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HARDY-TYPE ESTIMATES FOR DIRAC OPERATORS

BY JEAN DOLBEAULT & MARIA J. ESTEBAN, JAVIER

DUOANDIKOETXEA & LUIS VEGA

ABSTRACT. – We prove some Hardy type inequalities related to the Dirac operator by elementary
methods, for a large class of potentials, which even includes measure valued potentials. Optimality is
achieved by the Coulomb potential. When potentials are smooth enough, our estimates provide some
spectral information on the operator.

© 2007 Elsevier Masson SAS

RÉSUMÉ. – Par des méthodes élémentaires, nous démontrons des inégalités de type Hardy pour des
opérateurs de Dirac correspondant à une large classe de potentiels qui comprend des potentiels à valeur
mesure. Le cas optimal est réalisé par le potentiel de Coulomb. Pour des potentiels suffisamment réguliers,
nos estimations donnent une information sur le spectre de l’opérateur.
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1. Introduction

In a recent paper [4], J. Duoandikoetxea and L. Vega proved the following weighted
Gagliardo–Nirenberg inequality∫

Rd

V (x)
∣∣f(x)

∣∣2 dx � 2K[V ]‖∇f‖L2(Rd)‖f‖L2(Rd) ∀f ∈ H1(Rd),

for any d � 2 and any nonnegative function V . Here the constant K[V ] is given by

K[V ] := inf
a∈Rd

sup
x∈Rd

|x|
1∫

0

V (tx + a)td−1 dt.

J. Duoandikoetxea and L. Vega also proved that the equality holds if V is a multiple of 1/|x−a0|,
for some a0 ∈ R

d, and in such a case, f has to be a multiple of e−c|x−a0| with c > 0 and
K[V ] = 1/(d− 1).

As a consequence, the Schrödinger operator −Δ−V is semi-bounded from below and satisfies
−Δ− V �−K[V ]2 in the sense of operators, since by writing

2K[V ]‖∇f‖L2(Rd)‖f‖L2(Rd) �
∫
d

|∇f |2 dx + K[V ]2
∫
d

|f |2 dx,
R R
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we obtain ∫
Rd

|∇f |2 dx−
∫
Rd

V |f |2 dx � −K[V ]2
∫
Rd

|f |2 dx ∀f ∈H1(Rd).

This gives an estimate for the lowest eigenvalue of −Δ− V , and also proves that −K[V ]2 is an
eigenvalue of −Δ−V if and only if V is a Coulomb potential, i.e., V (x) = ν/|x− a0| for some
ν > 0 and a0 ∈ R

d.
The Dirac operator coupled to a potential V takes the form

HV := −iα · ∇+ β − V (x)I4

where

α :=
(

0 σk

σk 0

)
, k = 1,2,3, β :=

(
I2 0
0 −I2

)
and Id is the identity operator on C

d. Here σ = (σk)k=1,2,3 denotes the family of Pauli matrices:

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Such Dirac operators act on four components complex valued spinors defined on R
3, i.e.,

functions of L2(R3,C4). Since the principal part of the operator is homogeneous of degree 1,
Coulomb potentials are critical and eigenvalues are related to some kind of Hardy inequality.
This deserves some further explanations.

When V ≡ 0, the spectrum of the free Dirac operator H0 is σess(H0) := (−∞,−1]∪ [1,+∞).
If V (x) = Vν(x) := ν/|x|, it is well known [7] that for any ν ∈ (0,1) the Dirac–Coulomb
operator HVν can be defined as a self-adjoint operator with domain Dν satisfying: H1(R3,C4)⊂
Dν ⊂ H1/2(R3,C4) and spectrum σess(H0)∪{λν

1 , λν
2 , . . .} where {λν

k}k�1 is the nondecreasing
sequence of eigenvalues, all contained in the interval (0,1) and such that λν

1 =
√

1− ν2,
limk→+∞ λν

k = 1, for every ν ∈ (0,1). According to [2], for a large set of radial potentials V
with singularities not stronger than 1/|x|, more precisely, for all those satisfying:

lim
|x|→+∞

V (x) = 0 and
ν

|x| + c1 � V � −c2 := − sup
Rd

V,

with ν ∈ (0,1), c1, c2 ∈ R, c1, c2 � 0, c1 + c2−1 <
√

1− ν2, if λ1[V ] is the smallest eigenvalue
of the Dirac operator HV in the interval (−1,1), then∫

R3

|σ · ∇φ|2
1 + λ1[V ] + V

dx +
(
1− λ1[V ]

)∫
R3

|φ|2 dx �
∫
R3

V |φ|2 dx ∀φ ∈ L2(R3,C2),(∗)

with the understanding that some of the terms can be equal to +∞. Although HV is not bounded
from below, we shall say in the rest of this paper that λ1[V ] is the ground state energy level. This
can be justified in the non-relativistic limit when physical parameters are taken into account.
Asymptotically, one can then relate λ1[V ] to the lowest eigenvalue of a Schrödinger operator
with potential V .

