e.g Section 11.8 in [Ja]) give the "Jantzen type sum formula"

^ dimF^Qy =^(det^).
j>i

Here Vp : Zip —> Z denotes p-adic valuation.
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FILTRATIONS AND TILTING MODULES 357

PROBLEM. - Determine Vp{det(p\) for Q = Tk(y\ X,v G X^~.

Remark. - On the category of G-modules we have the notion of 'contravariant' duality.
It takes a G-module M into M* = Homfc(M,fc) equipped with a G-action such that
Lk(\) ̂  £fe(A)*, X G X+. Then we have Vfc(A)* ^ H^X) and T^A)* ^ Tfc(A), A G X+.
In particular, all tilting modules are self-dual. We can thus think of (f)\ above as coming
from the non-degenerate bilinear pairing

(J :F,(0)x^(Q)-Z,

given by

(^^/)=^o^, (^(//GFA(Q)
where ^ ' G E^Q) ^ Hom^(ff^(A)*, Q*) ^ Hom^(Vz,(A), Q) = FA(O) corres-
ponds to (^/.

1.5. Fix A G ^+. Let Q be a tilting module for G and let q be an indeterminate. The
filtration (^(OPLx) constructed in 1.3 determines a polynomial

J,(Q) = ̂ (dimFA(0)J7^(Q)J+l)9J e Z[g].
j>o

PROPOSITION. - Tfc(A) ^ a direct summand ofQ iff A(0)(0) 7^ 0- More precisely,

[Q : T,(A)] = A(Q)(0).

Pwo/. - Suppose first Q = r/,(A) C P and let P be a lift of P to Zp. If
^/ ; y^ (^) ^ j^ (^)^ resp. ^/ : Tzp(A) ^ ff^ (A) is the canonical inclusion, resp.
projection, then ^ ' o ^ ' = c\. This clearly gives rise to ^ G F\{Q} and ^ G -BA(Q) with
^ o (^ = CA. Hence A(Q)(0) ^ 0.

Conversely, suppose A(0)(0) / ° and choose ^ G F^Q)° \ F^(Q)1. Then there exists
^ G E\(Q) with ^ o ip = c\. We now observe that we have a commutative diagram

Vz^W -^ Q

TZ^(X)
where the vertical map is the natural inclusion and where the existence of the
homomorphism % comes from the fact that Ext^ (Tzp(A)/Vp(A), Q) = 0, see 1.2 (1).
Similarly, we obtain a homomorphism TT making the diagram

Tz(A) -. ff.(A)

Q
commutative (here the horizontal map is the natural projection). When we now trace a
highest weight vector in Tz (A) we see that TT o i is an isomorphism (because it gives rise
to an endomorphism of 7fc(A) which is non-zero on the A-weight space).

Repeating the above argument if necessary we get also the more precise statement.
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358 H. H. ANDERSEN

2. Filtrations and translations

2.1. Let C C X^ be an alcove and suppose \^ e C. The usual translation functors
T^ and T^, [Ja], 11.7, may be defined just as well on the level of Gzp -modules (where
vve will denote them by the same symbols). The fact that they are adjoint to each other
means that we have isomorphisms

adj, : Hom^(M^TV) -^ Horn^CWTV)

and
adj2 : Hornet (N, T^M) -^ Horn^ {T^N, M)Zp \^'

for all Gzp -modules M and N in the blocks for A and /z, respectively.

2.2. LEMMA. - Let M be a Gz^-module belonging to the block of \. Suppose that M
is free of finite rank over Zp. Then -we have

Tr(adj^id^M) o adj^(id^M)) = rk(T^M).

Proof. - Let E be a C?Zp -module whose highest weight is the dominant weight conjugated
under W to fi — A. Suppose that E is free over Zp (take e.g. E to be the relevant Weyl
module). Pick a basis {ej for E and denote by {e^} the dual basis in £*. Then we have

T^M = pr^E 0 M) and T^T^M) = pr^E' (g) T^M)

with pr^ (resp. pr\) denoting the projection onto the block of fi (resp. A).
We have

,--iadj^ ^C^MX^) = ̂  e,* (g) pr^(e^ 0 m), m 6 M

and
adj^^td^^^)^ 0 n) = ni if n = V^ ei 0 n^ G T^M.

The lemma is now an immediate computation.

