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ON SOME GENERALIZATIONS OF
JACOBI’S RESIDUE FORMULA

BY ALEKOS VIDRAS AND ALAIN YGER

ABSTRACT.– Using Bochner–Martinelli type residual currents we prove some generalizations of Jacobi’s
residue formula, which allow proper polynomial maps to have ‘common zeroes at infinity’, in projective or
toric situations. 2001 Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. – SiD1, . . . ,Dn sontn diviseurs s’intersectant proprement sur une variété analytique complexe
compacteX de dimensionn et siω est une forme méromorphe surX de lieu polaire inclus dans l’union
des supports desDj , il résulte d’un théorème de Griffiths que la somme des résidus de Grothendieck
de ω en tous les points de|D1| ∩ · · · ∩ |Dn| est nulle. Les formules de Bochner–Martinelli permettent
d’étendre ce résultat (dans les cadres projectif et torique) sous des hypothèses d’intersection propre hors de
la variété à l’infini. Des applications géométriques (du type Cayley–Bacharach) ou algébriques (effectivité
de la division ou de l’identité de Bézout) illustrent les énoncés. 2001 Éditions scientifiques et médicales
Elsevier SAS

1. Introduction

One of the classical results in the one complex variable residue theory is the following:
for every polynomial mapP :C → C, the total sum of residues of the formQdζ/P (where
Q ∈C[X ]) at the zeroes ofP equals the residue at infinity of the rational functionQ/P with the
opposite sign.

Some multidimensional analogues of this statement are treated in the present note. Consider a
polynomial map

P = (P1, . . . , Pn) :C
n −→Cn

and assume thatCn is imbedded into the complex projective spacePn. Let hP1, . . . ,
hPn be the

homogenizations of thePj , j = 1, . . . , n, that is the homogeneous polynomials inn+1 variables

hPj(X0,X1, . . . ,Xn) =X
degPj

0 Pj

(
X1

X0
, . . . ,

Xn
X0

)
.

Let us impose the Jacobi condition, that is:

the homogeneous parts of highest degree inPj(X1, . . . ,Xn), for(1.1)

j = 1, . . . , n, do not have common zeroes inCn � (0, . . . ,0).
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132 A. VIDRAS AND A. YGER

Then, it is a classical result that goes back to Jacobi [19], the setV (P ) := {P1 = · · ·= Pn = 0}
is finite, with cardinal number equal todegP1 · · ·degPn and for anyQ ∈ C[X1, . . . ,Xn], such
that

degQ�
n∑
j=1

deg(Pj)− n− 1,

one has

Res

[
Q(X1, . . . ,Xn)dX

P1, . . . , Pn

]
=
∑

α∈V (P )

Resα

[
Qdζ

P1 · · ·Pn

]
= 0.(1.2)

HeredX stands as usual fordX1 ∧ · · · ∧ dXn and the residue of the meromorphic formQdζ
P1···Pn

at the isolated pointα ∈ {P1 = · · ·= Pn = 0} is defined as

Resα

[
Qdζ

P1 · · ·Pn

]
=

1

(2πi)n

∫
|f1|=ε1

···
|fn|=εn
ζ∈Uα

Q(ζ)dζ

P1(ζ) · · ·Pn(ζ)
,

whereUα is any bounded domain inCn such that{α} = Uα ∩ {P1 = · · · = Pn = 0} and the
orientation for the cycle{ζ ∈Uα, ‖f1|= ε1, . . . , |fn|= εn} is the one that respects the positivity
of the differential formd arg(f1) ∧ · · · ∧ d arg(fn).

The result of Jacobi has a toric pendant which is due to Khovanskii [22]. LetTn = (C∗)n and
F1, . . . , Fn ben Laurent polynomials inn variables

Fj(X1, . . . ,Xn) =
∑
αj∈Aj

cj,αjX
αj1

1 · · ·Xαjn
n , j = 1, . . . , n,

with cj,αj �= 0 for anyj ∈ {1, . . . , n}, anyαj ∈ Aj (theAj are the supports of theFj ). Let∆j
be the Newton polyhedron ofFj , which is by definition the closed convex hull ofAj in Rn. We
now impose the Bernstein condition [3], that is:

for anyξ ∈Rn � (0, . . . ,0), the intersection withTn of the set{
ζ;

∑
αj∈Aj

〈αj ,ξ〉= min
η∈∆j

〈η,ξ〉

cj,αj ζ
αj1

1 · · ·ζαjn
n = 0, j = 1, . . . , n

}
is empty.(1.3)

Under this hypothesis, Bernstein proved in [3] that the setV ∗(F ) := {F1 = · · ·= Fn = 0} ∩Tn

is finite with cardinality equaln! times the Minkowski mixed volume of∆1, . . . ,∆n and
Khovanskii [22] proved that for any Laurent polynomialQ whose support lies in the relative
interior of the convex polyhedron∆1 + · · ·+∆n, one has

Res

[
Q(X1, . . . ,Xn)dX

F1, . . . , Fn

]
T

:=
∑

α∈V ∗(F )

Resα

[
Q

F1 · · ·Fn
dζ

ζ1 · · ·ζn

]
= 0(1.4)

(seealso [15], Corollary 4.8).
We will see in Section 2 how it is essential to interpret both geometrically and analytically the

conditions (1.2) imposed on(P1, . . . , Pn) in the projective setting or the conditions (1.3) imposed
on (F1, . . . , Fn) in the toric setting.
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ON SOME GENERALIZATIONS OF JACOBI’S RESIDUE FORMULA 133

In the first case (that is the projective one), the set of conditions (1.2) is geometrically
equivalent to the fact that then Cartier divisorsD1, . . . ,Dn, defined onPn by the homogeneous
polynomialshPj(X0, . . . ,Xn), j = 1, . . . , n, are such that their supports|Dj | satisfy

|D1| ∩ · · · ∩ |Dn| ⊂Cn.

From the analytic point of view, this is equivalent to the following strong properness condition
on the polynomial mapP = (P1, . . . , Pn) from Cn to Cn: there are constantsR> 0, c > 0, such
that, for‖ζ‖�R,

n∑
j=1

|Pj(ζ)|
(1 + ‖ζ‖2)degPj/2

� c.(1.5)

In the toric case, given a smooth toric varietyX associated to any fan which is a simple
refinement of the fan attached to the polyhedron∆1 + · · ·+∆n, conditions (1.3) mean that the
effective Cartier divisors

Dj = div(Fj) +E(∆j),

whereE(∆j) is theT-Cartier divisor onX associated with the polyhedron∆j (see[17]), are
such that

|D1| ∩ · · · ∩ |Dn| ⊂ Tn.

The analytic interpretation of this is the following: there exist constantsR > 0, c > 0 such that,
for ζ ∈Cn such that‖Re ζ‖�R,

n∑
j=1

|Fj(eζ1 , . . . , eζn)|
eH∆j

(Re ζ)
� c,(1.6)

whereH∆j denotes the support function of the convex polyhedron∆j , that is the function from
Rn to R defined as

H∆j (x) := sup
ξ∈∆j

〈x, ξ〉, x∈Rn.

In [5–7], one used extensively the fact that an analogous version of (1.2) could be stated whenever
the polynomial map

P = (P1, . . . , Pn) :C
n �−→Cn

was proper. We will prove in Section 3 of this paper what appears to be the sharpest version of
such a result, namely:

THEOREM 1.1. –LetP = (P1, . . . , Pn) be a polynomial map fromCn to Cn such that there
exist constantsc > 0, R > 0, and rational numbers0 < δj � deg(Pj), j = 1, . . . , n, in order
that, for‖ζ‖�R,

n∑
j=1

|Pj(ζ)|
(1 + ‖ζ‖2)δj/2

� c.(1.7)

Then, for any polynomialQ ∈C[X1, . . . ,Xn] which satisfies

degQ< δ1 + · · ·+ δn − n,
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134 A. VIDRAS AND A. YGER

one has

Res

[
Q(X1, . . . ,Xn)dX

P1, . . . , Pn

]
= 0.(1.8)

We will also prove in the same section the corresponding toric version, namely:

THEOREM 1.2. – Let F = (F1, . . . , Fn) be a system of Laurent polynomials inn variables,
with respective Newton polyhedra∆1, . . . ,∆n. Suppose there exist constantsc > 0, R> 0, and
convex polyhedraδ1, . . . , δn with vertices inQn, with δj ⊂∆j , j = 1, . . . , n, and

dim(δ1 + · · ·+ δn) = n,

which are such that, for anyζ ∈Cn with ‖Re ζ‖�R,

n∑
j=1

|Fj(eζ1 , . . . , eζn)|
eHδj

(Re ζ)
� c.(1.9)

Then, for any Laurent polynomialQ such that the support ofQ lies in the interior of the convex
polyhedronδ1 + · · ·+ δn, one has

Res

[
Q(X1, . . . ,Xn)dX

F1, . . . , Fn

]
T

= 0.(1.10)

The main tool to be used in the proofs of both theorems will be the Bochner–Martinelli integral
formula suitably adapted to each case.