Notations in (∗) deserve some precisions. We refer to [1] for more details. The spinor φ =
(
φ1
φ2

)
takes its values in C

2 and by |φ|2, |∇φ|2 and |σ · ∇φ|2 we denote, respectively, the quantities
|φ1|2 + |φ2|2,

∑3 (|∂kφ1|2 + |∂kφ2|2) and |∂3φ1 +∂1φ2− i∂2φ2|2 + |∂1φ1 + i∂2φ1−∂3φ2|2.
k=1
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HARDY-TYPE ESTIMATES FOR DIRAC OPERATORS 887
The proof of inequality (∗) relies on the following observations. The eigenfunction associated
with λ1[V ] can be characterized as a critical point of the Rayleigh quotient

R[ψ] :=
〈ψ,HV ψ〉

‖ψ‖2
L2(R3,C4)

,

which is obtained by decomposing ψ =
(

φ
χ

)
into an upper component φ and a lower component χ,

where φ, χ ∈ H1(R3,C2) are two components spinors. In a variational context, such a
decomposition is known as Talman’s decomposition, see [6], and it is proved in [2] that the
lowest eigenvalue in (−1,1) is given by

λ1[V ] = min
φ�=0

max
χ

R[ψ] with ψ =
(

φ

χ

)
.

With these notations, the eigenvalue equation becomes a system{
Kχ + φ− V φ = λ1[V ]φ,
Kφ− χ− V χ = λ1[V ]χ,

where the operator K is defined as

K :=−iσ · ∇.

The method is actually fairly general, see [2] for precisions, and allows for more general
decompositions than Talman’s decomposition. Moreover, other eigenvalues in the gap can also
be characterized under some additional technical conditions: See [3] for a recent result in this
direction and for a complete list of references.

We can now rewrite the above characterization of λ1[V ] as

λ1[V ] = min
φ�=0

λ[φ],

where for any φ ∈H1(R3,C2),

λ[φ] := max
χ

R[ψ] with ψ =
(

φ

χ

)
.

With the corresponding Euler–Lagrange equation for χ,

Kφ− χ− V χ = λ[φ]χ,

λ[φ] turns out to be implicitly defined as a solution of

fφ(λ) = 0 with fφ(λ) :=
∫
R3

|σ · ∇φ|2
1 + λ + V

dx + (1− λ)
∫
R3

|φ|2 dx−
∫
R3

V |φ|2 dx.

The function λ �→ fφ(λ) is monotone decreasing with respect to λ, so λ[φ] is uniquely defined,
and for any λ � λ[φ], fφ(λ) � 0. Hence, fφ(λ1[V ]) � 0 for any φ ∈ H1(R3,C2), which proves
(∗). Inequality (∗) is achieved by the upper component of the four-spinor of any eigenfunction
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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associated with λ1[V ]. In particular if V = ν
|x| , ν ∈ (0,1), we get

∫
R3

|σ · ∇φ|2

1 +
√

1− ν2 + ν
|x|

dx +
(
1−

√
1− ν2

)∫
R3

|φ|2 dx � ν

∫
R3

|φ|2
|x| dx ∀φ ∈ L2(R3,C2).

By taking the limit when ν → 1, we get

∫
R3

|σ · ∇φ|2
1 + 1

|x|
dx +

∫
R3

|φ|2 dx �
∫
R3

|φ|2
|x| dx ∀φ ∈H1(R3,C2).

If we replace φ(·) by ε−1φ(ε−1·) and take the limit when ε→ 0, we obtain

∫
R3

|x||σ · ∇φ|2 dx �
∫
R3

|φ|2
|x| dx.

By taking φ = (g,0) with g purely real, we end up with

∫
R3

|x||∇g|2 dx �
∫
R3

|g|2
|x| dx

for all g ∈ H1(R3,C), which is itself equivalent to

∫
R3

|∇f |2 dx � 1
4

∫
R3

|f |2
|x|2 dx ∀f ∈H1(R3,C),

as shown by considering f =
√
|x|g. For more details, see [1,2]. A direct proof and

improvements on the potential have even been obtained in [1]. Such results are very similar
to the ones known for the Hardy inequality, see [5] for some recent result and further references,
or equivalently for the lower estimates for the eigenvalues of Schrödinger operators with critical
potentials, i.e., inverse square singular potentials.

