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THE COHOMOLOGY OF PERIOD DOMAINS FOR
REDUCTIVE GROUPS OVER FINITE FIELDS

By SASCHA ORLIK *

ABSTRACT. — The goal of this paper is to give an explicit formula for thadic conomology of period
domains over finite fields for arbitrary reductive groups. The result is a generalisation of the computation
in [6] which treats the case of the general linear gréiip,. O 2001 Editions scientifiques et médicales
Elsevier SAS

RESUME. — Dans cet article, nous donnons une formule explicite pour la cohomologie des domaines de
périodes sur un corps fini dans le cas d'un groupe réductif quelconque. Le résultat est une généralisation
du calcul fait en [6], qui traite le cas du groupe linéai®,,. 0 2001 Editions scientifiques et médicales
Elsevier SAS

1. Introduction

Let £ = IF, be a finite field, and lez be a reductive algebraic group defined oweof
semisimplek-rank d = k-rky(G). Fix a pairS C B consisting of a maximak-split torus .S
and a Borel subgroup defined ovek. The centralizeZ(.S) of S in G is a maximal torug’,
sinceG is quasisplit. We denote bi the roots, byR™ the positive roots and by

A={ay,...,aq}

the basis of simple roots @ with respect taS C B. Let k' be a finite field extension df over
which G splits, and lek be an algebraic closure &f We denote by = Gal(k’/k), respectively
'y, = Gal(k/k) the associated Galois groupsNfe X, (T)q is a rational cocharacter we will
denote by

P(\)={g€G; lim A(t)gA(t) ! exists inG'}
the associated parabolic subgroup, and by
_ P -1 _
U\ ={g€G; mA(t)gA(t) " =1}
its unipotent radical.

Fix a conjugacy class
{u} c X.(G)

* Die Arbeit wurde mit Unterstitzung eines Stipendiums im Rahmen des Gemeinsamen Hochschulsonderprogramms
Il von Bund und Landern tber den DAAD ermdglicht.
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64 S. ORLIK
of one-parameter subgroups (1-PSYhfwheren denotes a representative lyingia, (7). Let
E={z€k; o(x)=uz, forall o € Stabr, ({u})}

be the Shimura field of 1}, an intermediate field df /k. According to a lemma of Kottwitz [3],
Lemma 1.1.3, we can suppose that {u} is defined ove®. Hence the conjugacy clags}
defines a flag variety

F=F(G.{u})=G/P(n)
overk that is defined oveE. Notice that the geometric points & coincide with the set

{n/~,

where A1, A2 € {u} are equivalent, writter\; ~ )\, if there exists a poiny € U(A1) with
Int(g) o Ay = Ao. Here

Int(g):G — G,
h|—>ghg_1

is the inner automorphism @, which is induced by;. Finally, we sef' g := Gal(k'/E).

In the further text we identify a variety with the set of its closed points..LetF be a point
which is represented by a 1-PS|t is well-known that) induces for everyz-moduleV over
k a descending-filtration 73 (V') on V. In fact, letV = @ V) (i) be the associated-grading.
ThenF3 (V) is given by

FWV)=Pwni), i<k
j>i
As this filtration depends only an, we denote this filtration byF? (7). Considering the adjoint
action ofG on its Lie algebrd.ie G, we get in particular a filtratiotFy := F2 (Lie G) onLie G.
We will say thatr is semistable if the filtered vector spadeiec G, F2) is semistable. For the
latter definition of semistability see [8—10] or [6], Definition 1.13. Following [10], the semistable
points of ¥ form an open subvariety

F* =F (G A{n})”,

which is called the period domain with respecti@nd{y}. It is defined ove and is supplied
with an action ofG (k). In his paper [12], Totaro has shown that there exists a relationship to
the concept of semistability in Geometric Invariant Theory introduced by Mumford [5]. We shall
explain this relationship in Section 2.