From the point of view of algebraic geometry such theorems are not classical in nature since
the supports of the Cartier divisorsD1, . . . ,Dn on Pn corresponding to thehPj in the first case,
or the supports of the divisorsDj =div(Fj)+E(∆j) on a convenient smooth toric varietyX in
the second case, do not intersect properly inPn or inX (the intersection is assumed to be proper
in Cn or in Tn). Following the point of view developed by Kollár in [24,25], or by Lazarsfeld and
Ein in [13], we will also present in Section 3 a geometric interpretation of the conditions (1.7)
(in the projective case) and (1.9) (in the toric case). We will see that the Bochner–Martinelli
representation formula we use below fits with the construction of residue currents in the non-
complete intersection case, as proposed in [28]. A better understanding of our two theorems will
then rely on the fact that, iff1, . . . , fn aren holomorphic functions in some domainΩ of Cn,
a crucial property of the distributionTf ∈ D′(Ω) whose action on a test functionϕ ∈ D(Ω) is
defined (seefor example [28]) by

Tf (ϕ) := lim
ε→0

1

εn

∫
|f1|2+···+|fn|2=ε

n∑
k=1

(−1)k−1f̄k

n∧
�=1
� �=k

∂f� ∧ϕdζ,

is that it is annihilated, as a distribution, by any holomorphic function inΩ which is locally
in the integral closure of the ideal(f1, . . . , fn)

n (this ideal is contained in(f1, . . . , fn) by the
classical result of Briançon and Skoda [4]). Therefore, once the hypothesis will be settled in
a natural geometric context, our two theorems will appear to be in close relation with this
Briançon–Skoda theorem, which also plays a significant role in [25,13], as a transition tool
between Lojasiewicz inequalities (or regular separation conditions) and effective versions of the
algebraic Nullstellensatz.
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ON SOME GENERALIZATIONS OF JACOBI’S RESIDUE FORMULA 135

As a consequence, it will then be natural to present in Section 4 some applications of our two
theorems to effectivity questions related to the algebraic Nullstellensatz in the projective case or
the sparse Nullstellensatz in the toric case, under some properness assumptions on the data inCn

or in Tn. Such results will extend or sharpen some previous results in [6,7,16,31]. We will also
suggest possible applications to some results of Cayley–Bacharach type (see[14]), in the context
of improper intersections onPn or on a smooth toric varietyX .

2. An analytic interpretation of Jacobi or Bernstein conditions

Using the notation of the previous section we will state in analytic terms the conditions (1.2)
or (1.3). We begin with the:

PROPOSITION 2.1. –Let P1, . . . , Pn ben polynomials inC[X1,X2, . . . ,Xn]. The following
two assertions are equivalent:

(i) {ζ ∈Cn+1, hP1 = · · ·= hPn = ζ0 = 0}= {0},
(ii) there exist strictly positive constantsR, c such that, for anyζ ∈Cn with ‖ζ‖�R,

n∑
j=1

|Pj(ζ)|
(1 + ‖ζ‖2)degPj/2

� c.(2.1)

Proof. –Writing (ii) in homogeneous coordinates, we get that, if(ζ0, . . . , ζn) ∈ Cn+1 is such
that |ζ1|+ · · ·+ |ζn|>R|ζ0|, one has

n∑
j=1

∣∣hPj(ζ0, ζ1, . . . , ζn)∣∣� c

(
n∑
j=1

(
|ζ0|2 + · · ·+ |ζn|2

)degPj/2

)
.

In particular,

n∑
j=1

∣∣hPj(0, ζ1, . . . , ζn)∣∣� c

(
n∑
j=1

(
|ζ1|2 + · · ·+ |ζn|2

)degPj/2

)
.

This shows that (ii) implies (i).
Let now Pj(X) = pj(X) + qj(X), such thatdeg qj < degpj , pj being an homogeneous

polynomial with degreedj = deg(Pj) (the leading terms inPj ). Condition (i) is equivalent to
the fact that {

ζ ∈Cn, p1(ζ) = · · ·= pn(ζ) = 0
}
=
{
(0, . . . ,0)

}
.

Sincep1, . . . , pn are homogeneous with respective degreesd1, . . . , dn, there exists̃c > 0 such
that, for anyζ ∈ (Cn)∗,

n∑
j=1

|pj(ζ)|
‖ζ‖dj > c̃.

Therefore, for anyζ ∈ (Cn)∗, one has

n∑
j=1

|Pj(ζ)|
‖ζ‖dj �

n∑
j=1

|pj(ζ)|
‖ζ‖dj −

n∑
j=1

|qj(ζ)|
‖ζ‖dj .
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136 A. VIDRAS AND A. YGER

For‖ζ‖�R, with R> 0 large enough, one has, sincedeg qj < dj , j = 1, . . . , n, that

n∑
j=1

|qj(ζ)|
‖ζ‖dj <

c̃

2
.

Therefore, for‖ζ‖�R, we have

n∑
j=1

|Pj(ζ)|
‖ζ‖dj � c̃

2
.

The last inequality implies (ii) with some constantc= c(R). ✷
Note that, ifP is a polynomial map fromCn to Cn, the fact that

lim
‖ζ‖→+∞

‖P (ζ)‖=+∞

(which means just that the map is a proper polynomial map in the topological sense) does
not imply the strong properness condition (2.1). For example, ifn = 2, the polynomial map
(X1X2, (X1 + 1)(X2 + 1)) is proper, but does not satisfy (2.1) since there are two common
zeroes at infinity.

In order to weaken condition (2.1), we introduce the following concept:

Definition 2.1. – Let(P1, . . . , Pn) be a polynomial map fromCn to Cn and(δ1, . . . , δn) be
a set of strictly positive rational numbers with0 < δj � degPj for any j. Then we say that
(P1, . . . , Pn) is (δ1, . . . , δn)-proper if and only if there existc > 0, R > 0 such that, for any
ζ ∈Cn such that‖ζ‖�R,

n∑
j=1

|Pj(ζ)|
(1 + ‖ζ‖2)δj/2

� c.(2.2)

Example2.1. – Whenn= 2, the polynomial map(X1X2, (X1+1)(X2+1)) is (1,1)-proper.

Remark2.1. – We may extend this notion to the case when theδj are rational numbers with
the sole conditionsδj � degPj . In this setting, a polynomial map which is(δ1, . . . , δn)-proper
is not necessarily proper in the topological sense.

Let us now formulate the toric analogue of the Proposition 2.1.

PROPOSITION 2.2. –Let F1, . . . , Fn be n Laurent polynomials with Newton polyhedra
∆1, . . . ,∆n. The following two assertions are equivalent:

(i) F1, . . . , Fn satisfy the Bernstein conditions(1.3);
(ii) there exist strictly positive constantsR, c such that, for anyζ ∈Cn, with ‖Re ζ‖�R,

n∑
j=1

|Fj(eζ1 , . . . , eζn)|
eH∆j

(Re ζ)
� c.(2.3)

Proof. –We first prove that (i) implies (ii). Let us assume that(F1, . . . , Fn) satisfy the
Bernstein conditions (1.3). In order to prove (ii), it is enough to show that one can find a conic
open sectorSu in Rn containing−u and strictly positive constantsRu, cu, such that, for any
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ON SOME GENERALIZATIONS OF JACOBI’S RESIDUE FORMULA 137

ζ ∈Cn with Re ζ ∈ Su and‖Re ζ‖�Ru, one has

m∑
j=1

|Fj(eζ1 , . . . , eζn)|
eH∆j

(Re ζ)
� cu.(2.4)

Then, if one can do so for each rationalu, the existence of positive constantsR andc will follow
from a compactness argument.

Applying in theζ-space a change of coordinatesζ′ =Aζ, A ∈GLn(Z), we may assume that
u= (1,0, . . . ,0) = e1. Let us write, forj = 1, . . . , n,

Fj
(
eζ1 , . . . , eζn

)
= ekjζ1fj

(
eζ2 , . . . , eζn

)
+ F̃j

(
eζ1 , . . . , eζn

)
,(2.5)

where the support of̃Fj is included in{x1 > kj}. As noticed by Kazarnovskii [20] (seealso [27],
Section 2, from which we got our inspiration here), the fact that Bernstein conditions (1.3)
are satisfied for(F1, . . . , Fn) is equivalent to the following fact: for any set of respective faces
(γ1, . . . , γn) of the Newton polyhedra∆1, . . . ,∆n of F1, . . . , Fn, there existsε(γ1, . . . , γn)> 0
such that, for any(ζ1, . . . , ζn) ∈Cn,

n∑
j=1

|F γjj (eζ1 , . . . , eζn)|
eHγj

(Re ζ1,...,Re ζn)
� ε(γ1, . . . , γn),

where, for eachj = 1, . . . , n, F γjj denotes the part obtained fromFj by keeping only monomials
corresponding to points inγj and deleting all the others. It is clear that wheneverδj denotes the
Newton polyhedron offj (considered as a Laurent polynomial inn− 1 variables with support
in the subspacee⊥1 of Rn), the convex sets̃δj = δj + kje1, j = 1, . . . , n, are respective faces of
∆1, . . . ,∆n. Therefore, one has, for someε > 0, for (ζ1, . . . , ζn) ∈Cn,

n∑
j=1

|ekjζ1fj(eζ2 , . . . , eζn)|

e
H

δ̃j

(Re ζ1,...,Re ζn)
� ε.(2.6)

Since the support of̃Fj in (2.5) is included in{x1 > kj}, there existsρ > 0, such that, for any
ζ = (ζ1, . . . , ζn) with Re ζ1 < 0 and|Re ζj |� ρ|Re ζ1| for j = 2, . . . , n, one has

H
δ̃j
(Re ζ) =H∆j (Re ζ), j = 1, . . . , n.(2.7)

On the other hand, ifρ is small enough, then there existsR > 0 such that for anyζ ∈ Cn with
Re ζ1 �−R and|Re ζj |� ρ|Re ζ1| for j = 2, . . . , n, one has

n∑
j=1

|F̃j(eζ1 , . . . , eζn)|

e
H

δ̃j

(Re ζ1,...,Re ζn)
<

ε

2
.(2.8)

From (2.6), (2.7) and (2.8), we get that forζ in the conic sector

Su :=
{
Re ζ1 < 0, |Re ζj |< ρ|Re ζ1|, j = 2, . . . , n

}
,

the inequality (2.4) is valid for‖Re ζ‖ � R = Ru andcu = ε/2. This shows that (ii) holds for
the system(F1, . . . , Fn).