Our main result is twofold. We prove a lower bound Λ[V ] for λ1[V ] written in the spirit of the
approach developed in [4], see Theorem 2. Because of the monotonicity of the function fφ, this
proves an inequality like (∗) with λ1[V ] replaced by Λ[V ]:

∫
R3

|σ · ∇φ|2
1 + Λ[V ] + V

dx +
(
1−Λ[V ]

)∫
R3

|φ|2 dx �
∫
R3

V |φ|2 dx ∀φ ∈ L2(R3,C2)

and, under some technical assumptions, we also show that the equality case is achieved only if
V is a Coulomb potential. In such a case Λ[V ] = λ1[V ]: See Theorem 1 below.

Section 3 is devoted to the proof of Theorems 1 and 2, which are extended to measure valued
potentials in the last section of this paper.
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HARDY-TYPE ESTIMATES FOR DIRAC OPERATORS 889
2. Definitions and main results

Define the admissible class of radial potentials Arad by

V ∈Arad ⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V :R3 → R
+ is a nonnegative radial measurable function,

A+[V ] := sup
r>0

(
1
r2

r∫
0

V (t)t2 dt

)
� 1

2
,

A−[V ] := sup
r>0

(
r2

∞∫
r

V (t)
dt

t2

)
� 1

2
.

With a standard abuse of notations, we have written V (x) = V (|x|). Let

Λ[V ] := min
±

λ±, λ± :=
√

1− 4A±[V ]2.

The fundamental example is the Coulomb potential V (x) = ν
|x| for which

A± =
ν

2
and Λ[V ] =

√
1− ν2.

Remark. – (a) Note that for any V ∈ Arad, Λ[V ] ∈ [0,1]. Moreover, V �≡ 0 implies Λ[V ] < 1
and Λ[V ] = 0 only if A±[V ] = 1/2.

(b) If V ∈Arad, then Ṽ (x) = |x|−2V (|x|−1) is also in Arad and Λ[V ] = Λ[Ṽ ]. This is a simple
consequence of A+[V ] = A−[Ṽ ] and A−[V ] = A+[Ṽ ]. Note that for the Coulomb potential
Ṽ = V .

With the above notations, we can state our main results.

THEOREM 1. – Assume that V ∈Arad. For any φ ∈ L2(R3,C2) and any λ ∈ (−1,Λ[V ]],∫
R3

V |φ|2 dx �
∫
R3

|σ · ∇φ|2
1 + λ + V

dx + (1− λ)
∫
R3

|φ|2 dx.(1)

Moreover, if A± < 1
2 and V �≡ 0, then there exists a non-trivial function φ ∈ L2(R3,C2) such

that (1) holds as an equality with λ = Λ[V ] if and only if V is the Coulomb potential V (x) = ν
|x|

with ν ∈ (0,1), ν =
√

1−Λ[V ]2 and φ is a radial function such that φ = Br
√

1−ν2−1e−νr for
some constant B ∈ C

2.

Without further restrictions on φ, both sides of the inequality can be infinite. As already
explained in the introduction, the motivation for Hardy-type estimates like (1) comes from the
Dirac operator. The goal is to give a lower estimate for the ground state level and one can prove
the following result.

THEOREM 2. – Let V ∈Arad. If μ ∈ (−1,1) is an eigenvalue of HV , then

μ � Λ[V ].

As a consequence, if V ∈ Arad, HV has only nonnegative eigenvalues in (−1,1) and Λ[V ] is a
lower bound for all of them.
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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Actually, if V is not too singular in order that HV can be defined as a self-adjoint operator
with a domain contained in H1/2(R3), it was proved in [5] that if the maximum of all λ such
that (1) holds true is in the interval (−1,1), then it is the smallest eigenvalue of HV in (−1,1).

Remark. – (a) If V ∈Arad and 0 � W (x) � V (x) a.e., then (1) holds with W instead of V and
λ ∈ (−1,Λ[V ]]. Note that the left-hand side of (1) decreases and the right-hand side increases
when V is replaced by W . Note also that W does not need to be radial.

(b) If Va(x) = V (a + x) is in Arad for some a ∈ R
3, then (1) holds for λ ∈ (−1,Λ[Va]].

