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ON SOME GENERALIZATIONS OF
JACOBI'S RESIDUE FORMULA

By ALEKOS VIDRAS AND ALAIN YGER

ABSTRACT.— Using Bochner—Martinelli type residual currents we prove some generalizations of Jacobi’s
residue formula, which allow proper polynomial maps to have ‘common zeroes at infinity’, in projective or
toric situations 2001 Editions scientifiques et médicales Elsevier SAS

RESUME. - SiDs, ..., D, sontn diviseurs s'intersectant proprement sur une variété analytique complexe
compacteX de dimensiom et siw est une forme méromorphe séfrde lieu polaire inclus dans I'union
des supports de®;, il résulte d’'un théoreme de Griffiths que la somme des résidus de Grothendieck
dew en tous les points dgD;1| N --- N |D,| est nulle. Les formules de Bochner—Martinelli permettent
d’étendre ce résultat (dans les cadres projectif et torique) sous des hypothéses d'intersection propre hors de
la variété a I'infini. Des applications géométriques (du type Cayley—Bacharach) ou algébriques (effectivité
de la division ou de l'identité de Bézout) illustrent les énoncé&001 Editions scientifiques et médicales
Elsevier SAS

1. Introduction

One of the classical results in the one complex variable residue theory is the following:
for every polynomial mapP:C — C, the total sum of residues of the for@d¢/P (where
Q € C[X]) at the zeroes aP equals the residue at infinity of the rational funct@pP with the
opposite sign.
Some multidimensional analogues of this statement are treated in the present note. Consider a
polynomial map
pP=(P,...,R,):C"—C"

and assume thdl" is imbedded into the complex projective sp@e Let" P, ..., "P, be the
homogenizations of th&;, j = 1,..., n, that is the homogeneous polynomialsin- 1 variables

1 deg P; X1 X,
Let us impose the Jacobi condition, that is:
(1.2) the homogeneous parts of highest degreB;ifiX, . .., X,,), for

j=1,...,n, do not have common zeroes@ \ (0,...,0).
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132 A. VIDRAS AND A. YGER

Then, it is a classical result that goes back to Jacobi [19], thE&B) := {P, =--- = P, =0}
is finite, with cardinal number equal tieg P; - - - deg P,, and for any@ € C[X1,..., X,], such
that

deg @ < Zdeg(Pj) —n—1,
=1

one has
Q(Xq,....Xn)dX | Qd¢ _
(1.2) Res [ P....P, = Z Resq PP, =0.
a€eV(P)
Hered X stands as usual fetX; A - -- A dX,, and the residue of the meromorphic fog@f‘—éﬂ
at the isolated poink € { P, =--- = P,, =0} is defined as
Qd4C | _ /
Resa [Pl P,|” mi)" P1 (g)
\fl_\” €1
|fn‘:5n
CeUa
whereU,, is any bounded domain i@” such that{a} = U, N {P, =--- = P, =0} and the
orientation for the cyclé¢ € U, || f1| =¢€1,. -, | fn] = €n} IS the one that respects the positivity

of the differential formd arg(f1) A--- A d arg(fn).
The result of Jacobi has a toric pendant which is due to Khovanskii [22]T't.et (C*)™ and
Fy, ..., F, ben Laurent polynomials im variables

Fi(X1,.... Xp)= Y ¢, X{7 - X2m, j=1,...,n,
ajEA;

with ¢; o, # 0 foranyj € {1,...,n}, anya; € A; (the A; are the supports of thE}). Let A;
be the Newton polyhedron df;, which is by definition the closed convex hull df; in R™. We
now impose the Bernstein condition [3], that is:

forany¢ e R" ~ (0,...,0), the intersection witiT™ of the set

(1.3) {c; S GGG =0, =1, } is empty

ajEA;

(aij €)= min (n,£)
neA;

Under this hypothesis, Bernstein proved in [3] that thelsgtF') .= {Fy, =--- = F,, =0} NT"
is finite with cardinality equal:! times the Minkowski mixed volume of\,,..., A, and
Khovanskii [22] proved that for any Laurent polynomi@lwhose support lies in the relative
interior of the convex polyhedrafy; + --- + A,,, one has

Q(Xl,...,Xn)dX] [ Q d¢
1.4 Res = Res, =0
4 FiooFoo |y QE;(F) By G

(seealso [15], Corollary 4.8).

We will see in Section 2 how it is essential to interpret both geometrically and analytically the
conditions (1.2) imposed o, . . ., P,,) in the projective setting or the conditions (1.3) imposed
on(Fy,...,F,) inthe toric setting.
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ON SOME GENERALIZATIONS OF JACOBI'S RESIDUE FORMULA 133

In the first case (that is the projective one), the set of conditions (1.2) is geometrically
equivalent to the fact that the Cartier divisorsD,, ..., D,,, defined oriP™ by the homogeneous
polynomials® P; (Xo, ..., X,), j=1,...,n, are such that their suppott®;| satisfy

|Dy|N---N|D,| CC™.
From the analytic point of view, this is equivalent to the following strong properness condition

on the polynomial ma@’ = (P, ..., P,) from C™ to C™: there are constanfs > 0, ¢ > 0, such
that, for||C|| > R,

ws) S 1P

> c.
T+ ICP)nr

In the toric case, given a smooth toric variety associated to any fan which is a simple
refinement of the fan attached to the polyhedfon+ - - - + A,,, conditions (1.3) mean that the
effective Cartier divisors

D; =div(F;) + E(A)),

whereE(A;) is the T-Cartier divisor ont’ associated with the polyhedra; (see[17]), are
such that

IDi[A - N [Dn] C T

The analytic interpretation of this is the following: there exist const&nts0, ¢ > 0 such that,
for ¢ € C™ such thaf|Re(|| > R,

F e(l . eCn
(1.6) Zl s, ®0) ) Z ¢

whereH » ; denotes the support function of the convex polyhedkgnthat is the function from
R™toR deflned as

Ha,(z):= sup (z,§), xze€R"
! EEA;

In [5—7], one used extensively the fact that an analogous version of (1.2) could be stated whenever
the polynomial map

P=(P,...,P,):C"—C"

was proper. We will prove in Section 3 of this paper what appears to be the sharpest version of
such a result, namely:

THEOREM 1.1.-LetP = (P,..., P,) be a polynomial map fror€™ to C™ such that there
exist constants > 0, R > 0, and rational number® < §; < deg(P;), j =1,...,n, in order
that, for||¢|| > R,

")
.7) D BT

j=1
Then, for any polynomia) € C[Xj, ..., X,,] which satisfies
degQ<61+"'+6n_na
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134 A. VIDRAS AND A. YGER

one has

Q(X1,..., X,)dX | _
(1.8) Res P... D =0.

We will also prove in the same section the corresponding toric version, namely:

THEOREM 1.2.— Let F' = (Fy,..., F,) be a system of Laurent polynomialsrirvariables,
with respective Newton polyhedts, ..., A,. Suppose there exist constants 0, R > 0, and
convex polyhedré,, .. ., 6, with vertices inQ™, withé; C A;, j=1,...,n,and

dim(6y +---+6,)=n

which are such that, for any € C™ with |Re¢|| > R

|Fj(esr, ... en)
(1.9) Z oo, (Re() 2

Then, for any Laurent polynomigé) such that the support @ lies in the interior of the convex
polyhedror$; + - - - + 6, one has

Q(X1,...,Xn)dX |
(1.10) Res [ F.....F, i =0.

