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ABSTRACT. – We relate a recently introduced non-local invariant of compact strictly pseudoconvex
Cauchy–Riemann (CR) manifolds of dimension 3 to various η-invariants: on the one hand a renormalized
η-invariant appearing when considering a sequence of metrics converging to the CR structure by expanding
the size of the Reeb field; on the other hand the η-invariant of the middle degree operator of the contact
complex. We then provide explicit computations for transverse circle invariant CR structures on Seifert
manifolds. This yields obstructions to filling a CR manifold by complex hyperbolic, Kähler–Einstein, or
Einstein manifolds.
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RÉSUMÉ. – Nous relions un nouvel invariant non-local des variétés Cauchy–Riemann (CR) strictement
pseudoconvexes et compactes de dimension 3 à d’autres invariants de type η en géométrie CR : d’une part
celui obtenu en considérant une suite de métriques riemanniennes adaptées à la structure CR et en faisant
tendre vers l’infini la longueur du champ de Reeb, d’autre part l’invariant η de l’opérateur apparaissant en
degré moitié dans le complexe de contact. Nous les calculons ensuite sur les variétés de Seifert admettant
une structure CR invariante par l’action transverse d’un cercle. Les résultats fournissent des obstructions au
remplissage d’une variété CR par une variété hyperbolique complexe, Kähler–Einstein ou d’Einstein.

© 2007 Elsevier Masson SAS

1. Introduction

In [11] the first two authors of this paper introduced a new invariant, called the ν-invariant, of
strictly pseudoconvex Cauchy–Riemann (CR) compact 3-manifolds. This invariant was obtained
by taking the limit of the η-invariants of an adequately defined (but quite complicated) sequence
of Riemannian metrics approximating the CR structure, after cancellation of the possibly
diverging terms by adding well-chosen local contributions. We claimed in [11] that this invariant
may have an analogous role in CR geometry as the η-invariant has in conformal geometry.
However, its rather abstract definition makes it difficult to compute explicit expressions for it
or to get a further understanding of its properties. The goal of this paper is then to provide links
between ν and other natural η-invariants in CR geometry.

In a first step, we introduce a renormalized η-invariant that takes into account the fact that CR
geometry can be seen as a limit of a sequence of conformal structures that diverges outside the
contact distribution. If a compatible contact form θ is fixed on the CR manifold M , one considers
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the family of metrics

hε = ε−1θ2 + γ,(1)

where γ = dθ(·, J ·) and J is the underlying complex structure on the contact distribution. When
ε goes to 0 the metrics hε blow up except in the contact distribution, and therefore the metric
geometry of hε converges to the Carnot–Carathéodory metric associated to the CR structure and
the contact form (this is one of the main motivations for considering this kind of sequences).
A natural object one can consider is the constant term η0 in an asymptotic expansion for (η(hε))
in powers of ε, when ε goes to 0. This always exists, as we shall see, and we shall call it
the renormalized η-invariant of the pseudohermitian manifold (M,θ,J). This invariant is of
course much more easily studied than the ν-invariant, because it is built from the sequence (1)
of metrics that is much simpler than the one used to build ν in [11]. Note however that it is a
pseudohermitian invariant, i.e. it depends on the choice of θ and J , contrarily to ν which depends
only on the choice of the contact distribution H (and of course on J ).

In the other direction, i.e. when ε goes to ∞, one can also obtain another natural invariant in
case the Tanaka–Webster torsion of (M,θ) vanishes, that is when the action of the Reeb vector
field is isometric. In this case, η(hε) converges and its limit ηad is the so-called adiabatic limit.
It has attracted much attention in the past few years, see [12,23] for instance. We shall call the
reverse process of taking a limit when ε goes to 0 a diabatic limit. When torsion vanishes, it turns
out that the diabatic η0 equals the adiabatic ηad.

Our first result shows that the difference between the CR invariant ν and the pseudohermitian
η0 is an integral of a local contribution involving the square of the Tanaka–Webster curvature.

THEOREM 1.1. – For any compact strictly pseudoconvex Cauchy–Riemann 3-manifold M ,
and any choice θ of contact form, one has

ν(M) = −3η0(M,θ) +
1

16π2

∫
M

R2θ ∧ dθ,(2)

where R is the Tanaka–Webster curvature of (M,θ).

This yields a new definition of the ν-invariant, see Remark 4.2, together with some explicit
computations: they can be done on manifolds on which η0 is computable. We are then able to
apply this to transverse S

1-invariant CR structures on Seifert manifolds. The CR manifolds we
are interested in come with a locally free action of S

1 that is transverse to the contact distribution,
and preserves both the contact and the complex structures. We shall call them Cauchy–Riemann–
Seifert manifolds (in short CR Seifert). We refer to [31] for more information on the more general
class of S

1-invariant CR structures. CR Seifert manifolds can be efficiently described as orbifold
S

1-bundles over 2-dimensional orbifolds. At each orbifold point on the base, the orbifold bundle
data consists of the following: if the local fundamental group is Z/αZ (α ∈ N∗), a generator acts
on a local chart around p on the basis manifold as ei 2π

α and on the fiber as ei 2πβ
α with β prime

to α. The orbifold S
1-bundles are topologically classified by their degrees (first Chern numbers),

which are in this case rational numbers. One then endows the manifold with an invariant
strictly pseudoconvex CR structure as follows: the underlying contact structure is provided by
an equivariant connection 1-form on the bundle, whereas the complex structure is induced from
the basis (orbifold) Riemann surface; the strict pseudoconvexity condition constrains the degrees
d of these S

1-bundles to be negative.
Building on computations done by Ouyang [41] and Komuro [33], we get the following:
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THEOREM 1.2. – Let M be a compact strictly pseudoconvex CR Seifert 3-manifold, of
degree d over the orbifold surface Σ, and with S

1-action generated by the Reeb field of a contact
form θ. If R is the Tanaka–Webster curvature of (M,θ), then

ν(M) =−d− 3− 12
p∑

j=1

s(αj ,1, βj) +
1
8π

∫
Σ

R2 dθ,(3)

where s(α,ρ,β) is the Rademacher–Dedekind sum 1
4α

∑α−1
k=1 cot(kρπ

α ) cot(kβπ
α ).

The Tanaka–Webster curvature R of such an (M,θ) actually coincides with Riemannian
curvature of the base Σ, if it is endowed with the metric γ = dθ(·, J ·). When this curvature is
constant, (3) specializes into the following interesting formula, which shows that the ν-invariant
is a topological invariant in this case:

COROLLARY 1.3. – Let M be a CR Seifert manifold as above, with constant Tanaka–Webster
curvature. Let χ be the rational Euler characteristic of Σ. Then,

ν(M) = −d− 3− χ2

4d
− 12

p∑
j=1

s(αj ,1, βj).(4)

Similar formulas in the case of a smooth circle bundle over a smooth Riemann surface
have been computed by Burns–Epstein for their μ-invariant [14]. The μ-invariant also is a CR
invariant, but it is only defined on compact 3-dimensional strictly pseudoconvex CR manifolds
whose holomorphic tangent bundle’s first Chern class is a torsion element in homology with
integer coefficients. In some sense, our ν-invariant appears as the general Atiyah–Patodi–Singer
invariant for 3-dimensional CR geometry that reduces to the Chern–Simons invariant μ in the
case some characteristic tangent bundle is trivial (up to a finite covering).

However, Theorem 1.1 is not entirely satisfactory, as it provides a link between the CR
invariant ν and the diabatic invariant η0; one would instead prefer a relationship between ν and
invariants defined directly in terms of the CR or pseudohermitian geometry. One such object is
the contact-de Rham complex [46], and especially the η-invariant of the middle degree operator
appearing there.

The relevant operator (denoted by D∗ henceforth) is the analogue in this setting of the
boundary operator for the signature ±(d ∗ − ∗ d) that gives rise to the η-invariant on
3-dimensional Riemannian manifolds. It is known that the spectrum of the operator D∗ appears
in the rescaled limit of the collapsing spectrum of Pε =±(d ∗ε −∗ε d) for the metrics hε of (1),
when performing the diabatic limit [47]. However, this limit is not uniform enough to yield a
direct relation between the η-invariants. In this paper, we prove a general relation between ν
and η(D∗) in the special case provided by our CR Seifert manifolds. In effect, we show that
η(D∗) and ν differ only by a simple local term in the Tanaka–Webster curvature of any chosen
pseudohermitian structure. Our second main set of results then reads:

THEOREM 1.4. – Let M be a compact strictly pseudoconvex CR Seifert 3-manifold, with
S

1-action generated by the Reeb field of an S
1-invariant contact form θ. If R is the Tanaka–

Webster curvature of (M,θ) and D is the middle operator of the contact complex, then

η0(M,θ) = η(D∗) +
1

512

∫
M

R2θ ∧ dθ.(5)
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COROLLARY 1.5. – Let M be a CR Seifert 3-manifold as above, then for the S
1-invariant

contact form θ one has:

ν(M) =−3η(D∗) +
(

1
16π2

− 3
512

)∫
M

R2 θ ∧ dθ.(6)

The philosophy underlying our results is indeed the following: whereas ν is easily related to η0,
η(D∗) compares itself more easily with η0 rather than to ν. This somehow “explains” the quite
strange combination of constants appearing in front of the curvature term in (6) in Theorem 1.5: it
is a sum of diabatic contribution stemming from Theorem 1.1 and a purely spectral term linking
η(D∗) and η0, as will be apparent from Section 7.

For general CR manifolds, we expect that when we take the diabatic limit ε → 0, the collapsing
spectrum of Pε gives the contribution η(D∗) in the limit, while the remaining part of the
spectrum, after renormalization, gives only an integral of local terms. This leads to the following
conjecture.

CONJECTURE 1.6. – There exists a constant C such that, for any compact strictly pseudo-
convex Cauchy–Riemann 3-manifold M and any choice θ of contact form, one has

ν(M) =−3η(D∗) +
(

1
16π2

− 3
512

)∫
M

R2θ ∧ dθ + C

∫
M

|τ |2θ ∧ dθ,(7)

with R and τ the Tanaka–Webster curvature and torsion of (M,θ).

As a first indication for the conjecture, we shall give in Theorem 9.4 an abstract argument that
shows that there exists a CR invariant of the form η(D∗) + C1

∫
R2 + C2

∫
|τ |2. Unfortunately,

we are unable to calculate the constants completely, see Remark 9.6.
It is known that the η-invariant of the boundary operator for signature is conformally invariant.

If the conjecture is true, then this is no more the case for η(D∗), which is a priori an invariant of
the pseudohermitian structure only: it depends on the choice of a metric in the conformal class
adapted to the CR structure. (Note that formula (6) alone is not enough to conclude that η(D∗)
is not a CR invariant, since it is a priori true only for a specific choice of contact form on CR
Seifert manifold.)

A third goal of this paper is to provide some geometric applications on CR Seifert manifolds,
mainly with constant curvature. They are spherical (locally isomorphic to the standard CR sphere
S

3), hence are the boundary at infinity of a complex hyperbolic metric defined in a neighbourhood
(0, ε)×M of M (in the case of the 3-sphere we can of course extend the metric globally to get the
Bergman metric on the 4-ball). From [11, Theorem 1.2] and Theorem 1.3, we get the following
obstruction for this neighbourhood to have a global extension to a smooth complex hyperbolic
surface (with only one end):

COROLLARY 1.7. – If a CR Seifert manifold M3 is the boundary at infinity of a complex
hyperbolic metric defined on the interior of a smooth compact manifold N4 with boundary M ,
then one has necessarily ν(M) = −χ(N) + 3τ(N), where χ(N) and τ(N) denote the Euler
characteristic and signature of N . In particular, ν(M), as provided by the formula (3), is an
integer.

This is a topological constraint on a filling, which we can restate in the smooth case (no
orbifold singularities):
4e SÉRIE – TOME 40 – 2007 – N◦ 4
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COROLLARY 1.8. – Let M be a S
1-bundle of degree d over a Riemann surface Σ of Euler

characteristic χ, with a S
1-invariant spherical CR structure. If χ2

4d is not an integer then M is
not the boundary at infinity of a complex hyperbolic metric.

The case d = χ
2 yields an integer, and indeed, if Σ is hyperbolic, N can be taken to be

the disk bundle of a square root of the tangent bundle of Σ, which is well known to carry a
complex hyperbolic metric issued from a representation of π1(Σ) in SU(1,1) ⊂ SU(1,2). Our
obstruction then gives an interesting hint on whether a spherical CR Seifert 3-manifold may
appear as the quotient of the complement of the limit set in the 3-sphere of some discrete fixed
point-free subgroup of SU(1,2) [1]. Similar results were proved by Burns–Epstein with their
μ-invariant [15]; since both invariants, although sharing some properties, are truly different, it
turns out that our results are more precise and forbid existence of a complex hyperbolic filling
in cases that are not obstructed by Burns–Epstein’s μ-invariant. A detailed study of this point is
done in Section 10 below.

More generally, the calculation in Theorem 1.2 gives an obstruction for M to be the boundary
at infinity of a Kähler–Einstein or Einstein metric. The manifolds considered in this paper are
known to bound a complex Stein space with at most a finite number of singular points [27] and
one may wish to endow it with a Kähler–Einstein metric as in Cheng–Yau [20]. The type of
metric to be considered has the same kind of asymptotic expansion near the boundary M as the
Bergman metric [10]; we called them “asymptotically complex hyperbolic” (ACH) in [11]. If no
singular points are present and if the Cheng–Yau metric exists, one gets from the Miyaoka–Yau
inequality proved in [45] the following:

COROLLARY 1.9. – Let M be as in Theorem 1.2. If M is the boundary at infinity of an
ACH Einstein metric on N , such that a Kronheimer–Mrowka invariant of (N,M) is non-zero
(in particular, if M is the boundary at infinity of a Kähler–Einstein metric on N ), then

χ(N)− 3τ(N) � −ν(M) = d + 3 + 12
p∑

j=1

s(αj ,1, βj)−
1
8π

∫
Σ

R2 dθ.