Given a general potential W we can combine both remarks and proceed as follows. Consider
the radial potentials defined by the least radial majorants of the translates of W , that is

W ∗
a (r) := sup

ω∈S2
W (a + rω) for r � 0.

If W ∗
a is in Arad for some a ∈ R

3, define

Λ∗[W ] := sup
{
Λ[W ∗

a ]: a ∈ R
3, A±[W ∗

a ] � 1/2
}
.

The following corollary is a simple consequence of Theorem 1 and the preceding remarks.

COROLLARY 3. – Assume that W ∗
a is in Arad for some a ∈ R

3. For any φ ∈ L2(R3,C2) and
any λ ∈ (−1,Λ∗[W ]],∫

R3

W |φ|2 dx �
∫
R3

|σ · ∇φ|2
1 + λ + W

dx + (1− λ)
∫
R3

|φ|2 dx,

and Λ∗[W ] is a lower bound for all eigenvalues of HW in the gap (−1,1).

Note that as a special case corresponding to λ = Λ[V ],∫
R3

V |φ|2 dx �
∫
R3

|σ · ∇φ|2
1 + Λ[V ] + V

dx +
(
1−Λ[V ]

)∫
R3

|φ|2 dx ∀φ ∈ L2(R3,C2).

Such an inequality is the generalization to Dirac operators of the Hardy inequality for
Schrödinger operators established in [4].

3. Proof of Theorems 1 and 2

3.1. Preliminary results

The Pauli matrices are Hermitian and satisfy the following properties:

σjσk + σkσj = 2δjkI2 ∀j, k = 1,2,3.

With a standard abuse of notations, each time a scalar δ appears in an identity involving operators
acting on two-spinors, it has to be understood as δI2, where I2 is the identity operator on C

2. For
any a, b ∈ C3, we have

(σ · a)(σ · b) = a · b + iσ · (a× b).

Applying this formula to a = x and b =∇, we obtain the following result.
4e SÉRIE – TOME 40 – 2007 – N◦ 6



HARDY-TYPE ESTIMATES FOR DIRAC OPERATORS 891
LEMMA 4. – The following equality holds:

x

|x| · ∇ =
(

σ · x

|x|

)
(σ · ∇) +

1
|x| (σ ·L) ∀x ∈ R

3,

where L := −ix×∇ is the orbital angular momentum operator.

The next result is concerned with the spectrum of the operator σ · L. We shall denote by Xk

the spectral space of σ ·L associated to the eigenvalue k, and by Pk the corresponding projector
in L2(R3,C2).

LEMMA 5. – The spectrum of σ · L is the discrete set {k ∈ Z: k �= −1} and Ker(σ · L)
contains all radial functions. Moreover, if φ is a continuous function, then Pkφ(0) = 0 for any
k ∈ Z \ {0,−1}.

Proof. – The spectrum of the operator 1 + σ ·L is the discrete set {±1,±2, . . .}, see [7]. This
can be seen by noticing that

1 + σ ·L = J2 −L2 +
1
4
, J := L +

σ

2
.

Then, the fact that the spectrum of J2 (resp. L2) is the set {j(j + 1): j = 1
2 , 3

2 , . . .} (resp.
{�(� + 1): � = j ± 1

2 , j = 1
2 , 3

2 , . . .} proves the statement on the spectrum of 1 + σ ·L.
For all k �= 0,−1, Pkφ is a linear combination of functions ψk

m, m = 1, . . . ,mk which depend
only on the angular variable ω and not on |x|, with coefficients

fk
m(r) =

∫
S2

Pkφ(rω)ψk
m(ω)dω

which are continuous functions of r = |x|. According to [7], Section 4.6.4,

fk
m(0) = Pkφ(0)

∫
S2

ψk
m dω = 0,

which proves that Pkφ(0) = 0 for k �= 0, −1. �
The main points are that L commutes with all radial functions and that 0 is not in the spectrum

of 1 + σ · L. The following result is adapted from [1] and follows trivially from the fact that
Δ = (σ · ∇)2 commutes with σ ·L.

LEMMA 6. – For any k, l ∈ Spec(σ · L), k �= l, Pk(σ · ∇)2Pl ≡ Pl(σ · ∇)2Pk ≡ 0 in
H1(R3,C2).

The radial symmetry of the potential can be taken into account as follows.