The main tool to be used in the proofs of both theorems will be the Bochner—Martinelliintegral
formula suitably adapted to each case.

From the point of view of algebraic geometry such theorems are not classical in nature since
the supports of the Cartier divisof, . .., D,, onP" corresponding to theP; in the first case,
or the supports of the divisof3; = div(F}) + E(A;) on a convenient smooth toric varietyin
the second case, do not intersect proper§’iror in X’ (the intersection is assumed to be proper
in C™ orin T™). Following the point of view developed by Kollar in [24,25], or by Lazarsfeld and
Ein in [13], we will also present in Section 3 a geometric interpretation of the conditions (1.7)
(in the projective case) and (1.9) (in the toric case). We will see that the Bochner—Martinelli
representation formula we use below fits with the construction of residue currents in the non-
complete intersection case, as proposed in [28]. A better understanding of our two theorems will
then rely on the fact that, ifs, ..., f, aren holomorphic functions in some domagnof C",
a crucial property of the distributiofi; € D’(€2) whose action on a test functiane D(Q) is
defined §eefor example [28]) by

n

Ty(p) = lim — / S0 A BT A,

ol 2= P 7k

is that it is annihilated, as a distribution, by any holomorphic functio®iwhich is locally

in the integral closure of the idegfi,..., f,)" (this ideal is contained ilff1, ..., f,) by the
classical result of Briancon and Skoda [4]). Therefore, once the hypothesis will be settled in
a natural geometric context, our two theorems will appear to be in close relation with this
Briangon—Skoda theorem, which also plays a significant role in [25,13], as a transition tool
between Lojasiewicz inequalities (or regular separation conditions) and effective versions of the
algebraic Nullstellensatz.
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ON SOME GENERALIZATIONS OF JACOBI'S RESIDUE FORMULA 135

As a consequence, it will then be natural to present in Section 4 some applications of our two
theorems to effectivity questions related to the algebraic Nullstellensatz in the projective case or
the sparse Nullstellensatz in the toric case, under some properness assumptions on tli&data in
or in T™. Such results will extend or sharpen some previous results in [6,7,16,31]. We will also
suggest possible applications to some results of Cayley—Bacharackégi®(), in the context
of improper intersections oR™ or on a smooth toric variety'.

2. An analyticinterpretation of Jacobi or Bernstein conditions

Using the notation of the previous section we will state in analytic terms the conditions (1.2)
or (1.3). We begin with the:

PROPOSITION 2.1. —Let P, ..., P, ben polynomials inC[ X1, X3, ..., X,]. The following
two assertions are equivalent

(i) {ceC™, hPy=... =P, = (=0} = {0},
(i) there exist strictly positive constan® c such that, for any, € C™ with ||{|| > R
125(9)]
2.1 >c.
@ 2 e > ¢

j=1
Proof. —Writing (ii) in homogeneous coordinates, we get that(if, . . ., ¢,) € C**! is such
that|¢1| + - - + |G| > R|Col, One has

n n

Z 5(Cos G- 5G| 2 C(Z(|Co|2 +oot |Cnl2)degpf/2>.

J=1

In particular,

n

Z ‘th(O’Cla"';Cn > C(Z |C1|2 R |Cn|2)degP_,~/2>.
j=1

j=1

This shows that (ii) implies (i).

Let now P;(X) = p;(X) + ¢;(X), such thatdegq; < degp;, p; being an homogeneous
polynomial with degreel; = deg(P;) (the leading terms iP;). Condition (i) is equivalent to
the fact that

{CEC”, pl(C)::pn(C):O} :{(0,,0)}

Sincepy, ..., p, are homogeneous with respective degrées. ., d,, there exists > 0 such
that, for any¢ € (C™)*,

2 ||<||d =

Therefore, for any, € (C™)*, one has

g ICIId lelélld lel(lld'
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136 A. VIDRAS AND A. YGER

For||¢]| > R, with R > 0 large enough, one has, sinéez ¢; < d;, j=1,...,n, that

=8
|
52
NN e

Therefore, forl|¢|| > R, we have

WV
N T

The last inequality implies (ii) with some constant ¢(R). O

Note that, if P is a polynomial map front™ to C", the fact that

fim P = oo
(which means just that the map is a proper polynomial map in the topological sense) does
not imply the strong properness condition (2.1). For example, #f 2, the polynomial map
(X1X2,(Xy +1)(X2 + 1)) is proper, but does not satisfy (2.1) since there are two common
zeroes at infinity.

In order to weaken condition (2.1), we introduce the following concept:

Definition 2.1. — Let(P, ..., P,) be a polynomial map front™ to C"* and (é1,...,6,) be
a set of strictly positive rational numbers with< ¢; < deg P; for any j. Then we say that
(Py,...,P,) is (61,...,6,)-proper if and only if there exist > 0, R > 0 such that, for any
¢ eC" such that|¢|| > R

Q)
@2) 2T o >

Example2.1. — Whem = 2, the polynomial mapX; Xo, (X1 +1)(X2+1))is(1,1)-proper.

Remark2.1. — We may extend this notion to the case whersthare rational numbers with
the sole condition$; < deg P;. In this setting, a polynomial map which (6., ..., 6,,)-proper
is not necessarily proper in the topological sense.

Let us now formulate the toric analogue of the Proposition 2.1.

PROPOSITION 2.2. —Let Fi,...,F, be n Laurent polynomials with Newton polyhedra
Aq,...,A,. The following two assertions are equivalent

(i) Iy,..., F, satisfy the Bernstein conditiof$.3);

(i) there exist strictly positive constan® ¢ such that, for any € C", with |Re (|| > R,

F G, Cn
2.3) Z et e

oHa; (Re()

Proof. ~We first prove that (i) implies (ii). Let us assume thdf, ..., F,) satisfy the
Bernstein conditions (1.3). In order to prove (ii), it is enough to show that one can find a conic
open sectoiS, in R™ containing—u and strictly positive constant®,,, ¢,,, such that, for any
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ON SOME GENERALIZATIONS OF JACOBI'S RESIDUE FORMULA 137

¢ € C" with Re¢ € S, and||Re(|| > Ry, one has

F G Cn
(2.4) Z [Ej(et, .. et > .

HA (Re()

Then, if one can do so for each rationalthe existence of positive constartsandc will follow
from a compactness argument.