Choose an invariant inner positive definite producitgri.e. we have for all maximal tofl”
in G a non-degenerate positive definite pairingon X..(T")q, such that the natural maps

Xi(T)g — Xu(T?)q;
induced by conjugating with € G(k) and
X.(T)o — Xu(T7%)q

induced by conjugating with € T';, are isometries for aljy € G(k), o € T'y.. HereT9 = gTg~!
is the conjugate torus, respectivdly = o - T' is the image ofl” under the morphismr: G — G
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THE COHOMOLOGY OF PERIOD DOMAINS FOR REDUCTIVE GROUPS OVER FINITE FIELDS 65
induced byo. The inner product, together with the natural pairing
() Xu(T)ex X*(T)e — Q,
induces identifications
Xu(T)g — X*(T)q
A— ¥,
respectively
X (T)g — Xu(T)aq
x— x5
for all maximal toriT in G. We call\* the dual character of andy* the dual cocharacter gf.
Before we can state the main result of this paper, we have to introduce a few more notations.
Let W = N(T')/T be the Weyl group of7, and letlV,, be the stabilizer of. with respect to
the action ofi¥ on X, (T'). We denote by¥# the set of Kostant-representatives with respect to
W/W,,. Consider the action df ; on W. Sincey is defined ovelF, this action preserved’*.
Denote the corresponding set of orbitsB¥* /T and its elements bjw], wherew is in W*.

Clearly the length of an element IV only depends on its orbit. So the symbBdlkw]) makes
sense. For any orbjtv] we set

indp,) = IndgtEapr (w)(@g.
This induced representation is clearly independent of the specified representative. Let

{Ways- -y Way } € X(S)o
be the dual basis afh, i.e. we have

(Way,a5) =6i5, VYi,7, 1<4,j<d.
For every subset C A we define
Q= {[w] € WH/Tg; (wp,wk) >0, foralla ¢ I'}.

We get the following inclusion relation

ICJ=0QrCQy.

In the further text we denote f¢w] € W* /I"g by Ij,,) the smallest subset df such thafw] is
contained ir2;,, . Obviously, we have

1) Iy C I & [w] € Q.

For a parabolic subgroup C G defined overk we consider the trivial representation Bfk)
onQ,. We denote by

. G(k
Zg = Indpgkg((@é)

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE



66 S. ORLIK

the resulting induced representation(éfk). Further we set
o =if/ 3 i,
PSQ
Inthe case” = B, we get the Steinberg representation [11]. Finally, for any subsefA we set

Pri= (] Pwa)

IcA—{a}

This parabolic subgroup is defined oversince thew,, are. Thus we can state the following
theorem, which calculates theadic cohomology with compact support of the period domain
JF* as representation of the proddetk) x I'g.

THEOREM 1.1. -We have

H (F*,Q)= &P vg,[w] ® indy) (—1([w])) [-20([w]) — #(A = Tju))]-

[wleW# /Ty

Here the symbo(n), n € N, means thesth Tate twist and—n], n € N, symbolizes that the
corresponding module is shifted into degreef the graded cohomology ring.

As in the case of th&L,1 (cf. [6], Korollar 4.5) we can state the following result about the
vanishing of some cohomology groups of these period domains. The proof of this corollary is
similar to theGL4;-case.

COROLLARY 1.2. -We have
HL(F*, Q) =0, 0<i<d-—1,
and

HY(F*, Q) = 5.

Theorem 1.1 has been conjectured by Kottwitz and Rapoport, who had calculated previously
the Euler—Poincaré characteristic with compact support of these period domains in the
Grothendieck group aff/(k) x ' i representationsf. [10]). The formula for the Euler—Poincaré
characteristic is accordingly

e(FLQ) = Y (-1 HeE  @indg, (~1([w])).

[lwleW#/T'g

In the split case the formula of the theorem becomes

H Q) = €D of, (-1(w)[-2(w) - #(A = L)],

weWH

which has been already calculated o= GL441 in a slightly different way in [6].

2. Therelationship of period domainsto GIT

In this section we want to explain the relationship between period domains and Geometric
Invariant Theory. For details we refer to the papers [12], respectively [10]. We mention, that
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THE COHOMOLOGY OF PERIOD DOMAINS FOR REDUCTIVE GROUPS OVER FINITE FIELDS 67

Totaro has described in his article [12] the theory of period domains in the case of local fields.
But as the reader verifies easily, all the proofs and ideas work also in the case of finite fields.
Let

M :=P(p)/U(p)

be the Levi-quotient of?(u) with centerZ,,. Theny defines an element of.(Zy,). Let Ty,
be a maximal torus in\/. Then we haveZ,; C Ty, and Ty, is the isomorphic image of a
maximal torus inG. So we get an invariant inner product ai. Consider the dual character
w* € X*(Th)o- As 1 belongs taX..(Z,), the dual character* is contained in

X*(Mab)(@ = Hom(P(,u)7 Gm) ®z Q.
The inverse characteru* induces a homogeneous line bundle
L:=L_,-

onF. The reason for the sign is that this line bundle is ample.

