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TORSION p-ADIC GALOIS REPRESENTATIONS
AND A CONJECTURE OF FONTAINE

BY TONG LIU

ABSTRACT. — Let p be a prime, K a finite extension of Q, and T a finite free Z,-representation
of Gal(K/K). We prove that T ®z, Q, is semi-stable (resp. crystalline) with Hodge-Tate weights in
{0, ...,r}ifand only if, for all n, T'/p" T is torsion semi-stable (resp. crystalline) with Hodge—Tate weights
in{0,...,r}.
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RESUME. — Soient p un nombre premier, 7 un entier positif, KX une extension finie de Q, et 7" une
Z,-représentation de Gal(K /K ) libre de rang fini en tant que Z,-module. On montre que 7' ®z, Qp est
semi-stable (resp. cristalline) a poids de Hodge—Tate dans {0, ..., 7} si et seulement si, pour tout entier n, la
représentation T'/p™ T est le quotient de deux réseaux dans une représentation semi-stable (resp. cristalline)
a poids de Hodge-Tate dans {0, ...,7}.
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1. Introduction

Let k be a perfect field of characteristic p, W (k) its ring of Witt vectors, Ky = W(kz)[%],
K /K a finite totally ramified extension and e = e(K/Kj) the absolute ramification index. For
many technical reasons, we are interested in understanding the universal deformation ring of a
fixed residual representation of G := Gal(K /K). In particular, it is important to study those
deformations that are semi-stable (resp. crystalline). In [12], Fontaine conjectured that there
exists a quotient of the universal deformation ring parameterizing semi-stable (resp. crystalline)

representations. To prove the conjecture, it suffices to prove the following:

CONIJECTURE 1.0.1 [12]. — Fix an integer v > 0. Let T' be a finite free Z,-representation
of G. Then T ®z, Q, is semi-stable (resp. crystalline) with Hodge—Tate weights in {0, ...,r} if
and only if, for all n, T,, := T /p™T is torsion semi-stable (resp. torsion crystalline) with Hodge—
Tate weights in {0, ...,r}, in the sense that there exist G-stable Z,-lattices L’(n) C Ly inside a
semi-stable (resp. crystalline) Galois representation V() with Hodge—Tate weights in {0,...,7}

such that Ty, ~ L) [ L, as Zy|G]-modules.

If T/p™T comes from the generic fiber of a finite flat group scheme over Ok, i.e., in the
case that 7 = 1 and V{,,) is crystalline for all n, the conjecture has been proved by Ramakrishna
([21]). The case that e = 1 and V|4, is crystalline has been proved by L. Berger ([2]), and the
case that e = 1 and r < p — 1 was shown by Breuil ([6]). In this paper, we give a complete proof
of Conjecture 1.0.1 without any restriction. Our main input is from [14], where Kisin proved
that any G-stable Z,-lattice in a semi-stable Galois representation is of finite F'(u)-height. More
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precisely, fix a uniformiser 7 € K with Eisenstein polynomial E(u). Let Koo = ,,5, K ( *v/7),
Goo = Gal(K/K,) and & = W (k)[u]. We equip & with the endomorphism ¢ which acts via
Frobenius on W (k), and sends u to uP. For every positive integer r, let Mod}ér denote the
category of finite free G-modules 21 equipped with a ¢-semi-linear map ¢ : 9 — 9 such that
the cokernel of p* =1® ¢ : 6 ®, e M — M is killed by E(u)". Such modules with -structure

are called ¢-modules of finite F/(u)-height. For any 9t € Mod;g, one associates a finite free

Z,-representation T (M) of G ([8]). Kisin ([14]) proved that any G -stable Z,-lattice L
in a semi-stable Galois representation arises from a (p-module of finite F/(u)-height, i.e., there
exists £ € Mod’/“’ér such that T (£) ~ L. In particular, this result implies that if a Z,[G]-module
M is torsion semi-stable with Hodge—Tate weights in {0,...,r} then there exists a (p-power)
torsion ¢-module 9 of height r (see §2 for precise definitions) such that T (9) ~ M as
G o -modules. Therefore, we can use torsion ¢-modules of finite F(u)-height to study torsion
representations of G .. If p > 2 and r = 1, Breuil and Kisin proved that there exists an anti-
equivalence between the category of finite flat group schemes over O and torsion -modules
of height 1 ([14], [4]). Thus, torsion ¢-modules of finite F/(u)-height can be seen as a natural
extension of finite flat group schemes over Ok. In particular, we extend many results on finite
flat group schemes over O to torsion p-modules of finite F(u)-height. For example, under the
hypotheses of Conjecture 1.0.1, we prove that the Z,,-representation 7" in Conjecture 1.0.1 must
arise from a ¢-module of finite £'(u)-height, i.e., there exists 2t € Mod;’ér suchthat T (M) ~ T
as Go,-modules. To prove this result, we extend Tate’s isogeny theorem on p-divisible groups
to finite level as in [19] and [3], i.e., we show that the functor T's is “weakly” fully faithful on
torsion objects. (See Theorem 2.4.2 for details.)