Applying in the(-space a change of coordinatgs= A¢, A € GL,,(Z), we may assume that
u=(1,0,...,0)=e¢;. Letus write, forj =1,...,n,

(2.5) F; (e<1 . eC”) =¢ki le (eC2 . .,eC") +ﬁj (eCl,...,eC"),

where the support o@ is included in{z1 > k; }. As noticed by Kazarnovskii [20k€ealso [27],
Section 2, from which we got our inspiration here), the fact that Bernstein conditions (1.3)
are satisfied fo(Fy, ..., F},) is equivalent to the following fact: for any set of respective faces
(71,.-.,7n) Of the Newton polyhedrd\,, ..., A, of Fi,..., F,, there existg(y1,...,v,) >0

such that, for any(, ..., ¢,) € C,

F’Y7 (e<1, ... en)

Z eH’YJ(Recl LRe(n) /5(717"')771/)7
j=1

where, foreach =1,...,n, Fj” denotes the part obtained fraf by keeping only monomials
corresponding to points iy; and deleting all the others. It is clear that whenevedenotes the

Newton polyhedron off; (considered as a Laurent polynomiakin- 1 variables with support

in the subspace; of R™), the convex setgj =06+ kjer,j=1,...,n, are respective faces of
Ay,...,A,. Therefore, one has, for sorae- 0, for ((3,...,¢,) € C",

eFi f,(e2,. .. eSn)
(2.6) Z H~(Re<1, -Re(n) 2 €.

Since the support 0F~j in (2.5) is included in{x1 > k,}, there existy > 0, such that, for any
¢=(C1,...,¢n) With Re ¢y < 0and|Re(;| < p|Re(i| for j =2,...,n, one has

2.7) Hy (Re¢) = Ha, (ReC), j=1,....n.

On the other hand, if is small enough, then there exidts> 0 such that for any, € C™ with
Re¢i < —R and|Re(;| < p|Re(y| for j =2,...,n, one has

2.8) Z |F e(l . ecn) _

€
H~(Re(1 ReCn) T~ 9"
j=l1e %

From (2.6), (2.7) and (2.8), we get that fpm the conic sector
Su = {ReCI < 07 |Re<-j| < p|ReC1|a ] = 2; o 'an}a

the inequality (2.4) is valid fofiRe(|| > R = R,, and¢, = ¢/2. This shows that (ii) holds for
the systen(Fi, ..., F,)
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138 A. VIDRAS AND A. YGER

In order to prove the converse direction we will construct a globally defined real analytic
function that is not vanishing i’ \. T. This is done as follows:

For eachj € {1,...,n} choosen Laurent polynomials(ng),...,GﬁZ)) with Newton
polyhedronA; such that the systerfG(lj), . ..,Gﬁf)) satisfies the Bernstein conditions (1.3).
It follows from the fact that (i) implies (ii) that, for some convenient constaits> c; > 0,
R; >0, one has, for any € C™ with ||Re(]|| > R;,

n
cj ella; (Re€) Z |G,(€j) (e<1,. ..,eC")
k=1

< Oy efla;Bed),

Consider now on the tordB" the real analytic function

O RQP
(— Q)= )y ————=——.
) ;zzzna,i”(ow

Let X be any toric variety associated to a simple refi_nement of the fan which corresponds to
Ay + .-+ A,. The Laurent polynomiaI$G§J),...,G5£)) induce effective Cartier divisors
(Dﬁ’),...,Dﬁf)) on X, namely

DY) =div(GY) + B(4;), 1<), k<n,

where E(A;) is the T-Cartier divisor onX’ corresponding ta\; (it is well defined, sincet

corresponds to a fan which is compatible will}). The fact that the systerﬁng), . .,Ggf))
obeys the Bernstein conditions is equivalesgiefor example [17]) to

DY NN |DYP|=£; T
For homogeneity reasons, the function

C’—)(b(ChaCn)

extends fromT™ ~ U?:1 L; to a function% defined globally as a real analytic function on
X AN U?:l L:j.

Now we are ready to complete the proof of the final step. Assumg Hat. ., F,,) satisfies
(ii). For

1 1
(Gl Gl oy o 1

large enough, we have, for some consténtsc < C < o0,

Thereforegz? does not vanish o’ ~. T", which implies that the effective Cartier divisoF;
induced by thef; on X' by

Dj = le(F]) + E(AJ)

4°® SERIE-TOME 34 — 2001 N° 1



ON SOME GENERALIZATIONS OF JACOBI'S RESIDUE FORMULA 139

are such that
[Di|N---N|Dy| CT™.
This is equivalent to say that the Bernstein conditions are fulfilled for the sydtem. ., F;,). O

In order to weaken the properness condition (2.2), we introduce the toric analogue of
Definition 2.1.

Definition 2.2. — Let(F4,..., F,) be a system of Laurent polynomials invariables, with
Newton polyhedra\, ..., A,, and(éy,...,6,) be a collection of closed convex polyhedra with
vertices inQ™, with §; C A;, j=1,...,n. Then, we say thatFy, ..., F,) is (61, .., 6,)-proper
if and only if there exist > 0, R > 0 such that, for any € C" such thaﬂ\Re(H > R,

Cl Cn
(2.9) Z'Fe )l

Hs; (Re C)

Example2.2. — Letn =2 and
Fi=XiX5+ XiX; P+ an X Xo + X0 X5+ XEX 2 + 00X ° X5,
Fo= XiX3+ X3X52 +aaX1 X + B X1 Xy ' + 12 X2 X 2 46X, 2 X, 2,
with the conditions
71(61 = 02) = d1(71 —2) #0,
(a1 —az)? — (B1 — B2)? #0.
Then(F1, F») is (6, 6)-proper, where

6= COHV{(_2a _2)a (272)a (17 1); (17 _1)}

In fact, it is enough to notice thdtFy; — F5, F) satisfy the Bernstein conditions and have as
respective Newton polyhed#@and [—-2,2] x [-2,2], so that by Proposition 2.2, one has, for
H(RQQ,RQCQ)H >R >0,

(P = F)(ee)] | |Ri(e,e)

>
oHs (Re C1,Re C3) oH .22 (Re G ReCa) Z G

which implies, for suclt,

|F1(e<1,e<2)| |F2(e<1,e<2)|
eHg(Re(hRe(g) eHg(Re(hRe(g) =

N O

3. Proof of the vanishing theorems
3.1. The case of the proj ective space P"

Our basic tool will be multidimensional residue theory through an approach based on the use
of Bochner—Martinelli integral representation formulas. Let us recall here some well known facts.