For more information on Stein fillings, see [38,52]. The Kronheimer–Mrowka invariants are
Seiberg-Witten type invariants defined for a compact 4-manifold with contact boundary; in
particular, they do not vanish if N carries a symplectic form compatible with the contact structure
on the boundary, and this implies the Miyaoka–Yau inequality [45]. This inequality can of course
be obtained directly for Kähler–Einstein metrics.

The paper is organized as follows. After recalling the definition of the ν-invariant in Section 2,
we define the renormalized η-invariant η0 and compare it to ν in Sections 3 and 4. The proof
relies on relatively simple considerations on η-invariants and Chern–Simons theory, that prove
that the difference between ν + 3η0 is necessarily of the expected form: an integral term in the
square of the curvature and the squared norm of the torsion. The constants in front of these local
terms are then computed by considering sufficiently many examples: left invariant structures on
the 3-sphere.

The reader will then find in Section 5 the explicit computations of ν on CR Seifert manifolds.
Taking one step further, Sections 6 to 8 lead to the relation between η0 and η(D∗) in the case

of transverse S
1-invariant CR structures. The proof of Theorem 1.5 relies on an explicit study

of the spectra of the D∗ operator and the boundary operator for the signature ±(dε ∗ − ∗ dε)
on closed 2-forms for the sequence of Riemannian metrics hε that performs the diabatic limit in
(1). This can be done only for S

1-invariant structures and index theory shows once again that a
relation of the expected type must exist. One then has again to evaluate the constant in front of
the integral term by looking at explicit computations of both η(D∗) and ν on the standard sphere.
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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The existence of a CR invariant of the form η(D∗) + C1

∫
R2 + C2

∫
|τ |2 is considered

in Section 9. We also present a proof of the existence of η(D∗) on any compact strictly
pseudoconvex CR manifold of dimension 3, a fact certainly known to specialists but whose proof
seems to have never been published so far.

The paper ends with a short Section 10 devoted to the proof of the corollaries and to some
generalizations, and also to a comparison with the results one can get in the Kähler–Einstein
case using the μ-invariant of Burns and Epstein [14].

2. The ν-invariant

2.1. Cauchy–Riemann and pseudohermitian geometry

Let M be a 3-dimensional compact strictly pseudoconvex CR manifold, i.e. a compact
manifold M endowed with a complex structure J defined on a contact distribution H in TM .
A pseudohermitian structure on M consists in the additional choice of a contact form θ. It induces
a metric γ = dθ(·, J ·) on H . The CR structure is said to be strictly pseudoconvex if this metric
is definite (positive or negative) for some choice of contact form (and, hence, any choice). The
choice of a pseudohermitian structure also induces a splitting of both TM and T ∗M by means
of the Reeb vector field T defined by θ(T ) = 1 and ιT dθ = 0. The Tanaka–Webster connection
is then defined by working in a local coframe (θ, θ1, θ1̄) such that dθ = iθ1 ∧ θ1̄: the connection
form is a purely imaginary 1-form ω1

1 , and the torsion τ1 is a (0,1)-form such that

dθ1 = θ1 ∧ ω1
1 + θ ∧ τ1,

and the curvature R is defined by

dω1
1 = −iRdθ +

(
τ 1̄
,1̄ − τ1

,1

)
∧ θ.

In more invariant terms, it is the only metric and complex compatible connection ∇ on H such
that the torsion τ = T∇(T, ·)|H anticommutes with J .

2.2. Fillings of 3-dimensional CR manifolds

The ν-invariant was first defined in [11] by considering Einstein asymptotically complex
hyperbolic (ACHE, in short) fillings of 3-dimensional strictly pseudoconvex compact CR
manifolds. We now review the necessary elements for this definition.

Given a pseudohermitian manifold (M,θ), we first consider the product space N = R+ ×M .
One can then define a metric g0 on N by

g0 = dr2 + h0(r), with h0(r) = e2rθ2 + erγ.(8)

To understand properly what is done here, one must think of the initial M as a boundary of N
at infinity (i.e. when r goes to infinity); when conformally changing θ into θ′ = fθ, one gets a
metric g′0 = (dr′)2 +e2r′

f2θ2 +er′
fγ, and the difference g′0−g0 goes to zero at infinity after the

coordinate change r = r′ + log f . Therefore the asymptotic behaviour of the metric g0 depends
only on the CR structure. We note moreover that

h0(r) = er
(
erθ2 + γ

)
= ε−1hε,

where hε is the metric introduced in Equation (1), with ε = e−r .
4e SÉRIE – TOME 40 – 2007 – N◦ 4
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We can now also extend J , initially defined on M , to an almost complex structure J0 on
the whole N . Indeed, Catlin [18] showed that a strictly pseudoconvex CR structure always
determines the infinite jet of a complex structure of N along M . One can perform this explicitly
as follows: first define

J0∂r = e−rT,

where T is the Reeb field associated to θ. A (formal) integrable complex structure on N can then
be deduced as a series in powers of e−r step by step by requiring the Nijenhuis tensor to vanish
at all orders. More precisely, one finds an infinite series J(r) = J0 +J1e−r +J2e−2r + · · · on N ,
whose coefficients are given in terms of the covariant derivatives of Tanaka–Webster curvature
R and torsion τ of the pseudohermitian manifold (M,θ). The first terms are

J(r) = J0 − 2e−rτ + e−2r
(
2|τ |2 − J0∇T τ

)
+ · · · .

This construction is in fact independent of the choice of the pseudohermitian structure: following
classical ideas in complex analysis, it is easily shown that conformally changing the contact form
on the boundary leads to an equivalent complex structure in the inside which is related to the
original one by a diffeomorphism continuously extending as the identity on the boundary, see
[11, Proposition 3.5] for details.

This data can be complemented by that of a (formal) Kähler–Einstein metric on N whose
dominant term is given by the metric g0 described above: as explained in [11, Section 2], g0 is
an asymptotically Kähler metric, and its curvature is asymptotic when r goes to +∞ to the
curvature of the complex hyperbolic plane with holomorphic sectional curvature −1. It is then
asymptotically Einstein, in the sense that

Ric(g0) +
3
2

g0 = O
(
e−r

)
.

One can now add higher order corrections (in powers of e−r) to g0 to get a uniquely defined jet
of a Kähler–Einstein metric gKE up to order e−2r (relatively to g0), when r tends to infinity.
This development is again expressed with the covariant derivatives of Tanaka–Webster curvature
R and torsion τ of the pseudohermitian manifold (M,θ), and has been calculated in [11,
Theorem 3.3 and Corollary 3.4]: given some choice of coframe θ1 ∈ Ω1,0H , the expression
of its Kähler form ω is

ω = er(dr ∧ θ + dθ)− R

2
dθ(9)

+
4
3

(
i

8
R,1̄ϑ

0 ∧ θ1̄ − i

8
R,1ϑ

0̄ ∧ θ1 − 1
2
τ1
1̄,1ϑ

0 ∧ θ1̄ − 1
2
τ 1̄
1,1̄ϑ

0̄ ∧ θ1

)

− ΔHR

2
e−rdθ − 2

3

(
R2

8
− |τ |2 − ΔHR

6
+

2i

3
(
τ1
1̄,11 − τ 1̄

1,1̄1̄

))
e−rdr ∧ θ

+
2
3

(
R2

8
− |τ |2 − ΔHR

12
− i

3
(
τ1
1̄,11 − τ 1̄

1,1̄1̄

))
e−rdθ + o

(
e−2r

)
,

where {
ϑ0 = e−r dr + iθ,
ϑ1 = θ1 + ie−rτ1 + · · ·

is a coframe of Ω1,0N associated to J(r).
We will denote by gKE the metric on N given by this second order jet of Kähler metric:

gKE = ω(·, J(r)·). Its development may be pursued further (at least up to order 3), but it is
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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explained in [11] why terms in ω (resp. gKE) of order strictly higher than 2 are irrelevant in
all that concerns the ν-invariant to be defined below. Roughly speaking, the ν-invariant will be
defined by taking a limit of Riemannian invariants associated with gKE when r goes to infinity,
and it is shown in [11] that any extra term in gKE that is o(e−2r) contributes to 0 in the limit.

We now observe that gKE has a universal polynomial expression in the powers of er , with
coefficients that are tensorial in the covariant derivatives of R and τ . By construction the leading
term of gKE is g0 as given in (8), and the family of metrics h(r) induced on

Mr = {r} ×M 	 M

is asymptotic to h0(r) in (8). Finally, an important point here is that, although we have chosen
a contact form to write down the formulas for gKE, actually it does depend only on the CR
structure, not on the pseudohermitian structure. This is because the filling complex structure
on N depends only on J , as does the zero-th order term of g0, and the finite development of
the Kähler–Einstein metric that we need is uniquely determined by requiring it to be Kähler–
Einstein, see [11, Theorem 3.6].

2.3. Definition of the ν-invariant

According to [11], the ν-invariant is obtained by taking the limit as r goes to infinity (i.e.
by taking the diabatic limit) of the boundary contribution on Mr of the Atiyah–Patodi–Singer
formula for the characteristic number χ − 3τ of [r0, r] × M ⊂ N , with respect to the metric
gKE. More precisely, recall that the Euler characteristic and signature formulas for a closed
Riemannian manifold with boundary (Y,h) are given by

χ(Y ) =
∫
Y

Pχ(h) +
∫

∂Y

Bχ(h), τ(Y ) =
∫
Y

Pτ (h) +
∫

∂Y

Bτ (h) + η(h∂Y ),

where Pχ(h), Pτ (h) Bχ(h), Bτ (h) are universal polynomial expressions in the curvature of h
(and second fundamental form of the boundary for Bχ and Bτ ), and η(h∂Y ) is the η-invariant
of the boundary operator for the signature S = (−1)p(∗d − d∗) on Ω2p∂Y with the metric h
restricted to ∂Y (see [2]). The explicit expressions of the universal polynomials involved in the
above formulas, taken from [11, Section 7, pp. 86–88], are given as follows: we denote R, W ,
Ric0, and Scal, the Riemann, Weyl, tracefree Ricci, and scalar curvatures of h, and I = ∇hn the
second fundamental form of ∂Y (n being its outer unit normal). For 1-forms α and α′, a 2-form
β, and a 3-tensor F in ⊗3T ∗M , we let

α∧ α′(X,Y ) = α(X)α′(Y )− α′(X)α(Y ),

α∧ β(X,Y,Z) = α(X)β(Y,Z) + α(Y )β(Z,X) + α(Z)β(X,Y ),

S(F )(X,Y,Z) = F (X,Y,Z) + F (Y,Z,X) + F (Z,X,Y );

if μ and ν are forms with values in bundles E and F , μ ∧ ν is the obviously defined form with
values in E ⊗ F ; last, if ρ is a 3-form and X1, X2, X3 are three vectors, we define (a definition
that immediately extends to any 3-form with values in ⊗3TM ):

T (ρ⊗X1 ⊗X2 ⊗X3) = dvol∂Y (X1,X2,X3)ρ.

The desired formulas for the Euler characteristic and signature then read:
4e SÉRIE – TOME 40 – 2007 – N◦ 4
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Pχ(h) =
1

8π2

(
|W |2 − 1

2
|Ric0 |2 +

1
24

Scal2
)

Bχ(h) =
1

12π2

(
T (I∧ I∧ I) + 3T (I∧R)

)
Pτ (h) =

1
12π2

(
|W+|2 − |W−|2

)
Bτ (h) =

1
12π2

S
(
I
(
.,R(., .)n

))
where the second fundamental form and the curvature must be seen as a 1- or 2-form with values
in vectors or 2-vectors in the second line, and the second form as a quadratic form and the
curvature as a 2-form with values in endomorphisms in the last line. For the sake of simplicity,
we shall now denote, in the setting adapted to 3-dimensional strictly pseudoconvex CR manifolds
described above,

B(gKE,Mr) =
∫

Mr

Bχ

(
h(r)

)
− 3

∫
Mr

Bτ

(
h(r)

)
.

Note however that we will not need the precise form of B(gKE,Mr) in this paper, and will
only use the fact that it is tensorially constructed from the curvature of gKE and the second
fundamental form of Mr in N .

DEFINITION 2.1. – The ν-invariant of M is

ν(M) = lim
r→+∞

ν(r) = lim
r→+∞

B(gKE,Mr)− 3η
(
h(r)

)
.

It is shown in [11, Section 7] that this limit always exists for any 3-dimensional strictly
pseudoconvex compact CR manifold M , and actually gives rise to a CR invariant of M
(independent of the choice of the contact form θ).

3. The renormalized η-invariant

From its very definition, the invariant ν is a renormalisation of η-invariants of a jet h(r) of
the very natural Kähler metric gKE restricted to slices of large radii Mr . However, these metrics
are quite intricate (as formula (9) obviously shows), and ν itself is given by a limit of some
complicated expressions built from these metrics. For these reasons we would like to describe
how ν is related to the η-invariants of the much simpler contact-rescaling family of metrics of
formula (1):

hε = ε−1θ2 + γ.

This can be done by relying onto the following simple observation: although η is a priori not
locally computable from the metric, its variation is. Indeed from the Atiyah–Patodi–Singer
formula [2] and Chern–Simons’ theory [22] one has

η(hε1)− η(hε0) =
1
3

∫
M

Tp1(∇ε1 ,∇ε0),(10)

where Tp1(∇ε1 ,∇ε0) is the Chern–Simons’ transgression form of the first Pontrjagin class
relative to the Levi-Civita connections of the product metrics

g̃ε = dr2 + hε on N = R×M.
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If ∇ε1 = ∇ε0 + α and Ωt is the curvature 2-form of ∇ε0 + tα, then

Tp1(∇ε1 ,∇ε0) = 2

1∫
0

P1(α,Ωt)dt = − 1
4π2

1∫
0

Tr(α∧Ωt)dt.(11)

Calculating the integral gives the usual formula

η(hε1)− η(hε0) = − 1
24π2

1∫
0

Tr
(

2Ω0 ∧ α + d∇ε0 α∧ α +
2
3
α∧ α∧ α

)
.(12)

This leads quickly to the following lemma.