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



138 A. VIDRAS AND A. YGER

In order to prove the converse direction we will construct a globally defined real analytic
function that is not vanishing inX � T. This is done as follows:

For each j ∈ {1, . . . , n} choosen Laurent polynomials(G(j)
1 , . . . ,G

(j)
n ) with Newton

polyhedron∆j such that the system(G(j)
1 , . . . ,G

(j)
n ) satisfies the Bernstein conditions (1.3).

It follows from the fact that (i) implies (ii) that, for some convenient constantsCj � cj > 0,
Rj > 0, one has, for anyζ ∈Cn with ‖Re ζ‖�Rj ,

cj e
H∆j

(Re ζ) �
n∑
k=1

∣∣G(j)
k

(
eζ1 , . . . , eζn

)∣∣�Cj e
H∆j

(Re ζ).

Consider now on the torusTn the real analytic function

ζ �−→ φ(ζ) :=
n∑
j=1

|Fj(ζ)|2∑n
k=1 |G

(j)
k (ζ)|2

.

Let X be any toric variety associated to a simple refinement of the fan which corresponds to
∆1 + · · · + ∆n. The Laurent polynomials(G(j)

1 , . . . ,G
(j)
n ) induce effective Cartier divisors

(D(j)
1 , . . . ,D(j)

n ) onX , namely

D(j)
k =div

(
G

(j)
k

)
+E(∆j), 1 � j, k � n,

whereE(∆j) is theT-Cartier divisor onX corresponding to∆j (it is well defined, sinceX
corresponds to a fan which is compatible with∆j ). The fact that the system(G(j)

1 , . . . ,G
(j)
n )

obeys the Bernstein conditions is equivalent (seefor example [17]) to∣∣D(j)
1

∣∣∩ · · · ∩ ∣∣D(j)
n

∣∣= Lj ⊂Tn.

For homogeneity reasons, the function

ζ �−→ φ(ζ1, . . . , ζn)

extends fromTn �
⋃n
j=1Lj to a functionφ̃ defined globally as a real analytic function on

X �
⋃n
j=1Lj .

Now we are ready to complete the proof of the final step. Assume that(F1, . . . , Fn) satisfies
(ii). For

|ζ1|+ · · ·+ |ζn|+
1

|ζ1|
+ · · ·+ 1

|ζn|

large enough, we have, for some constants0< c̃ < C̃ <∞,

c̃� |φ̃(ζ1, . . . , ζn)|= |φ(ζ1, . . . , ζn)|� C̃.

Thereforeφ̃ does not vanish onX � Tn, which implies that the effective Cartier divisorsDj
induced by theFj onX by

Dj = div(Fj) +E(∆j)
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ON SOME GENERALIZATIONS OF JACOBI’S RESIDUE FORMULA 139

are such that

|D1| ∩ · · · ∩ |Dn| ⊂ Tn.

This is equivalent to say that the Bernstein conditions are fulfilled for the system(F1, . . . , Fn). ✷
In order to weaken the properness condition (2.2), we introduce the toric analogue of

Definition 2.1.

Definition 2.2. – Let(F1, . . . , Fn) be a system of Laurent polynomials inn variables, with
Newton polyhedra∆1, . . . ,∆n, and(δ1, . . . , δn) be a collection of closed convex polyhedra with
vertices inQn, with δj ⊂∆j , j = 1, . . . , n. Then, we say that(F1, . . . , Fn) is (δ1, . . . , δn)-proper
if and only if there existc > 0, R> 0 such that, for anyζ ∈Cn such that‖Re ζ‖�R,

n∑
j=1

|Fj(eζ1 , . . . , eζn)|
eHδj

(Re ζ)
� c.(2.9)

Example2.2. – Letn= 2 and

F1 =X2
1X

2
2 +X2

1X
−2
2 +α1X1X2 + β1X1X

−1
2 + γ1X

2
2X

−2
1 + δ1X

−2
1 X−2

2 ,

F2 =X2
1X

2
2 +X2

1X
−2
2 +α2X1X2 + β2X1X

−1
2 + γ2X

2
2X

−2
1 + δ2X

−2
1 X−2

2 ,

with the conditions

γ1(δ1 − δ2)− δ1(γ1 − γ2) �= 0,

(α1 −α2)
2 − (β1 − β2)

2 �= 0.

Then(F1, F2) is (δ, δ)-proper, where

δ = conv{(−2,−2), (2,2), (1,1), (1,−1)}.

In fact, it is enough to notice that(F1 − F2, F1) satisfy the Bernstein conditions and have as
respective Newton polyhedraδ and [−2,2]× [−2,2], so that by Proposition 2.2, one has, for
‖(Re ζ1,Re ζ2)‖�R> 0,

|(F1 − F2)(e
ζ1 , eζ2)|

eHδ(Re ζ1,Re ζ2)
+

|F1(e
ζ1 , eζ2)|

eH[−2,2]2 (Re ζ1,Reζ2)
� c,

which implies, for suchζ,

|F1(e
ζ1 , eζ2)|

eHδ(Re ζ1,Re ζ2)
+

|F2(e
ζ1 , eζ2)|

eHδ(Re ζ1,Re ζ2)
� c

2
.

3. Proof of the vanishing theorems

3.1. The case of the projective space Pn

Our basic tool will be multidimensional residue theory through an approach based on the use
of Bochner–Martinelli integral representation formulas. Let us recall here some well known facts.

Let P1, . . . , Pn ben polynomials inn variables defining a discrete (hence finite) variety in
Cn. It is shown in [28] that ifα ∈ {P1 = · · · = Pn = 0} andϕ ∈ D(Cn) is such thatϕ ≡ 1 in
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a neighborhood ofα andϕ≡ 0 in a neighborhood of any point in{P1 = · · ·= Pn = 0}� {α},
then the local residue at the pointα is

Resα

[
Qdζ

P1 · · ·Pn

]
= γn lim

ε→0

1

εn

∫
‖P‖2=ε

Q

(
n∑
k=1

(−1)k−1Pk

n∧
�=1
� �=k

∂P�

)
∧ϕdζ(3.1)

= γn lim
ε→0

∫
‖P‖2=ε

Q
(∑n

k=1(−1)k−1Pk
∧n
�=1
� �=k

∂P�

)
∧ ϕdζ

‖P‖2n
,(3.2)

where as usual‖P‖2 = |P1|2 + · · ·+ |Pn|2 andγn =
(−1)

n(n−1)
2 (n−1)!

(2πi)n . Using Stokes’s theorem
and observing that the form

Q
(∑n

k=1(−1)k−1Pk
∧n
�=1
� �=k

∂P�

)
∧ ϕdζ

‖P‖2n

is closed in a punctured neighborhoodUα � {α}, we get from (3.2) that ifUα is small enough
and with piecewise smooth boundary,

Resα

[
Qdζ

P1 · · ·Pn

]
= γn

∫
∂Uα

Q
(∑n

k=1(−1)k−1Pk
∧n
�=1
� �=k

∂P�

)
∧ dζ

‖P‖2n
.

Therefore, ifU is any bounded open set with smooth boundary containing in its interior the set
V (P ) := {P1 = · · ·= Pn = 0}, then the global residue is the sum of the local residues, that is

Res

[
Q(X1, . . . ,Xn)dX

P1, . . . , Pn

]
= γn

∫
∂U

Q
(∑n

k=1(−1)k−1Pk
∧n
�=1
� �=k

∂P�

)
∧ dζ

‖P‖2n
.(3.3)

We can rewrite (3.3) as follows: if

s0 =

(
P1

‖P‖2
, . . . ,

Pn
‖P‖2

)
= (s01, . . . , s0n),

then

Res

[
Q(X1, . . . ,Xn)dX

P1, . . . , Pn

]
= γn

∫
∂U

Q(ζ)

(
n∑
k=1

(−1)k−1s0k ds0,[k]

)
∧ dζ,

whereds0,[k] :=
∧
j �=k ds0j , k = 1, . . . , n.