Let \:G,, — G be a 1-PS of5. For any point: € F we can consider the slopé (z, \) of A
in z relative to the line bundI€ (cf. [5], Definition 2.2). Now we are able to state the following
theorem of Totarodf. [12], Theorem 3).

THEOREM 2.1 (Totaro). Let x be a point of F. Then z is semistable if and only if
w=(z,\) >0 for all 1-PS\ of G4, which are defined ovek. Here Gy, is the derived group
of G.

In order to investigate the GIT-semistability of points on varieties, it is useful to consider the
spherical building of the given group. L&(G);, be thek-rational spherical building of our fixed
groupG. Recall the definition 0B(G), (cf.[2]). For a maximak-split torusS of G we consider
first of all the space of rays

(X*(S)R — {0})/R>0 = {R>0)\; AE X*(S)]R — {0}}

in X.(S)r starting in the origin. This space is homeomorphic to(the 1)-sphereS™—1, where
r is thek-rank of G. We can associate to every y.o\ € (X.(S)r —{0})/R>( a well-defined
parabolic subgroup’(R-o)) (cf.[2]), which is compatible with the old definition d?(\) with
respect to a rational 1-PSe X..(S)q. We also have a natural action of theational points of
G(k) on the disjoint unior [ ;. ;; (X (S)r — {0}) /R>0. We will say that two rayR-oAi,
RsoA2 are equivalentR- oA ~ Rso)s, if there exists an elemente P(R-oA1)(k) which
transforms the one ray into the other. Finally, we set

B(G)y := ( H (X (S)r — {O})/R>O>/N
S k-split
and supply this set with the induced topology. Again we can associate to everyB{G)
a well-definedk-rational parabolic subgrouB(z) of G. If S is any maximak-split torus ofG
then we have a closed embedding
B(S)r — B(G)k.
The spaceB(.9), is called the apartment belonging$o
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68 S. ORLIK

Assume for the remainder of this section that our gr6iip semisimple. In this case the space
B(G)y is homeomorphic to the geometric realization of the combinatorial buildih§2], 6.1).
Thus we have a simplicial structure d&(G);, which is defined as follows. For &-rational
parabolic subgroup’ C G we let

D(P):={z € B(G)); P(x) > P}

be the facette corresponding® If P is a minimal parabolic subgroup, i.e. a Borel subgroup as
G is quasi-split, then we calD(P) a chamber ofB(G);.. If in contrastP is a proper maximal
subgroup, theD(P) is called a vertex.

Consider thek-rational cocharacters,,, o € A, introduced in the previous section. These
cocharacters correspond to the vertices of the champer D(B), since theP(w,,), « € A, are
the maximalk-rational parabolic subgroups that contdin For any other chambep = D(P)
in B(G)x, there exists @ € G(k), such that the conjugated elemetfiis(g) o w,, o € A,
correspond to the vertices @f. The elemeny is of course unique up to multiplication by an
element ofB(k) from the right. Therefore we choose for the rest of this paper for every chamber
D an elemenyp with the above property. The elemens, should be of course the obvious one.
With this choice, we define for every chamti@iin B(G);, the simplex

-5 = { Z ra>\a; 0<7“a < ]-; Z Ta = 1} CX*(QDSQBI)R;

aEA acA

which is the convex hull of the fixed set of representativgs= ng(ygg1 e X, (gDSgBI)R,

a € A. The topological space3 andD are obviously homeomorphic. For the standard chamber
Dy we have in particular the description

50:—{Zrawa;0<ra<1, Zra—l}.

aEA aEA

We can extengi”(z, -) in a well-known way to a function o () for every maximal torus
T in G. Notice that the slope functign®(z, -) is not defined orD but onD. In spite of this fact
we will say thatu”(z, -) is affine onD if it is affine on D, i.e. if following equality holds:

ur (x, Z ra)\(y> = Z ra,uﬁ(a:, Ao) forall Z Tada € D.
aEA aEA aEA

It follows from [5], Proposition 2.7, that the definition of being affine does not depend on the
chosen representativep € G(k).