Let P,..., P, ben polynomials inn variables defining a discrete (hence finite) variety in
C™. Itis shown in [28] that ifo € {P, =--- = P,, =0} andyp € D(C") is such thatp =1 in
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140 A. VIDRAS AND A. YGER

a neighborhood oft and¢ = 0 in a neighborhood of any pointifP, =--- = P, =0} \ {a},
then the local residue at the poinis

Qd¢ o nooo
Iplz=e M= o
n _1\k—1D A" AP
Q( =1 (—1)" 1Py /\g;:ﬂli 3Pz) A ed(
[1P]|>" ’

(3.2 =7 111%
| P||2=e

n(n=1)
where as usudlP||? = | P[>+ --- + | P,|* and~,, = W Using Stokes's theorem
and observing that the form

(=R TP N, OP) A d
Q( p—1(—=1) k/\g;ﬂlﬁ e) pd(
[| P2

is closed in a punctured neighborhodd . {a}, we get from (3.2) that it/,, is small enough
and with piecewise smooth boundary,

n _1\k—1P AT ap.
Res [ o ]_ / Q(Zk=1( i Pk/\gillc 8Pg)/\ 1
*\p---P, Tn | P2

U,

Therefore, ifU is any bounded open set with smooth boundary containing in its interior the set
V(P):={P, =---= P, =0}, then the global residue is the sum of the local residues, that is

Q(Siy (1) TN ) A ac

(33)  Res {Q(Xl, . Xn)dX] . /

Pi,...,P, | P2
oU
We can rewrite (3.3) as follows: if
( Py P, > ( )
SO=\7=15 75 | = So1y..-580m ),
7 IR (P

then
X1,..., Xp)dX . _
Res | A5 ) ]Z%/Q(C)(Z(—l)k 1s0kdso,[k]>Adc7
b b n aU k=1

whereds () := /\j;,é,c dsoj, k=1,...,n.
An homotopy argument shows that one can replace the vector-fungtayove by any vector-
functions, which isC! in a neighborhood of th8U and satisfies

(50, PO) = Y s QPO =1, Ceau.
k=1
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ON SOME GENERALIZATIONS OF JACOBI'S RESIDUE FORMULA 141

Then the global residue is given by the generalized Bochner—Martinelli formula

Q(Xy ..., X,)dX el
(3.4) Res P -7£n =y | Q Z(—l) spdspg | A dC.
U k=1
Before proceeding any further we point out that it is enough to prove Theorem 1.1 for the case
whené;, j =1,...,n, are strictly positive integers. In order to do so, it is enough to use the

compatibility of the residue calculus with the change of bastefor example [26], Section 2,
Proposition 2.3), which asserts that, for akiye N*,

(3.5) Res Q(X)dX }—R [ QXY ., XN)(Xy -+ X,)N-LdX

Pi(X),...,Pp(X) PXN, XN P(XN, XD

Let N be a common denominator for the rational numldgrg =1, ..., n; then the polynomials
Pi(X)=Pi(XN,...,XN), j=1,....n,

have respective degre@édeg P;, j = 1,...,n, and satisfy (2.2) witkﬁj = Né; e N*. If we
assume that our result holds when there integers, we get that the residue symbol (3.5) is zero
when

NdegQ+n(N—1)< N1+ +6,) —n—1,
that is

1
degQ<51+~~+5n—n—N.

Therefore, we have (1.8) whenever
degQ <61 4---+6,—1

as we want. We will assume from now on tiéate N* for anyj € {1,...,n}.
The next lemma introduces the Bochner—Martinelli residual currents into the computation of
the global residue.

LEMMA 3.1.—LetP = (Py,..., P,) be apolynomial map froi” to C™ defining a discrete
(hence finit¢ zero varietyV(P) in C™. Assume also thaR > 0 is sufficiently large so that
V(P)={P=---=P,=0} CB(0,R). For D; := deg P; pick an integer}/ large enough, so
that

b+ M — Dy >0, Vke{l,...,n}.

Then, ifs]™ is the vector function defined @ as

&M L Py (C) PH(C)
S0 (0= ((1+ IR T |<|2>6H+M>

and
2

(24(9) Z M+6 )
T 1+ ch
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142 A. VIDRAS AND A. YGER

one has, for any) € C[Xq,..., X,],

(3.6) Res[g@d;i]—%[ JR L (Z(—l)k L dsé?é)Adcl |
I¢ll=R A=0

cey Pt

Proof. —Let us define the vector function= s> in C" \. V(P) as follows

R P Pi(Q) P.(()
TG (e i)

Formula (3.4) implies that

e[ 200 ] [ @ v riagy) n
lci=r  NF=1

— [ IPIE (Z(—n’“ 1sSkMdsSf2’>Adq

Ici=R k=1

=%[ / P35 %(Z( >’“5Mds8”,§]>Ad<] .
A=0

k=1
<lI=r

The last equality completes the proof of the lemma
Next, we introduce the common zeroes at infinity of the polynomial (#p. . ., P,) into the
description of the action of the Bochner—Martinelli residual current as it is glven by (3.6).

For X fixed with Re A > 1, let us express in homogeneous coordingtes ((o, ..., (,) the
differential form

1Pl @ (Z( DF g ds ”1>Adc

k=1
This leads to a differentigh, n — 1)-form in P (depending on the complex parametgrwhich
will be denoted a®% . This form is

s (| 2O M8l —ne1 A
OpoA0)= Co Q(¢)

IC]1el+
n =6k +M— Dk —8¢+M—Dy—
P
7 1 k— 1C0 CO L Q
&7 " <Z( ) ||<||2<6W+M> /\8 e | )
=

where|§| =61 + -+ + 6y, 65 = (0] — 0; for j =1,...,n, Qis the Euler form, and

HP(Z)”%M = Z |pj|2|C0|2(6ijj+M)”ZHQ&[J.]’

=1

P1,...,Pn, Q, being the respective homogenizationsmyf, ..., P,,Q; the normHEH is the
Euclidean norm irCn+1!,
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Since

n

a| P3G %(Z( D! dsS?,g) A dC} =nA||P|§ffw">Q< A 5%9%) A dg,
k=1

k=1

we have, if the action of thé operator is now considered on the projective differential forms
(expressed in homogeneous coordinates),

e 2(A—n)
(3.8) 90 %Aéf/\:n)\(w> Co—degQ—n—lg(E)Ai;Jg(Cl Cn )AQ(C)

[C]|le1+M GG
where
6, M a 6M
APQ = /\ Ospi
Since
5,M<g Cn> G |2(5k+M)77k(C)Co
MGG KR
one has
—b6p+M—D
AéM(ClCO Cn) S /\ {Cok k,])k:|.
R e

This shows (as a consequence of Atiyah’s Theorem [1]) that the map
A\ —s @6 M

can be considered as a meromorphic map with values in the spaeerof- 1)-currents in
P (C).
At this stage we are ready for the

Proof of the Theorem 1.1 TakeR > 0 as in the Lemma 3.1 and consider the complement in
P™(C) of B(0, R) as a2n-chainX in P™ (with smooth boundary). One has, fBe A > 1, using

Stokes’s theorem
&M
/@PQ)\ /8 @PQ,\

Therefore, one can rewrite (3.6) as

o0 g0 fort] - fret)]
() -

=

(the total sum of residues 6™ equals the opposite of the “residue” at infinity). This identity
essentially reduces the proof of the Theorem 1.1 to the computation of an integral describing the
“residue” at infinity.

In order to carry out the computation of this integral (and to prove that it vanishes in
the situation we are dealing with), we first express the integrant it involves in homogeneous
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coordinates; then we localize the problem and look at the analytic continuation up to the origin
of the meromorphic function

(3.10) AH/@) (O3 ),

wheny is an element irD(P"(C)) with support contained in a neighborhobdof some point
x at infinity in P"(C) (these are the only interesting points, since if the suppogt dbes not
intersect the hyperplane at infinity, then (3.10) is an entire function which vanishes @a}. We
may suppose that the local coordinate¥iareé := ( e B ) (for example). Let

P, i+ M—Dj ‘
fJ(C):J(C)]\(/)[—JﬂsJa jzlv"'vna
1

expressed in the local coordinated_et us introduce a resolution of singularitig¥, =) for the
hypersurface f1 - -- f, = 0} overV (shrinkingV" about the point: if necessary). Then, in a
local chartw on X with coordinatesv centered at the origin, all functions(f;) are, up to
invertible holomorphic functions, monomialsis that is

™ (fj)(w) = uj(w)wfj1 —wlin 04 €N, wy invertible inw.