An homotopy argument shows that one can replace the vector-functions0 above by any vector-
functions, which isC1 in a neighborhood of the∂U and satisfies

〈s(ζ), P (ζ)〉=
n∑
k=1

sk(ζ)Pk(ζ)≡ 1, ζ ∈ ∂U.
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Then the global residue is given by the generalized Bochner–Martinelli formula

Res

[
Q(X1 . . . ,Xn)dX

P1, . . . , Pn

]
= γn

∫
∂U

Q

(
n∑
k=1

(−1)k−1sk ds[k]

)
∧ dζ.(3.4)

Before proceeding any further we point out that it is enough to prove Theorem 1.1 for the case
whenδj , j = 1, . . . , n, are strictly positive integers. In order to do so, it is enough to use the
compatibility of the residue calculus with the change of basis (seefor example [26], Section 2,
Proposition 2.3), which asserts that, for anyN ∈N∗,

Res

[
Q(X)dX

P1(X), . . . , Pn(X)

]
=Res

[
Q(XN1 , . . . ,XNn )(X1 · · ·Xn)N−1 dX

P1(X
N
1 , . . . ,XNn ), . . . , Pn(X

N
1 , . . . ,XNn )

]
.(3.5)

LetN be a common denominator for the rational numbersδj , j = 1, . . . , n; then the polynomials

P̃j(X) = Pj
(
XN1 , . . . ,XNn

)
, j = 1, . . . , n,

have respective degreesN degPj , j = 1, . . . , n, and satisfy (2.2) with̃δj = Nδj ∈ N∗. If we
assume that our result holds when theδj are integers, we get that the residue symbol (3.5) is zero
when

N degQ+ n(N − 1)�N(δ1 + · · ·+ δn)− n− 1,

that is

degQ� δ1 + · · ·+ δn − n− 1

N
.

Therefore, we have (1.8) whenever

degQ< δ1 + · · ·+ δn − 1

as we want. We will assume from now on thatδj ∈N∗ for anyj ∈ {1, . . . , n}.
The next lemma introduces the Bochner–Martinelli residual currents into the computation of

the global residue.

LEMMA 3.1. – LetP = (P1, . . . , Pn) be a polynomial map fromCn to Cn defining a discrete
(hence finite) zero varietyV (P ) in Cn. Assume also thatR > 0 is sufficiently large so that
V (P ) = {P1 = · · ·= Pn = 0} ⊂B(0,R). For Dj := degPj pick an integerM large enough, so
that

δk +M −Dk > 0, ∀k ∈ {1, . . . , n}.

Then, ifsδ,M0 is the vector function defined onCn as

sδ,M0 (ζ) :=

(
P1(ζ)

(1 + ‖ζ‖2)δ1+M
, . . . ,

Pn(ζ)

(1 + ‖ζ‖2)δn+M

)
and

‖P (ζ)‖2
δ,M :=

n∑
j=1

|Pj(ζ)|2
(1 + ‖ζ‖2)M+δj

,
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one has, for anyQ ∈C[X1, . . . ,Xn],

Res

[
Q(X)dX
P1, . . . , Pn

]
= γn

[ ∫
‖ζ‖=R

‖P‖2(λ−n)
δ,M Q

(
n∑
k=1

(−1)k−1sδ,M0k dsδ,M0,[k]

)
∧ dζ

]
λ=0

.(3.6)

Proof. –Let us define the vector functions= sδ,M in Cn � V (P ) as follows

sδ,M (ζ) =
1

‖P (ζ)‖2
δ,M

(
P1(ζ)

(1 + ‖ζ‖2)δ1+M
, . . . ,

Pn(ζ)

(1 + ‖ζ‖2)δn+M

)
.

Formula (3.4) implies that

Res

[
Q(X)dX
P1, . . . , Pn

]
= γn

∫
‖ζ‖=R

Q

(
n∑
k=1

(−1)k−1sδ,Mk dsδ,M[k]

)
∧ dζ

= γn

∫
‖ζ‖=R

‖P‖−2n
δ,MQ

(
n∑
k=1

(−1)k−1sδ,M0k dsδ,M0,[k]

)
∧ dζ

= γn

[ ∫
‖ζ‖=R

‖P‖2(λ−n)
δ,M Q

(
n∑
k=1

(−1)k−1sδ,M0k dsδ,M0,[k]

)
∧ dζ

]
λ=0

.

The last equality completes the proof of the lemma.✷
Next, we introduce the common zeroes at infinity of the polynomial map(P1, . . . , Pn) into the

description of the action of the Bochner–Martinelli residual current as it is given by (3.6).
For λ fixed with Reλ� 1, let us express in homogeneous coordinatesζ̃ := (ζ0, . . . , ζn) the

differential form

‖P‖2(λ−n)
δ,M Q

(
n∑
k=1

(−1)k−1sδ,M0k dsδ,M0,[k]

)
∧ dζ.

This leads to a differential(n,n−1)-form in Pn (depending on the complex parameterλ), which
will be denoted asΘδ,MP,Q,λ. This form is

Θδ,MP,Q,λ(ζ̃) =

(
‖P‖δ,M
‖ζ̃‖|δ|+M

)2(λ−n)
ζ
nM+|δ|−n−1
0 Q(ζ̃)

×
(

n∑
k=1

(−1)k−1 ζ
δk+M−Dk

0 Pk
‖ζ̃‖2(δ[k]+M)

k∧
�=1
� �=k

∂

[
ζ
δ	+M−D	

0 P�
‖ζ̃‖2(δ[	]+M)

])
∧Ω,(3.7)

where|δ|= δ1 + · · ·+ δn, δ[j] = |δ| − δj for j = 1, . . . , n, Ω is the Euler form, and

‖P(ζ̃)‖2
δ,M :=

n∑
j=1

|Pj |2|ζ0|2(δj−Dj+M)‖ζ̃‖2δ[j] ,

P1, . . . ,Pn,Q, being the respective homogenizations ofP1, . . . , Pn,Q; the norm‖ζ̃‖ is the
Euclidean norm inCn+1.
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Since

∂

[
‖P‖2(λ−n)

δ,M Q

(
n∑
k=1

(−1)k−1sδ,M0k dsδ,M0,[k]

)
∧ dζ

]
= nλ‖P‖2(λ−n)

δ,M Q

(
n∧
k=1

∂sδ,M0k

)
∧ dζ,

we have, if the action of the∂ operator is now considered on the projective differential forms
(expressed in homogeneous coordinates),

∂Θδ,MP,Q,λ = nλ

(
‖P(ζ̃)‖δ,M
‖ζ̃‖|δ|+M

)2(λ−n)
ζ−degQ−n−1
0 Q(ζ̃)Aδ,MP,Q

(
ζ1
ζ0
, . . . ,

ζn
ζ0

)
∧Ω(ζ̃),(3.8)

where

Aδ,MP,Q :=
n∧
k=1

∂sδ,M0k .

Since

sδ,M0k

(
ζ1
ζ0
, . . . ,

ζn
ζ0

)
= |ζ0|2(δk+M)Pk(ζ̃)ζ0

−Dk

‖ζ̃‖2(δk+M)
,

one has

Aδ,MP,Q

(
ζ1ζ0, . . . ,

ζn
ζ0

)
= ζ

nM+|δ|
0

n∧
k=1

∂

[
ζ
δk+M−Dk

0 Pk
‖ζ̃‖2(M+δk)

]
.

This shows (as a consequence of Atiyah’s Theorem [1]) that the map

λ �−→Θδ,MP,Q,λ

can be considered as a meromorphic map with values in the space of(n,n − 1)-currents in
Pn(C).

At this stage we are ready for the

Proof of the Theorem 1.1. – TakeR> 0 as in the Lemma 3.1 and consider the complement in
Pn(C) of B(0,R) as a2n-chainΣ in Pn (with smooth boundary). One has, forReλ� 1, using
Stokes’s theorem ∫

∂Σ

Θδ,MP,Q,λ =

∫
Σ

∂
[
Θδ,MP,Q,λ

]
.

Therefore, one can rewrite (3.6) as

Res

[
Q(X)dX
P1, . . . , Pn

]
=−γn

[∫
∂Σ

Θδ,MP,Q,λ

]
λ=0

=−γn
[∫

Σ

∂
(
Θδ,MP,Q,λ

)]
λ=0

(3.9)

(the total sum of residues inCn equals the opposite of the “residue” at infinity). This identity
essentially reduces the proof of the Theorem 1.1 to the computation of an integral describing the
“residue” at infinity.

In order to carry out the computation of this integral (and to prove that it vanishes in
the situation we are dealing with), we first express the integrant it involves in homogeneous
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coordinates; then we localize the problem and look at the analytic continuation up to the origin
of the meromorphic function

λ �−→
∫
Σ

ϕ∂
(
Θδ,MP,Q,λ

)
,(3.10)

whenϕ is an element inD(Pn(C)) with support contained in a neighborhoodV of some point
x at infinity in Pn(C) (these are the only interesting points, since if the support ofϕ does not
intersect the hyperplane at infinity, then (3.10) is an entire function which vanishes atλ= 0). We
may suppose that the local coordinates inV areξ :=

(
ζ0
ζ1
, . . . , ζnζ1

)
(for example). Let

fj(ζ) =
Pj(ζ̃)ζδj+M−Dj

0

ζ
M+δj
1

, j = 1, . . . , n,

expressed in the local coordinatesξ. Let us introduce a resolution of singularities(X , π) for the
hypersurface{f1 · · ·fn = 0} overV (shrinkingV about the pointx if necessary). Then, in a
local chartω on X with coordinatesw centered at the origin, all functionsπ∗(fj) are, up to
invertible holomorphic functions, monomials inw; that is

π∗(fj)(w) = uj(w)w
θj1
1 · · ·wθjnn , θjk ∈N, uj invertible inω.