LEMMA 3.1. – Let (M3, J, θ) be a strictly pseudoconvex pseudohermitian manifold, with
metric γ = dθ(·, J ·) on the contact distribution. Then the η-invariants of the family of metrics
hε = ε−1θ2 + γ have a decomposition in homogeneous terms:

η(hε) =
2∑

i=−2

ηi(M,θ)εi.(13)

The terms ηi for i �= 0 are integral of local pseudohermitian invariants of (M,θ), and the ηi for
i > 0 vanish when the torsion vanishes.

Proof. – Denote by ∇ the Tanaka–Webster connection, with τ being the torsion seen as
a trace-free symmetric endomorphism of H = kerθ, τ1 (resp. τ 1̄) being its expression as a
(0,1)-form (resp (1,0)-form relative to a choice of complex coframe θ1. One computes easily
the difference a = ∇ε −∇ (see the formulas in [46, p. 316]), and the result is a decomposition
into homogeneous terms of degrees −1, 0 and 1:

∇ε −∇= a =
1∑
−1

a(i)εi,(14)

where each a(i) is locally defined by the pseudohermitian structure: a(0) and a(−1) are horizontal,
but a(1) is vertical; more precisely, for horizontal X,Y ∈H one has

a
(1)
X Y =−γ

(
τ(X), Y

)
T,

a
(0)
X T = τ(X),

a
(−1)
T Y =

1
2
JY.

The output is the following decomposition for the curvature

Ω(∇ε) = Ω(∇) + d∇a + a∧ a(15)

=
1∑
−1

Ω(i)εi.(16)

Indeed, the terms Ω(±2) = a(±1) ∧ a(±1) clearly vanish. Moreover,

Ω(1) = da(1) + a(1) ∧ a(0) + a(0) ∧ a(1)
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vanishes when the torsion vanishes. The existence of a decomposition in terms of powers of ε
now follows from (12). From Equation (11) one has

ε
d

dε
η(hε) = − 1

12π2

∫
M

Tr
(

Ω∧ ε
da

dε

)
=

∑
−2�i�2

i �=0

i ηi ε
i

where the ηi (i �= 0) are local pseudohermitian invariants. When the torsion vanishes, a(1) and
Ω(1) vanish, so that ηi vanishes for each i > 0. �

From the conformal invariance of the η-invariant, one deduces moreover immediately that, for
a real number λ > 0,

ηi(M,λθ) = λ−i ηi(M,θ),(17)

so that η0(M,θ) is scale (but not conformally) invariant.

DEFINITION 3.2. – Let (M3, θ) be a compact strictly pseudoconvex pseudohermitian
3-dimensional manifold. The renormalized η-invariant of (M,θ) is the constant term η0(M,θ)
in the expansion (13) for the η-invariants of the family of metrics hε = ε−1θ2 + dθ(·, J ·).

In the case where the torsion of (M,θ) vanishes, the terms ηi(M,θ) in (13) for i > 0 vanish,
so that, when ε goes to infinity instead of 0, one has

η0(M,θ) = lim
ε→∞

η(hε) := ηad.(18)

This corresponds to the geometric situation when the Reeb flow preserves the metric. Then, when
ε →∞, the family of metrics hε collapses with bounded connection and curvature. This is the
well-known adiabatic limit, and η0(M,θ) is then the adiabatic limit ηad of the η-invariant. It has
been much studied, in particular in the geometrically meaningful situation when the Riemannian
flow comes from some fibration in circles over a surface [12,23]. The renormalized η-invariant
depends on the choice of θ (as well, of course, as on that of J ).

However, we are more interested in this paper in the opposite direction: the diabatic limit, or
equivalently the case where ε goes to 0. Although we will not need its precise expression, making
the calculations in the proof of Lemma 3.1 explicit shows the term η−2(M,θ) never vanishes on
contact manifolds, and is a non-zero multiple of

∫
M

θ ∧ dθ. Therefore η(hε) always diverges at
speed ε−2 in the diabatic limit, but the constant term η0(M,θ) is still well-defined. We called it
the renormalized η-invariant, as it is reminiscent of other similar contexts where renormalized
invariants have been defined [26,28,42,49].

4. The relation between ν and η0

Our goal now is to prove Theorem 1.1, i.e. to show that on any CR manifold the ν-invariant is
related to η0 in a simple way.

LEMMA 4.1. – There exist two constants C1 and C2 such that for any CR strictly
pseudoconvex pseudohermitian manifold (M3, J, θ), one has

ν(M) + 3η0(M,θ) = C1

∫
R2θ ∧ dθ + C2

∫
|τ |2 θ ∧ dθ,(19)
M M
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where η0(M,θ) is the renormalized η-invariant of (M,θ), and R, τ are the Tanaka–Webster
curvature and torsion of M .

One can therefore look at −ν(M)/3 as a local CR-conformal invariant correction of η0(M,θ)
(recall that η0(M,θ) is a priori only invariant under the rescaling θ → λθ for λ constant).

Proof. – The metrics gKE and h(r) = gKE|{r}×M issued from (9) are quite complicated, but
are corrections of the model metrics g0 and h0(r) defined in (8). More precisely, their expressions
are universal polynomials in er and pseudohermitian invariant of (M,θ), and they do not actually
depend on the choice of framing (except θ) and the constants in front of each such term are
universal, i.e. independent of the manifold. Therefore, using a transgression formula as in (10)
and (11), but between h(r) and h0(r), we see that η(h(r)) − η(h0(r)) has to be an invariant
universal expression of type

n∑
k=−n

ekr

∫
M

Pk(R,τ,∇R,∇τ, . . .).(20)

From Lemma 3.1, and the fact that the metric h0(r) is ε−1hε with ε = e−r , the same holds true
for η(h(r))− η0(M,θ).

Moreover, the boundary contribution B(gKE,Mr) arising in Definition 2.1 of ν is the integral
of a secondary class built from the curvature of gKE and has therefore a development of the same
type as (20). The expression

ν(r) + 3η0(M,θ) = B(gKE,Mr)− 3
(
η
(
h(r)

)
− η0(M,θ)

)
has then a development of the same kind. Note that this expression is void of terms in ekr for
k > 0 since we already know from Definition 2.1 and [11] that it converges when r goes to
infinity. As a result, the local boundary contribution necessarily cancels all divergent terms, and
adds (still local) convergent terms. Identifying the constant terms we get eventually:

ν(M) + 3η0(M,θ) =
∫
M

Pθ(R,τ,∇R,∇τ, . . .)θ ∧ dθ

where Pθ is some pseudohermitian local tensorial invariant. The invariance under the rescaling
θ → λ2θ shows that the polynomial Pθ must satisfy

Pλ2θ = λ−4Pθ.

The list of all possible expressions is easily established. Indeed, elementary invariant theory
yields that such U(1)-invariant polynomials have to be sums of full contractions. Curvature
R and torsion τ (here we see the torsion τ as a tensor of type τ = A11θ

1 ⊗ θ1 using some
coframe θ1 of T 1,0H) are homogeneous of weight −2 with respect to the previous rescaling,
while a covariant differentiation along T decreases the weight by 2, and an horizontal one by 1.
Following Proposition 5.13 in [51], we find that Pθ is a combination of

R2, |τ |2 = |A11|2, R,0 = dR(T ), ΔHR,

(∇0,1)2τ = A11,1̄1̄, (∇1,0)2τ̄ = A1̄1̄,11

(21)
4e SÉRIE – TOME 40 – 2007 – N◦ 4



DIABATIC LIMIT AND CR 3-MANIFOLDS 601
where ∇ is the Tanaka–Webster connection and ∇1,0, resp. ∇0,1, is its restriction to horizontal
vectors of type (1,0), resp. (0,1). Full divergences do not contribute after integration over M ,
so that one may forget the last four expressions, and the proof of Lemma 4.1 is over. �
4.1. Computation of the constants

We are left with the determination of C1 and C2 in Lemma 4.1. This shall come from an
explicit study of left-invariant CR structures on the 3-dimensional sphere.

Choose a basis (α1, α2, α3) of left-invariant 1-forms on the sphere S
3, such that dα1 = α2 ∧

α3, etc. The η-invariant of the left-invariant metric λ2
1α

2
1 + λ2

2α
2
2 + λ2

3α
2
3 has been computed 1

by Hitchin [29, formula (10)]:

η
(
λ2

1α
2
1 + λ2

2α
2
2 + λ2

3α
2
3

)
=

2
3

(
s3
1 − 4s1s2

s3
+ 9

)
(22)

where the si are the symmetric polynomials in the λ2
i . As a result, we get

η
(
α2

1 + λ2
2α

2
2 + λ2

3α
2
3

)
=

2
3λ2

2λ
2
3

(
λ6

3 −
(
1 + λ2

2

)
λ4

3 −
(
λ4

2 − 3λ2
2 + 1

)
λ2

3 +
(
λ6

2 − λ4
2 − λ2

2 + 1
))

and taking the constant term in the diabatic limit λ3 →∞ (i.e. taking θ = α3) leads to

η0

(
S

3, α2
1 + λ2α2

2

)
=

2
3λ2

(
−λ4 + 3λ2 − 1

)
.(23)

On the other hand, the ν-invariant can be estimated from the μ-invariant introduced by Burns and
Epstein for embeddable CR structures, or more generally CR manifolds with trivial holomorphic
part of the contact bundle [14]: for the contact form θ = α3 and a metric γ = λ−1(α1)2 +λ(α2)2,
μ is calculated in [14, 4.1.A]. Since

R =
1 + λ2

2λ
, |τ |= 1− λ2

2λ
,(24)

one has

μ
(
λ−1α2

1 + λα2
2

)
=− 1

16π2

∫
S3

(
4|τ |2 −R2

)
θ ∧ dθ = −1 +

3(1− λ2)2

4λ2
.

It is proved in [11] that, for a deformation of the standard CR 3-sphere, one has ν = 3μ + 2, and
therefore

ν
(
λ−1α2

1 + λα2
2

)
= −1 +

9(1− λ2)2

4λ2
.(25)

From Equations (23), (24), and (25), we deduce

(ν + 3η0)
(
λ−1α2

1 + λα2
2

)
=

(1 + λ2)2

4λ2
=

1
16π2

∫
S3

R2θ ∧ dθ.

1 There is a slight mistake in [29] by a factor 2, as can be seen by comparing the results in [29] for the standard sphere
to those of Theorem 5.2 below: one must find η0(S3, std) = 2

3
as computed by Equation (23), rather than 4

3
as computed

by [29].
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This yields 16π2C1 = 1 and C2 = 0 and the proof of Theorem 1.1 is done. �
Remark 4.2. – From Theorem 1.1, we see that

−3η0 +
1

16π2

∫
M

R2θ ∧ dθ

is a CR invariant. This fact can be proved directly: standard calculations in pseudohermitian
geometry lead easily to the conclusion that it is invariant under conformal transformations
θ → fθ.

This remark provides an alternative (and independent) definition of the ν-invariant. The latest
is clearly simpler than the one explained in Section 2: this is useful for computations and
theoretical aspects, in particular the relation with the η-invariant of the pseudohermitian operator
D∗ on vertical 2-forms, as we shall see in the following sections. On the other hand, very
important for the applications is the fact that ν arises as a boundary term in the integral of
characteristic classes (see for example Corollary 1.9), and this can be obtained only through the
first definition and the work done in [11].

One may also think that this remark could serve as a basis for defining a version of ν in higher
dimensions, by looking for local corrections of η0 that would lead to a CR invariant. However,
this seems a very difficult task, as the range of possible terms of the right weight is in general
much larger than in (21), even in the next relevant dimension 7.

5. Computation of the ν-invariant on Seifert manifolds

This section is devoted to explicit computations of the ν-invariant on S
1-invariant CR

manifolds of dimension 3. Although certainly a digression from our main route towards
Theorems 1.4 and 1.5, this appears as a nice direct application of the results obtained in the
previous section. We have thus chosen to interrupt the pace of our proofs, and to offer this section
as a refreshing intermezzo before the analytical technicalities that will follow.

We first describe our family of spherical 3-dimensional compact strictly pseudoconvex CR
manifolds in greater detail.

DEFINITION 5.1. – A CR Seifert manifold is a 3-dimensional compact manifold endowed
with both a pseudoconvex CR structure (H,J) and a Seifert structure, that are compatible in the
following sense: the circle action ϕ :S1 → Diff(M) preserves the CR structure and is generated
by a Reeb field T .

Any S
1-invariant CR structure admits a S

1-invariant contact form θ if the manifold is
orientable (this is proved in [31]). Moreover it is easily proved that existence of a Reeb field T
(defined by θ(T ) = 1 and ιT dθ = 0) satisfying ϕ∗( d

dt ) = T and LT θ = 0, LT J = 0, is
equivalent to the existence of a locally free action of S

1 whose (never vanishing) infinitesimal
generator preserves H and J and is transverse everywhere to H . Hence, our CR Seifert manifolds
could also be called transverse S

1-invariant CR manifolds; note moreover that there exists a
much larger class of S1-invariant CR manifolds, with the infinitesimal generator being sometimes
tangent to the contact distribution [31,39].

As we do not assume the action to be free but only locally free, the quotient space Σ = M/S
1

is a surface with possibly conical singularities. Each CR Seifert manifold is then an orbifold
bundle over the compact Riemannian orbifold surface Σ. If Σ is such a surface, endowed with a
complex structure, orbifold S1-bundles are classified by their (rational) degrees d. Singularities
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of the bundle are located above the singularities of Σ in such a way that the resulting 3-manifold
is smooth: if the local fundamental group is Z/αZ (α ∈ N

∗), a generator acts on a local chart
around p of the basis manifold as ei 2ρπ

α and on the fiber as ei 2πβ
α with ρ and β prime to α

(the extra parameter ρ may seem pointless as it is always possible to reduce oneself to two
parameters by taking ρ′ = 1 and β′ = βρ−1 mod α, but this extended description will prove
useful when specializing our computations to the case of lens spaces in Section 10). Any choice
of equivariant connection 1-form θ on M endows it with an invariant CR structure, H being
chosen as the horizontal space for the connection and J being pulled back from the base. It
is strictly pseudoconvex if d < 0. The interested reader is referred to [40] for a very readable
account on orbifold bundles over orbifold surfaces. Note moreover that, taking the length of the
fiber to be 2π, one has ∫

M

θ ∧ dθ = −4π2d,

and that the metric γ = dθ(·, J ·) projects downwards to a metric on Σ of volume

∫
Σ

dθ =−2πd,

(see [40] again for integration of forms over orbifolds). Its curvature R equals the Tanaka–
Webster curvature of (M,θ) and Gauss–Bonnet reads

∫
Σ

Rdθ = 2πχ,

where χ is the (rational) Euler characteristic of Σ.