Note that

G

sinced; + M — D; > 0 for at least onej (in fact for any j). However this is not enough.
Using the ideas of Varchenko [30] and Khovanskii [23], we introduce, above each such local
chartw, a toroidal manifoldt' and a proper holomorphic map: X — w (which is locally a
biholomorphism betweed’ \ 7*{w; - - -w,, =0} andw ~\ {w; - - -w, = 0}), such that, on each
local charts on X (with local coordinateséty, .. .,t,)), one has

[CO} (w) = ug(w)w? ---wlon Gy, € N, ug invertible inw,

T () ) = Ty (0 18 = ()5 (1)

and one of then;, j =1,...,n, let saym, dividesmy,...,m,. Namely, the manifoldY is
the smooth toric variety attached to a simple refinement of the fan associated with the Newton
polyhedron

T+ (0y,...,0,) = O 0; +N"].

It arises from gluing together copié& ;, ;) of C" (in correspondence with the-dimensional
cones of the fany; being a monoidal transform attached to the skeleton of the cone), according
to the gluing of the cones along their edges. Tlhdimensional edges of these cones are
determined as the normal directions to {he— 1)-dimensional faces of the Newton polyhedron
'+ (6y,...,0,), plus aminimal system of additional rational directionfiyoo[™ (which are just
necessary for the fan to be simple).
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We now come to the crucial point where we use the hypothesis (1.7), which tells us that, for
R|C0| < (|C1|2 +ooet |Cn|2)/121 one has

n
G111 < e S IP Q)1+ =P 11180 < el Plls,ar-
j=1

This implies that, if
T [GoCu)(t) = Go(1)t% ---1%n Ty invertible i@,

the distinguished monomiah dividesmd!, whereig := %' . t%x in &. Let 3 be a test
function onX’ with support in the local chatt. As can be easily seen, one can writésin

whereo; andr; (depending onp and ¢) are smooth differential forms with respective type
(n,n—1) and(n,n). It follows then from (3.8) that

_ mnlﬁ+|6|fdengn71 %
7 [P (00057 1)1 (1) = Al | €A 0—— (? N oa(t) +Tz<t>),
,Q, m =
whereo, and, (depending onp and ¢) are smooth differential forms with respective type
(n,n —1) and(n,n) and¢ is a real analytic strictly positive function ib. Since|é| — deg @ —
n—1>0andm" dividesmy™, we getimmediately that for any test functipmvith support in

wl

~x [~ __* (AN0,
[ o0 ol @i )] (t)]H ~o0.
Then, the conclusion (1.8) follows from the formula (3.9) and our localization and normalized
blowing-up process. O

Remark3.1. — The fact thai; > 0 does not play any role in the proof. Therefore, Theorem 1.1
remains valid wheriPi, ..., P,) is (61,...,6,)-proper, where thé; are rational numbers such
thaté; < D; foranyj=1,...,n (seeRemark 2.1); of course, the conclusion of the theorem is
interesting only in the case whén+ - -- + 6, > n + 1.

3.2. Thetoriccase

We begin with a review of some preliminary material taken from [9-12,17].

A complete toric varietyX of dimensionn is determined by a complete faf in an n-
dimensional real vector spade, whereA is a lattice; for the sake of simplicity, we will always
assume\ = Z™ andAg = R"™. Taking a suitable refinement of the fan, we may assume that this
toric variety X is also smooth.

We denote ad* ~ Z™ the dual lattice. The primitive generators of the one-dimensional cones
in F are denoted by, . .., ns. Each of these vectorg, i =1,..., s, is in correspondence with
a torus-invariant irreducible Weil divisot; on X'. The (n — 1)-Chow groupA,,_;(X) on X
is generated by the classg¥;], i = 1,...,s, and induces a grading on the polynomial algebra
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S =Clzy,...,zs], namely
deg(x(lyl e x;’) = [ale 4+t 045)(8} €A,_1(X).

Note that the sequence
0— A" 57 — A, 1(X) —0,

wherer(m) = ((m,m), ..., (m,n.)) € Z* is exact since any monomial™m = z{™m) ...
xém’m), m € A*, has degree zero. (&7, ..., e}) is the canonical basis df* andZ is an ordered
subset of{1,..., s} with cardinal|Z| = n, let sayZ = {i1,...,in}, 1 <i1 < -+ < i, < 5, We

denote as

drz = /\ dz;,, z7:= H x, det[ng]:= det[<el*€’mf>}1<k,e<n'
=1 k=1
k¢T
The toric Euler form onY’ is the differential form(2 (expressed in homogeneous coordinates
T1ye-ey Ts)

Qz) :==+1 Z det[nz])z7 daz.
|Z|=n

We now consider a systerf¥y,..., F,,) of Laurent polynomials with respective polyhedra
Aq,...,A,, and a collection(é,...,6,) of rational polyhedra such that; ¢ A; for any
je{l,...,n}, 61+ -+ 6, is n-dimensional and the hypothesis (1.9) are fulfilled.

Before proceeding any further, by using the same change of basis (namely nk’plbye’(]”
for a convenient choice aV € N*) as we did in (3.5), we can reduce ourselves to the situation
where all polyhedra, ..., §, have their vertices in the lattick = Z™ (originally these vertices
were assumed to be @™, therefore it is enough to take fé&¥ a common denominator of all
coordinates of such points).

We fix a polyhedrom\ with dimensionn and vertices im\, which contains the origin as an
interior point and is such that, for apye {1,...,n}, the Minkowski sSumA + §; containsA,.
We let

A=(A+6++b6)+A1 4+ A,

We consider as the fait a simple refinement of the faﬁr‘(ﬁ) which corresponds to this
polyhedronA (se€g[17]); X will be from now on the toric variety attached . It is compatible
with A, 6; + A andA; for any j. For anyj = 1,...,n, we taken 4 1 Laurent polynomials,

with convex polyhedrom + 6, namerGf)j), e Gﬁ,,j), which do not vanish simultaneously in

T™ and are such that the syste{ﬁi(lj), ey Gﬁ,,j)) satisfies the Bernstein conditions (1.3) (when
considered as a system of Laurent polynomials with Newton polyhefirgrd;). Since the fan

F is compatible withA + ¢, these Laurent polynomials induce Cartier divisﬁéé), e, Dﬁlj)
on X such that

ID§|n---n DY) =0.

In particular, the function
n
l69*:=>" |6
k=0
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does not vanish on the tor@®'. Let, for{ € T",

and, for¢ € T" \ V*(F),

6,A
$SA(F) = S0 (€)
O=TroR.