So far, only the G.-action on 7" has been used. To fully use the G-action on 7', we construct
an Acis-linear injection (in §5)

(101) LM ®6,Lp Acris - Tv ®Zp Acris

such that ¢ is compatible with Frobenius and G.-action (cf. Lemma 5.3.4). Note that T is a
representation of G. There is a natural G-action on the right-hand side of (1.0.1). However,
it is not clear if M ®g , Acris is G-stable (viewed as a submodule of T ®z, Acris Via 1).
In §6 we prove that M Rg , Bctis is stable under the G-action after very carefully analyzing
“G-action” on M/p"M Re ., Acris for each n. In fact, we show that G(IN) lies in M ®s
Rk, for a subring Ry, of Bctis. Finally, we prove that R, is small enough to show that
dimg, (TV ®z, BHY > rankz, (T') and thus prove Conjecture 1.0.1. Let us apply our theorem
to the universal deformation ring of Galois representations. Let £//Q,, be a finite extension with
finite residue field IF. Denote by 6 the category of local Noetherian complete O g-algebras with
residue field F. For A € €6, an A-representation 1" of G is an A-module of finite type equipped
with a linear and continuous action of G. Fix a finite free F-representation p which is torsion
semi-stable (resp. crystalline) with Hodge-Tate weights in {0,...,7}. Let D(A) be the set of
isomorphism classes of finite free A-representations T" such that T'/me T ~ p and D> (A)
(resp. D15 (A)) the subset of D(A) consisting of isomorphism classes of those representations
that are torsion semi-stable (resp. crystalline) with Hodge-Tate weights in {0,...,7}. By [20]
and [21], if HO(G,GL(p)) = F, then D(A), D*"(A) and D" (A) are pro-representable
by complete local Noetherian rings R;, R and R;ris’r, respectively. R, and R%ﬁs’r are
quotients of Rp.

THEOREM 1.0.2. - For any finite Kq-algebra B, a map x: R; — B factors through R

(resp. R,Cfis’r) if and only if the induced B-representation V, of G is semi-stable (resp.
crystalline) with Hodge—Tate weights in {0, ... r}.
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In fact, the existence of such a quotient of I?; satisfying the property in the above theorem has
been known by Kisin (cf., Theorem in [16]). Here we reprove the Theorem in [16] and further
show that such quotient is just R”" (or R;™"). As explained in the introduction of [16], it will
be useful to distinguish four flavors of the statement that some property P (e.g., being crystalline,
semi-stable etc.) of p-adic Galois representations cuts out a closed subspace of the generic fiber
of Spec R;.

(1) Let E/Q, be a finite extension and z;:R; — E (i > 1) a sequence of points
converging p-adically to a point z: R; — E. Write V, and V,, for the corresponding
E-representations. If the V, have P, then V,, has P.

(2) The set {x € Homg(R;,Cp) | « has P} cuts out a closed analytic subspace in the rigid
analytic space associated to I?; (see [1] for the more precise statement).

(3) There is a quotient RE of R; such that R; — E factors through Rf{ if and only if V,
has P.

(4) Let V be a finite dimensional E-representation of GG, and L C V' a G-stable Zj,-lattice.
Suppose that for each n, L/p™L is a subquotient of lattices in a representation having P.
Then V has P.

It is not hard to see that we have the implications (4) = (3) = (2) = (1). Conjecture 1.0.1
is just (4) for P the property of being semi-stable or crystalline with bounded Hodge-Tate
weights. For the same condition P, (3) is established in [16], which is sufficient for applications to
modularity theorems as in [15] (whereas (1) is not). Recently, Berger and Colmez proved (2) for
P the property of being de Rham, crystalline or semi-stable with bounded Hodge—Tate weights
via the theory of (¢, T')-modules in [1].

Convention 1.0.3. — We will deal with many p-power torsion modules. To simplify our
notations, if M is a Z-module, then we denote M /p™ M by M,,. We also have to consider various
Frobenius structures on different modules. To minimize possible confusion, we sometimes add a
subscript to ¢ to indicate over which module the Frobenius is defined. For example, gy indicates
the Frobenius defined over 9. We often drop the subscript if no confusion will arise. We use
contravariant functors (almost) everywhere. So removing the “ * ” from the notations for those
functors will be more convenient. For example, the notation V;; as used in this paper is denoted
by Vi in [7]. If V is a finite Z,,-representation of G, we denote by V'V the dual representation
of V,ie., V¥ =Homgz, (V,Q,/Zy,) if V is killed by some power of p and V¥ = Homgz,_ (V, Z,)
if V is a finite free Z,-module. Finally, if X is a matrix, X’ denotes its transpose. We always
denote the identity map by Id.