5.1. Computations in constant curvature

In the first half of this section, we moreover assume that γ has constant curvature R. In this
case, the CR structure is spherical, that is M is locally isomorphic to the standard 3-sphere.
Conversely, it is known that spherical CR Seifert manifolds are exactly those of constant Tanaka–
Webster curvature R, except if the base is a sphere, see for instance [7].

The computations now rely on the explicit derivation of the η-invariant of (orbifold) circle
bundles over (orbifold) Riemannian surfaces with constant curvature that have been done by
Komuro [33] and more generally by Ouyang [41]. In our conventions and notations, their results
read:

THEOREM 5.2 (Ouyang). – The η-invariant of the metric t2 θ2 + γ on M is equal to

1
3

(
d + 3 + 2d

(
πt2

V
χ− π2t4

V 2
d2

))
+ 4

p∑
j=1

s(αj , ρj , γj),

where s(α,ρ, γ) = 1
4α

∑α−1
k=1 cot(kρπ

α ) cot(kβπ
α ) is the classical Rademacher–Dedekind sum.

We can now proceed to the computation of ν in the constant curvature case. We have to show
Corollary 1.3, which we restate here:
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



604 O. BIQUARD, M. HERZLICH AND M. RUMIN
COROLLARY 5.3. – Let M be a compact S
1-orbifold bundle of rational degree d < 0 over a

compact orbifold surface Σ of constant curvature and rational Euler characteristic χ. Then,

ν(M) = −d− 3− χ2

4d
− 12

p∑
j=1

s(αj , ρj , βj).(26)

Let us remark that the ν-invariant depends only on the topology for this class of CR manifolds,
and not, for instance, on the complex structure of Σ. This is a priori known, since the gradient of
ν is the Cartan curvature [11, Theorem 8.1], which vanishes for spherical CR manifolds.

Proof. – According to Theorem 1.1, the ν-invariant is given by adding a local term to
the renormalized η-invariant. On S

1-invariant CR manifolds with constant curvature, the
renormalized invariant is easily read from Ouyang’s theorem 5.2 above:

η0 = 1 +
d

3
+ 4

p∑
j=1

s(αj , ρj , βj).(27)

Moreover, the integral term is just

1
16π2

∫
M

R2θ ∧ dθ =
−4π2d(−χ

d )2

16π2
=−χ2

4d
,

which shows also Theorem 1.3 in the constant curvature case. �
Remark 5.4. – Corollary 1.3 can also be obtained by direct calculation from the original

definition of ν and Ouyang’s formula. Indeed the asymptotically Kähler–Einstein metric gKE

on [r0,+∞[ × M can be handled with bare hands in this simple situation, and the boundary
contribution counterbalancing the divergence of the sequence of η-invariants can be explicitly
derived. Putting together Ouyang’s theorem 5.2 and these local computations yield the value of ν,
see [28] for similar computations. This is of course a painful method, but it is still a reasonably
simple case where the cancellation of divergences by local terms can be observed in detail.

5.2. Extension to cases of non-constant curvature

We now extend the computations of ν to an (almost) complete proof of Theorem 1.2. It is
shown in [31,39] that there always exists a unique (up to equivalence) transverse S1-contact
form on an orientable Seifert manifold (careful: this might be wrong for a non-transverse action).
Given the natural contact form that fixes the length of the regular fibers to 2π, the choice of a CR
structure is then equivalent to the choice of a downwards orbifold Riemannian metric γ of fixed
volume dθ, and this metric might or might not be of constant curvature.

In case the base is smooth (no orbifold singularities), it is known that the adiabatic limit ηad

does not depend on the underlying metric on Σ, see e.g. [55]. As one can always find a constant
curvature metric of volume dθ (easy consequence of Moser’s lemma on volume forms), the
previous formula (27) for η0 = ηad applies. Then Theorem 1.1 enables to conclude that

ν(M) = −d− 3− 12
p∑

j=1

s(αj , ρj , βj) +
1
8π

∫
R2 dθ.(28)
Σ
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If orbifolds singularities are present, it is known that every orbifold surface has a constant
curvature metric, except some exceptional cases on the sphere described in [8]. As the set of
compatible complex structures with a given contact structure is contractible, this means that,
except on the exceptional cases we have just alluded to, it suffices to check the following:

LEMMA 5.5. – Without any assumption on the quotient structure of M by the Reeb flow, the
variations of η0 with respect to the complex structure vanish when the torsion is zero.

Proof. – From Theorem 1.1, η0 has the same variation as

−ν

3
+

1
48π2

∫
M

R2θ ∧ dθ.

The variation of ν with respect to J has been computed in [11, Theorem 8.1], namely

dν

dJ
=

−3
8π2

∫
M

〈QJ , J̇〉θ ∧ dθ,(29)

where QJ = iQ1
1̄θ1 ⊗ Z1̄ − iQ1̄

1θ1̄ ⊗ Z1 ∈ End(H) is Cartan’s tensor. Its expression in term
of derivatives of Tanaka–Webster curvature and torsion is given by

Q1
1̄ =

1
6
R,1

1̄ +
i

2
RA1

1̄ −A1
1̄
,0 −

2i

3
A1

1̄
,1̄

1̄.(30)

On the other hand the variation of the Tanaka–Webster curvature is computed e.g in [19, (2.20)],
and is given by

Ṙ = i
(
E 1̄

1 ,1̄
1 −E 1

1̄ ,1
1̄
)
−

(
A1

1̄E 1
1̄ + A 1

1̄ E 1̄
1

)
,(31)

where

J̇ = 2E 1̄
1 θ1 ⊗Z1̄ + 2E 1

1̄ θ1̄ ⊗Z1̄.(32)

Putting everything together and integrating by parts show that, in vanishing torsion, η0 does not
depend on the complex structure as needed. �

Remark 5.6. – This computation of variations may be seen as an alternative mean to determine
the constant C1 = 1

16π2 in Lemma 4.1, independently of the computations of examples done
in Section 4. Moreover, we stress that η0 is independent of J (whenever the torsion vanishes)
without any assumption on the quotient structure of M by the Reeb flow (smooth or not). This
last fact will be used in Section 9.

In the remaining exceptional cases over S
2 described in [8], the results stay the same but the

proof above does not apply anymore and one has to rely on a different technique: this will be
done below in Section 8.

6. The contact complex and the diabatic limit

Theorem 1.1 gives a simple formula relating the ν-invariant and the renormalized η-invariant
η0 of the contact-rescaling. According to (18), η0 coincides with the adiabatic limit of η in
the case the CR manifold has vanishing torsion, and this enables computations, for explicit
expressions of the adiabatic limit are known in a number of cases. But a deeper question is to
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relate directly the ν-invariant to the geometry and spectral theory of the CR or pseudohermitian
manifold.

In the sequel we shall consider a natural η-invariant arising in pseudohermitian geometry. One
actually knows by [47] a candidate for this, coming from the contact-de Rham complex. We shall
briefly recall its construction in dimension 3 and its relation with the diabatic limit.

Let M be a 3-dimensional contact manifold and H its contact distribution. We denote by Ω∗H
the space of horizontal forms, i.e. the space of sections of the alternating algebra over the dual of
the bundle H . Let also Ω∗V be the subspace of vertical forms on M , by which we mean “true”
forms in Ω∗M vanishing on H . Equivalently, one has

Ω∗V = {θ ∧ α, α ∈ Ω∗M} = θ ∧Ω∗H

for any local choice of contact form θ. The contact-de Rham complex is then the following:

C∞(M) dH−−→ Ω1H D−→ Ω2V
dH−→Ω3M,(33)

where for f ∈ C∞(M), dHf ∈Ω1H stands for the restriction of df to H , while

dH :Ω2V →Ω3M

is just de Rham’s differential restricted to Ω2V in Ω2M , and D is defined as follows: since d
induces an isomorphism

d0 :Ω1V → Ω2H with d0(fθ) = f dθ|Λ2H ,

then any α in Ω1H admits a unique extension �(α) in Ω1M such that d�(α) belongs to Ω2V ;
namely, given any initial extension α of α, one has

�(α) = α− d−1
0 (dα)|Λ2H .(34)

We then define

Dα = d�(α).(35)

This differential D is a second order operator, since the lifting � :Ω1H → Ω1M is a first order
one. Moreover one sees easily that � induces an homotopy equivalence between the contact and
de Rham complexes, together with the natural restrictions, and the retraction �′ :Ω2M → Ω2V
defined by

�′(α) = α− dd−1
0 α|Λ2H .

From now on we will suppose moreover that the contact manifold M is endowed with a
strictly pseudoconvex CR structure J , together with some choice of contact form θ. We consider
the contact-rescaling sequence of metrics of (8)

h0(r) = e2rθ2 + erdθ(·, J ·).
Let ε = e−r , as before, and define

gε = ε−2θ2 + ε−1dθ(·, J ·) = h0(r).(36)

This metric induces an orthogonal splitting TM = H ⊕ RT where T is the Reeb field of θ,
and one can identify Ω1H with “true” 1-forms on M vanishing on T . Observing that Hodge
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∗-operator exchanges Ω1H and Ω2V , one can consider D∗ acting on closed vertical 2-forms
Ω2

DV = Ω2V ∩ imD.
Following [2, Theorem 4.14], we define the boundary operator for the signature attached to

the Riemannian metric gε as

Sε = (−1)p(∗εd− d∗ε),

acting on Ω2pM = C∞M⊕Ω2M . As observed in [2, Prop. 4.20], one may remove some spectral
symmetry, and its η-function

η(Sε)(s) = Tr∗
(
Sε|Sε|−(s+1)

)
=

∑
λi∈spec(Sε)\{0}

λi

|λi|s+1
(37)

actually coincides with that of d∗ε when restricted to Ω2
dM = Ω2M ∩ imd. Note that we have

used Tr∗ to denote a trace taken outside the 0-eigenspace. In the same vein, the notation spec∗

used below will denote a spectrum where the 0-eigenvalue has been removed.
From [4, p. 74] or [25, Chap. 1.10], the series (37) is absolutely convergent for Re s > 3

and has a meromorphic extension to C, with possibly simple poles at s = 3 − n, n ∈ N. By
Atiyah–Patodi–Singer’s theorem [2], η(Sε)(s) is actually regular at s = 0 and its value there is
called the η-invariant of (M,gε). Similarly, an η-function and its value at 0 can be defined for
the operator D∗ in dimension 3. This mainly follows by applying the same ideas, but with the
adequate symbolic calculus for hypoelliptic operators, see Section 9.

In order to compare them, let us now compute d∗ε and D∗ε using the decomposition of Ω2M
into vertical and horizontal 2-forms:

α = θ ∧ αT + αH ,

with αT ∈Ω1H , αH ∈Ω2H . From (36) one sees that

∗εα = θ ∧ ∗HαH + ε ∗H αT

where ∗H denotes the induced Hodge duality on H . In matrix form, one gets

d∗ε =
(

εLT ∗H −dH ∗H

εdH ∗H 1

)
(38)

on Ω2M , where LT is the Lie derivative along T .
We now consider D∗ε. Using (34) and (35) one finds that

�(β) = β − (∗H dHβ)θ

on Ω1H , so that

Dβ = θ ∧ (LT + dH ∗H dH)β,

and hence

D ∗ε (θ ∧ αT ) = εθ ∧ (LT + dH ∗H dH) ∗H αT(39)

on Ω2V = θ ∧Ω1H .
The whole spectrum of D∗ε = εD∗1 then collapses at speed ε in the diabatic limit ε → 0,

whereas part of the spectrum of d∗ε is not collapsing: for instance (d∗ε)(dθ) = dθ. Hence the
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diabatic behaviour of the whole spectrum of d∗ε cannot be related to D∗ε alone, and indeed
only the collapsing spectra are related. This shows up in the following formulae, which are direct
consequences of (38) and (39), or even more directly from the definitions (34) and (35) of �
and D. If Pε = ε−1d∗ε,

Pε = ε−1d∗ε =
(

D∗1 0
0 0

)
+

(
−(dH ∗H)2 −ε−1dH ∗H

dH ∗H ε−1

)
(40)

= ΠΩ2V (D∗1)ΠΩ2V + εPεΠΩ2HPε.

It follows that in the diabatic limit ε → 0 all the eventually bounded spectrum of Pε = ε−1d∗ε

converges, at least weakly, towards the spectrum of D∗1. Actually its turns out that this spectral
convergence is uniform over bounded intervals, as a consequence of the uniform convergence in
the diabatic limit of the resolvents (λ−Pε)−1 on kerd towards (λ−D∗1)−1, for λ ∈ C \R [47,
Theorem 3.6].

Such a spectral convergence is unfortunately only a first step in the study of a global spectral
invariant like η. To illustrate this, recall that by [13] an equivalent expression of the Riemannian
η-invariant is given by

η(Pε)(0) = π−1/2

∞∫
0

Tr
(
Pεe−tP 2

ε
) dt√

t
.(41)

Now by [47, Theorem 7.1] the following global trace convergence holds

Tr
(
Pεe−tP 2

ε
)
→ Tr

(
D∗e−tDD∗)

,

when ε goes to 0, but uniformly on t only for t � t0 > 0. It cannot be true for small t
since the η-invariants and the integrals (41) diverge in the diabatic limit (although one knows
by transgression formulas that these divergences of η(Pε)(0) are given by local expressions).
From the analytic viewpoint, these divergences are rooted in the transition from elliptic towards
hypoelliptic operators, that cannot be uniform in all (t, ε) regimes. For instance, the asymptotic
spectral densities (Weyl’s laws), or the powers of t occurring in the asymptotic expansions of
the heat kernels for t → 0 are not the same for the elliptic Pε and the hypoelliptic D∗. However
it is possible, as is usual in such asymptotic spectral problems, that the divergences occurring
in the (d∗ε,D∗) transition when ε and t go to 0, are ruled again by local expressions in the
curvature, see also Remark 8.6. This would provide directly a relation like (7) between the finite
part η0 of η(Pε) in the diabatic limit and the pseudohermitian η-invariant η(D∗). Unfortunately,
the techniques used in [47] cannot handle these problems in the general case. The analysis can
however be done in the particular case of CR Seifert manifolds, and we will now restrict ourselves
to this case.