In the case of the special linear group we can calculate the slope of a point expliciiandl
F' are two filtrations on a finite-dimensional vector sp&twe set

(F,F)= Z of dimgr?_—(grfc,(V)).

o,BEZL

LEMMA 2.2.-LetG =SL(V). 3
(i) Letz € F and A € X.(G) with corresponding filtrationFy on V- =V @, k. Then

1 (2, A) = —(Fo(V5), Fa).
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(i) LetT C G be a maximal torus and, \' € X, (T). Then
N A) = (Fa, Far).
Proof. —(i) If the point x is fixed by A, then our statement is just a result of Totach [12],
Lemma 6 and part (ii) of this lemma). In general, dgt:= lim; o A\(t)z € F. Then we know

that 1= (x, \) = p“(z0, ) (cf. [5], Definition 2.2, Property (iv)). On the other hand B¢ (V),
respectivelyF; (V') be the corresponding filtrations dn Then we claim that

gy (F2(V)) 2 ey (F5 (V) foralle, BeZ,
proving our assertion. Indeed, [Bf C V' be any subspace. For everye Z we set
Wo i=im(grg, (W) = VA(a)),
whereV = @, Vi (a) is the grading o/, which is induced by\. Then we get
lim A(t) - W = %:Wa,
considered as points of the corresponding Grassmanian variety. But then
gr, (W) =W, =gr§, (}E% At)-W) foralla€Z,
and the claim follows.
(i) Choose a basis df” such thatl" is the diagonal torus &L ;1. Then we may identify\,

respectively)\’, with d + 1-tuplesA = (A1,..., Aay1), respectively\’ = (A,..., X, ) € Z4F1.
Obviously, we haver% (V) = Vi(«), respectivelygré: | (V) = Vi (a), and

grE, (gr?_-ﬂ (V) =WVala)NVx(B) foralla,seZ.

But then
(Fn, Far) = Zaﬁdim(V,\(a) NV (ﬁ)) = Zaﬁ# {i; i=a, X, =0}
a,3 a,B
d+1

=Y AN=(N). O
=1

The idea of the next proposition is due to Burt Totaro which is a decisive point in proving the
acyclicity of the fundamental complex in Theorem 3.2.

PROPOSITION 2.3. —Let 2 € F be any point. The slope functiqrf (z, -) is affine on each
chamber ofB(G).

Proof. —-We may assume that our grouptissimple. Choose a faithful representation
i:G—SL, =G’
which is defined ovek. Sety' :=iou € X,.(G'). We get a closed immersion
P F(GAp}) = F(G W'} =F
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70 S. ORLIK

of the corresponding flag varieties, under whijclis mapped tq.’. We assume that we have
an invariant inner product ofiL,, which restricts to our fixed one o. This is not really a
restriction since two such inner products or-gimple group differ only by a positive scalar
(cf.[12], Lemma 7). The line bundlg’ := £_,, onF’, defined in a similar way a8, restricts
then via the pullback t&. Because of the equalify” (z, \) = 1% (i(z),i 0 \) ([5], property (iii)
following Definition 2.2) we can restrict ourselves to the c&se SL(V). Let A € {u} be a 1-PS
representinge. Let S C G be a maximalk-split torus, such that the corresponding apartment
contains bothD, a given chamber with representativese X..(S)q, o € A, of its vertices and

A. Using the previous lemma we get

e <m > ra)\a> = —(fm(vz),fzaeﬁw) =— (A, > ra)\a> ==Y ra(XAa)

acA aEA aEA
=_ Zra(}'m(V),}'A): Zrauﬁ(x,)\a). O
a€A aEA

| want to stress that the previous corollary fails for arbitrary varieties. In general, the slope
function is only convexdf. [5], Corollary 2.13).

COROLLARY 2.4.—Letx be a pointin¥. Thenz is not semistable> there exist an element
g € G(k) and ana € A such thatu” (z, Int(g) ows) < 0.