COROLLARY 7. – Any function φ ∈ L2(R3,C2) can be written φ =
∑

k∈Z, k �=−1 φk with
φk ∈ Xk and moreover, if W is a radial function,∫

R3

W |φ|2 dx =
∑

k∈Z, k �=−1

∫
R3

W |φk|2 dx,

∫
R3

W |σ · ∇φ|2 dx =
∑

k∈Z, k �=−1

∫
R3

W |σ · ∇φk|2 dx.
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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3.2. Two useful inequalities

Here we follow the approach of [4] for the Schrödinger operator. Let φ ∈D(R3,C2) and write

∣∣φ(x)
∣∣2 = �

( ∞∫
r

−2φ(tω)
(
ω · ∇φ(tω)

)
dt

)

for r = |x|, ω = x/r. Assume that W is a radially symmetric function.∫
R3

W |φ|2 dx =
∫
S2

dω

∞∫
0

W (rω)
∣∣φ(rω)

∣∣2r2 dr

=−2�
( ∫

S2

dω

∞∫
0

W (rω)r2 dr

∞∫
r

φ(tω)
(
ω · ∇φ(tω)

)
dt

)

=−2�
( ∫

S2

dω

∞∫
0

φ(tω)
(
ω · ∇φ(tω)t2

)
gW (t)dt

)

where

gW (t) :=
1
t2

t∫
0

W (r)r2 dr.(2)

Using Lemma 4, for any δ > 0, μ >−1, and any nonnegative V , we obtain〈(
W +

2
|x|gW σ ·L

)
φ,φ

〉
=−2�

( ∫
R3

(√
δ(1 + μ + V )σ · x

|x|φ
)(

σ · ∇φ√
δ(1 + μ + V )

)
gW

(
|x|

)
dx

)

� ‖gW ‖L∞(0,∞)

[
1
δ

∫
R3

|σ · ∇φ|2
1 + μ + V

dx + δ

∫
R3

(1 + μ + V )|φ|2 dx

]
.

Here we use the fact that 〈|x|−1gW σ ·Lφ,φ〉 is real.
A similar estimate holds with the integral in r taken on the interval (t,∞). Let φ ∈D(R3,C2)

and write ∣∣φ(x)
∣∣2 =

∣∣φ(0)
∣∣2 + 2�

( r∫
0

φ(tω)
(
ω · ∇φ(tω)

)
dt

)

for r = |x|, ω = x/r. Assume that W is a radially symmetric function and that φ(0) = 0. Then∫
R3

W |φ|2 dx =
∫
S2

dω

∞∫
0

W (rω)
∣∣φ(rω)

∣∣2r2 dr

= 2�
( ∫

2

dω

∞∫
W (rω)r2 dr

r∫
φ(tω)

(
ω · ∇φ(tω)

)
dt

)

S 0 0

4e SÉRIE – TOME 40 – 2007 – N◦ 6
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= 2�
( ∫

S2

dω

∞∫
0

φ(tω)
(
ω · ∇φ(tω)

)
t2hW (t)dt

)

where

hW (t) :=
1
t2

∞∫
t

W (r)r2 dr.(3)

Using Lemma 4, for any δ > 0, μ >−1, and any nonnegative V , we obtain〈(
W − 2

|x|hW σ ·L
)

φ,φ

〉
= 2�

( ∫
R3

(√
δ(1 + μ + V )σ · x

|x|φ
)

dx

(
σ · ∇φ√

δ(1 + μ + V )

)
hW

(
|x|

))

� ‖hW ‖L∞(0,∞)

[
1
δ

∫
R3

|σ · ∇φ|2
1 + μ + V

dx + δ

∫
R3

(1 + μ + V )|φ|2 dx

]
.

Again we use the fact that 〈|x|−1hW σ ·Lφ,φ〉 is real.
Summarizing, we have the following result.

LEMMA 8. – With the above notations, for any φ ∈ D(R3,C2), for any δ > 0, μ > −1, and
any nonnegative V ,

〈(W + 2
|x|gW σ ·L)φ,φ〉

‖gW ‖L∞(0,∞)
� 1

δ

∫
R3

|σ · ∇φ|2
1 + μ + V

dx + δ

∫
R3

(1 + μ + V )|φ|2 dx(4)

and, assuming φ(0) = 0,

〈(W − 2
|x|hW σ ·L)φ,φ〉

‖hW ‖L∞(0,∞)
� 1

δ

∫
R3

|σ · ∇φ|2
1 + μ + V

dx + δ

∫
R3

(1 + μ + V )|φ|2 dx.(5)

3.3. Spectral decomposition

For a given V ∈Arad, define

Ak :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
sup
r>0

(
1

r2(k+1)

r∫
0

V (s)s2(k+1) ds

)
if k ∈ Z, k � 0,

sup
r>0

(
1

r2(k+1)

+∞∫
r

V (s)s2(k+1) ds

)
if k ∈ Z, k � −2.