2. p-modaules of finite £ (u)-height and representations of G

This paper consists of 2 parts. §2—§4 is the first part, where we mainly discuss the theory of
p-modules of finite F'(u)-height over & and their associated Z,,-representations of G,. The key
results to be proved are Theorem 2.4.2, Theorem 3.2.2 and Theorem 2.4.1 and its refinement
Corollary 4.4.1. The second part (§5—§8) of this paper will combine the inputs from the first part
and Kisin’s result (Theorem 5.4.1) to prove Conjecture 1.0.1.

2.1. Preliminaries

Throughout this paper we fix a positive integer r and a uniformiser m € K with Eisenstein
polynomial E(u). Recall that & = W (k)[u] is equipped with a Frobenius endomorphism ¢ via
u — uP and the natural Frobenius on W (k). A ¢-module (over &) is an G-module 90t equipped
with a @-semi-linear map ¢ : 9t — 9. A morphism between two objects (M1, 1), (Mo, 2)
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is a G-linear morphism compatible with the ¢;. Denote by ModT/'G the category of (-modules
of finite E(u)-height r in the sense that 9 is of finite type over & and the cokernel of ¢* is
killed by E(u)", where ¢* is the G-linear map 1 ® ¢: 6 @, ¢ M — M. Let Mod;’g)r be the
sub-category of Mod", /& consisting of finite G-modules 9t which are killed by some power of
p and have projective dimension 1 in the sense that 90t has a two term resolution by finite free
G-modules. We give Modre the structure of an exact category induced by that on the Abelian

rfr T

category of G-modules. We denote by Mod'), /& the subcategory of Mod) s consisting of finite
free G-modules. Let R = lim Oz /p where the transition maps are given by Frobenius. By the
universal property of the Witt vectors W (R) of R, there is a unique surjective projection map
0:W(R) — @f( to the p-adic completion of O g, which lifts the projection R — O /p onto
the first factor in the inverse limit. Let 7, € K be a p"-root of 7, such that (m,41)? = 7p;
write T = (7T, )n>0 € R and let 7] € W(R) be the Teichmiiller representative. We embed
the W (k)-algebra W (k)[u] into W (R) by the map u — [r]. This embedding extends to an
embedding & — W(R), and, as 0([z]) = 7, 0| is the map & — O sending u to 7. This
embedding is compatible with Frobenius endomorphisms. Denote by O¢ the p-adic completion
of G[1]. Then Og is a discrete valuation ring with residue field the Laurent series ring k((u)).
We write £ for the field of fractions of O¢. If Fr R denotes the field of fractions of R, then the
inclusion & — W (R) extends to an inclusion Og — W (Fr R). Let E* C W (Fr R)[ ] denote
the maximal unramified extension of £ contained in W (Fr R)[ ], and O™ its ring of integers.
Since Fr R is easily seen to be algebralcally closed, the residue ﬁeld ovr / pO"" is the separable
closure of k((u)). We denote by £ the p-adic completion of £, and by ¢ O its ring of integers.
&£ is also equal to the closure of £ in W (Fr R)[ ]. We write 6" = o W(R) C W(FrR).
We regard all these rings as subrings of W (Fr R)[%] Recall that Koo = |J,,5¢ K (75), and
G = Gal(K /K,). G acts continuously on & and £ and fixes the subring & C W (R).
Finally, we denote by Repy,_ (Goo) the category of continuous Z,-linear representations of G
on finite Z,-modules and by Reptor(Goo) the subcategory consisting of those representations
killed by some power of p.

2.2. Fontaine’s theory on finite Z,-representations of G

Recall ([8], A, §1.1.4) that a finite Og-module M is called érale if M is equipped with a
p-semi-linear map s : M — M, such that the induced Og-linear map ¢}, : O ®y 0, M — M
is an isomorphism. We denote by ®My, the category of étale modules with the obvious

morphisms. An argument in [4], §2.1.1, shows that K, /K is a strictly APF extension in the
sense of [24]. Then Proposition A 1.2.6 in [8] implies that the functor

(2.2.1) TV:®Mo, — Repy (G); M — (M @0, Our)#=1
is an equivalence of Abelian categories and the inverse of T is given by

Repy, (Goo) — ®@Mog; V= (V @z, OW)Ce

In particular, for any M € ®Mp,, we have the following natural Ovr linear isomorphism
compatible with -structures.