Note that

π∗
[
ζ0
ζ1

]
(w) = u0(w)w

θ01
1 · · ·wθ0nn , θ0k ∈N, u0 invertible inω,

sinceδj + M − Dj > 0 for at least onej (in fact for anyj). However this is not enough.
Using the ideas of Varchenko [30] and Khovanskii [23], we introduce, above each such local
chartω, a toroidal manifoldX̃ and a proper holomorphic map̃π : X̃ �→ ω (which is locally a
biholomorphism betweeñX � π̃∗{w1 · · ·wn = 0} andω � {w1 · · ·wn = 0}), such that, on each
local chartω̃ on X̃ (with local coordinates(t1, . . . , tn)), one has

π̃∗π∗(fj)(t1, . . . , tn) = ũj(t)t
θ̃j1
1 · · · tθ̃jnn = ũj(t)m̃j(t)

and one of thẽmj , j = 1, . . . , n, let saym̃, dividesm̃1, . . . , m̃n. Namely, the manifoldX̃ is
the smooth toric variety attached to a simple refinement of the fan associated with the Newton
polyhedron

Γ+(θ1, . . . , θn) :=
n⋃
j=1

[
θj +Nn

]
.

It arises from gluing together copies(UJ , πJ) of Cn (in correspondence with then-dimensional
cones of the fan,πJ being a monoidal transform attached to the skeleton of the cone), according
to the gluing of the cones along their edges. The1-dimensional edges of these cones are
determined as the normal directions to the(n− 1)-dimensional faces of the Newton polyhedron
Γ+(θ1, . . . , θn), plus a minimal system of additional rational directions in[0,∞[n (which are just
necessary for the fan to be simple).

4e SÉRIE– TOME 34 – 2001 –N◦ 1



ON SOME GENERALIZATIONS OF JACOBI’S RESIDUE FORMULA 145

We now come to the crucial point where we use the hypothesis (1.7), which tells us that, for
R|ζ0|� (|ζ1|2 + · · ·+ |ζn|2)/12, one has

|ζ0|M‖ζ̃‖|δ| � c
n∑
j=1

|Pj(ζ̃)||ζ0|M+δj−Dj‖ζ̃‖δ[j] � cn‖P‖δ,M .

This implies that, if

π̃∗π∗[ζ0ζ1](t) = ũ0(t)t
θ̃01
1 · · · tθ̃0nn , ũ0 invertible inω̃,

the distinguished monomial̃m divides m̃M0 , wherem̃0 := tθ̃011 · · · tθ̃0nn , in ω̃. Let ϕ̃ be a test
function onX with support in the local chartω. As can be easily seen, one can write inω̃,

π̃∗
[
ϕ̃

[
π∗
(
ϕAP,Q

(
ζ1
ζ0
, . . . ,

ζn
ζ0

))]]
(t) =

m̃
nM+|δ|
0

m̃n

(
∂m̃

m̃
∧ σ1(t) + τ1(t)

)
,

whereσ1 and τ1 (depending onϕ and ϕ̃) are smooth differential forms with respective type
(n,n− 1) and(n,n). It follows then from (3.8) that

π̃∗[ϕ̃[π∗(ϕ∂Θδ,MP,Q,λ)]](t) = λ|m̃|2λ|ξ|2λ m̃
nM+|δ|−degQ−n−1
0

m̃n

(
∂m̃

m̃
∧ σ2(t) + τ2(t)

)
,

whereσ2 and τ2 (depending onϕ and ϕ̃) are smooth differential forms with respective type
(n,n− 1) and(n,n) andξ is a real analytic strictly positive function iñω. Since|δ| − degQ−
n− 1 � 0 andm̃n dividesm̃nM0 , we get immediately that for any test functionρ with support in
ω̃, [∫

ρ(t)π̃∗[ϕ̃[π∗(∂Θδ,MP,Q,λ)]](t)]
λ=0

= 0.

Then, the conclusion (1.8) follows from the formula (3.9) and our localization and normalized
blowing-up process. ✷

Remark3.1. – The fact thatδj > 0 does not play any role in the proof. Therefore, Theorem 1.1
remains valid when(P1, . . . , Pn) is (δ1, . . . , δn)-proper, where theδj are rational numbers such
thatδj � Dj for anyj = 1, . . . , n (seeRemark 2.1); of course, the conclusion of the theorem is
interesting only in the case whenδ1 + · · ·+ δn � n+ 1.

3.2. The toric case

We begin with a review of some preliminary material taken from [9–12,17].
A complete toric varietyX of dimensionn is determined by a complete fanF in an n-

dimensional real vector spaceΛR, whereΛ is a lattice; for the sake of simplicity, we will always
assumeΛ= Zn andΛR = Rn. Taking a suitable refinement of the fan, we may assume that this
toric varietyX is also smooth.

We denote asΛ∗ � Zn the dual lattice. The primitive generators of the one-dimensional cones
in F are denoted byη1, . . . , ηs. Each of these vectorsηi, i= 1, . . . , s, is in correspondence with
a torus-invariant irreducible Weil divisorXi on X . The (n − 1)-Chow groupAn−1(X ) on X
is generated by the classes[Xi], i = 1, . . . , s, and induces a grading on the polynomial algebra
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S = C[x1, . . . , xs], namely

deg
(
xα1

1 · · ·xαs
s

)
:=
[
α1X1 + · · ·+αsXs

]
∈An−1(X ).

Note that the sequence

0−→Λ∗ τ−→ Zs −→An−1(X )−→ 0,

whereτ(m) = (〈m,η1〉, . . . , 〈m,ηs〉) ∈ Zs is exact since any monomialx〈m,η〉 := x
〈m,η1〉
1 · · ·

x
〈m,ηs〉
s , m ∈ Λ∗, has degree zero. If(e∗1, . . . , e

∗
n) is the canonical basis ofΛ∗ andI is an ordered

subset of{1, . . . , s} with cardinal|I| = n, let sayI = {i1, . . . , in}, 1 � i1 < · · ·< in � s, we
denote as

dxI :=
n∧
�=1

dxi	 , x̂I :=
s∏
k=1
k/∈I

xk, det[ηI ] := det
[
〈e∗k, ηi	〉

]
1�k, ��n.

The toric Euler form onX is the differential formΩ (expressed in homogeneous coordinates
x1, . . . , xs)

Ω(x) :=±1
∑
|I|=n

det[ηI ]x̂I dxI .

We now consider a system(F1, . . . , Fn) of Laurent polynomials with respective polyhedra
∆1, . . . ,∆n, and a collection(δ1, . . . , δn) of rational polyhedra such thatδj ⊂ ∆j for any
j ∈ {1, . . . , n}, δ1 + · · ·+ δn is n-dimensional and the hypothesis (1.9) are fulfilled.

Before proceeding any further, by using the same change of basis (namely replaceXj byXNj
for a convenient choice ofN ∈ N∗) as we did in (3.5), we can reduce ourselves to the situation
where all polyhedraδ1, . . . , δn have their vertices in the latticeΛ= Zn (originally these vertices
were assumed to be inQn, therefore it is enough to take forN a common denominator of all
coordinates of such points).

We fix a polyhedron∆ with dimensionn and vertices inΛ, which contains the origin as an
interior point and is such that, for anyj ∈ {1, . . . , n}, the Minkowski sum∆+ δj contains∆j .
We let

∆̃ := (∆+ δ1 + · · ·+ δn) +∆1 + · · ·+∆n.

We consider as the fanF a simple refinement of the fanF(∆̃) which corresponds to this
polyhedron∆̃ (see[17]); X will be from now on the toric variety attached toF . It is compatible
with ∆, δj + ∆ and∆j for any j. For anyj = 1, . . . , n, we taken+ 1 Laurent polynomials,

with convex polyhedron∆+ δj , namelyG(j)
0 , . . . ,G

(j)
n , which do not vanish simultaneously in

Tn and are such that the system(G(j)
1 , . . . ,G

(j)
n ) satisfies the Bernstein conditions (1.3) (when

considered as a system of Laurent polynomials with Newton polyhedron∆+ δj ). Since the fan

F is compatible with∆+ δj , these Laurent polynomials induce Cartier divisorsD(j)
0 , . . . ,D(j)

n

onX such that ∣∣D(j)
0

∣∣∩ · · · ∩ ∣∣D(j)
n

∣∣= ∅.

In particular, the function ∥∥G(j)
∥∥2

:=

n∑
k=0

∣∣G(j)
k

∣∣2
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does not vanish on the torusTn. Let, for ζ ∈ Tn,

‖F (ζ)‖2
δ,∆ :=

n∑
j=1

|Fj(ζ)|2∥∥G(j)(ζ)
∥∥2 ,

sδ,∆0 (ζ) :=

(
F1(ζ)

‖G(1)(ζ)‖2
, . . . ,

Fn(ζ)

‖G(n)(ζ)‖2

)
,

and, forζ ∈ Tn � V ∗(F ),

sδ,∆(ζ) :=
sδ,∆0 (ζ)

‖F (ζ)‖2
δ,∆

.