Since V is nonnegative, observe that Ak � A0 for all k ∈ Z, k � 0 and that Ak � A−2 for all
k ∈ Z, k �−2. So, if V belongs to Arad, Ak � 1/2 for all k ∈ Z, k �=−1.
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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3.3.1. Nonnegative spectrum of σ ·L
Assume first that k ∈ Z, k � 0, and let us solve the equation

Wk +
2k

r
gk = V ∀r ∈ (0,∞)(6)

where gk := g
Wk

with the notation (2), i.e.,

gk(r) :=
1
r2

r∫
0

Wk(s)s2 ds.

Since (
r2k

r∫
0

s2Wk(s)ds

)′

= r2(k+1)Wk + 2kr2k−1

r∫
0

s2Wk(s)ds = r2(k+1)V,

Equation (6) can be solved by taking

gk(r) =
1

r2(k+1)

r∫
0

V (s)s2(k+1) ds

and

Wk = V − 2k

r
gk.

Note that the relation gk(r) = 1
r2

∫ r

0
Wk(s)s2 ds amounts to a simple integration by parts, and

that

‖gk‖L∞(0,∞) = Ak

by definition of Ak . Collecting the above estimates and using Lemma 8, for φ = φk ∈D(R3,C2)
such that

σ ·Lφk = kφk, k ∈ Z, k � 0,

we obtain ∫
R3

V |φk|2 dx =
〈(

Wk +
2
|x|gkσ ·L

)
φk, φk

〉

� Ak

[
1
δ

∫
R3

|σ · ∇φk|2
1 + μ + V

dx + δ

∫
R3

(1 + μ + V )|φk|2 dx

]
which amounts to ∫

R3

|σ · ∇φk|2
1 + μ + V

dx + (1− μ)
∫
R3

|φk|2 dx−
∫
R3

V |φk|2 dx � 0

if μ and δ satisfy the equations
4e SÉRIE – TOME 40 – 2007 – N◦ 6
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1− μ = δ2(1 + μ),

Akδ2 − δ + Ak = 0.

Solutions to the above system of scalar equations are given by

δ = δ±k =
1

2Ak

(
1±

√
1− 4A2

k

)
,

μ = μ±
k =

1− |δ±k |2
1 + |δ±k |2

= ∓
√

1− 4A2
k.

We observe that μ+
k < 0 < μ−

k =
√

1− 4A2
k . We can therefore choose δ = δ−k and μ = μ−

k in
order to maximize μ, and get∫

R3

|σ · ∇φk|2
1 + μ−

k + V
dx + (1− μ−

k )
∫
R3

|φk|2 dx−
∫
R3

V |φk|2 dx � 0

for any φk ∈D(R3,C2) such that

σ ·Lφk = kφk, k ∈ Z, k � 0.

3.3.2. Negative spectrum of σ ·L
Similarly, for k ∈ Z, k � −2, let us solve the equation

Wk − 2k

r
hk = V ∀r ∈ (0,∞)(7)

where hk := hWk
with the notation (3), i.e.,

hk(r) :=
1
r2

∞∫
r

Wk(s)s2 ds.

Since (
r2k

∞∫
r

s2Wk(s)ds

)′

= −r2(k+1)Wk + 2kr2k−1

∞∫
r

s2Wk(s)ds = −r2(k+1)V,

Equation (7) can be solved by taking

hk(r) =
1

r2(k+1)

∞∫
r

V (s)s2(k+1) ds

and Wk = 2k
r hk + V . Note that the relation hk(r) = 1

r2

∫ ∞
r

Wk(s)s2 ds holds as a consequence
of a simple integration by parts, and that

‖hk‖L∞(0,∞) = Ak

by definition of Ak , for any k ∈ Z, k � −2.
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Let φ = φk ∈D(R3,C2) be such that

σ ·Lφk = kφk, k ∈ Z, k � −2,

and note that φk(0) = 0 by the remark following Lemma 5. Collecting the above estimates, we
obtain exactly as in Section 3.3.1∫

R3

V |φk|2 dx =
〈(

Wk − 2
|x|hkσ ·L

)
φk, φk

〉

� Ak

[
1
δ

∫
R3

|σ · ∇φk|2
1 + μ + V

dx + δ

∫
R3

(1 + μ + V )|φk|2 dx

]
which amounts to ∫

R3

|σ · ∇φk|2
1 + μ + V

dx + (1− μ)
∫
R3

|φk|2 dx−
∫
R3

V |φk|2 dx � 0

if μ and δ satisfy the equations

1− μ = δ2(1 + μ),

Akδ2 − δ + Ak = 0.