2.2.2) i M @0, O ~ T (M) ®, O
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We frequently use the contravariant version of 7' in this paper. For M € ®Mp,, define
(2.2.3) T (M) =Homop, ,(M, 5‘1\r) if Mis p-torsion free

and (recall O = O™ /p"O™)

(2.2.4) T(M)=Homo, ,(M,0;") if M iskilled by p".

It is easy to show that TV (M) is the dual representation of T'(M). See for example §1.2.7 in [8],
where Fontaine uses Vg (M) to denote T'(M).

Recall that a G-module 9 is called p’-torsion free ([8], B 1.2.5) if for all nonzero x € M,
Ann(z) =0or Ann(z) = p™& for some n. This is equivalent to the natural map I — MRg O¢
being injective. If 9 is killed by some power of p, then 90 is p’-torsion free if and only if 901 is
u-torsion free. A p-module 9 over & is called érale if 9 is p’-torsion free and M R Of is an
étale Og-module. Since E(u) is a unitin Og, we see that for any M € Mod) s, M is étale if and

only if 90 is p’-torsion free. Obviously, any object in Mod;’ér is étale. In the next subsection, we

will show that any object in Mod;’éor is also étale. For any étale 9t € Mod;’éor, we can associate

a Zp|Goo]-module via

(2.2.5) Ts (M) = Homeg (9)?, S™[1/p]/&™).
Similarly, for any 9t € Mod;’ér , we define
(226) T@ (m) = Homg,@(ﬁﬁ, Gur).

There is a natural injection T (9M) — T' (M) where M := M ®@g O¢. In fact, this injection is an
isomorphism by the following Proposition 2.2.1 below. Let A be a ¢o-module over S. We denote
by Fs(A) the set of G-submodules 9t such that 91 is of G-finite type, stable under ¢ and étale.
Define j. (A) = Ugpc Fe(A) M. If A is aring of characteristic p, we denote by A%°P the separable
closure of A.

PROPOSITION 2.2.1 (Fontaine). — For all n > 1, we have
(1) j.(Fr R) = k(@)™ N R = k[x]"*",

(2) ]*(Wn(FrR)) = 6},?;

(3) j«(W(FrR)) C 6" and j.(W (Fr R)) is dense in G,
4) 6 =W,(R)NOR C Wy (Fr R).

Proof. — Proposition 1.8.3 in [8]. Note that Fontaine uses Ag’n to denote &;'. O

COROLLARY 2.2.2.— Let M € Mod;’éor be érale or M € Mod?’g. Then Tg (M) =
TM @e O¢).

Proof. —Let M := M ®g O¢. It suffices to show that the natural injection T (9) — T'(M)
is a surjection. Suppose that 2 is killed by p". For any f € T'(M) = Homg,,(M,O¢",,),
f(9) C OF,, is obviously a &-module of G-finite type, stable under . Since OF",, is obviously
p’-torsion free, f(9) is p’-torsion free. By Lemma 2.3.1 below, we see that f(91) is étale.
Therefore f(9M) € Fe(OF,,) and f(M) C ™. Thus f € Homg (M, &)F) = Te (M). The
above proof also works if I is G-finite free by replacing G;" with &', and OF,, with Og". O

COROLLARY 22.3.- Foralln>1, S¥[1] =6 @ O ~ OFF.

Proof. — 1t is clear if n = 1 by Proposition 2.2.1 (1). The more general case can be proved by
a standard dévissage argument; the details are left to the readers. O
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r,tor

2.3. Some properties of Mod /&

By §2.3 in [14] and [4], if p > 3, then Mod}’g”r is anti-equivalent to the category of finite

flat group schemes over Ok (also see [17]). It is thus expected that modules in Mod;’g’r have
similar properties to those of finite flat group schemes over O . In this subsection, we extend

some basic properties of finite flat group schemes over O to Mod;’éor.

LEMMA 2.3.1.— Let 0 — 9 — 9 — M" — 0 be an exact sequence of p-modules over &.
Suppose that ', M and M" are p'-torsion free and M € Mod)s. Then MM’ and M" are étale
and in Mod)s.

Proof. — See Proposition 1.3.51in [§]. O

PROPOSITION 2.3.2. — Let M € Mod?e be killed by p™. The following statements are
equivalent:

(1) M e Modg™,

(2) M is u-torsion free,

(3) M is étale,

(4) M is a successive extension of finite free k[u]-modules M; with M; € Mod) g,

(5) M is a quotient of two finite free S-modules YU and N’ with N, N € Mod;’g.