7. Spectral analysis on Seifert manifolds

As explained above, we will now deal with CR-manifolds endowed with both a Seifert and
a CR structure compatible in the sense that the circle action ϕ :S1 → Diff(M) preserves the
CR structure (H,J) and is generated by a Reeb field T . An invariant contact form θ has then
been chosen, and we note that in this section, in opposite to Section 5, we will never assume the
Webster curvature to be constant.

The circle action allows to perform a Fourier decomposition of functions or forms on M
without referring to the quotient structure. For instance, given n ∈ Z and f ∈ C0(M), its n-th
component is the function on M defined by
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πnf =
1
2π

2π∫
0

e−int(f ◦ϕt)dt.

It satisfies (πnf) ◦ ϕt = eint(πnf), so that LT (πnf) = inπnf on C1(M). The projections πn

preserve and are clearly bounded on all Cp(M), Lp(M) or Sobolev spaces. Moreover, the Hilbert
sum of all πn for n in Z is the identity on L2(M). Last, this circle action preserves all structures
and operators related to the above choice of contact form, so that we will be able to split their
spectra into Fourier components.

We can now study the spectral aspects of the contact rescaling gε in (36) on a CR Seifert
manifold M . Of course the adiabatic limit exists in this situation, and has already been much
studied, see e.g. [12,23], but we will need a different approach here, focusing on the diabatic
behaviour of d∗ε and η(d∗ε), and their relations with the spectrum of D∗ and its η-invariant.

One computes easily the Laplacian on Ω2M , relatively to the splitting

Ω2M = θ ∧Ω1H ⊕Ω2H,

namely

Δε =
(

εΔH − ε2T 2 −dH ∗H

εdH ∗H 1 + εΔH − ε2T 2

)
,(42)

where ΔH = dHδH + δHdH is the horizontal Laplacian (not to be confused with the contact
Laplacian introduced in [46,47]), T denotes here the Lie derivative along T , and we have used
that T ∗ = −T and [T, δH ] = 0 since T is a Killing Reeb field on the CR Seifert manifold. We
observe from (38) that the non-diagonal part of Δε is the same as that of d∗ε, so that

Δε = d ∗ε +ε

(
ΔH − T ∗H 0

0 ΔH

)
− ε2T 2.

When studying spectral asymmetry, we shall now restrict ourselves to the subspace Ω2
dM = imd

of Ω2M , on which Δε = (d∗ε)2. We get therefore the following expression relating pairwise
commuting operators:

(d∗ε)2 = d ∗ε +εK − ε2T 2,(43)

with

K =
(

ΔH − T ∗H 0
0 ΔH

)
.

Therefore if α ∈Ω2
dM \ {0} satisfies

(d∗ε)α = λεα, Kα = kα and T 2α = −n2α,(44)

for λε a non-zero eigenvalue of d∗ε, then (43) gives

λ2
ε = λε + εk + ε2n2 �= 0,(45)

and, necessarily,

λε = λ+
ε or λ−

ε with λ±
ε =

1±
√

1 + 4ε(k + εn2)
.(46)
2
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Hence the spectrum of d∗ε splits in two families which behave differently in the diabatic limit
ε → 0. Eigenvalues of type λ−

ε all collapse, while those of type λ+
ε all converge to 1. According

to the general results of [47] discussed in Section 6, only eigenvalues of type λ−
ε are related to

D∗, after rescaling by ε−1.
The previous eigenvalue equation (46) is only a necessary condition and we have to determine

which of the possible λ±
ε are effectively present in spec(d∗ε) and to compute their multiplicities.

To do this, we use the splitting induced by the choice of the Reeb field: suppose α = θ∧αT +αH

is a 2-form in the image of d. By (38), the system (d∗ε)α = λεα is

(λε − εT∗H)αT =−dH ∗H αH ,(47)

(λε − 1)αH = εdH ∗H αT .(48)

Suppose now that

(d∗ε)α = λεα, Kα = kα and T 2α = −n2α.(49)

Then we observe that ∗H = −J on Ω1H and (T∗H)2 = −T 2 = n2. Therefore (47) gives(
λ2

ε − ε2n2
)
αT = −(λε + εT∗H) dH ∗H αH ,(50)

so that αH determines uniquely αT when λ2
ε �= ε2n2. A first (quite large) part of the non-zero

spectrum is then handled as follows.

PROPOSITION 7.1. – • Forms α = θ ∧ αT + αH in Ω2
dM satisfying

(d∗ε)α = λ+
ε α, Kα = kα and T 2α = −n2α(51)

such that (λ+
ε )2 �= ε2n2 are in one-to-one linear correspondence with forms αH in Ω2H

satisfying

ΔHαH = kαH and T 2αH = −n2αH .(52)

• Forms α = θ ∧ αT + αH in Ω2
dM satisfying

(d∗ε)α = λ−
ε α, Kα = kα and T 2α = −n2α(53)

such that (λ−
ε )2 �= ε2n2 are in one-to-one linear correspondence with forms αH in Ω2H

satisfying

ΔHαH = kαH and T 2αH = −n2αH(54)

with k �= |n|.
Proof. – In the case λ2

ε �= ε2n2, αH determines α by (50). Hence one always has αH �= 0 here,
and, by ΔHαH = kαH , k is necessarily non-negative. Moreover by (45) one has λ2

ε �= ε2n2 if
and only if λε �= −εk. This is always satisfied in our case k � 0 when λε = λ+

ε > 0, and only for
k �= |n| when λε = λ−

ε .
Conversely, suppose now given αH , n, k, λε as needed. From (50), one defines

αT = −
(
λ2

ε − ε2n2
)−1(λε + εT∗H) dH ∗H αH ,

which satisfies (47). To check (48), recall that

δH = − ∗H dH ∗H and d2
H =−LT = −TL,
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where L(f) = f dθ (the last equation being a consequence of d2 = 0 see e.g. [47, p. 415]). One
finds (

λ2
ε − ε2n2

)
dH ∗H αT =

(
λεdHδHαH + εd2

HT ∗H αH

)
=

(
λεΔH − εT 2

)
αH

=
(
λεk + εn2

)
αH .

The eigenvalue equation (45) then easily leads to (48). �
For later use, note that the choice (k,n) = (0,0) in the positive case leads to αH = C dθ and

λε = 1, hence αT = 0 by (47), and this is the only case where this might happen by (48).
Proposition 7.1 and (46) show that a large part of spec∗(d∗ε) is symmetric with respect

to 1
2 and is parametrised by the spectrum {k + εn2} of the non-negative elliptic Laplacian

Lε,H = ΔH − εT 2 acting on Ω2H , or, equivalently via Hodge duality, by the spectrum of

Δε = ΔH − εT 2(55)

acting on functions. However from (54) there are “holes” in this symmetry corresponding to the
eigenvalues λ−

ε = −εk when k = |n|. This means that in the case λε = λ−
ε , we have to remove

from the parameter space the horizontal forms αH in

H 0 = ker
(
Δ2

H + T 2
)
.(56)

This space has a simple description using the complex structure J and the associated splitting
Ω1H ⊗C = Ω1,0H ⊕Ω0,1H . We recall that the component d0,1

H of dH from functions to Ω0,1H
is called the ∂b operator, and its kernel is the space of CR functions.

PROPOSITION 7.2. – On a CR Seifert manifold, the space ∗HH 0 is the space of pluri-CR
functions, i.e. real parts of CR functions.

Proof. – Consider the Kohn Laplacians �b = ∂
∗
b∂b and �b = ∂∗

b ∂b acting on functions.
Following, say, [35, Theorem 2.3], one has in dimension 3

ΔH = �b + �b and iT = �b −�b.(57)

Since T commutes with everything here one gets

Δ2
H + T 2 = 4�b�b = 4�b�b.

If f is a real function in H 0 then g = �bf is CR since its image by �b is zero, and is in the
image of ΔH since its integral vanishes. Hence

ΔHf = �bf + �bf = ḡ + g = 2Reg,

and f = 2Reh with h = Δ−1
H g is a CR function as needed. �

Remark 7.3. – CR Seifert manifolds arise as boundaries of Seifert disk bundles, hence the ∂b

operator has closed range and infinite-dimensional kernel. We shall see this very explicitly in
Section 8.

We now study the missing case λ2
ε = ε2n2. We first recall that complex vertical forms

Ω∗V ⊗ C 	 θ ∧ Ω∗H ⊗ C also have a natural bigrading inherited from J on H , independently
from θ. Of particular interest here is the
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DEFINITION 7.4. – The bundle KM 	 θ ∧ Ω1,0H of 2-forms vanishing on H0,1 is called
the canonical CR bundle. We denote by H 2,0 its subspace of closed sections, also called
holomorphic (2,0)-forms, and H 2

+ the real part of H 2,0.

When the CR manifold M can be locally embedded in a 4-dimensional complex manifold N ,
KM is the restriction to M of the canonical bundle KN = Ω2,0N of N , and holomorphic forms
are local restrictions of holomorphic (2,0)-forms in N , see [35] for instance. This explains the
notation in the previous definition, as H 2,0 (resp. H 2

+ ) is related to the space of holomorphic
(2,0)-forms in the usual sense on N (resp. to the space of self-dual 2-forms, orthogonal to the
Kähler form). Note that this is indeed the case for our CR Seifert manifolds for one can take
N = M ×R with the extension of J considered in Section 2.

We now show that the remaining spectrum of d∗ε is entirely given by holomorphic forms.

PROPOSITION 7.5. – A 2-form α ∈ Ω2
dM satisfies

(d∗ε)α = λεα, Kα = kα and T 2α = −n2α(58)

with λ2
ε = ε2n2 if and only if αH = 0 and α = θ ∧ αT belongs to H 2

+ .

Proof. – Let α = θ ∧ αT + αH in Ω2
dM be an eigenfunction of d∗ε satisfying (58) with

λ2
ε = ε2n2. By (45) one has also λε = −εk. We first show that αH = 0.
Since (T∗H)2 = −T 2 = n2 = k2 on Ω1H , one can split

αT = α+
T + α−

T with (T∗H)α±
T = ±kα±

T .

Then (47) and (48) are equivalent to

2εkα+
T = dH ∗H αH ,(59)

−(εk + 1)αH = εdH ∗H αT .(60)

Moreover Kα = kα gives (ΔH − T∗H)αT = kαT , which implies ΔHα−
T = 0 since

[ΔH , T∗H ] = 0 on Ω1H . Therefore α−
T lives in ker δH , so that (60) becomes

−(εk + 1)αH = εdH ∗H α+
T ,

leading by (59) to

ΔHαH = −2εk dH ∗H α+
T = 2k(εk + 1)αH .(61)

But Kα = kα gives ΔHαH = kαH . This together with (61) implies that αH = 0 since otherwise
one would have both k > 0 and εk = −1/2. Hence α = θ ∧ αT is a vertical form as claimed.

Now (60) reads δHαT = 0, or equivalently

dH(JαT ) = 0.

Moreover α belongs to Ω2
dM , hence is closed. The (1,0)-part of αT is then in kerdH and

α = θ ∧ αT lives in H 2
+ as needed.

Conversely, H 2
+ is preserved by J and T . Thus it can be split in eigenspaces of T ∗H =

−JT = k, on which d∗ε = εk by definition, see (38). �
We now summarize our spectral study of d∗ε in relation to the diabatic limit ε→ 0.

COROLLARY 7.6. – The spectrum of d∗ε splits into the following families:
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(i) A converging part Λ+
ε , converging to 1 and parametrised by the whole spectrum of

Δε = ΔH − εT 2 (acting on functions) by the formula

Λ+
ε = spec

(
1 +

√
1 + 4εΔε

2

)
.

(ii) A collapsing part, converging to 0, itself divided into two families:
(a) the first one Λ−

ε , nearly symmetric to Λ+
ε :

Λ−
ε = spec

(
1−

√
1 + 4εΔε

2

)
,

but Δε has here to be restricted to the orthogonal of the space of pluri-CR functions
H 0;

(b) the spectrum Λ0
ε of εT ∗H = −εJT acting on H 2

+ , the real parts of holomorphic
forms in the canonical CR bundle.

The signs of the eigenvalues in the first two families are clear. About the third one, we can
notice:

PROPOSITION 7.7. – Up to some finite-dimensional space, d∗ε is positive on H 2
+ .

Proof. – Recall that d∗ε = −JT on H 2
+ . Consider then the splitting of the Tanaka–Webster

connection ∇H = ∇1,0 +∇0,1 on H ⊗C. Then on KM = θ ∧Ω1,0H one has in dimension 3,

R =∇∗
0,1∇0,1 −∇∗

1,0∇1,0 − i∇T .

On holomorphic forms H 2,0 in KM , the Lie derivative in T equals ∇T and the previous
equation reduces to

−iT = R +∇∗
1,0∇1,0,

which implies that −(iT + R) is a non-negative operator. As the spectrum of d∗ε (on closed
forms) is discrete and without accumulation points, there is only a finite-dimensional space of
eigenvectors with non-positive eigenvalues. �

In order to get more symmetry in the spectral decomposition of d∗ε, one can fill in the holes
in Λ−

ε by adding Δε on H0. As already discussed, this corresponds to adding the cases k = |n|
and λε = −εk �= 0. Given k, the multiplicity of each added virtual eigenvalue −εk is equal to
2h0(k) by Proposition 7.2, where we have denoted

h0(k) = dimC{CR functions f such that iTf =−kf}.