The proof goes exactly as in the case of the nonnegative spectrum of σ ·L. Solutions to the above
system of scalar equations are given by

δ = δ±k =
1

2Ak

(
1±

√
1− 4A2

k

)
,

μ = μ±
k =

1− |δ±k |2
1 + |δ±k |2

= ∓
√

1− 4A2
k.

We observe that μ+
k < 0 < μ−

k = 4A2
k . We can therefore choose δ = δ−k and μ = μ−

k in order to
maximize μ, and get∫

R3

|σ · ∇φk|2
1 + μ−

k + V
dx + (1− μ−

k )
∫
R3

|φk|2 dx−
∫
R3

V |φk|2 dx � 0

for any φk , k ∈ Z, k � −2, such that

σ ·Lφk = kφk.

3.3.3. Partial result on the eigenspaces of σ ·L
Collecting the estimates obtained in Sections 3.3.1 and 3.3.2 for smooth functions, and then

using a density argument, we can state the following result.

LEMMA 9. – Assume that V ∈ Arad. For any φk ∈ L2(R3,C2) such that σ · Lφk = kφk ,
k ∈ Z, k �= −1, ∫

R3

V |φk|2 dx �
∫
R3

|σ · ∇φk|2
1 + μ−

k + V
dx + (1− μ−

k )
∫
R3

|φk|2 dx.
4e SÉRIE – TOME 40 – 2007 – N◦ 6



HARDY-TYPE ESTIMATES FOR DIRAC OPERATORS 897
3.4. Completion of the proof of Theorem 1

Inequality (1) with λ = Λ[V ] follows from Corollary 7 and Lemma 9 using Ak � A0 = A+[V ]
for all k ∈ Z, k � 0 and Ak � A−2 = A−[V ] for all k ∈ Z, k � −2. The case λ < Λ[V ] is a
consequence of the monotonicity with respect to λ.

With the notations of Section 3.3, if the equality case in (1) with λ = Λ[V ] occurs for some
non-trivial function φ ∈ L2(R3,C2), then equality occurs in (4) for W = Wk , for any k � 0, and
equality also occurs in (5) for W = Wk , for any k � −2. If we decompose φ on the eigenspaces
of σ ·L as

∑
k �=−1 Pkφ, this means that for any k0 ∈ Z, k0 �= −1, such that φk0 := Pk0φ �= 0,

(1) if k0 � 0, then gk0 ≡ Ak0 is constant a.e.
(2) if k0 � −2, then hk0 ≡ Ak0 is constant a.e.

Hence a derivation with respect to r of Ak0 ≡ 1
r2(k0+1)

∫ r

0
V (s)s2(k0+1) ds in the first case, and

of Ak0 ≡ 1
r2(k0+1)

∫ +∞
r

V (s)s2(k0+1) ds in the second case, shows that

V (r) =
ν

r
∀r ∈ (0,∞),

with ν = 2|k0 + 1|Ak0 . For this potential we compute all Ak’s and observe that A0 = A−2 =
ν/2 and that Ak < ν/2 for all k �= −2, 0. So, Pkφ = 0 for all k �= −2,0. For k0 = 0,
−2, φk0 = Pk0φ = fk0(r)Fk0 , where Fk0 is an eigenfunction of σ · L with eigenvalue k0

depending only on the angular variables and not on |x|. Equality in (4) and k0 = 0 means that
(σ · x

|x| )(σ · ∇)φ0 = −δ−0 (1 + μ−
0 + V )φ0, that is, from Lemma 4, f0(r) is a solution to the

equation

f ′
0 = −δ−0

(
1 + μ−

0 +
ν

r

)
f0,

where δ−0 (1 + μ−
0 ) = ν is solved by νδ−0 = 1−

√
1− ν2. Solving the equation yields

f0(r) = Ar−1+
√

1−ν2
e−νr

for some constant A ∈ C. On the other hand, equality for (5) and k0 = −2 means that
(σ · x

|x| )(σ · ∇)φ−2 = δ−−2(1 + μ−
−2 + V )φ−2, that is, from Lemma 4, f−2(r) is a solution to