Proof. — (1) = (2) By the definition of Mod;’g’r, there exist finite free G-modules 91 and
" such that

0—=N" =N —-M—0
is exact. Let ag,...,aq and fB1,..., 3y be bases for N and I respectively and let A be the
transition matrix; that is, (aq,...,aq) = (b1,...,B4)A. Since M is killed by p™ for some n,

there exists a matrix B with coefficients in & such that AB = p™I. Now suppose that = € 9 is
killed by u™ with z = Y°%_, z;v;. Then we have

um(xl,. .. ,l‘d) = (yl, .. .,yd)At

for some y; € 6,i=1,...,d. Since AB =p"I, we have

(y17~ .- 7yd) = um(pn)—l(xh. o 7xd)Bt‘

Let (21,...,24) = (p") " Y(x1,...,74)B". Since y; € G, it is not hard to see that z; € S for all
i=1,...,d. Then we see that (z1,...,%q) = (21,...,24) A", 2 €9 and T = 0.

(2) <= (3) Since E(u) is a unitin Og, any M € M0d76 is étale if and only if 90 is p’-torsion
free. If 901 is killed by some power of p, then this is equivalent to 9T being u-torsion free.

(3) = (4) We proceed by induction on n. The case n =1 is obvious. For n > 1, consider the
exact sequence of étale Og-modules

0 — pM — M 2% M/pM — 0,

where M := 9 ®s Of and pr is the natural projection. Let 9" = pr(9) and M’ = Ker(pr),
then we get an exact sequence of ¢-modules over &

(2.3.1) 0—M —mEm’ —o0.
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By induction, it suffices to show that 9" and 9" are étale and belong to Mod) . But 90
and 9" are obviously u-torsion free and hence p’-torsion free. Then by Lemma 2.3.1, we have
o', M” € Mod)s.

(4) = (5) Fontaine has proved this result (Theorem 1.6.1 in B, [8]) for the case e = 1.
In particular, Fontaine’s argument for reducing the problem to the case that 901 is killed by
p also works here. Therefore, without loss of generality, we may assume that 91 is killed
by p. In this case, 9 is a finite free k[u]-module. Let aq,...,aq be a basis of 9 and
olag,...,aq) = (a1,...,aq)X, where X is a d X d matrix with coefficients in k[u]. Since
the cokernel of ¢}, is killed by u°", there exists a matrix Y~ with coefficients in k[u] such
that XY = «°"I, where I is the identity matrix. Let 91 be a finite free k[u]-module with basis
B1,---,Ba, 01, .., 0, and a @-structure defined by

@m(ﬂlaaﬁdvﬁia7ﬁ¢/j):(ﬂ17aﬁdvﬁiaaﬁ:j) (é u21> (1;1 UII)a

where A= (I —uY) }(¢(E)—Y)and E =X —u®*11. Itis obvious that (M, pg) belongs to

Mod;’éor. We construct a G-linear map [ : 91 — 9 defined by:

(232) f(ﬁlw'wﬁ(hﬁiw'wﬁél) = (ala"'7ad)(E>I)'

It is obvious that f is surjective. To check that f is compatible with -structures, it suffices
to check f o g = @gn o f on the basis. This is equivalent to verifying the following matrix
equation:

X(@(E)J)Z(E’I)(é u2"1> (? uII)

which is a straightforward computation. So let M be a finite free G-module with basis
B1,---,Ba, 01, .., 0, and a @-structure defined by

909'[’(3177BdaB£776&):(B17a3da3177/é£l) (é E(B)r]) (1}4 ’lf[)

with A any lift of A. It is easy to check that 9 = 9V /p"M’ and N € Mod;’g. Thus we have
a p-module morphism g: 9t — 9 with g surjective. Let M = Ker(g). Using the explicit
definition (2.3.2) of f, we can easily find a &-basis for 91”. Thus " is S-finite free. Finally,
using Lemma 2.3.1 for 0 — N — 9N L 9t — 0, we see that N’ € Mod;’g.

(5) —> (1) Trivial. O

COROLLARY 2.3.3.— Let f:0 — O’ be a morphism in Mod"}*". Then Ker(f) belongs to

/6
Modg™.

Proof. —Lemma 2.3.1 shows that Ker(f) € Mod)g and Ker(f) is obviously u-torsion
free. O

In general, Cok( f) is not necessarily in Mod;’éor. See Example 2.3.5.

By the above lemma, any object I € Mod;’é‘jr is étale. Thus Corollary 2.2.2 implies that

Ts(M) =TM ®s O¢) = Homo, (M ®g Og,O""). Therefore, the functor T defined
in (2.2.5) is well defined on Mod;’éor. In summary, we have
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COROLLARY 2.3.4.— The contravariant functor T from Mod;’éor to Reptzc;r(Goo) is well
defined and exact.