Observe that by (57), h0(k) = 0 if k < 0. In the same spirit, the holomorphic part Λ0
ε above

consists in {εk | k ∈ Z
∗}, with multiplicity 2h2(k) given by

h2(k) = dimC

{
holomorphic (2,0)-forms α ∈ H 2,0 such that iTα = −kα

}
.

Considering the positive operators

Q±
ε =

±1 +
√

1 + 4εΔε
,

2ε
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leads to the more suggestive decomposition:

spec∗
(

d∗ε

ε

)
= ± spec∗

(
Q±

ε

)
∪ 2× spec∗(−iT |H 2,0) \ 2× spec∗(iT |ker∂b

).(62)

This formula shows that the virtual spectrum of d∗ε consists in two completely different parts:
a (nearly) symmetric part to 1/2, that varies with ε, and a constant holomorphic part. We will
see in Lemma 8.5 that the symmetric part always contributes to 1 in the renormalized η-invariant
η0 when torsion vanishes. Hence the computation of η0 finally reduces to counting holomorphic
objects, as will be done in Section 8. This phenomenon has already been observed on a smooth
base in [55] and over orbifolds, in the adiabatic context and constant curvature, in [40].

8. The spectrum of D∗ and comparison of the η-invariants

Our goal is now to relate our description of the spectrum of Pε = ε−1d∗ε to the spectrum of
the middle operator of the contact complex D∗. We already know (see the discussion at the end
of Section 6) that the bounded spectrum of Pε converges towards that of D∗ in the diabatic limit
[47]. Therefore from Corollary 7.6 the non-zero spectrum of D∗ has to split as follows

spec∗(D∗) = spec∗(−ΔH |(H 0)⊥)∪ spec∗(−JT |H 2
+
)(63)

(note the lack of uniformity already noted in the introduction in the convergence of Λ−
ε when

ε → 0, as each eigenvalue μ in the spectrum of ΔH is approached at a speed approximately
εμ). This is enough to compare the needed η-invariant to η0 and conclude (see (67) below and
the discussion following it), but we would like first to spend a few lines to reinterpret this more
precisely in the CR Seifert context.

8.1. The spectrum of D∗ from the CR viewpoint

First of all, the second spectral family of eigenvalues in (63) is clearly embedded in
spec∗(D∗), as (39) shows that D∗ = −TJ on H 2

+ . To understand where the first one comes
from, we consider the closure in L2 of the following operator

Q = dHJ : kerdH ⊂ Ω2V −→ Ω3M.

By definition H 2
+ = kerQ. We also remark that

(Q∗)∗M = (ΠkerdH
JδH)∗M = − ∗M (Πker δH

JdH)

so that kerQ∗ = ∗MH 0 and imQ = ∗M (H 0)⊥. To complete the landscape, we of course define
H 2

− = imQ∗, so that

kerdH ∩Ω2V = kerQ⊕ imQ∗ = H 2
+ ⊕H 2

− .(64)

Then in vanishing Webster torsion, one has by (39) that

Q(D∗) = dHJ
(
−TJ − (dH ∗H)2

)
= TdH + (dH ∗H)3(65)

=−ΔHQ,
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on kerdH ⊂ Ω2V , where ΔH = dHδH is the contact Laplacian on Ω3M , conjugate to ΔH on
functions through ∗M . This shows that D∗ is conjugate to −ΔH on ∗M (H 0)⊥ by Q, and that
D∗ preserves the splitting (64). We therefore recover the decomposition of spec(D∗) in two
families (63), but now entirely seen within Ω2V :

spec∗(D∗) = spec∗(D∗|H 2
−=imQ∗)∪ spec∗(D∗|H 2

+=kerQ).(66)

The space H 2
− is actually a CR invariant, as is H 2

+ . Indeed ΔH is surjective on Ω3M up to
“constant” 3-forms Cθ ∧ dθ; as Q∗ is zero on these,

H 2
− = imQ∗ = imQ∗ΔH

= imD∗JδH , by (65),

= imDJdH .

We now have two splittings of Ω2V ∩ imD: the spectral splitting

imD = E+ ⊕E−

in the positive and negative eigenspaces of D∗, and the CR invariant splitting given by

imD =
(
H 2

+ ∩ imD
)
⊕H 2

− .

It follows from Propositions 7.7, (63) and (64) that, on a CR Seifert manifold, the pair (E+,E−)
is in Fredholm position with respect to (H 2

+ ,H 2
− ). More precisely,

H 2
+ = E+ ⊕ V ⊕H2(M,R) and E− = H 2

− ⊕ V

with the finite-dimensional space V = H 2
+ ∩E−. This enlightens the CR meaning of the spectral

asymmetry of D∗ we are studying here.
Observe however that if the formal definitions of H 2

± make sense on any 3-dim CR manifold,
their use is highly problematic in general. For instance, if M does not bound a Stein manifold,
the spaces E+ and E− still exist and keep their nice analytic features by hypoellipticity of
D∗ on imD, while H 2

+ may be null as the range of ∂b may not be closed. The previous
Fredholm picture then definitely breaks down. Anyway, from the pseudodifferential viewpoint,
the projection on E+ is a natural quantization of the real part of the Szegö projector on
holomorphic (2,0)-forms, as seen at the Heisenberg symbolic level, see e.g [5, Chap. 4] for
more details on this notion.

We now come back to the comparison between the Riemannian and contact spectra. In (63),
we can proceed as in (62) by “filling the holes” in the spectrum of −ΔH on H 0. From (57) we
still have ΔH = −iT on CR functions, and this leads to the following decomposition:

spec∗(D∗) = spec∗(−ΔH)∪ 2× spec∗ l(−iT |H 2,0) \ 2× spec∗(iT |ker∂b
).(67)

Remark 8.1. – In a slightly more tricky way, one can add spec∗(ΔH) to both sides of (67):
the operator ΔH on functions is conjugate to ΔH = dHδH on Ω3M and, wedging by θ, to δHdH

on Ω2V . The spectrum of the contact Laplacian

Δ2 = D∗+ δHdH on Ω2V
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(see Section 9 for more on this one) appears then in a very symmetric manner, namely

spec∗(Δ2) = spec∗(D∗) ∪ spec∗(ΔH)

= spec∗(ΔH) ∪ spec∗(−ΔH)(68) ⋃
2× spec∗(−iT |H 2,0) \ 2× spec∗(iT |ker∂b

).

This spectral symmetry can also be seen directly. Equation (39) yields

Δ2 = T ∗H −dHδH + δHdH = T ∗H +P

on Ω2V = θ ∧ Ω1H . As [∗H , T∗H ] = 0 while ∗HP = −P ∗H , Δ2(∗HP ) = −(∗HP )Δ2 and
spec(Δ2) is symmetric except maybe on kerP , where Δ2 = T∗H =−TJ . It is then easily seen
that the kernel splits into

(kerP )2,0 = H 2,0 ⊕ ∂b
−1

(∗M ker∂b),

yielding (68).

Remark 8.2. – Let us mention that this decomposition and the spectral symmetry of Δ2 also
hold on contact manifolds of any dimension, in vanishing Tanaka–Webster torsion, see [46,
Prop. 8]. This leads to the same kind of formulae as (68), with a “residual spectrum” given
by sum of η-functions counting holomorphic objects.

8.2. Comparison of pseudohermitian and Riemannian η-invariants

Comparing the spectrum of Pε given by (62) with that of D∗ in (67) yields an immediate
relation between their η-functions, up to combinations of ζ-functions of positive operators:

PROPOSITION 8.3. – On a CR Seifert manifold,

η(Pε)− η(D∗) = ζ(ΔH) + ζ
(
Q+

ε

)
− ζ

(
Q−

ε

)
,(69)

where Q±
ε = 1

2ε (±1 +
√

1 + 4εΔε), and Δε = ΔH − εT 2 on functions.

Remark 8.4. – Note that here and in the sequel we include the eigenvalue 0 in the definition
of zeta functions of non-negative operators P . This means we take

ζ(P )(s) =
∑
λi>0

λ−s
i + dimkerP = ζ∗(P )(s) + dimkerP.

The reason for this convention is that ζ(P )(0), defined in this way, is local for large classes of
non-negative operators, as seen by considering P + h with h→ 0+, see also [4]. In particular in
(69), one has

ζ∗(ΔH) + ζ∗
(
Q+

ε

)
− ζ∗

(
Q−

ε

)
= ζ(ΔH) + ζ

(
Q+

ε

)
− ζ

(
Q−

ε

)
,

since Q+
ε > 0 and dimkerΔH = dimkerQ−

ε = 1, being achieved by constant functions.

Following Definition 3.2, the renormalized η-invariant η0(M,θ) is the constant term in the
development of η(Pε)(0) = η(M,gε) in powers of ε. It is then immediately extracted from (69)
as follows:

η0(M,θ) = η(D∗)(0) + ζ(ΔH)(0) + ζ0(Q),(70)
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where ζ0(Q) is the constant term in the development in powers of ε

ζ
(
Q+

ε

)
(0)− ζ

(
Q−

ε

)
(0) =

2∑
i=−2

ζi(Q)εi,(71)

which we already know to exist by (13) and (69), since it is the same as that of η(Pε) except for
the constant term. Moreover, it turns out that ζ0(Q) can be evaluated without too much harm on
arbitrary CR manifolds of dimension 3.

LEMMA 8.5. – On any 3-dimensional CR manifold,

ζ
(
Q+

ε

)
(0) = −ζ

(
Q−

ε

)
(0),

and

ζ0(Q) =
1

24π2

∫
M

|τ |2θ ∧ dθ,

where τ =−1
2JLT J is the Tanaka–Webster torsion.

Proof. – In view of

2εQ±
ε = ±1 +

√
1 + 4εΔε,

we consider for λ � −1 the family of positive operators

Q(λ) = λ +
√

1 + 4εΔε,

where actually

εΔε = εΔH − ε2T 2 = Δgε

is the standard Laplacian on functions for the rescaled metric gε = ε−2θ2 + ε−1γH we use here.
Seeley’s classical results [48] imply that Q(λ) is a smooth family of positive elliptic

pseudodifferential operators of order 1, and that their ζ-functions

P (λ)(s) := ζ
(
λ +

√
1 + 4Δgε

)
(s)

are meromorphic with possibly simple poles at s = 1, 2 and 3. According to [4, Prop. 2.9] or [25,
Lemma 1.10.2] one can differentiate P (λ)(s) with respect to λ to get

d

dλ
P (λ)(s) = −sP (λ)(s + 1).

Therefore d4

dλ4 P (λ)(0) = 0 since P (λ) is regular at s = 4, and P (λ)(0) is a polynomial of degree
3 in λ:

P (λ) = R0 − λR1 + λ2 R2

2
− λ3 R3

3
,(72)

where R0 = ζ(
√

1 + 4Δgε)(0) and Rn for n > 0 stands for the residue at s = n of

ζ
(√

1 + 4Δgε

)
(s) = ζ(1 + 4Δgε)(s/2).
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Actually these residues are related to the development of the heat kernel of Δgε on functions in
a simple way. Let

Tr
(
e−tΔgε

) t→0+

∼ a0(gε)
t3/2

+
a2(gε)
t1/2

+ · · · .

According to [25, Theorem 4.8.18d], the constants are computed in terms of the volume and
the Riemannian scalar curvature of gε as:

a0(gε) =
Vol(M,gε)

(4π)3/2
and a2(gε) =

1
6(4π)3/2

∫
M

Scal(gε)dvolgε .(73)

This yields

Tr
(
e−t(1+4Δgε )

)
= e−t Tr

(
e−4tΔgε

)
∼ a0(gε)

8t3/2
+

4a2(gε)− a0(gε)
8t1/2

+ · · · ,

and by Mellin’s transform [25, Lemma 1.10.1],

Γ(s/2)ζ(1 + Δgε)(s/2) =
a0(gε)

4(s− 3)
+

4a2(gε)− a0(gε)
4(s− 1)

+ h(s),

with h holomorphic for Res >−1. Hence

R0 = ζ
(
(1 + 4Δgε)

1/2
)
(0) = 0

as this is the only way to cancel the simple pole of the Γ-function at s = 0, and

R2 = 0

(because the Γ-function does not vanish at s = 2 and the r.h.s. has no pole at this point) so that
P (λ) is an odd polynomial. This gives P (1) = −P (−1) or, equivalently,

ζ
(
Q+

ε

)
(0) = −ζ

(
Q−

ε

)
(0)

as announced. Moreover one has

R1 =
4a2(gε)− a0(gε)

4
√

π
and R3 =

a0(gε)
2
√

π
,

and thus by (72) and (73)

ζ
(
Q+

ε

)
(0) =−R1 −R3/3 =

1√
π

(
a0(gε)

12
− a2(gε)

)
(74)

=
1

48π2ε2

(
1
2

∫
M

θ ∧ dθ −
∫
M

Scal(gε)θ ∧ dθ

)
.

The Riemannian curvature of gε can be developed in powers of ε using the links between Tanaka–
Webster and Levi-Civita connections underlined in (14). According to e.g. [46, p. 318], one finds
in dimension 3 that

Scal(gε) = −1
+ 2εR− ε2|τ |2,
2
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where R and τ are Tanaka–Webster curvature and torsion. The constant term in the full
development of ζ(Q+

ε ) is then necessarily equal to the integral of 1
48π2 |τ |2 on M . �

Remark 8.6. – According to (62), Q+
ε describes the non-collapsing spectrum of d∗ε, on

Seifert CR manifolds. We have seen that this spectrum only contributes by a local expression
ζ(Q+

ε )(0) to η(d∗ε). We expect this to hold in the general case. Indeed on any CR manifold,
the non-collapsing spectrum is always strictly positive, since it converges to 1 and d∗ε has no
spectral flow. It therefore always contributes through a zeta function, whose value at 0 is local
for a wide class of operators.