the equation

f ′
−2 = δ−−2

(
1 + μ−

−2 +
ν

r

)
f−2 −

2
r
f−2

where δ−−2(1 + μ−
−2) = ν is solved by νδ−−2 = 1−

√
1− ν2. Solving the equation yields

f−2(r) = Ar−1−
√

1−ν2
eνr

for some constant A ∈ C. Hence f−2 is not in L2(R3) unless A = 0. The proof is completed by
recalling that the eigenspace of σ ·L corresponding to the 0 eigenvalue is the space L2(r2 dr,C2),
see [7], Section 4.6.4, while, reciprocally, all computations are explicit in the case V (r) = ν/r.

3.5. Proof of Theorem 2

Assume that μ ∈ (−1,1) is an eigenvalue of HV and consider an associated eigenfunction
ψ =

(
φ
)
∈ L2(R3,C4) satisfying HV ψ = μψ or, what is equivalent, solutions φ and χ of the
χ
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following system of two equations:

Kχ + (1− V )φ = μφ, Kφ− (1 + V )χ = μχ.

Using the second equation, we can eliminate χ to get

χ =
Kφ

1 + μ + V
, K

(
Kφ

1 + μ + V

)
+ (1− V )φ = μφ.

Multiplying the last equation by φ and integrating over R
3, we get

fφ(μ) :=
∫
R3

|σ · ∇φ|2
1 + μ + V

dx + (1− μ)
∫
R3

|φ|2 dx−
∫
R3

V |φ|2 dx = 0.

By monotonicity of fφ, fφ(λ) < 0 for any λ > μ. Hence, by (1), Λ[V ] � μ.

4. Measure valued potentials

Let Msing
rad be the set of nonnegative radial Radon measure with support in zero measure sets,

with respect to Lebesgue measure. We can extend the class of admissible radial potentials Arad

to the larger class Ãrad of measure valued potentials corresponding to

R= V + S ∈ Ãrad ⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V ∈Arad and S ∈Msing
rad ,

A+[R] := sup
r>0

[
1
r2

( r∫
0

V (t)t2 dt +

r∫
0

t2 dS
)]

� 1
2
,

A−[R] := sup
r>0

[
r2

( ∞∫
r

V (t)
dt

t2
+

∞∫
r

t−2 dS
)]

� 1
2
,

where we do for S the usual abuse of notations of identifying x with |x|. With δ±, λ± and Λ[R]
defined in terms of A±[R] exactly as in Section 2, we obtain the following result.

THEOREM 10. – Assume that R = V + S ∈ Ãrad. For any φ ∈ L2(R3,C2) and any λ ∈
(−1,Λ[R]], ∫

R3

V |φ|2 dx +
∫
R3

|φ|2 dS �
∫
R3

|σ · ∇φ|2
1 + λ + V

dx + (1− λ)
∫
R3

|φ|2 dx.(8)

Moreover, if A± < 1
2 and Λ[R] < 1, then there exists a non-trivial function φ ∈ L2(R3,C2) such

that (1) holds as an equality with λ = Λ[R] if and only if S = 0 and V is the Coulomb potential
V (x) = ν

|x| , with ν ∈ (0,1) and ν =
√

1−Λ[R]2.

Proof. – Consider a sequence of functions (Wn)n∈N ⊂ Arad such that S = limn→∞ Wn

vaguely in the sense of measures and Λn := Λ[V + Wn] � Λ[R] = limn→∞ Λn. By Theorem 1,
for all φ ∈ L2(R3,C2) and any λ ∈ (−1,Λn], we have that
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HARDY-TYPE ESTIMATES FOR DIRAC OPERATORS 899
∫
R3

V |φ|2 dx +
∫
R3

Wn|φ|2 dx �
∫
R3

|σ · ∇φ|2
1 + λ + V + Wn

dx + (1− λ)
∫
R3

|φ|2 dx

�
∫
R3

|σ · ∇φ|2
1 + λ + V

dx + (1− λ)
∫
R3

|φ|2 dx

since Wn � 0. Passing to the limit in the above inequality proves (8) for all λ ∈ (−1,Λ[R]].
Indeed, for every φ such that the right-hand side of (8) is finite, we have

lim
n→+∞

∫
R3

|σ · ∇φ|2
1 + λ + V + Wn

dx =
∫
R3

|σ · ∇φ|2
1 + λ + V

dx,

since λ � 0 and S = limn→∞ Wn is supported in a 0 measure set of R
3. �
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