If r=1and p > 2, [4] and §2.3 in [14] proved that there exists an anti-equivalence G between
Modgtor (resp. Modgﬁ) and the category of finite flat group schemes over O (resp. p-divisible
groups over O ). Furthermore, for any 91 € Modgtor (resp. Modgfr), there exists a natural
isomorphism of Z,,[G »]-modules

GO (K)|g.. ~Ts(M).

In general, Tis is not fully faithful if er > p — 1.

Example 2.3.5.— Let 6* := & - a be the rank-1 free G-module equipped with ¢(a) =
co TE(u) - a where pcy is the constant coefficient of E(u). By Example 2.2.3 in [4], if p > 2,
G(6*) = ppe~. In particular, T (6*) = pipos (K)| ., = Zp(1). If p = 2, Theorem (2.2.7) in [14]
shows that G(G*) is isogenous to figec. Thus T (G*) is a Goo-stable Zo-lattice in Q2(1). So
we still have T (6*) ~ Zy(1). Suppose e = p — 1. Consider the map §: &7 — &, given by
o= cy Lu¢. An easy calculation shows that { is a well-defined morphism of ¢-modules and
f ®g Og is an isomorphism. Then T (f) is an isomorphism but f is not. Also, Cok(f) is not an

object in Mod;’éor.

The following lemma is an analogy of “scheme-theoretic closure” in the theory of finite flat
group schemes over Ok

LEMMA 2.3.6 (Scheme-theoretic closure). — Let f:91 — L be a morphism of p-modules
over &. Suppose that I and L are p'-torsion free and M € Mod)g. Put M’ = Ker(f) and

M = f(9IM). Then M’ and M" are étale and belong to Mod ). In particular, if M € Mod;’éor,

then 9 and 9" € Mod /™"

Proof. — By the construction, it is obvious that 01" and 91" are p’-torsion free. By Lemma 2.3.1,

M’ and M are étale and belong to Mod?g. IfoMme Mod;’éor, then 2’ and M’ are wu-torsion

free. By Proposition 2.3.2 (2), we see that 9’ and 991" belong to Mod;’gr. O
LEMMA 23.7.— Let M € Mod?G be torsion free, M = 9M @s O¢. Then there exists a finite

free G-module M’ € Mod?’ér such that M C M’ C M.

Proof. — Let M = M N 9M[1/p]. By Proposition B 1.2.4 of [8], we have I C MM’ C M with
I a finite free S-module. It is obvious that 9’ is -stable, so it remains to check that Cok(¢5y/)
is killed by E(u)". Note that there exists an integer s such that p*9" C 9. Since E(u)"
kills Cok(¢5y), we have that p® E(u)" kills Cok(p3y, ). Let o, ..., aq be a basis of 9 and
oo (a1, ..., aq) = (a1,...,aq4)A where A is a d x d matrix with coefficients in &. Since I
is étale, A~ exists with coefficients in Og. It suffices to prove that E(u)" A~! has coefficients
in &, but this follows easily from the fact that p* F(u)" A~! has coefficients in &. O

rfr

COROLLARY 2.3.8. — Let §:9 — N be a surjective morphism in M0d76 with 9 € Mod/6

a finite free S-module and N € Mod;’éor killed by some power of p. Then £ := Ker(f) € 1\/[0d7£r
is S-finite free.

Proof. — By Lemma 2.3.1, £ € Mod?e. £ is obviously torsion free and of G-finite type.
Let L:= £ ®s Og and M := M ®g Of. Since N is u-torsion free, we have M N L = L.
By the proof of Lemma 2.3.7, we see that L N 2[%] is G-finite free. But 2[%] = Em[%] so
Ln 2[%] =LN(Mn 931[1—11]) =LNM = L. Thus £ is G-finite free. O
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COROLLARY 2.3.9.— Let M € Modr fr (resp. Modr tOr) let N be a p-stable G-submodule

of M and N := N ®g Og. Then there exists an N’ € ModT I (resp. M € ModT tor) such that
NCN CNNM.

Proof. —Let M = M ®g Og and L = M/N. By Lemma 2.3.6, in this case, there exists

N € Mod)g such that M C N’ CIMN N and N” is étale. If M is in Mod;eor, then put

N =N, so N’ belongs to ModT % because N’ is obviously u-torsion free. If 91 is a finite
free G-module, then M € Mod /e is torsion free. Therefore, by Lemma 2.3.7, there exists

‘ﬁ’eMod’/“ér such that NC N’ Cc N CMNN. O

2.4. Main results of the first part

Now we can state the main theorems to be proved in the first part of this paper. The first
theorem is an analog of Raynaud’s theorem (Proposition 2.3.1 in [22]) which states that a
Barsotti-Tate group H over K can be extended to a Barsotti—Tate group over O if and only if,
for each n, H[p™] can be extended to a finite flat group scheme H,, over Ok.