2.3. The functoriality of the isomorphisms adj^ and adj'2 from Section 2.1 means that have

(1) adj,(f o g) = adj^f) o T^g, adj^f o g) = adj^f) o T^g

(2) adj^f o g ) = f o adj,{g), adj^f o g) = f o adj^g)

for all / and g in the relevant Horn-spaces.
Taking inverses we also get

(3) adj,\f o g) = T^f o adj,\g), adj^(f o g) = T^f o ad^\g}

(4) ad^\foT^g}=ad^\f)og, adj^\f oT^g) = adj^(f) o g.
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FILTRATIONS AND TILTING MODULES 359

2.4. Suppose from now on that A is regular and p, is semi-regular. Let s denote the
reflection belonging to the wall containing p.. Assume \s < X (as in [Sol] we consider
the right action of the affine Weyl group on X).

Then we have the two short exact sequences

(1) 0 -> V^W-^T^W^V^Xs) -. 0

(2) 0 -. <(A^r^^)^<(A) -. 0

where
i = adj^ l(^dv^w), i' = ̂ 'i ̂ ^^c^).

TT = adj^idy^w), ^ = a-dJ2 (^^ (^))-
and

(We have used here the facts that T^(\) ̂  V^) ̂  T^(\s) and T^H^(\) ̂
H0^) ^ T^H^(Xs)).

Set now

r = adj^idy^} : T^z^) - V^{\),

r' = adj^dH^ : T^H0^) -. H^(\s)^

s = adj^(idy^) : V^(\s) - r^z^),

and
,' = adj,\idH^w) : H^W - T^H^).

LEMMA. - Let n = ̂ p(dimVk(f^)). Then up to units in Zp we have

(i) r o i = p^dvz^A), r' o %' = pnidn^ (As),

(ii) TT 0 S = R^ldy (As), 7T' 0 5' = ̂ ^^ (A) •

Proof. - Since EndGzp(^Zp(A)) ^ Zp we have r o i = c • zdyzp(A) for some c e ;zp•
The fact that ^p(c) = n then follows from Lemma 2.2 (note that ^(dimVfc(A)) = 0
because A is regular).

The other relations are proved in the same way.

Remark. - From WeyFs dimension formula we see that the integer n appearing in the
lemma equals i^p((p. + p,^)) where a e R^ is the unique positive root for which this
valuation is non-zero.

2.5. Let the assumptions be as in 2.4. Set

a = ^ o c A s ° 7 r and /3 =- T^c^.
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360 H. H. ANDERSEN

LEMMA. - Up to units in Tip we have

(i) TT' o /3 o i = c\

(ii) r ' o [3 = c\s o TT.

Proof. — (i) follows by noticing that A is the highest weight in T^Vz (/^) and T V ' o f3 o i
is an isomorphism on the A-weight space.

(ii) By 2.3 (1) we get

r o f3 = adj^{id^ ^) o T^c^ = adj^c^).

Now c^ == T^c\s (this is again seen by ^acing a highest weight vector) and 2.3 (2) gives

adj^{c^) = CAS o adj^idy^w) = c\s ° TT.

2.6. PROPOSITION. - W^/? Q; and {3 as in 2.5 we have

Hom^(r^yz,(^).r^(/.)) ^ z^oz^/3.
Proof. - Note that a o i = 0. Lemma 2.5 (i) therefore implies that a and (3 are linearly

independent.
Take (p G Hom^z (T^V^(^),T^H^ (/^)). Then there exists ci G Zp such that

TT'O^O? = C!CA. By Lemma 2.5 (ii) we get Tr'o^—ci/^oz = 0, i.e. ((^—ci/?)oz = 0 (because
Homc^ (yzp(^)^S (^5)) = 0)' B111 tnls implies ip — ci/3 = 02^ for some 02 G Zp.

2.7. Recall that A > \s and n = ^(diml4(/^)).

PROPOSITION. - Let Q be any tilting module belonging to the /i-block. Then the isomorphism
adj^ : F^Q) -^ F^Q\ resp. F^Q) ̂  F^{T^Q) gives for each j > 0 an
isomorphism

F,(QY^F^Q)^

resp.
F^Qy^F^Q)^.

Proof. - Let ^ G F^(Q) and ^ G ^(Q). Then we get from 2.3 (1) and (3)

adj^) o adj^\^) = {adj^d^ (^) o T^) o (T^ o adj^{idv^))

= TV' oT^{^ o(p) oi.

Now ^ o (p = ac^ for some a G Zp and using Lemma 2.5 we get

7r7 o T^ac^) o z = 7T7 o (a/3) o % = acA.