Proof. —The direction “=" is clear. So let\ be ak-rational 1-PS withu“(z,\) < 0. Let
g € G(k) such thaint(g~1) o A lies in the simplexD, spanned by the rational 1-R§, a € A.
Thus we can write\ in the shape. = r,Int(g) ow,, with 0 <7, < 1. The statement follows
now immediately from Proposition 2.3.0

3. Thefundamental complex

Let G be again an arbitrary reductive group. In this section we will construct an acyclic
complex of étale sheaves on the closed complement

Y =F~\F°

of the period domairgF=*, which is defined oveE as well. This complex yields a method to
calculate the cohomology ¢fF.
For any subsef C A we set

Vi={zeF; p*(z,wa) <Oforalla¢I}.

It is a consequence of Corollary 2.4 that we can writas the union

v=U U 9@
)

a€A geG(k
LeEmmMA 3.1.—(a)The set; induces a closed subvariety Bf which is defined ovek.
(b) The natural action ofs on F restricts to an action of’; onY; for everyl C A.

Proof. —It is enough to show the statement in the extreme daseA — {«a}. Choosing
an G-linearized embedding” — P(V) into some projective space defined ovér(cf. [5],
Proposition 1.7), we may restrict ourselves to show that thfsetP(V); p(z, \) < 0} is closed
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THE COHOMOLOGY OF PERIOD DOMAINS FOR REDUCTIVE GROUPS OVER FINITE FIELDS 71

for everyA € X(G)y. LetV =@, Va(i) be the grading induced by. Then the above set is
just the closed subspa@&(,., Vi (i)), and the first assertion follows. The second statement
results immediately from the fact thaif([5, Proposition 2.7])

pE (pz,we) = P (x,ws)  forallp e P(wy). O
Let g be an element off(k) andl C A. We denote by
¢g,[ gYr =Y

the corresponding closed embedding. Eebbe an étale sheaf dri and let/ C J be two subsets
of A with # (J ~\ I) = 1. Let furtherg € (G/Pr)(k), h € (G/P;)(k) two elements, such that
is mapped tdv under the canonical projectidiz/ Pr) (k) — (G/Py)(k). In this case we define

PE (Bn.0)(Dn,0) F — ($g.1)4(g.1)"F

to be the natural morphism of étale sheavesrowhich is induced by the closed embedding
gY7 — hYj. If g is not mapped té then we se ?:’} = 0. Finally, we define

pr,J = @ p?:f}:
(9,R)€(G/ Pr)(k)x(G/Py)(k)

B @) F— B (@00 (600)F

he(G/Py) (k) 9€(G/Pr)(k)
For two arbitrary subsets J C A with # J — # I =1 we set

o (—1)ip]7J: JZIU {0&1;},
org = {o: I¢.J

We get a complex of étale sheaveson

0—F— @ @ (ng,l)*(qsgyf)*F_) @ @ (¢g’1)*(¢g’1)*F

L ACH_ 9@/ Py #(ACH_, 9GP )
» - D D G0 ) F— B (9.0):(¢g0) F—0.
palGR 4y ISP 9€(G/B)(k)

One essential step in order to calculate the cohomology of our period domain is the following
result.

THEOREM 3.2. —The above complex is acyclic.

Proof. —Let « € Y (k*P) be a geometric point. Localizing im yields a chain complex
which is precisely the chain complex that computes the homology with coefficient drpup
of a subcomplex of the combinatorial Tits complexdgk). Strictly speaking this subcomplex
corresponds to the following subset of the set of vertices of the Tits building:

{gP(wa)g_l; g€ G(k), a € A such thap” (:c,Int(g) owa) < O}.

We will show that this combinatorial subcomplex is contractible. gt be its canonical
geometric realization in the spherical building(G),. Then T, is already contained in
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72 S. ORLIK

B(Gger)r C B(G). The next two lemmas will show that the topological spdEe is
contractible. O

LEMMA 3.3.-Let

L
Cm = {)\ S B(Gder)k,; K (.13,)\) < 0}.

(A A)

This set is convex. The intersection(@f with each chamber iB(Gaer)x is convex(For the
definition of convex we refer {86].)

Proof. —In the case that the grou@q,., is split this is just [5], Corollary 2.16. But the proof
for the general case goes through in the same way.