Let ε=min{‖ζ − ζ′‖; ζ �= ζ′, ζ, ζ′ ∈ V ∗(F )} and

U :=
⋃

α∈V ∗(F )

B

[
α,

minα∈V ∗(F )(ε, d(α,C
n � Tn))

2

]
,

whered is the Euclidean distance inCn.
At this point, we notice that the representations (3.3) and (3.4) of the Bochner–Martinelli type

that we gave to express the total sum of residues respect to an-valued polynomial map fromCn

to Cn remain valid when polynomials are replaced by Laurent polynomialsFj , j = 1, . . . , n,
and total sum of residues involves only residues at poles in the torusTn, provided theFj , j =
1, . . . , n, define a discrete (hence finite) zero set inTn. Therefore, we may state the exact analog
of Lemma 3.1 (the proof is a repetition of the proof of this previous lemma):

LEMMA 3.2. – LetF = (F1, . . . , Fn) be a system of Laurent polynomials inn variables, with
respective Newton polyhedra∆1, . . . ,∆n and polyhedraδ1, . . . , δn, ∆ as above. Then, for any
β ∈ Z, one has

Res

[
Xβ11 · · ·Xβnn dX

F1, . . . , Fn

]
T

= γn

[ ∫
∂U

‖F‖2(λ−n)
δ,∆ ζβ

(
n∑
k=1

(−1)k−1sδ,∆0k dsδ,∆0,[k]

)
∧ dζ1

ζ1
∧ · · · ∧ dζn

ζn

]
λ=0

.(3.11)

We now adapt the construction (and study) of the meromorphic map

λ �−→Θδ,MP,Q,λ

that was proposed in (3.7). Such a meromorphic map will be defined in this new situation as
follows: for λ fixed withReλ� 1, let

Θδ,∆F,β,λ := ‖F‖2(λ−n)
δ,∆ ζβ

(
n∑
k=1

(−1)k−1sδ,∆0k dsδ,∆0,[k]

)
∧ dζ(3.12)

(obtained from the integrant in (3.11) exactly as (3.7) was obtained from the integrant in (3.6)).
As we did previously (in the projective situation), we express it in homogeneous coordinates

(x1, . . . , xs) related to the toric varietyX . The coordinatesζj , j = 1, . . . , n, in the torus are
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expressed in homogeneous coordinates as

ζj =

s∏
i=1

x
ηij
i := x〈e

∗
j ,η〉, j = 1, . . . , n,(3.13)

where, for anyi = 1, . . . , s, ηij , j = 1, . . . , n, are the coordinates of the primitive vectorηi in
the canonical basis(e1, . . . , en) of Λ � Zn. We will also define, for anyi ∈ {1, . . . , s} and any
j ∈ {1, . . . , n} 

µij :=− min
ξ∈∆j

〈ξ, ηi〉,
νij :=− min

ξ∈δj+∆
〈ξ, ηi〉.(3.14)

Since the situation is a little bit more involved than it was in the projective case, we will state
the result of this homogenization process (applied to the differential form (3.12) and its∂ with
respect to theζ coordinates) as a lemma.

LEMMA 3.3. – The differential(n,n− 1)-form in (3.12)can be expressed in homogeneous
coordinates as

Θδ,∆F,β,λ(x) = ‖F(x)‖2(λ−n)
δ,∆

s∏
i=1

x
〈β,ηi〉−1+

∑
n

j=1
νij

i

×

 n∑
k=1

(−1)k−1

[( s∏
i=1

xνik−µik

i

)
Fj(x)

]
‖G(k)(x)‖2

n∧
�=1
� �=k

∂

[( s∏
i=1

xνi	−µi	

i

)
F�(x)

‖G(�)(x)‖2

]∧Ω(x).(3.15)

The differential form∂ζΘ
δ,∆
F,β,λ can be expressed as

∂Θδ,∆F,β,λ(x)

= nλ‖F(x)‖2(λ−n)
δ,∆

(
s∏
i=1

x
〈β,ηi〉−1+

∑n

j=1
νij

i

)
n∧
k=1

∂


( s∏
i=1

xνik−µik

i

)
Fk(x)

‖G(k)(x)‖2

∧Ω(x).

(3.16)

This means that the differential forms onX which are such defined in homogeneous coordinates
restrict respectively to the torus as the differential formsΘδ,∆F,β,λ(ζ) and its∂ in ζ.

Proof. –Consider theX -homogenizations ofF1, . . . , Fn, that is

Fj(x1, . . . , xs) :=

(
s∏
i=1

x
µij

i

)
Fj
(
x〈e

∗
1 ,η〉, . . . , x〈e

∗
n,η〉
)
,

and theX -homogenizations of theG(j)
k , j = 1, . . . , n, k = 0, . . . , n, namely

G(j)
k (x1, . . . , xs) :=

(
s∏
i=1

x
νij
i

)
G

(j)
k

(
x〈e

∗
1 ,η〉, . . . , x〈e

∗
n,η〉
)
.

4e SÉRIE– TOME 34 – 2001 –N◦ 1



ON SOME GENERALIZATIONS OF JACOBI’S RESIDUE FORMULA 149

We will also denote

∥∥G(j)(x1, . . . , xs)
∥∥2

:=

n∑
k=0

∣∣G(j)
k (x)

∣∣2, j = 1, . . . , n.

The function

ζ �−→ ‖F (ζ)‖2
δ,∆

on the torus will be extended as the function onX which is defined in homogeneous coordinates
as

‖F(x)‖2
δ,∆ :=

n∑
j=1

∣∣∣∣∣
s∏
i=1

x
νij−µij

i

∣∣∣∣∣
2
|Fj(x)|2
‖G(j)(x)‖2

.

On the other hand, one has, fork = 1, . . . , n,

sδ,∆0k

(
x〈e

∗
1 ,η〉, . . . , x〈e

∗
n,η〉
)
=

∣∣∣∣∣
s∏
i=1

xνiki

∣∣∣∣∣
2 (∏s

i=1 x
−µik

i

)
Fk(x)

‖G(k)(x)‖2
,

while the differential form (
s∏
i=1

x
〈β,ηi〉
i

)
Ω(x)

x1 · · ·xs

onX restricts to the torus asζβ dζ1
ζ1

∧ · · · ∧ dζn
ζn

(seethe proof of Proposition 9.5 in [2]). When
we report these expressions in (3.12), we obtain the desired relations (3.15); the same kind of
argument holds for (3.16).✷

The next lemma will be crucial in order to study in local charts about any point inX � Tn

(under the “properness” assumption (1.9) for theFj ) the Laurent development (as current-valued
maps) of

λ �−→Θδ,∆F,β,λ, λ �−→ ∂ζ
[
Θδ,∆F,β,λ

]
,

when such maps are expressed in homogeneous coordinates.

LEMMA 3.4. – Let F = (F1, . . . , Fn) be a system of Laurent polynomials inn variables,
with respective Newton polyhedra∆1, . . . ,∆n. Suppose there exist constantsc > 0, R > 0,
and convex polyhedraδ1, . . . , δn with vertices inZn, with δj ⊂∆j , j = 1, . . . , n anddim(δ1 +
· · ·+ δn) = n, which are such that the hypothesis(1.9) is fulfilled. Let∆ be any polyedron with
dimensionn, vertices inZn, such that∆j ⊂∆+ δj for anyj = 1, . . . , n andF be a fan which is
compatible with∆, δj +∆, ∆j for anyj = 1, . . . , n. Letη1, . . . , ηs be the primitive generators
of the one-dimensional cones in the fanF . Then, for anyβ in Zn which lies in the interior of
the convex polyhedronδ1 + · · · + δn, the integersνi,j defined in(3.14)are such that for any
i∈ {1, . . . , s}, for anyj ∈ {1, . . . , n}

〈β, ηi〉 − 1 +

n∑
j=1

νij � 0.(3.17)
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Remark3.2. – Notice that the integersµi,j , i= 1, . . . , s, j = 1, . . . , n, also defined in (3.14)
satisfy automatically

νi,j − µi,j � 0, ∀i ∈ {1, . . . , s}, ∀j ∈ {1, . . . , n}(3.18)

since∆j is contained inδj +∆ for anyj = 1, . . . , n.