This gives the isomorphisms involving A. The analogous arguments for Xs show that the
relevant composite in that case is equal to a(r' o f3 o s). By Lemma 2.5 (ii) and 2.4 (ii)
we have r' o /3 o s = pnc\s and we are done.
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FILTRATIONS AND TILTING MODULES 361

2.8. LEMMA. - Set 7 = adj^{idT^w) '• V^ -^ T^V^). Then we have
(up to units in Zp)

adj-i(a) o 7 = c,, = adji(/3) o 7-

Proof. - Using first 2.3 (1) and then 2.3 (3) we get
adj'i(a) 0 7 = ad7i(%') o TJ^CA,) o 7r) o 7

= ̂  ((^) ° T^cxs) o (T^TT o 7) = c^ o adj^\7r) = ̂

(as in 2.5 we have used Tj^c;^) = c^).
For the second equality we use 2.3 (2) to see

^'i(/3) ° 7 = c^ ° ̂ ((^T^yzp^)) ° ̂ '
By Lemma 2.2 the composite of the last two maps here has trace equal to rk(T^yzp(^))
(note that the roles of A and p, (and hence of adj^ and adj^) are interchanged in the present
situation). Hence adji(/3) 0 7 = ^ - 0 where

c = TkT^Vz^)/TkVz^) = (dimVfc(A) + dimVk(\s))/dimVk(^.

Now Weyl's dimension formula gives ^p(c) = 0.

2.9. Let again Q denote a tilting module belonging to the A-block. Pick a lift Q of Q
to Zp. We now want to consider the filtration F^QVJ > 0. Recall that we have
isomorphisms _

adj2 : F^Q) ̂  Hom^(T^yz,(^),0)

and _
adj^ : E^Q) -^ Hom^(0,T^^^)).

If ^ G HomG^(T^yz,(/^Q) and ^ G HomGz,(Q,T^ff^(^)) then by Proposition 2.6
we can write

^ o (p = a^^a + b^^(3

for some unique a^,6^y, G Zp.
PROPOSITION. - W^i the above notation we have

F^QY = {adj^^)\a^b^ € Z^ for all ^ G Hom^(0,r^ff^(^))}.

Proof. - By 2.3 (1) and (3) we get (with 7 as in 2.7)
adji('0) o adj^^) = adj^) o T^ 0 7 = adj^ o y?) o 7 = (a^ + b^)^.

Here the last equality comes from Lemma 2.8. This proves one inclusion and also shows
that if adj^^) C F^Q)3 then a^ + &^ € p^'Zp for all ^.

Set now ^ = %' o r ' o '0. From Lemma 2.4 we get %' o r ' o a = pna and Lemma 2.5
shows i' o r' o /3 = a. Hence

^/,^ = P71^^ + ̂ ,y (and ̂ /^ = 0)'
So if (^ € F^T^Q)3 then

^'0,^ + ̂ (^ Pna^^ + ̂ ^ e ^P

for all ^. Hence also a^,&^ G p^Zp for all ^ and the other inclusion follows.
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362 H. H. ANDERSEN

3. Conjectures

3.1. Preserve the notation from Section 2. In particular, recall that A is a p-regular weight
and p, is semi-regular. In this section we assume moreover that ^p(dim"(4(^)) = 1.

Let Q denote a tilting module belonging to the A-block. Then the exact sequences 2.4
(1) and (2) give (via 1.2 (1)) rise to the following exact sequences of free Zp -modules
(recall that A > \s)

(1) 0 - F^{Q)-^F^Q)-^F^Q) - 0,

(2) 0 - E^(Q) -. E^Q) -. E^Q) -. 0.

We have analogous sequences of fc-spaces (equip the terms in (1) and (2) with bars).
The construction in 1.3 gives filtrations of all the terms in (1) and we conjecture that
they behave as follows.

CONJECTURE. - Assume Q has no summands T^(^) with v > vs. Then for each j> 0
we have

(i) %WW) = W)^\

(ii) ^-\F,(TW) = F^QY.

In the following subsections we shall give some evidence, some partial proofs and some
consequences of this conjecture.

3.2. LEMMA. - With notation as in 3.1 we have for all j> 0

(i) WT^QY) C F^Q)\

(ii) pFx(Q)3 C^F^QY).

Proof. - (i) Let ^ e Hom^(7^Vz,(/^0) such that adj^^) G F^QY.
According to Proposition 2.8 this means that a ^ y ^ b ^ y G p^Zp for all ^ G
HomG^Q^H0^ (/.)).