THEOREM 2.4.1. — Let T be a finite free Z,-representation of G . If for each n, there exists

an M, € Mod;éOr such that T (M) ~ T/p™T, then there exists a finite free S-module

M € Mod'/& such that Te (M) =T.

Though the functor T's on Modr’g’r is not a fully faithful functor if er > p — 1 as explained
in Example 2.3.5, we will prove that the functor Ts enjoys “weak” full faithfulness.

THEOREM 2.4.2. — Let M, M’ € Mod;éor, let f:Te (M) — Te (IN) be a morphism of finite
Zp|Goo]-modules. Then there exists a morphism :9% — O such that T (f) = p° f, where ¢ is
a constant depending only on the absolute ramification index e = e(K/Ky) and the height r. In
particular, c =0 ifer <p— 1.

Remark 2.4.3. — The constant ¢ has an explicit (but complicated) formula. We do not optimize
it, so there should still be room to improve. We have proved a similar, though weaker, result in
[19] for truncated Barsotti—Tate groups (see also [3]). The constant obtained here is independent
of the height of the truncated Barsotti—Tate group, though we do use many of the techniques
found in [19].

To prove these theorems, we need to construct the Cartier dual on Mod;’g’r

(Theorem 3.2.2) to compare 9t with T (91). These preparations will be discussed in §3.

and a theorem

2.5. Construction of Gf(")

For a fixed height , &"" is too big to work with. In this subsection, we cut out a S-submodule
&) inside G which is big enough for representations arising from Mod;e. Let A be a
p'-torsion free p-module over &. We denote by F'(A) the set of G-submodules 9 of A such
that 0 € Mod. Since A is p'-torsion free, M is étale, so FZ'(A) C Fs (A). (Recall that Fis (A)
is the set of G-submodules 9T such that 91 is of G-finite type and stable under (.) Define

GEE:)) = U 9N for each fixedn > 1

MeFL (Sur)
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and

sn= |J
meFfr 6‘“)

Obviously, G (n) (resp St ) is a subset of G} (resp. &™).

PROPOSITION 2.5.1.— Foreachn > 1,

€8 6 T) is a Goo-stable and @-stable G-submodule of G},
2) Gf T) is a G oo-stable and p-stable S-submodule of G",
3) Gf(V Gf(r)/pnt(r), ie., 6%7“) _ Gi(r:))'

Proof. — For each fixed n > 1, let 9V and 9" € FZ'(S). To prove (1), it suffices to check
that M := M’ + M’ € FI(SY). It is obvious that 61(?(;)) is Goo-stable and ¢-stable. Since
Gur is p'-torsion free, M is p’-torsion free. It therefore suffices to check that the cokernel
of V56 ®ue M — M is killed by E(u)". This follows from the fact that the cokernels
of ¢}y and @f,, are killed by E(u)". The above argument also works for proving (2). For
(3), we need to show that the natural map ¢: ny) — GE(”T)) induced by pr: 8" — G2' is an
isomorphism. We first prove the surjectivity by claiming that for any 91 € Fg(ﬁ;f) there
exists an M € FT'(&") such that pr(‘ﬂ) = M. In fact, by Proposition 2.3.2, (3), there exists
a finite free ¢-module Y € Mod;’Gr with a surjection f:9V — 1. Recall that the functor
Ts :Mod)g" — Repz, (Goo) is exact (Corollary 2.3.4). Thus Te(f): Te (W) — Te (M) is
surjective, so by Lemma 2.2.2, there exists a morphism of ¢-modules h : ' — G™ which
lifts the identity embedding 9 < &Y. Therefore N = h(N') € FL(G™) and pr(N) = M,
as required. For the injectivity, it suffices to prove that for any 9T € Fg'(G‘”) and x € G, if
px € M, then there exists £ € FT (&) such that z € £. Let N be the S-submodule in GU*
generated by {©™ (2)},n>0 and 9 the G-submodule of 9T generated by ™™ (px). Let ac: N — N
be the morphism defined by

@) sip™ (pr) =Y sip™ ()

Since &"" is torsion free, « is an isomorphism and « extends to an isomorphism N®e O =
N ®e O¢ inside Our. By Corollary 2.3.9, we have N € Mod;ér such that M C N C N®e Of.
Let £ = (). We see that z € N C £ C O with £ € Mod”:, so by Proposition 2.2.1 (3),

/&>
reNCLCG™. O
COROLLARY 2.5.2.— Foreachn > 1, Gf( ") is flat over &,,.