Notice that we get aninclusidf, — C, because the slope-functionis affine on every chamber
of B(Gder)k-

LEMMA 3.4.-The inclusiorl},, — C,, is a deformation retract.

Proof. —Let D = gpDy, g € G(k) be a chamber in the spherical buildiig(G); with
D N C, # 0. Following Lemma 3.3 this intersection is a convex set, whgre T lies in the
boundary of this space. Thus we can construct a deformation retract befweéh andD NT,

as follows. Denote b)D/m\@ the preimage ofD N C, under the canonical homeomorphism
D — D. Put

A= {a € A: Int(gp) owq € D/Hi}
Let
¢p:(DNCy) x[0,1] — C,

be the map which is induced by the map

65:(DNC,) x [0,1] — DNy,

defined by

o5 ( Z ro Int(gp) 0wy + Z ro Int(gp) owmt>

€A agA
= Z 7o Int(gp) owa + Z troInt(g) owy.
€A agA

This is a continuous map and one checks easily that the collection of these maps paste together
to a continuous map

¢:Cp x[0,1] — C,,

which induces a deformation retraction frafpto C,,. O

4, Theproof of Theorem 1.1

This last part of the paper deals with the evaluation of the complex (*) in the case®éttie
sheafF = Q.
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PrROPOSITION 4.1. —We have the following description of the closed varieligen terms of
the Bruhat cells of¥ with respect taP(u).

Vi= |J Pwo)wP(p)/Puw)= | BwP(u)/P(u).
weWH weWH
[w]eQ [w]eQ;

Proof. —It is enough to show the assertion in the cdse A — {a} for an elementy € A,
since the set®; andY; are compatible with forming intersections relative to the getsA, i.e.

Qs =QrNQy,

respectively
Ying=YnY; forallI,JCA.
Letp be an element aP(w,, ). We have the equality

pE (pr,we) = P (x,w,) forallz e F

(cf.[5], Proposition 2.7). The proposition follows now immediately from the equalities

Nﬁ(pw%wa) = /j/c(w/j’aw(x) = —(UJ/J/,L&):(),

wherej denotes the point F, which is induced by the 1-P& O

The above cell decomposition for the varietiésallows us to calculate the cohomology of
them. The proof is the same as in the cas@bf,; (cf.[6], Proposition 7.1) and will be omitted.

PrOPOSITION 4.2. —We have

(2) HE (Y7, Q) = @5 indp(—iw]) [—20([w])].

[’LU]EQ[

In the following we denote for an orbjitv] € W# /T'r and a subsef C A the contribution of
[w] with respect to the direct sum (2) BY(Y7, [w]), i.e.

wl) — indy,, (—l([w]))[—Zl([w])}: [w] € Qy,
(3) H(Y[,[ ]){0: [w] [w]%ﬂj
Thus we have
(4) H; (Y1, Q)= € H(Y,[w),

[w]eWr /T'g

Let I C J be two subsets ah. We consider the homomorphism
¢r,g He (Yy) — HE (YD),

given by the closed embedding — Y. The construction of Proposition 4.2 induces a grading
of ¢1.s,

b1, = &b S w: @ HY[w)— P H[w])

([w],[w])e(WH/TE)? [w]eWH/T'g [w]eWH /Ty
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74 S. ORLIK
with
id: [w] = [w']
5 wl,[w!] = ’
(5) Pl fw] {O: [w] # [w'].
We need a generalization of a result of Lehrer, respectively Bjorner. We will construct a

complex in analogy to the sequence (*). LletC J C A be two subsets witht(J ~ I) = 1.
We get a homomorphism

G -G
Prjip, —1ipp,

which comes from the projectioG/Pr)(k) — (G/P;)(k). For two arbitrary subsets
I, JC Awith # J —#1 =1, we define
_ S (=V'pry, J=TU{a},
a1, = { 0, I¢J.

Thus we get for everyy C A aZ-indexed complex

K;O:O—>ig—> @ iIG;I — @ z’%

IoCICA IoCICA
#(A—T)=1 #(A—T)=2
Ne! e
—_—— e —— @ ZPI—)ZPIO’
IoCICA

#(A-D)=#(A—1o)—1
where the differentials are induced by the abdyg. The component, is in degree-1.
PROPOSITION 4.3. —The complex<7 is acyclic.