Consider now (p o i e F\{Q). For each |'0i € E\{Q) there exists (by 1.2 (1))
^ 6 HomGzp(Q,r^ff^(^)) such that ̂  = TV' o ̂ . Then

'01 o ((^ o i) = 7T7 o (^ o (p) o i = a-0^(7r/ o a o i) + h^^(^1 o (3 o i).

But aoz == 0 and TT'O/^O? = c^ (Lemma 2.5) and we see that ^io((^oz) = b^^c\ 6 p^ZpC),.
(ii) Let (^i G Fx{Q)3. Pick first (^/ € Homc^ (^^z^/^), Q) such that ^ o i = ̂  and

set then (p = p ^ p ' — ^ o s o TT. Then y? o i = p(^i.
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FILTRATIONS AND TILTING MODULES 363

By Lemma 2.4 (ii) we have a o s o TT = pa. Moreover, arguing as in 2.5 we see that
/3 o s = V o c\s so that /3 o s o TT = a. It follows that

o"^,y = ptt^,y' ~ (p^^,^ ~t~ ̂ ,^) = ~b^^'

and
b^^ == pb^^'

for all '0. By the arguments in (i) above we have b^ y,/ e p^Zp and hence adj^1^) C
F,(TW.

3.3. LEMMA.

(i) TT-^F^Q^CF^QY.

(ii) ^(FA^O)^) C F,(TW.

Proof. - (i) Suppose ^ G FA^Q) satisfies adj^^ o 71-) G F^T^Q)3, i.e.
a^2o7n&v^207r € P7 Zp for all -0. But since TT' o ^ o (^2 = 0 and TT' o a = 0 we
must have b^^o^ = 0.

If -02 € E\s(Q) then (z' o -^2) ° (<^2 o 7r) = 0^/0^,^20^ • <^ and hence ^2 ° ^2 ==
^i'di/j^^^OTv ' ^\s'

(ii) Suppose (^2 ^ ^^(Q)^'^1^ and consider y? = (^2 ° TT. As above we get b^^ = 0
for all .̂ Moreover, we have r ' o '0 o y? = a^y^r' o a) = a^^p • (0^5 o 7r), L^.
(r' o ^) o (^2 == ^,<^J? • CAS. By assumption on ^2 we have a^^p G J)J+lZp, hence
a^^ ^ jP^Zp.

3.4. LEMMA. - (i) IfFxs{Q) = 0 then Conjecture 3.1 (i) W^.
(ii) If F),(Q) = 0 r^n Conjecture 3.1 (ii) W^y.

Proof. - Just as in the proof of Lemma 3.3 (i) we have for adj^1^) G F^(T^Q)3

that '0i o (y? o %) = b^^c\ for all '0 with ^i = TT' o '^. We claim that 6-0^ G p•7+lZp.
To see this note that our assumption implies that (p o s = 0. Since a o s = p(i' o c\s)
and /? o 5 = ^/ o CAS we get

0 = a^^p + b^^

and the claim follows.
Now our assumption also implies that i is an isomorphism. Hence Lemma 3.2 (ii)

implies F^Q)^1 C ̂ (F^T^Q)3) and (i) follows.
To prove (ii) note that in the proof of Lemma 3.3 (ii) we may (because of the assumption

Fx(Q) = 0) write any V; as ^ = ?' o ^2 with ^2 e FA^Q)- Then

f ^ f ; o ( p = i / o ^ ^ o ( p ^ 0 7 ^ = aa

where a € Zp is determined by ^2 ° ^2 = a ' c\s- Hence a^^oTr € p^p for all
^2 € F),s{Q)3 and all ^. This means that ^{Fxs^Q)3) C F^T^Q)3 and (ii) follows by
comparing with Lemma 3.3 (i).
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3.5. Recall that in 1.5 we have defined a polynomial f\(Q) G Z[q] associated to the
filtration F^QY.

PROPOSITION. - Suppose Q is a tilting module belonging to the X-block such that Q has no
summands of the form Tk(v) with v > vs^v G X"1" linked to \. Assume that Conjecture 3.1
holds for Q. Then

f (T^n^ - J ̂ (^) + ̂ V^O). tf^ > ̂ ,
IM ^ A y / ~ 1 /..(Q) + qUQ\ ifv < vs.

Proof. - Suppose first that v > vs. Denote by v the weight on the common wall
of the alcoves containing v and vs which is linked to ji. By Proposition 2.6 we have
F^T^Q)3 = F^r^Op and Conjecture 3.1 gives for each j > 0 a short exact sequence

0 - F^QY -. WW -. F.(W+1 -> 0.