8.3. A computation of η0

The previous Lemma 8.5, together with the spectral decomposition (62), leads to a general
computation of the renormalized η-invariant on all CR Seifert manifolds, including the still
missing exceptional cases of Section 5. Indeed, one has using our convention for zeta in
Remark 8.4

ζ∗
(
Q+

ε

)
− ζ∗

(
Q−

ε

)
= ζ

(
Q+

ε

)
− ζ

(
Q−

ε

)
+ 1,

since 0 belongs to spec(Q−
ε ) with multiplicity 1 (corresponding to the constant functions). It

follows then from (62) that

η0(d∗) = ηad(d∗) = 1 + 2
(
η(−iT |H 2,0)(0)− η(iT |ker∂b

)(0)
)
.(75)

These holomorphic counting functions can be nicely expressed as dimensions of spaces of
sections on adequate orbifold line bundles over the basis orbifold Riemann surface, which in
turn are easily computed with the help of Riemann–Roch–Kawasaki’s theorem [32]. Note that
this has already been observed in the adiabatic setting and constant curvature by L. Nicolaescu
in [40, Sec. 1]. We give below only a short description of the computation, and refer to [40] for
more details.

Following Section 5, the CR Seifert manifold M may be seen as the unit circle bundle
of some orbifold line bundle L over Σ, with singular data (αi, ρi, βi) at points mi ∈ Σ. Let
KΣ = Λ1,0T ∗Σ denote the orbifold canonical bundle of Σ. Now, given a Fourier component
iT = n ∈ Z, the space of CR functions f such that f ◦ ϕt = e−intf are interpreted as the space
of holomorphic sections of Ln, and we denote by h0(Ln) its dimension. Moreover the space of
holomorphic forms σ in the canonical CR bundle KM 	 θ∧KΣ ⊗L such that −iTσ = nσ may
be seen as the space of holomorphic sections of KΣ ⊗ Ln, i.e. (1,0)-holomorphic forms in Ln.
Let h1(Ln) denote its dimension. Hence we get

η(−iT |H 2,0)(s)− η(iT |ker∂b
)(s) =−

∑
n∈Z∗

sgn(n)
h0(Ln)− h1(Ln)

|n|s(76)

=
∑

n∈Z∗

sgn(n)
χ∂(L−n)

|n|s .

Following the method in [40, Sec. 1], this sum can be computed explicitly using Riemann–Roch–
Kawasaki theorem (extension of the classical Riemann–Roch to the orbifold case) [32]. Using
the (rational) orbifold Euler characteristic χ of the base Σ and the (rational) degree d of L, it
reads

χ∂

(
L−n

)
=

χ

2
− nd +

∑ 1
2

(
1− 1

αi

)
−

{
−nβiρ

′
i

αi

}
,(77)
i
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where {x} = x − [x] denotes the fractional part of x, and ρ′i is the inverse of ρi mod αi. This
purely topological formula holds true, irrespective of the curvature value. The result should then
be the same in the constant and non-constant curvature cases, so that Ouyang’s formula (27) for
η0 holds true on any CR Seifert manifold.

To get the formula explicitly, one can argue as follows: the constant terms in (77) do not
contribute to the sum (76), whereas

∑
n∈Z∗

−d|n|−s+1 =−2dζ(s− 1)

has value d
6 at s = 0. The Dedekind–Rademacher sums s(αi,1, βiρ

′
i) = s(αi, ρi, βi) appear from

the periodic orbifold contribution in (77), as in Nicolaescu’s work using [40, Proposition 1.4].
Inserting in (75) leads to the desired expression (27) for η0.

Remark 8.7. – This last computation shows that Theorem 1.4 could have been proved in a
quicker way on constant curvature CR Seifert manifolds: applying the previous formulae and
using the computation of ζ(ΔH)(0) given below lead to an expression for η(D∗) that can be
compared directly to Ouyang’s formula for η0. We have however omitted this proof since the
links between η(D∗) and η0 proved in this way would have appeared as the result of a possibly
completely fortuitous or miraculous equality between explicitly known numerical expressions.
On the contrary, our proof stresses the fact that the relation between D∗ and d∗ is deeply rooted
in the nature of CR geometry and the diabatic limit. Moreover, it applies to the whole family of
CR Seifert manifolds, irrespective of their curvature, and especially the exceptional cases that do
not admit constant curvature contact forms.

We now complete the comparison between the renormalized η-invariant η0(M,θ) and the
pseudohermitian η-invariant η(D∗).

THEOREM 8.8. – Let M be a CR Seifert manifold. Then,

η0(M,θ) = η(D∗)(0) + ζ(ΔH)(0)(78)

with

ζ(ΔH)(0) =
1

512

∫
M

R2θ ∧ dθ.(79)

Proof. – From Proposition 8.3 and Lemma 8.5 it remains to compute ζ(ΔH)(0). The
development of the heat kernel e−tΔH of the Kohn Laplacian ΔH has been studied by Beals,
Greiner and Stanton in [6, Theorem 7.30]. On any CR manifold of dimension 3,

Tr
(
e−tΔH

)
∼

∞∑
n=0

tn−2bn(M,θ) as t → 0+,

where bn(M,θ) are integrals on M of polynomials of covariant derivatives of Tanaka–Webster
curvature and torsion. Mellin’s transform yields again

Γ(s)ζ(ΔH)(s) =
∑
n�N

bn(M,θ)
s− 2 + n

+ hN (s)
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with hN holomorphic for Res > N − 2, and hence

ζ(ΔH)(0) = b2(M,θ).

As ζ(ΔH)(0) stays unchanged when θ becomes kθ, one must have b2(M,kθ) = b2(M,θ), and
the same argument as in Lemma 4.1 gives that

b2(M,θ) = C1

∫
M

R2θ ∧ dθ + C2

∫
M

|τ |2θ ∧ dθ,

for some constants C1, C2.
Thanks to N. Stanton’s work [51] it is possible to determine C1 on the sphere S

3. Indeed, let
L = 4ΔH + R be the CR-conformal Laplacian on S

3. Stanton states in [51, Theorem 4.34] that
for the contact form θ = i∂r = i

2 (z1 dz̄1 + z2 dz̄2),

Tr
(
e−tL

)
=

π2

256t2
+ O

(
1
t2

e−π2/4t

)
as t→ 0+.

Now Tanaka–Webster curvature R equals 4 here, so that the heat development of ΔH is

Tr
(
e−tΔH

)
= et Tr

(
e−tL/4

)
= et π2

16t2
+ O

(
1
t2

e−π2/4t

)
,

and the constant term b2(M,θ) has value π2

32 . Hence

ζ(ΔH)(0) =
π2

32
= C1

∫
S3

R2θ ∧ dθ = 16π2C1

yields C1 = 1
32×16 on the sphere, hence on any CR Seifert manifold. �

Putting together this last result and Theorem 1.1 leads to Corollary 1.5.

9. The pseudohermitian η-invariant and its CR invariant correction

We first begin by showing existence of the pseudohermitian η-invariant in dimension 3.
It follows mostly the classical method of Chapter 1 of [25], using pseudodifferential calculi
developed on contact manifolds. As a consequence, we shall put below the emphasis mainly
on the steps where the hypoelliptic context introduces differences with the well-known elliptic
theory.

THEOREM 9.1. – Let (M,H,J) be a compact 3-dimensional strictly pseudoconvex CR
manifold endowed with a compatible contact form θ and the associated horizontal metric
g1 = θ2 + dθ(·, J ·). Then the series

η(D∗)(s) = Tr∗
(
D∗|D∗|−(s+1)

)
=

∑
λi∈spec(D∗)\{0}

λi

|λi|s+1

converges absolutely for Res > 2, and has a meromorphic extension with possible simple poles
at s = 2 − n/2 for n ∈ N. Moreover η(D∗)(s) is regular at s = 0; its value η(D∗)(0) is the
pseudohermitian η-invariant.
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Proof. – From [46] the two Laplacians

Δ2 = D∗+ δHdH on Ω2V and Δ3 = dHδH on Ω3M,

are maximally hypoelliptic (be careful: Δ3 is non-negative, but Δ2 is not, despite the notation).
This means that they control two horizontal derivatives in L2 norms (and one vertical derivative).
By the associated Sobolev embeddings, their resolvents are compact and their spectra are
discrete. By orthogonality and conjugation, the non-zero spectrum of Δ2 splits into

spec∗(Δ2) = spec∗(D∗)∪ spec∗(Δ3),(80)

and D∗ has discrete pure point spectrum with finite multiplicities on imD. Sobolev embeddings
also yields that (i + Δ2)−n, (i + Δ3)−n are trace class for n large enough, hence the same for
(D∗)−n. The series η(D∗)(s) is then well defined and holomorphic for Res large.

Getting more information on η relies in the Riemannian (elliptic) case on the use of the
classical pseudodifferential calculus for elliptic operators. Such a symbolic calculus has also
been developed on contact manifold by Beals, Greiner and Stanton in [5,6] or Taylor in [53], a
concise account may also be found in [24]. The symbols of the hypoelliptic operators Δ2 and Δ3

are invertible in this calculus: this follows from [30, Lemmas 5.18, 5.19], or else by observing
that in dimension 3 their principal symbols are sums of invertible Folland–Stein ones.

The parameter calculus adapted to the Heisenberg setting developed in Propositions 5.20 to
5.26 of [30] yields pseudodifferential approximations R(λ) of the resolvents ((Δ2)2 − λ)−1,
when λ /∈ R

+. This uses the classical iteration process described in [25, p. 51] or [50, Sec. 9.1]
for instance, where the standard pseudodifferential symbolic product has to be replaced by the
Heisenberg one, see [6,24]. The symbol of these R(λ) are universal expressions involving the
symbol of (Δ2)2 −λ, its inverse, and tensorial expressions of the Webster–Tanaka curvature and
its derivatives.

Then, as explained in [25, Sec. 1.7], R(λ) can be used in place of ((Δ2)2−λ)−1 in the contour
integral

Δ2e−t(Δ2)
2
=

1
2iπ

∫
γ

e−tλΔ2

(
Δ2

2 − λ
)−1

dλ,

with γ ⊂ C \ R+ the correctly oriented boundary of the cone {Imλ � Reλ + 1}, in order to
get good approximations of Δ2e−t(Δ2)

2
when t goes to 0. Following Lemma 1.7.7 of [25],

homogeneity arguments then easily lead to the asymptotic development of Tr(Δ2e−tΔ2
2) when

t→ 0+. Namely,

Tr
(
Δ2e−tΔ2

2
)
∼

∞∑
n=0

t(n−6)/4Rn(M,θ),(81)

where Rn(M,θ) are integrals over M of universal polynomials in Tanaka–Webster curvature
and covariant derivatives (with respect to the classical elliptic development given in [25,
Lemma 1.7.7], the only changes here concern the powers of t: this is due to the fact that, in the
Heisenberg calculus, horizontal directions have weight 1, while T is of weight 2. For instance,
this implies that the “Heisenberg-dimension” of M is 4 instead of 3).

Remark 9.2. – Another more direct track, if steeper, also leads to such kernel developments.
One can follow Beals–Greiner–Stanton’s approach to heat kernels asymptotics in the contact
setting. In [6] they have extended their symbolic calculus on M ×R to include the heat operator
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∂t + P for some positive sub-Laplacians P . They show that in the case P is a positive Folland–
Stein type operator, one can inverse the symbol of ∂t +P inside this calculus, which gives rather
directly developments like (81) for Tr(Qe−tP ) from the symbol of Q(∂t + P )−1, see also [24,
Sec. 4]. By R. Ponge’s recent work [43,44], this approach leads to a relatively simple proof of
the index theorem, and also applies to more general positive hypoelliptic P as (Δ2)2.

Let us now complete the proof of Theorem 9.1. Mellin transform and the functional calculus
relate the asymptotic development in small time of the heat kernel to η and ζ functions [25,
Section 1.10]. In particular, [25, p. 81] and (81) yield:

η(Δ2, s)Γ
(
(s + 1)/2

)
=

N∑
n=0

4
2s + n− 4

Rn(M,θ) + hN (s)

where hN is an holomorphic function for s > 2−N/2. Hence we get the required meromorphic
extension of η(Δ2)(s). The same technique applies to Δ3 on Ω3M , but this is a positive operator
whose heat kernel development has been extensively treated in [6, Theorem 7.30]: the η-function
is here a ζ-function which is regular at s = 0.

Using the spectral decomposition (80), we get that η(D∗)(s) is meromorphic with s = 0 being
possibly a simple pole. It remains to show that this function is regular at s = 0. We first note that
the value of the residue of η(D∗) at s = 0 is 2R4(M,θ). It is easily seen in (39) that D∗ becomes
kD∗ in the contact rescaling θ → kθ. Therefore, η(D∗kθ)(s) = ksη(D∗θ)(s) and

R4(M,kθ) = R4(M,θ).

Following the proof of Lemma 4.1, this implies that, in dimension 3,

R4(M,θ) = C1

∫
M

R2θ ∧ dθ + C2

∫
M

|τ |2θ ∧ dθ(82)

where R and τ are Tanaka–Webster curvature and torsion and C1, C2 are universal constants.
The residue is moreover invariant under smooth deformation of the pseudohermitian and CR

structures (i.e. both θ and J ): as underlined in [25, Lemma 1.10.2] this general feature stems
from the existence of a local variation formula for η-functions, namely in the absence of spectral
flow here:

η̇(Δ2)(s) =−sTr
(
Δ̇2|Δ2|−(s+1)

)
.