Lete = min{[|¢ = {'[[; ¢ # ¢, ¢, (" e V*(F)} and

ming ey« (py (€, d(a, C* N T™))
U:= U B {a, 5 ,
aeV*(F)
whered is the Euclidean distance @".
At this point, we notice that the representations (3.3) and (3.4) of the Bochner—Martinelli type
that we gave to express the total sum of residues respect-tabued polynomial map frorc”
to C" remain valid when polynomials are replaced by Laurent polynonfialsj = 1,...,n,
and total sum of residues involves only residues at poles in the ®tuprovided thef, j =
1,...,n, define a discrete (hence finite) zero sefin Therefore, we may state the exact analog
of Lemma 3.1 (the proof is a repetition of the proof of this previous lemma):

LEMMA 3.2.—LetF = (Fy,..., F,) be asystem of Laurent polynomialgivariables, with
respective Newton polyhedry,, ..., A, and polyhedra,...,0,, A as above. Then, for any
8 € Z, one has

Bi. . Xpn
ReS[X X0 dX]

F,....F

(3.11) =

2(A n) -8 5, A d¢y d¢n
¢ 168 ds AN—=—ANA
Z( ) Ok Cl Cn =0
We now adapt the construction (and study) of the meromorphic map
A\ — @6 M

P,Q,\

that was proposed in (3.7). Such a meromorphic map will be defined in this new situation as
follows: for A fixed withRe A > 1, let

(3.12) CEY R

e (SR adty ) nac

k=1

(obtained from the integrant in (3.11) exactly as (3.7) was obtained from the integrant in (3.6)).
As we did previously (in the projective situation), we express it in homogeneous coordinates
(x1,...,25) related to the toric varietyt. The coordinateg;, j = 1,...,n, in the torus are
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expressed in homogeneous coordinates as
S
(3.13) ¢ :Hx?” =gl j=1,...n,
i=1

where, foranyi =1,...,s, n;;, j = 1,...,n, are the coordinates of the primitive vectgrin
the canonical basi&;, ..., e,) of A ~ Z". We will also define, for any € {1,...,s} and any
je{l,...,n}

Wij 1= _gnenAn? <§a771?>a
(3.14) vij i=— min (£,m;).
§e6;+A

Since the situation is a little bit more involved than it was in the projective case, we will state
the result of this homogenization process (applied to the differential form (3.12) atdvith
respect to the coordinates) as a lemma.

LEMMA 3.3.-— The differential(n,n — 1)-form in (3.12)can be expressed in homogeneous
coordinates as

5A 2(A— Bam) =143 7 vis
%A@ = 1F@ 53 [[ = -

i=1
. (FEE] |

I (17 )7t
N PR O AL
04k

REUGIE

AQ(x).

k=1

The differential forrnf)c@f, ‘5., can be expressed as
5@%,%,“5”)
(Bmi)=14) " ( ‘
— nALE() PO = AQ(z).
IF@) A~ | T VA e ()

i=1 k=1

(3.16)

This means that the differential forms @hwhich are such defined in homogeneous coordinates
restrict respectively to the torus as the differential for@ffs’%’ y(¢)anditsdin ¢.

Proof. —Consider theY-homogenizations of, ... ., F},, that is

Filzi,...,xq) = (H xi‘u) F; (x(e’{,m’ o x(@i,ﬂi))’
i=1

and theX'-homogenizations of thé’,(j), ji=1,...,n, k=0,...,n, namely

g,ij) (T1,...,25) 1= <H xf”) G,(Cj) (x<er’">, ey :c<€:f’">).
i=1
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We will also denote
|99 @1 w|F= 3216 @ g=1.m.
k=0

The function

C—IF Ol a

on the torus will be extended as the function®nwhich is defined in homogeneous coordinates
as

1T - If (z)[?
17 @) E s =3 | TLer
na E 11 169 (@)
On the other hand, one has, foe=1,...,n,
* [z, ") Fela)
5,A (el,n> e ,n> Vik 1, 1% ) k
S x . n T, s
oi- H 1G™) ()]12

while the differential form

(L) 2
Z:1 xl ... CL‘S

on X restricts to the torus ag’ S A -+ A &= (seethe proof of Proposition 9.5 in [2]). When
we report these expressions in (3 12) we obtain the desired relations (3.15); the same kind of
argument holds for (3.16).0

The next lemma will be crucial in order to study in local charts about any poift in T™
(under the “properness” assumption (1.9) for ifj¢ the Laurent development (as current-valued
maps) of

5,A 5 5,A
>"—>@F[3 v A0 [@F,B,AL
when such maps are expressed in homogeneous coordinates.

LEMMA 3.4.— Let F = (F,...,F,) be a system of Laurent polynomialsinvariables,
with respective Newton polyhedr,, ..., A,. Suppose there exist constants- 0, R > 0,
and convex polyhedré, . . ., é,, with vertices inZ", with 6; C A;, j =1,...,n anddim(é; +

.-+ 6,) =n, which are such that the hypotheis9)is fulfilled. LetA be any polyedron with
dimensiom, vertices inZ", such thathA; C A +¢; foranyj =1,...,n andF be afan which is
compatible withA, 6; + A, A; foranyj =1,...,n. Letn,...,n, be the primitive generators
of the one-dimensional cones in the f&n Then, for anys in Z™ which lies in the interior of
the convex polyhedroby + - - - + 6, the integersy; ; defined in(3.14)are such that for any
1€{1,...,s},foranyj e {1,...,n}

(3.17) (Bomiy =14y vij 20,
j=1
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Remark3.2. — Notice that the integeys ;, i =1,...,s, j=1,...,n, also defined in (3.14)
satisfy automatically

(318) Vj,?j—,l.l/i’j}O, Vie{l,...,s},Vje{l,...,n}

sinceA; is contained irv; + A foranyj=1,...,n

Proof of Lemma 3.4~ This Iemma comes from a re-interpretation of our hypothesis (1.9).
Since the system of polynomiat[é(”, k=1,...,n, satisfies the Bernstein hypothesis (1.3), it
follows (seethe argument used in the proof of Proposition 2.2) that there exist strictly positive
constants:;, C;, such that

(3.19) Ve, cjefars B ||GU) (e, en)|| < Oy eares (ReC),

One has also, for any < C™ such that|Re (|| > R,

F; (e1,... e
(320) Z % 2 c>0.