Proof of Lemma 3.4. – This lemma comes from a re-interpretation of our hypothesis (1.9).
Since the system of polynomialsG(j)

k , k = 1, . . . , n, satisfies the Bernstein hypothesis (1.3), it
follows (seethe argument used in the proof of Proposition 2.2) that there exist strictly positive
constantscj , Cj , such that

∀ζ ∈Cn, cj e
H∆+δj

(Re ζ) �
∥∥G(j)

(
eζ1 , . . . , eζn

)∥∥�Cj e
H∆+δj

(Re ζ).(3.19)

One has also, for anyζ ∈Cn such that‖Re ζ‖�R,

n∑
j=1

|Fj(eζ1 , . . . , eζn)|
eHδj

(Re ζ)
� c > 0.(3.20)

Note furthermore thatHδj+∆ = Hδj + H∆. We also introducen + 1 Laurent polynomials
H0, . . . ,Hn, with Newton polyhedron∆, which do not vanish simultaneously inTn and are
such that the system(H1, . . . ,Hn) satisfies the Bernstein hypothesis (1.3) when considered as a
system of Laurent polynomials with Newton polyhedron∆, that is such that

c0 e
H∆(Re ζ) � ‖H(eζ1 , . . . , eζn)‖�C0 e

H∆(Re ζ), ζ ∈Cn(3.21)

for some strictly positive constantsc0,C0 (where‖H‖2 := |H0|2 + · · · + |Hn|2). It follows
from (3.19), (3.20) and (3.21) that for anyζ ∈ Tn such that

|ζ1|+ · · ·+ |ζn|+
1

|ζ1|
+ · · ·+ 1

|ζn|

is large enough, one has

n∑
j=1

|Fj(ζ)|
‖G(j)(ζ)‖ � c̃

‖H(ζ)‖(3.22)

for somẽc > 0. If we express theζj in terms of homogeneous coordinates on the toric varietyX
as in (3.13), we may rewrite (3.22) as∣∣∣∣∣

s∏
i=1

x
−min

ξ∈∆
〈ξ,ηi〉

i

∣∣∣∣∣� 1

c̃

1

|H(x)|

(
n∑
j=1

∣∣∣∣∣
s∏
i=1

x
νij−µij

i

∣∣∣∣∣ |Fj(x)|‖G(j)(x)‖

)
,(3.23)

where‖H(x)‖ :=
∑n
k=0 |Hj(x)‖, theHj being defined as theX -homogenizations of theHj ,

namely

Hj(x1, . . . , xs) :=

(
s∏
i=1

x
−min

ξ∈∆
〈ξ,ηi〉

i

)
Hj
(
x〈e

∗
1 ,η〉, . . . , x〈e

∗
n,η〉
)
.
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The fact thatδ1 + · · ·+ δn is n-dimensional and thatβ lies in the interior of this polyhedron
implies that fori= 1, . . . , s, one has

〈β, ηi〉 − 1− min
ξ∈δ1+···+δn

〈ξ, ηi〉=− min
ξ∈δ1+···+δn

〈ξ − β, ηi〉 − 1� 0

and hence

〈β, ηi〉 − 1 +

n∑
j=1

νij = 〈β, ηi〉 − 1−
n∑
j=1

min
ξ∈∆+δj

〈ξ, ηi〉

= 〈β, ηi〉 − 1−
n∑
j=1

min
ξ∈∆
ξj∈δj

(〈ξ + ξj , ηi〉

�−nmin
ξ∈∆

〈ξ, ηi〉 � 0,

since∆ contains the origin. This proves the inequalities (3.17).✷
At this point we may translate (in the spirit of [13]) in more geometric terms the statement in

Lemma 3.4.

PROPOSITION 3.1. –Let F1, . . . , Fn, ∆1, . . . ,∆n, ∆ and F as in Lemma3.4, such that
the toric varietyX (F) is an n-dimensional complex manifold. LetE(∆), E(∆ + δ1), . . . ,
E(∆+ δn), be theT -Cartier divisors corresponding to∆, ∆+ δ1, . . . ,∆+ δn and

D̃j := div(Fj) +E(∆+ δj), j = 1, . . . , n.

Let x be a point inX (F) � Tn which lies in the intersection of the supports of thẽDj ,
j = 1, . . . , n and [Ex] be the exceptional divisor in the normalized blow-upπ :Nx �→ Vx along
the ideal sheaf generated inOVx by global sections̃fx1, . . . , f̃xn for the divisorsD̃j in some
neighborhoodVx of x. Then, iffx is a global section forE(∆) in Vx, one has

[π∗fx] � [Ex],(3.24)

that is the order of vanishing ofπ∗fx on each irreducible component of[Ex] exceeds the
multiplicity of this component in the decomposition of[Ex].

Proof. –It follows immediately from (3.23), such an inequality being extended fromTn to Vx,
which is possible sinceTn is dense inX . Let

[Ex] =
∑
�

rx�Ex�,

theEx� being the irreducible components and therx� the associated multiplicities. Lifting (3.23)
to the normalized blow-upNx, one can see that the order of vanishingρx� of π∗fx along any
Ex� is such thatρx� � rx� for any=, which is equivalent to the statement (3.24).✷

Proof of Theorem 1.2. – The proof of Theorem 1.2 follows exactly the same lines as the proof
of our previous result Theorem 1.1. We consider the complement ofU in X as a2n-chainΣ in
X , and we deduce from Lemma 3.2 and from the definition ofΘδ,∆F,β,λ that

Res

[
Xβ11 · · ·Xβnn dX

F1, . . . , Fn

]
T

=−γn
[ ∫
∂Σ

Θδ,∆F,β,λ

]
λ=0

=−γn
[∫

Σ

∂
(
Θδ,∆F,β,λ

)]
λ=0

(3.25)
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the notation[ ]λ=0 meaning that one takes the meromorphic continuation, and later on, the value
atλ= 0. In order to prove the vanishing of the residue symbol, it is enough to show that ifx is
any point inX � Tn, Vx an arbitrary small neighborhood ofx in X , andϕ ∈ D(Vx), then the
function

λ �−→
∫
Vx

ϕ∂
(
Θδ,∆F,β,λ

)
(3.26)

can be continued as a meromorphic function ofλ which has no pole atλ = 0 and vanishes at
λ= 0. In order to do that, we repeat the argument in the proof of Theorem 1.1 and use a resolution

of singularitiesY π−→ Vx, followed by toroidal resolutions̃Yω
π̃ω−→ ω over each local chartω on

Y , such that in local coordinates(t1, . . . , tn) on a local chart> in someỸω , one has

π̃∗
ωπ

∗f̃xj = ũj(t)t
θ̃j1
1 · · · tθ̃jnn = ũj(t)m̃j(t),

and some of thẽmj , say m̃, divides m̃1, . . . , m̃n. For the same reasons that lead to (3.24)
from the properness condition (1.9) when one was using a normalized blow-up instead of the

tower of resolutions̃Yω
π̃ω−→ ω

π−→ Vx, one can see that the properness condition implies thatm̃
dividesπ̃∗

ωπ
∗fx in the local chart>. Therefore, it follows from Lemma 3.3 (formula (3.16)) and

Lemma 3.4 (inequalities (3.17) and (3.18)) that for any test functionϕ̃ onY with support inω,
one can write in>,

π̃∗
ω

[
ϕ̃
[
π∗(ϕ∂Θδ,MF,β,λ

)]]
(t) = λ|m̃|2λ|ξ|2λ

(
∂m̃

m̃
∧ σ(t) + τ(t)

)
,

whereσ and τ (depending onϕ and ϕ̃) are smooth differential forms with respective type
(n,n− 1) and(n,n) andξ is a real analytic strictly positive function in>. Therefore,

λ �−→ π̃∗
ω

[
ϕ̃
[
π∗(ϕ∂Θδ,MF,β,λ

)]]
(t)

can be continued as a distribution valued meromorphic map on>, which has no pole atλ= 0 and
vanishes at this point. Since the meromorphic function (3.26) is expressed as a sum of functions
of the form

λ

∫
+

ψ̃π̃∗
ω

[
ϕ̃
[
π∗(∂Θδ,MF,β,λ)]](t)[π∗

ωπϕ](t),

the vanishing of the residue symbol (3.26) follows. This concludes the proof of our Theo-
rem 1.2. ✷

4. Some applications of vanishing theorems for global sums of residues

The generalized Jacobi Theorems 1.1, 1.2 derived above have as a direct consequence the
following nonstandard formulations of Cayley–Bacharach type theorems in the spirit of [18].

THEOREM 4.1. –Given a(δ1, . . . , δn)-proper polynomial mappingP :Cn → Cn with only
simple zeroesZ = {α1, . . . , αm} and an algebraic hypersurfaceY ⊂ Cn of degree strictly
smaller thanδ1 + · · · + δn − n, then if Y contains all but one pointsαj , it necessarily also
contains the last one.
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Proof. –SupposeY = {Q = 0} and that the degree ofQ is at mostδ1 + · · ·+ δn − n − 1.
Recall that

Resα

[
Q(ζ1, . . . , ζn)dζ

P1, . . . , Pn

]
=

Q(α)

JP (α)
,

whereJP (α) is the value of the Jacobian of the(δ1, . . . , δn)-proper mappingP at the simple
common zeroα. The hypothesis on the degree of the hypersurface implies (if one uses
Theorem 1.1) that

Res

[
Q(X1, . . . ,Xn)dX

P1, . . . , Pn

]
= 0.

Therefore, ifQ vanishes at all points inZ but one, it vanishes in fact at any point inZ. ✷
Example4.1. – LetP = (P1, P2, P3) be the polynomial map fromC3 to C3 defined as

P1(X) =X1X2X3,

P2(X) = (X3
1 + 1)(X3

2 +1)(X3
3 + 1),

P3(X) = (X3
1 − 1)(X3

2 − 1)(X3
3 − 1).