Proof. —In the split case this is precisely the result of Lehrer [4], respectively Bjorner [1].
Since the grouf is finite taking the fix-vectors in the category @f-representations yields an
exact functor. But the above complex is just the resulting fix-complex of the analogous complex
relative toG considered as a split group defined oker O

We mention the following well-known lemmaf( [6], Lemma 7.4).

LEMMA 4.4. —Every extension of theg-moduleQ,(m) by Q¢(n) with m # n splits.
The acyclic complex (*) yields the following theorem.

THEOREM 4.5. —The spectral sequence

E’f’q—He‘a<Y, P B <¢>g,z>*<¢g,z>*@e>:HZJ%Y,@A
ICA g€(G/Pr)(k)
#(A-I)=p+1

resulting from(*), degenerates in thB,-term and we get for thé-adic cohomology oY":

H(Q)= @ (%, ®indu(-lw)[-2(w)]) &
weWh /T'g
#(A—TI1))=1

D ((Zg ® indjy) (—1([w])) [—21([w])}) ®

weW" /Tg
#(A—1I1p))>1

(05, ® indgy (=U([w)) [~2U([w]) = #(A = T) + 1] ) > .
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Proof. —We have

Boom(v @ B G

Ica 9€(G/Pr)(k)

#(A-I)=p+1
- & B HOLG) W= D P HLL.Q.
P 7T JalSA (@

The application of (4) and (5) yields a decomposition

By

I
S
D
=
)

into subcomplexes with

S H(Y7, [w]), g =2I([w]),
Y = 4 #@a e 0
0, q 7 21([w]).

ThusE, [, is the subcomplex

El,[w] : @ @ H(Ylv [w]) - @ @ H(va [w])

#(AS D= E/PDE) #(AT D= (G/POW)
s @ H(Yp, [w
(G/B)(k)

In view of (1) and (3) we have

B, ) — {2 (D2 oy 1

SoE; [, simplifies to

P i @indy(-Ul(w) — P i, @indp (—1([w)

I[w] cI I[u,] crl
#(A—T)=1 #(A-I)=2

—_— e — igf[w] ® ind[w] (—l([w]))> [—2[([20])} ,
and we get an exact sequence of complexes:

0—iS® ind [y (—l([w])) [—2l([w]) + 1} — K}M ® ind |y (—l([w])) [—2l([w])]
— By [w) — 0.
This yields the following three cases ffis |,
[w]_A Egﬁw] 07 p>05q205

H(A = Iy) =10 By 2D =51,y © 0 (=U[w]),

ESL =0, (p,q)# (0,2([w)])),
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#(A ~ Twp) > 1 By =i @ indpy) (~1((w]),

By =0, j=1,.. . #A—Iu) -2,

R 2w)) _ @ indp,) (—U([w])), J=#(A— 1) —1,
E’S’fw] =0, q#2l([w])orp>#(A— 1) —

G
2,[w] =vp
The Galois moduleEL'? = (0) possess the Tate twistg/2. As every homomorphism of Galois
modules of different Tate twists is trivial, ti&,-term coincides with th& . -term. Thus, for all
n =0,
g (H3,(V)) =ER0 7 =B = @) ELLP

2,[w]

[wleWr /Ty
B i endy(-l)e @ Goindy (=) p=0,
[w]eW*/Tg [w]eW" /T
#A—Iu))=1 H#H(A—I[,))>1
= 25([“’])_" 2l([w])—n
b vf, @ indpy) (~1([w]): p>0.
[wleW* /T'g
2([w))+# (A= I —1=n

Following Lemma 4.4 extensions @,;(m) by Q.(n) with m # n are trivial. This yields an
isomorphism

5(Y, Qo) = @D er” (HE (Y, Q0))

peN
- D zgl[w] ® indp, (—1([w])) @ b i& @ indp) (~1([w])) @
[lwleW* /T'g [wleW* /Tg
#(A/T—Ip,))=1 #(A/T—1Ip,))>1
2l([w])—n 2l([w])—n
@ vgl[w] ® indjy) (—1([w])).
[w]eW" /T

20([w])+#(A /T —I[)) —1=n
The claim follows. O

Proof of Theorem 1.1 The proof is the same as in the cas&0f GLg; (cf.[6]). O
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