Note furthermore thatis, ;o = Hs, + Ha. We also introduce: + 1 Laurent polynomials
Hy,..., H,, with Newton polyhedrom\, which do not vanish simultaneously * and are
such that the systeilfHs, ..., H,,) satisfies the Bernstein hypothesis (1.3) when considered as a
system of Laurent polynomials with Newton polyhedrdnthat is such that

(3.21) coeHaRed) HH(eCl,...,eC") <Oy eHA(ReO, ceCm

for some strictly positive constants, Cy (where ||H||? := |Ho|? + --- + |H,|?). It follows
from (3.19), (3.20) and (3.21) that for agye T™ such that

1 1
(Gl Gl g o 1

is large enough, one has

C
(3.22) Z HGm IIH(C)H

for somec > 0. If we express thej in terms of homogeneous coordinates on the toric vartety
asin (3.13), we may rewrite (3.22) as
F@)]
1G9 @)]]

where||H(z)|| := >} _, |H;(x)], the’H; being defined as th&-homogenizations of théf;,
namely

n

1 1
S ETH@) <Z

Jj=1

S

Vij—Hij
H Z

i=1

s —min(§,m)

EEA
Hmi

i=1

(3.23)

S —min(&,n;)

Hj(x1,...,2) := (1_[913Z e )Hj (a:@’"), . ,x<6;’">).

i=1
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The fact thatd; + - - - + 6, is n-dimensional and that lies in the interior of this polyhedron
implies thatfori=1,...,s, one has

<5anl> -1- geélnin <£777’L> = InlIl <£ ﬂv 77’L> —-120

1+ +on s+

and hence

n

(B,mi) —1+ Zl/ij =(B,m)—1— Z&HAHH (& mi)
P :

Jj=1

<ﬂv771 _1_2 InlIl £+£ja772>

i=1 5166
> —nmi ;
> nggg@mﬁ >0,
sinceA contains the origin. This proves the inequalities (3.17).

At this point we may translate (in the spirit of [13]) in more geometric terms the statement in
Lemma 3.4.

ProPOSITION 3.1. —Let Fy,...,F,, Aq,...,A,, A and F as in Lemma3.4, such that
the toric variety X(F) is an n-dimensional complex manifold. L&(A), E(A + 61),...,
E(A + 6,), be theT -Cartier divisors corresponding th, A + 61, ...,A + 6, and

D;:=div(F}) + E(A+6;), j=1,....n

Let  be a point in X(F) ~ T™ which lies in the intersection of the supports of tﬁ@
j=1,...,n and[E,] be the exceptional divisor in the normalized blowsupV, — V, along
the ideal sheaf generated i@y, by global sections,1,..., f.» for the divisorsﬁj in some
neighborhood/,. of z. Then, iff, is a global section foZ(A) in V,,, one has

(3.24) (7™ fz] = [Ez],
that is the order of vanishing of* f, on each irreducible component ¢f,] exceeds the
multiplicity of this component in the decompositiori Bf].

Proof. —It follows immediately from (3.23), such an inequality being extended ffno V.,
which is possible sinc&™ is dense in¥. Let

ET] = Z reeBae,
14

the £, being the irreducible components and the the associated multiplicities. Lifting (3.23)
to the normalized blow-upV,,, one can see that the order of vanishjng of 7* f, along any
E,, is such thap,, > r,, for any/, which is equivalent to the statement (3.24)1

Proof of Theorem 1.2- The proof of Theorem 1.2 follows exactly the same lines as the proof
of our previous result Theorem 1.1. We consider the complemeiitiofx’ as a2n-chain in
X, and we deduce from Lemma 3.2 and from the definitio®{f; , that

X XX =/ a8A
(3.25) Res[ 1 n } = [/@ ] —'yn[/ﬁ (C)e!
... F, F,B,\ J ( F,ﬁ,x\) \—o
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the notation| |»—o meaning that one takes the meromorphic continuation, and later on, the value
at A = 0. In order to prove the vanishing of the residue symbol, it is enough to show théd if

any point inx ~. T", V,, an arbitrary small neighborhood ofin X', andy € D(V},), then the
function

(3.26) AH/@(@%@A)
Ve

can be continued as a meromorphic functiomaf/hich has no pole ak = 0 and vanishes at
A =0.Inorderto do that, we repeat the argumentin the proof of Theorem 1.1 and use a resolution

of singularitiesy —— V,, followed by toroidal resolution®), = w over each local chatt on
Y, such that in local coordinatés,, .. ., t,,) on a local charto in some)),,, one has

~% _x 7 ~ 5; ~ ~

Tom* foj = Wy (O8" -5 = (t)my (¢),
and some of then;, saym, dividesm,,...,m,. For the same reasons that lead to (3.24)
from the properness condition (1.9) when one was using a normalized blow-up instead of the

tower of resolutiony),, =< w - V,, one can see that the properness condition impliesithat
dividesw 7* f,, in the local chartz. Therefore, it follows from Lemma 3.3 (formula (3.16)) and
Lemma 3.4 (inequalities (3.17) and (3.18)) that for any test functiam )) with support inw,
one can write ino,

7 (B[ (9 T304 )] (1) = Mt €2 <%m Ao(t) +T(t)>,

whereos and 7 (depending onp and @) are smooth differential forms with respective type
(n,n—1) and(n,n) and¢ is a real analytic strictly positive function . Therefore,

A— 75 [ (90050 )] (1)

can be continued as a distribution valued meromorphic map,avhich has no pole at = 0 and
vanishes at this point. Since the meromorphic function (3.26) is expressed as a sum of functions
of the form

A / o7 [3[r (305M )] sl (1),

the vanishing of the residue symbol (3.26) follows. This concludes the proof of our Theo-
reml.2. O

4. Some applications of vanishing theoremsfor global sums of residues

The generalized Jacobi Theorems 1.1, 1.2 derived above have as a direct consequence the
following nonstandard formulations of Cayley—Bacharach type theorems in the spirit of [18].

THEOREM 4.1. -Given a(éy,...,6,)-proper polynomial mapping®: C* — C™ with only
simple zeroesZ = {a;,...,a,,} and an algebraic hypersurfack C C" of degree strictly
smaller thané; + --- + 6, — n, then if Y contains all but one pointa;, it necessarily also
contains the last one.
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Proof. —SupposeY” = {@ = 0} and that the degree @} is at mosté; + -+ 6, —n — 1.
Recall that

Resq [Q(%%) dc} _ Q)

- Ip(@)’
where Jp(«) is the value of the Jacobian of ttié,,. .., é,,)-proper mappingP at the simple
common zeroa. The hypothesis on the degree of the hypersurface implies (if one uses
Theorem 1.1) that

Q(X1,...,X,)dX]
Res{ P,...,P, =0

Therefore, ifQ) vanishes at all points iZ but one, it vanishes in fact at any pointih 0O
Example4.1. — LetP = (Py, P», P3) be the polynomial map frori® to C? defined as
P (X)=X1X5X3,
Po(X) = (X3 +1)(X3 +1)(X3 + 1),
Py(X) = (X7 — 1)(X3 — 1)(X5 - 1).

Such a map i1, 3,3)-proper; the54 common zeroes of Py, P», P5) are all simple. Since
61+ 62 + 63 — 4 = 3, any cubic (such ag X} + X3 + X3 = 0}) which passes through all
but one the common zeroes contains necessarily the remaining one.

We may also state a toric version of a Cayley—Bacharach theorem. We begin with the following

Definition 4.1. — A (61, ..., 6, )-proper systent’ = (Fi,..., F,) of Laurent polynomials is
called fully (é1,...,6,)-proper ifdim(6, + - - - + 6,) = n.

THEOREM 4.2. —Consider a fully(éy,...,8,)-proper system of Laurent polynomials=
(Fy,..., F,) with only simple zeroes,...,a,, in T”, and a Laurent polynomial), whose
Newton polyhedron lies in the interior 6f + - - - + 6,,. Then if the hypersurfacgy = 0} contains
all but one pointsy; it necessarily also contains the last one.