The point here is that the trace on the right has a meromorphic extension coming from the
development of Tr(Δ̇2e−t(Δ2)

2
), but the possible simple pole at s = 0 is actually cancelled out

by the s in front of the whole expression.
The conclusion is that the integrals in (82) have to be independent of variations of θ and J ,

and this implies C1 = C2 = 0: indeed, the variations of R2 and |τ |2 when θ → θf = e2fθ have
been computed in [35, Sec. 5]. One finds that

d

df

(
R2θ ∧ dθ

)
= 8R(ΔHf)θ ∧ dθ(83)

while (if τ = A11θ
1 ⊗ θ1)

d

df

(
|τ |2θ ∧ dθ

)
= 2i(A1̄1̄f,11 −A11f,1̄1̄)θ ∧ dθ.(84)
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After integration by parts, this yields

d

df
R4(M,θ) = 8C1

∫
M

fΔHRθ ∧ dθ + 2iC2

∫
M

f(A1̄1̄,11 −A11,1̄1̄)θ ∧ dθ.(85)

Testing on a circle bundle (with vanishing torsion) over a Riemann surface of non-constant
curvature cancels out C1. General expression for torsion of hypersurfaces in [54, Sec. 4] shows
that A1̄1̄,11−A11,1̄1̄ does not vanish identically: actually, following [36] the only Bianchi identity
of order 2 between R and τ in dimension 3 is R,0 = A11,1̄1̄ + A1̄1̄,11, which does not occur in
(85) so that C2 = 0. �

Remark 9.3. – The contact-de Rham complex exists on contact manifolds of any dimension,
and the pseudohermitian signature operator D∗ is still self-adjoint in dimension 4n − 1.
Therefore the properties of η(D∗)(s) stated in Theorem 9.1 make sense on contact manifolds
of any dimension. Most of the previous discussion, and its conclusions, still applies, but the last
argument about the regularity at s = 0 of η(D∗). The residue is still both a contact invariant,
independent of the choices of θ and J , and an integral of some universal pseudohermitian
polynomial of the right weight. But many possibilities are now left, which cannot be so easily
analysed (even in the next relevant dimension 7, the algebra becomes quite complicated). At the
present time, one still ignores whether this residue always vanishes or not.

9.1. The CR invariant correction of η(D∗)

Having now a well-defined object at hand, we can proceed to the construction of a modified
pseudohermitian η-invariant.

THEOREM 9.4. – There exists a unique choice of universal constants C1 and C2 such that, for
any compact strictly pseudoconvex CR 3-manifold M , the following pseudohermitian invariant

η(D∗) = η(D∗) + C1

∫
M

R2θ ∧ dθ + C2

∫
M

|τ |2θ ∧ dθ,(86)

formed from a contact form θ, its Tanaka–Webster curvature R and torsion τ , is in fact a CR
invariant of M , which we shall call the modified pseudohermitian η-invariant.

The key point for the proof of Theorem 9.4 is the following: on an oriented CR 3-manifold M ,
the space of adapted contact forms for the contact structure (let us denote it by Θ) is contractible
and non-empty. Then, for a pseudohermitian invariant, being CR invariant simply means being
independent of the choice of the contact form, i.e. having a vanishing derivative in the direction
of any variation in θ.

Using the analysis above, we get that η(D∗), seen as a function on the space Θ of contact
forms adapted to a given CR structure, has the following features:

(i) η(D∗kθ) = η(D∗θ) for any positive k;
(ii) its derivative is local: if θt = (1 + tf)θ is a small variation of contact forms,

d

dt
η(D∗θt)t=0 =

∫
M

fEθθ ∧ dθ,

where Eθ is a local pseudohermitian invariant of θ built algebraically and universally from
a finite jet of θ and its Tanaka–Webster curvature R and torsion τ .
4e SÉRIE – TOME 40 – 2007 – N◦ 4



DIABATIC LIMIT AND CR 3-MANIFOLDS 625
One then deduces from (i) and (ii) that, necessarily,

Ekθ = k−4Eθ,(87)

and moreover ∫
M

Eθθ ∧ dθ = 0.(88)

Said otherwise, Eθ is of weight −4 and vanishing integral. One can then remark a basic fact:

LEMMA 9.5. – Let α be a smooth closed, and real 1-form on Θ where TθΘ is identified to
the space of functions on M through f → d

dt (1 + tf)θ. If α is of the type

αθ :f ∈C∞(M) �→ αθ(f) =
∫
M

fAθθ ∧ dθ(89)

where Aθ is a universal local pseudohermitian invariant of a finite jet of θ. If Aθ is of weight −4
and of vanishing integral, then α is a linear combination of the derivatives in θ of∫

M

R2θ ∧ dθ and
∫
M

|τ |2θ ∧ dθ.

Proof. – We argue as in Section 4, classifying local pseudohermitian invariants that are real
and of weight 4. We have seen that the sole possibilities are the linear combinations:

Aθ = c1R
2 + c2|τ |2 + c3R,0 + c4ΔHR + c5i(A11,1̄1̄ −A1̄1̄,11)

for some real constants c1, . . . , c5. Now∫
M

Aθθ ∧ dθ =
∫
M

(
c1R

2 + c2|τ |2
)
θ ∧ dθ,

and this integral does not vanish in general, so that c1 = c2 = 0.
From (83) and (84), the expression∫

M

f
(
c4ΔHR + c5i(A11,1̄1̄ −A1̄1̄,11)

)
θ ∧ dθ

is the variation of ∫
M

(
c4

R2

8
− c5

|τ |2
2

)
θ ∧ dθ.

In particular it induces a closed 1-form on Θ.
The lemma will now follow from the vanishing of c3. It suffices to check that the term

R,0 = A11,1̄1̄ + A1̄1̄,11 does not yield a closed form on Θ. According to [35, Sec. 5], a change of
contact form θ → θf = efθ induces the following changes

Rf = e−f
(
R + 2ΔHf − 2|f,1̄|2

)
and Tf = e−f (T + if1Z1̄ − if1̄Z1),
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and therefore

d

df
(R,0θ ∧ dθ) =

(
−f,0R + if,1R,1̄ − if,1̄R,1 + 2(ΔHf),0

)
θ ∧ dθ.

When restricted on the sphere S
3 with its constant curvature pseudohermitian structure this gives∫

M

(
g

d

df
− f

d

dg

)
(R,0θ ∧ dθ) = 2

∫
M

(
(ΔHf),0g − (ΔHg),0f

)
θ ∧ dθ

=−4
∫
M

(ΔHf)(T.g)θ ∧ dθ.

This expression does not vanish identically: for instance when taking any non-T -invariant
function g and f such that ΔHf = T.g. This completes the proof. �

This shows Theorem 9.4, exhibiting a new CR invariant

η(D∗) = η(D∗) + C1

∫
M

R2θ ∧ dθ + C2

∫
M

|τ |2θ ∧ dθ.(90)

Uniqueness in the choice of the constants is obtained because no linear combination in the
integrals of R2 and |τ |2 can be a CR invariant. �

Remark 9.6. – An analogous line of reasoning yields: there exists a universal constant C ′

such that, for any compact strictly pseudoconvex Cauchy–Riemann 3-manifold M ,

η(D∗)−C ′ν(M)(91)

is a contact invariant, i.e. is independent of the choice of the complex structure. The proof (left
to the reader) consists in proving that the only tensorial choice for the differential of the CR
invariant η is (up to some multiplicative constant) the Cartan curvature like in (29) and (30).

The best one can get is the following: it has already been remarked earlier that the value
of the renormalized η-invariant η0 is purely topological on CR Seifert manifolds. Keeping
the contact form fixed, this means that it has to be independent of the complex structure. As
η(D∗) = η0 − 1

512

∫
R2θ ∧ dθ and

η −C ′ν = (1 + 3C ′)η0 +
(

C1 −
1

512
− C ′

16π2

)∫
R2θ ∧ dθ

must be a contact invariant, this implies that

C1 −
1

512
− C ′

16π2
= 0,

since the integral of R2 has non-zero variations with respect to the complex structures.
Guessing the values of C in Conjecture 1.6 and C2 in Theorem 9.4 seems much harder. Having

a precise value for them would (for instance) involve a precise computation of the spectrum of
η(D∗) in a case where the torsion does not vanish. This seems difficult to achieve either with our
methods, which rely on Fourier decomposition under the circle action, or with classical tools of
representation theory, which require a high degree of homogeneity.
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Of course, one knows that the derivative of η(D∗) is given by algebraic expressions of the jet
of the hypoelliptic symbols of the involved operators. However these expressions are so intricate
that the constants are only computable this way “in theory”, and not in practice.

Remark 9.7. – The same arguments also apply to the renormalized η-invariant η0 introduced
in Section 3, instead of η(D∗). This explains a priori the existence of some local correction of
η0 leading to a CR invariant, itself related (up to some contact invariant) to a multiple of ν; this
might be compared with Lemma 4.1.

10. Applications

Corollaries 1.7 and 1.9 rely on the formula discovered by the first and second authors [11,
Theorem 1.2]: for any Einstein asymptotically hyperbolic manifold (N4, g),

1
8π2

∫
N

(
3|W−|2 − |W+|2 +

1
24

Scal2
)
− χ(N) + 3τ(N) = ν(M).(92)

For complex hyperbolic surfaces, the integral term is zero. If N̄ is smooth, with M as the only
end, then the topological contributions always are integers. Corollary 1.7 is then proved.

It is instructive to check the results for a holomorphic disk bundle over a hyperbolic Riemann
surface Σ, with M as its boundary. Clearly one has χ(N) = χ(Σ) = χ and τ(N) = −1. If N
carries a complex hyperbolic metric with M as its boundary at infinity, then Corollary 1.7 gives
the equation

χ− 3τ = −ν(M) = d + 3 +
χ2

4d

and the only solution is d = χ
2 . We then recover the well-known fact that the only disk bundles

carrying a complex hyperbolic metric are the square roots of the (complex) tangent bundle.
Corollary 1.9 is again a direct consequence of (92), since for a Kähler–Einstein metric, the

integral term is non-negative. For an Einstein metric, the story is more complicated, but positivity
is achieved if solutions of the Seiberg–Witten equations exist, and it is proved in [45, Corollary
31] that it is a consequence of the non-vanishing of the Kronheimer–Mrowka invariants [34].

From [17, Theorem 5.12], one knows that pseudoconvex complex hyperbolic surfaces N have
vanishing third homology group H3(N,Z). Hence no multiple ends can occur, but one expects
orbifold singularities or cusps to appear in the interior of a complex hyperbolic filling. The
complex hyperbolic cusps can be compactified to yield a complex orbifold surface that we note
again N , by adding at the infinity of each cusp a quotient Σi of a 2-torus. Corollaries 1.7 and
1.9 remain true in this case, with the Euler characteristic and the signature of N being replaced
by their orbifold versions: In case � cusps are present, there is an additional contribution in
the signature coming from the self-intersection of each 2-torus at infinity. Namely, one has to
consider the modified signature [9, Proposition 3.4]

τcusp(N) = τ(N)− 1
3

�∑
1

[Σi] · [Σi].

Of course, Corollary 1.8 is no more true, since the characteristic numbers are now rational; the
denominator of ν only gives a hint on the order of the singularities needed to fill M .
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10.1. Explicitation for lens spaces

We now specialize the formula obtained in Corollary 1.3 to the lens space L(p, q) obtained as

a quotient of the 3-sphere S
3 in C

2 by Z/pZ, with its generator acting on C
2 by (e

2iπ
p , e

2iqπ
p ),

where q is prime with p. They are interesting in connection with filling by Einstein metrics, since
some of them appear as boundary at infinity of selfdual Einstein metrics [16]. On the other hand,
it has been shown that large families of them admit symplectic fillings [37], so that Corollary 1.9
may be applied to these.

PROPOSITION 10.1. – One has: ν(L(p, q)) =− 1
p + 12s(p, q,1).

For sake of comparison, we recall to the interested reader the value of the classical
η-invariant on lens spaces with the standard round metric, as computed by Atiyah–Patodi–Singer
[3, Proposition 2.12]:

η
(
L(p, q)

)
=−4s(p, q,1).(93)

Proof. – For simplicity, we shall assume that (q − 1) is prime with p (as a matter of fact this
implies that we take q �= 1), and we leave the general case to the reader. Let us see the 3-sphere
as the bundle O(−1) over the projective line CP 1. The induced action on CP 1 has two fixed

points: the two antipodal points, with action of Z/pZ generated by e±i2π q−1
p , and action in the

fiber by ei 2π
p and ei2π q

p respectively. Therefore L(p, q) is a S
1-orbifold bundle over an orbifold

projective line with two orbifold points with angle 2π
p . The Euler characteristic is χ = 2

p and the

degree (first Chern number) is d = − 1
p . Now Corollary 1.3 and Ouyang’s theorem 5.2 give the

formulae

ν
(
L(p, q)

)
=−3 +

2
p
− 12

(
s(p, q − 1,1) + s(p,1− q, q)

)
,

η
(
L(p, q)

)
= 1− 1

p
+ 4

(
s(p, q − 1,1) + s(p,1− q, q)

)
(note that the extra parameter ρ in Theorem 5.2 appears naturally on lens spaces), so that
ν(L(p, q)) = − 1

p − 3η(L(p, q)). The proposition then follows from (93). �
10.2. Comparison with the Burns–Epstein invariant

Another interesting point is to compare these results with those obtained by use of the
Burns–Epstein μ-invariant [14,15] (it is already suggested at the end of [15] that obstructions
follow from computations of μ). The μ-invariant is only defined on strictly pseudoconvex
CR 3-manifolds whose tangent holomorphic bundle is a torsion class in homology. Roughly
speaking, it comes from Chern–Simons-type constructions (integration of a local formula),
whereas the ν-invariant is extracted from the Atiyah–Patodi–Singer η-invariant. The relation
between μ and ν is similar to that between the η and the Chern–Simons invariants: more
precisely, when μ is defined, then for a CR structure J one has

ν(J) = 3μ(J) + constant,

with the constant depending only on the underlying contact structure [11, Theorem 1.3]. Burns–
Epstein’s version of Miyaoka–Yau [15] then reads, if M is the boundary at infinity of a Kähler–
Einstein N :

χ(N)− 1
c̄1(N)2 � −μ(M),(94)
3
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with equality if the metric is complex hyperbolic; here c̄1 is a lift in H2(N,M) of c1(N).
A first important difference here is that our obstruction in Corollary 1.9 (filling by an ACH

Einstein metric) is purely topological, whereas (94) involves a complex structure and a Kähler–
Einstein metric.

Another important fact to be noticed, at least in the case when the quotient has no orbifold
singularities, is that the obstructions obtained by both methods are different: if M is a
S

1-bundle over the Riemann surface Σ, then the μ-invariant, being defined by a local formula, is
multiplicative on finite coverings [14,15]. Hence the values are

μ =
χ2

4d
whereas ν =−χ2

4d
− d− 3.(95)

Equation (94) implies that 3μ must be an integer, i.e. 3χ2

4d must belong to Z, a condition that is
weaker than Corollary 1.8, by a factor 3.
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