These two properties imply the first relation. The case v < vs is proved in the same way
using this time the second isomorphism in Proposition 2.7.

3.6. For v € X+ linked to A we define

f^x = UW)).
and we let f^ ^ denote its derived polynomial.

COROLLARY. - Assume Conjecture 3.1 holds for Q = Tk(\s) (where X > Xs). Then

T^(WS)) = W) e (^ /^(O)T,M).
v^>vs

Proof. - By Proposition 3.5 we see that f^T^{Tk{\s))){0) = 0 for all v with
y < us whereas if v > vs then

f (rpx^^ (\^\\\m\ _ I A^(0) = 1 if v = A ,
UT,T, (T,(A.)))(0) - ^ (^-i^^)(o) = y^jo) if y < \s.

The corollary now follows from Proposition 1.5.

Remarks. - (i) Assume now that Conjecture 3.1 holds for all tilting modules with highest
weights in the lowest j^-alcove. Then the above corollary clearly gives an algorithm for
determining the characters of all indecomposable tilting modules with such highest weights.
It starts out by the observation from Remark 1.1 (i) that Tfc(A) = Vk (A) when A belongs to
the bottom alcove in X^. A comparison with [Sol] shows that this is exactly the algorithm
predicted by SoergeFs conjecture (Vermutung 7.2 in [Sol]).

(ii) It is clear from the results in Section 2 that we cannot expect Conjecture 3.1 to hold
outside the lowest j^-alcove (note the appearance of n e.g. in Lemma 2.4). As mentioned
in the introduction it remains a challenge to come up with a conjecture which describes
the algorithm in higher alcoves.
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4. The quantum case

4.1. Let U denote the quantum group (or quantized enveloping algebra) associated
with our root system R. This is a Q(v)-algebra (v being an indeterminate) denned by a
wellknown set of generators and relations, see e.g. [Lu], By Uq we denote the corresponding
quantum group at a complex primitive fth root of ±1. We assume t is odd. This is the
specialization of the Z^^"1] -lattice ^z[v,v-1] m U generated by the divided powers of
the generators, see [Lu].

The representation theory of Uq resembles to a great extent the one for G, see e.g. [APW].
In particular, we have for each A G X^~ a simple module Lq{\), an induced module H^(\)
and a Weyl module Vq{\) all with highest weight A. Exactly as for G we have also
a unique indecomposable tilting module Tq{\) with highest weight A, see [An]. Hence
Problem 1.1 has the following direct analogue

PROBLEM. - Determine the numbers [Tq(\) : Vq(y)} for all A, v G X+.

4.2. To construct filtrations of the Horn-spaces in the quantum case we consider the
ring Q^v"1]. The induced modules, the Weyl modules and the tilting modules lift
to UQ[y^-i^ i.e. there exist for each A G X^ unique (up to isomorphisms) UQ^^-I^-
rnodules H^r ^ _ n ( A ) , ^Q[v,v-i](A), and TQ[^-I](A) which specialize to the corresponding
Uq -modules:

^Q[^-i](A)0C^°(A),

yQ[^-i](A)0C^y,(A),

and
TQ[^-i](A)0C^T,(A).

Here C is made into a Q[v,'?;~1]-algebra by specializing v to q.
The results in Sections 1.2-5 now carry over. In particular, if Q denotes a tilting module

for Uq and Q denotes its lift to ^Q^i;-1] then we define for each A G X^ the filtration
(^(WL->o) ofFA(Q) = Hom^J_^(yQ^-i](A),0) as follows:

Let ^ G Q[v] denote the tih cyclotomic polynomial. Then F\(QY consists of those
{? e F\(Q) which satisfy

^ o (^ G WQ^^'^cx for all ^ G Hom^^_^(yQ[^-i](A), Q).

We set F\(Qy equal to the corresponding image in F\{Q) == Hom^(Yg(A),Q).

4.3. The results in Section 2 also carry over with the important difference that the number
n appearing in 2.4, 2.7 and 2.9 is always replaced by 1 (because ^(dimyg(^)) = 1 for
all semi-regular weights /^, i<^ denoting valuation with respect to ^). In other words: all
dominant weights are contained in the lowest (2 -alcove.

This observation means that the general assumption in Section 3 (namely that n = 1)
is automatically satisfied. Hence the analogue of Conjecture 3.1 is expected to hold for
Q = Tq{\) for all A G X^ with A > \s.
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