Proof. —The proof is a direct application of the Theorem 1.2, exactly as our previous result
follows from Theorem 1.1. O

Example4.2. — Let Fy, F> as in Example 2.2. We have noticeseé Example 2.2) that
(Fy — Fy, Fy) satisfies the Bernstein hypothesis (1.3). Therefore, in this case, the number of
common zeroes of}, F, in the torus equals two times the mixed volume[e®, 2] and,
where

6 :={conv{(-2,2), (2,2), (1,1), (1,-1)},

that is28. If @ is a Laurent polynomial with support in the interior pf2, 2] + 6, such that
{¢ € T?; Q(¢) = 0} contains27 points among the common zeroesBf, F» in the torus, it
contains necessarily the remaining one.

Example4.3. —We will choose here an example which is slightly more elaborate than
Example 2.2 (in fact, in Example 2.@F; — F;, Fy) satisfies the Bernstein condition (1.3), which
leads back immediately to the situation where Khovanskii's result (1.4) appliesf;lL.ét be
the pair of Laurent polynomials in two variables, of the form

F;(X,Y) :)\j(X12X22 +X12X52) +a; X1 X5 +ﬁjX1X{1
9 X7 X + 65X X+ (XX + XPXS ),
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wherea, 55,7;,6;,Aj, j = 1, 2, are generic complex coefficients. One can check eéBilyF-)
is (6, 6)-proper, wheré is now the polyedron defined as

b= conv{(-1,1),(0,4/3),(1,1),(1,-1),(0,—-4/3),(-1,-1)}.

The number of common zeroesof F, and F» in T? equals now24 (note that, comparing
to Example 2.24 among the28 common zeroes disappear “at infinity” in this new situation).
Moreover, one has

§+6=conv{(=2,-2),(—2,2),(0,8/3),(2,2), (2,—2), (0, —=8/3)},
so that the interior of + & contains/—1, 1] x [—2,2]. Therefore, any sextic
{Q(Xl,Xg) =0; Q € C[X1,X3], Supp@ C [0,2] x [0,4]}

which passes througl8 among the common zeroesalso contains the remaining one.

Finally, we can state an application of Theorem 1.1 (respectively Theorem 1.2) to some
effective version of division problems with respect to proper quasi-regular maps. In the first case,
this version is the key ingredient for a general explicit formulation to the algebraic Nullstellensatz
[5,6]; we do not know yet if the same holds in the toric case for the Newton Nullstellensatz.

PrROPOSITION 4.1. —Let P := (P,...,P,) be a(é1,...,6,)-proper polynomial map from
C™ to C", whered; > 0 for any j; suppose thatleg P; = D;, j=1,...,n. LetQx, j, k=
1,...,n, be polynomials if X, ..., X,,,Y1,...,Y,) suchthadeg Qs < D; — 1, j=1,...,n,
and

Pi(Y) = Pi(X) = Qu(X,Y) (Vs — Xp).
k=1

Let
det [Qin(X, V)], pen = > Yo s XYP,

a,BeN”
la|+|8|<D1+-+Dn—n

Then for any polynomial with degreeD, one has the following identity

4.1)
X)X*dX
- Y > et N vopoy,
a,3eN” LEN” Loooin
la|+|B8|<D1++Dn—n {(u+1,6)<|a|+D+n
where we used the standard notatiog® = ¢;** --- ("'~ for ( € C" andm € N", (mq,mg) =
mi1Mao1 + -« -+ + My, ma, for my, mg €N, 1= (1, RN 1) (n tlmes)

Proof. —The proof follows from the Cauchy—Weil integral representation formula, exactly as
in [5]; the analytic expansion of the Cauchy kernel that appears in this formula truncates thanks
to Theorem 1.1. O

COROLLARY 4.1.-Let P := (P,...,P,) be a(é1,...,6,)- proper polynomial map from
C" to C™, whered; > 0 for any j; let Q be in the ideall (P, ..., P,); then, one can write a
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division formula forQ respect to the ideal(P;,..., P,) as

(4.2) Q)= > T Y P(Y ).
uE(N”)*, veN"
[V|<D1++++Dp—n
(p+1,8)+|v|<Di1+--+Dp+degQ

Note thatifé; = D; (that is theP; do not have common zeroes at infinity), formula (4.2) becomes

Q)= Y FLYYPE)
(1, D)+|v|<degQ

which is not a surprise since the homogeniza@of @ lies (in this case) in the homogeneous
ideal generated by, ..., P,.
In the toric case, we need first a definition, that we recall from [8, p. 454].

Definition 4.2. — LetA be a closed convex polyhedronlit®; A is called a good polyhedron
if and only if

Vo €A, {yER"; lye| < |zk|, zrye =0, kzl,...,n}CA.

We can now state the toric pendant of Proposition 4.1.

PROPOSITION 4.2. —Let 64, ... ,6, ben convex rational polyhedra ifR™ with dimension
n which contain the origin as an interior poinket ' := (F},..., F,,) be a system of Laurent
polynomials with good Newton polyhede,,...,A,, such thaté; C A; for any j and
Fis (61,...,6n)-proper. Then one can find Laurent polynomials,, j,k =1,...,n, in
(X1,...,Xn,Y1,...,Y,), such that

det [ij(X, Y)] 1<k<n = Z 'yaﬂXﬂ(Yﬂ
a,BeZ™
a+BEA ++A,

and

Fi(Y) = Fj(X) =) Gu(X,YV)(Ya — Xp), X, Y €T", j=1,...,n.
k=1
Moreover, for any Laurent polynomial with convex polyhedrod\, one has the following
algebraic identity

(4.3)
G(X)XotldXx
o= 2 2 Vs RES | pratt’  pt YPF(Y)",
@, BEL N(Ar+-+An) peN" 1 ety T
atBEAI++A,  AtatlZint((n+1,6))
where(m, 6) :=m161 + - - - +myo, for anym € N".

Proof. —For the construction of th&';;, under the hypothesis that all; are good, we refer
to [8]. The fact that one can get the algebraic identity (4.3) is based on the use of Cauchy—Weil
formula, as in the proof of Proposition 4.1; for more details see [32], Section 2. The development
of the Cauchy kernel as a geometric progression truncates (as claimed in (4.3)) if one applies
Theorem 1.2. O
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COROLLARY 4.2.—Let(Fi,...,F,)bea(é,...,o,)-proper system of Laurent polynomials
suppose that alb; are n dimensional and contain the origin as an interior pgidenote as\;
the smallest good polyhedron containing the suppoi,ofj = 1,...,n. Then, whenever is a
Laurent polynomial with Newton polyhedrdnthat lies in the ideal generated Wy, ..., F, in
C[X1,...,Xn, X%, ..., X, ], one can write a division formula fa® respect to( Fy, ..., F,)
as

G(Y)= > A YVF(Y)R
pE(N™* veZ™"N(A1++A,)
A+Ar++Ay, € int (pt+1,6)+6-1
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