Such a map is(1,3,3)-proper; the54 common zeroes of(P1, P2, P3) are all simple. Since
δ1 + δ2 + δ3 − 4 = 3, any cubic (such as{X3

1 + X3
2 + X3

3 = 0}) which passes through all
but one the common zeroesαj contains necessarily the remaining one.

We may also state a toric version of a Cayley–Bacharach theorem. We begin with the following

Definition 4.1. – A (δ1, . . . , δn)-proper systemF = (F1, . . . , Fn) of Laurent polynomials is
called fully (δ1, . . . , δn)-proper ifdim(δ1 + · · ·+ δn) = n.

THEOREM 4.2. –Consider a fully(δ1, . . . , δn)-proper system of Laurent polynomialsF =
(F1, . . . , Fn) with only simple zeroesα1, . . . , αm in Tn, and a Laurent polynomialQ, whose
Newton polyhedron lies in the interior ofδ1+ · · ·+δn. Then if the hypersurface{Q= 0} contains
all but one pointsαj it necessarily also contains the last one.

Proof. –The proof is a direct application of the Theorem 1.2, exactly as our previous result
follows from Theorem 1.1. ✷

Example4.2. – LetF1, F2 as in Example 2.2. We have noticed (seeExample 2.2) that
(F1 − F2, F1) satisfies the Bernstein hypothesis (1.3). Therefore, in this case, the number of
common zeroes ofF1, F2 in the torus equals two times the mixed volume of[−2,2]2 andδ,
where

δ := {conv{(−2,2), (2,2), (1,1), (1,−1)},
that is28. If Q is a Laurent polynomial with support in the interior of[−2,2] + δ, such that
{ζ ∈ T2; Q(ζ) = 0} contains27 points among the common zeroes ofF1, F2 in the torus, it
contains necessarily the remaining one.

Example4.3. – We will choose here an example which is slightly more elaborate than
Example 2.2 (in fact, in Example 2.2,(F1−F2, F1) satisfies the Bernstein condition (1.3), which
leads back immediately to the situation where Khovanskii’s result (1.4) applies). LetF1, F2 be
the pair of Laurent polynomials in two variables, of the form

Fj(X,Y ) = λj
(
X2

1X
2
2 +X2

1X
−2
2

)
+αjX1X2 + βjX1X

−1
2

+ γjX
−1
1 X2 + δjX

−1
1 X−1

2 +
(
X−2

1 X2
2 +X−2

1 X−2
2

)
,
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whereαj , βj , γj , δj, λj , j = 1, 2, are generic complex coefficients. One can check easily(F1, F2)

is (δ̃, δ̃)-proper, wherẽδ is now the polyedron defined as

δ̃ = conv{(−1,1), (0,4/3), (1,1), (1,−1), (0,−4/3), (−1,−1)}.

The number of common zeroesα of F1 andF2 in T2 equals now24 (note that, comparing
to Example 2.2,4 among the28 common zeroes disappear “at infinity” in this new situation).
Moreover, one has

δ̃ + δ̃ = conv{(−2,−2), (−2,2), (0,8/3), (2,2), (2,−2), (0,−8/3)},

so that the interior of̃δ+ δ̃ contains[−1,1]× [−2,2]. Therefore, any sextic{
Q(X1,X2) = 0; Q ∈C[X1,X2], SuppQ⊂ [0,2]× [0,4]

}
which passes through23 among the common zeroesα also contains the remaining one.

Finally, we can state an application of Theorem 1.1 (respectively Theorem 1.2) to some
effective version of division problems with respect to proper quasi-regular maps. In the first case,
this version is the key ingredient for a general explicit formulation to the algebraic Nullstellensatz
[5,6]; we do not know yet if the same holds in the toric case for the Newton Nullstellensatz.

PROPOSITION 4.1. –Let P := (P1, . . . , Pn) be a (δ1, . . . , δn)-proper polynomial map from
Cn to Cn, whereδj > 0 for any j; suppose thatdegPj = Dj , j = 1, . . . , n. Let Qjk, j, k =
1, . . . , n, be polynomials in(X1, . . . ,Xn, Y1, . . . , Yn) such thatdegQjk �Dj − 1, j = 1, . . . , n,
and

Pj(Y )− Pj(X) =

n∑
k=1

Qjk(X,Y )(Yk −Xk).

Let

det
[
Qjk(X,Y )

]
1�j, k�n =

∑
α,β∈N

n

|α|+|β|�D1+···+Dn−n

γα,βX
αY β .

Then for any polynomialQ with degreeD, one has the following identity

(4.1)

Q(Y ) =
∑

α,β∈N
n

|α|+|β|�D1+···+Dn−n

∑
µ∈N

n

〈µ+1,δ〉�|α|+D+n

γα,β Res

[
Q(X)XαdX

Pµ1+1
1 , . . . , Pµn+1

n

]
Y βP (Y )µ,

where we used the standard notations: ζm = ζm1
1 · · ·ζmn

n for ζ ∈ Cn andm ∈ Nn, 〈m1,m2〉=
m11m21 + · · ·+m1nm2n for m1, m2 ∈Nn, 1 = (1, . . . ,1) (n times).

Proof. –The proof follows from the Cauchy–Weil integral representation formula, exactly as
in [5]; the analytic expansion of the Cauchy kernel that appears in this formula truncates thanks
to Theorem 1.1. ✷

COROLLARY 4.1. –Let P := (P1, . . . , Pn) be a (δ1, . . . , δn)- proper polynomial map from
Cn to Cn, whereδj > 0 for any j; let Q be in the idealI(P1, . . . , Pn); then, one can write a
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division formula forQ respect to the idealI(P1, . . . , Pn) as

Q(Y ) =
∑

µ∈(Nn)∗, ν∈N
n

|ν|�D1+···+Dn−n
〈µ+1,δ〉+|ν|�D1+···+Dn+degQ

γ̃µ,νY
νP (Y )µ.(4.2)

Note that ifδj =Dj (that is thePj do not have common zeroes at infinity), formula (4.2) becomes

Q(Y ) =
∑

µ∈(Nn)∗, ν∈N
n

〈µ,D〉+|ν|�degQ

γ̃µ,νY
νP (Y )µ,

which is not a surprise since the homogenizationQ of Q lies (in this case) in the homogeneous
ideal generated byP1, . . . ,Pn.

In the toric case, we need first a definition, that we recall from [8, p. 454].

Definition 4.2. – Let∆ be a closed convex polyhedron inRn; ∆ is called a good polyhedron
if and only if

∀x ∈∆,
{
y ∈Rn; |yk|� |xk|, xkyk � 0, k = 1, . . . , n

}
⊂∆.

We can now state the toric pendant of Proposition 4.1.

PROPOSITION 4.2. –Let δ1, . . . , δn be n convex rational polyhedra inRn with dimension
n which contain the origin as an interior point; let F := (F1, . . . , Fn) be a system of Laurent
polynomials with good Newton polyhedra∆1, . . . ,∆n, such thatδj ⊂ ∆j for any j and
F is (δ1, . . . , δn)-proper. Then one can find Laurent polynomialsGjk, j, k = 1, . . . , n, in
(X1, . . . ,Xn, Y1, . . . , Yn), such that

det
[
Gjk(X,Y )

]
1�j,k�n =

∑
α,β∈Z

n

α+β∈∆1+···+∆n

γα,βX
αY β

and

Fj(Y )− Fj(X) =

n∑
k=1

Gjk(X,Y )(Yk −Xk), X,Y ∈ Tn, j = 1, . . . , n.

Moreover, for any Laurent polynomialG with convex polyhedron∆, one has the following
algebraic identity

(4.3)

G(Y ) =
∑

α,β∈Z
n∩(∆1+···+∆n)

α+β∈∆1+···+∆n

∑
µ∈N

n

∆+α+1�⊂int(〈µ+1,δ〉)

γα,β Res

[
G(X)Xα+1 dX

Fµ1+1
1 , . . . , Fµn+1

n

]
T

Y βF (Y )µ,

where〈m,δ〉 :=m1δ1 + · · ·+mnδn for anym ∈Nn.

Proof. –For the construction of theGjk under the hypothesis that all∆j are good, we refer
to [8]. The fact that one can get the algebraic identity (4.3) is based on the use of Cauchy–Weil
formula, as in the proof of Proposition 4.1; for more details see [32], Section 2. The development
of the Cauchy kernel as a geometric progression truncates (as claimed in (4.3)) if one applies
Theorem 1.2. ✷
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COROLLARY 4.2. –Let(F1, . . . , Fn) be a(δ1, . . . , δn)-proper system of Laurent polynomials;
suppose that allδj aren dimensional and contain the origin as an interior point; denote as∆j
the smallest good polyhedron containing the support ofFj , j = 1, . . . , n. Then, wheneverG is a
Laurent polynomial with Newton polyhedron∆ that lies in the ideal generated byF1, . . . , Fn in
C[X1, . . . ,Xn,X

−1
1 , . . . ,X−1

n ], one can write a division formula forG respect to(F1, . . . , Fn)
as

G(Y ) =
∑

µ∈(Nn)∗, ν∈Z
n∩(∆1+···+∆n)

∆+∆1+···+∆n �⊂ int 〈µ+1,δ〉+β−1

γ̃µ,νY
νF (Y )µ.
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