Proof. — By Proposition 2.5.1 (3), it suffices to prove that, for any 91 € Fg(@“r), there exists
a finite free G-modules M’ € FL (G ) such that M C M'. By Lemma 2.3.7, there exists such

amodule M’ C Mg O C O, By Proposition 2.2.1 (3), we see that 0V C &™. O

d'r ,tor

COROLLARY 2.5.3.— For any I € Mo /&

Home , (M, 6" @4 (Q,/Z,)) ~ Home (M, E/OF) = Te (M).
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3. A theorem to compare It with T (901)

In this section, we prove a “comparison” theorem (Theorem 3.2.2) to compare 91 with
Te (). This theorem will be the technical hearts in many of our proofs. In the following two
sections, we will focus on torsion objects Mod;’éor. For 9 € Mod%or, n will always denote an
integer such that p™ kills 901.

3.1. Cartier dual

We need to generalize to Mod'2" the concept of Cartier dual on finite flat group schemes
over Ok . Example 2.3.5 shows that if r = 1, then &* is the correct Cartier dual of &. Motivated
by this example, we have:

Convention 3.1.1. — Define a @-semi-linear morphism ¢¥:& — & by 1 — ¢, "E(u)". We
denote by GV the ring & with p-semi-linear morphism . The same notations apply for &,
and &), etc. By Example 2.3.5, we have Ts (&) ~ Z, /p"Z,(r).

Obviously, such “Cartier dual” (if it exists) must be compatible with the associated Galois
representations, so we first analyze the dual on @M%’; Let M e ‘IZ'MEg; and MV =

Homop, (M,£/O¢). As an Og-module, we have M ~ @le O¢ n,;, so there exists a canonical
perfect pairing of Og-modules

@3.1.1) (VM x MY —E/Ok.

We equip £/O¢ with a @-structure by 1 — ¢y " E(u)". We will construct a ¢-structure on M
such that (3.1.1) is also compatible with ¢-structures. A G-linear map f: 0T — N is also called
p-equivariant if f is a morphism of ¢-modules.

LEMMA 3.1.2. — There exists a unique p-semi-linear morphism v : MY — MY such that
(1) (MY, ") € MSE.

2 FO”any LS M7 ye Mv’ <¢M(x)a<va (y)> = @(<Iay>)

(3) T(MY)~TY(M)(r) as Z,|Gx]-modules.

Proof. — We first construct a ¢,sv satisfying (2). Let M ~ @le Og n,0y and let B1,...,08q
be the dual basis of M. Write pp(a1,...,aq) = (a1,...,aq4)A, where A is a d x d matrix
with coefficients in Og. Define

omv(Biy--yBa) = (B1,-.. ,Bd)(cO_TE(u)’")(A_l)t.

Note that A is invertible in Og because M is étale. It is easy to check that (M"Y, ¢pv ) satisfies
(1), (2) and uniqueness, so it remains to check (3). We can extend the (-equivariant perfect
pairing ( , ) to

(3.1.2) (,): (M ®p, O") x (MY ®p, O™) — OV,

where n = Max(ng,...,nq4). Since the above pairing is ¢-equivariant, we have a pairing
(M ®(9$ Our)cp:l % (M\/ ®O£ Our)(p:l N (Ozr,\/)tpzl.

Thus, we have a pairing

(3.1.3) V(M) xTV(M") — Z/p"Z(—r)
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compatible with G-action. It suffices to check the above pairing is perfect. By (2.2.2), we see
that a Z,,-basis of TV (M) is also a O""-basis of M ® ¢, O"". Then the fact that (3.1.3) is perfect
follows from the fact that (3.1.2) is perfect. O

Since the functor 7' is an equivalence between ®M(S" and Reptz‘lr(Goo), we have

COROLLARY 3.1.3.-The functor M — MV is an anti-equivalence on @M%’; and
(MY)V =M.

Now let us extend Lemma 3.1.2 to Mod;’g)r. LetIN € Mod;’éOr and M =M[L]:=Mee O.
Define MY = Homg (M, S[1/p]/S). Before we equip " with a suitable o-structure, a lemma
is needed to compare the underlying space of 9V with that of M V.

LEMMA 3.14.— Let M € Mod;’g’r and A = &[1/p]/&. Then Extg (M, A) =0, where Ext
is taken in the category of G-modules.

Proof. — By Proposition 2.3.2 (4) and taking dévissage, we can reduce the problem to the
case that 9 is killed by p, where 9 is a finite free k[u]-module. So it suffices to show that
Extg (k[u], A) = 0. The short exact sequence

0656 —=k[u]—0
yields a long exact sequence
0 — k[u] — A 2 A — Extg (k[u],A) — 0,

so Extg (MM,A)=0. O

COROLLARY 3.1.5.— Let 0 — 9 — N — £ — 0 be an exact sequence in Mod;’éor. Then
0— &Y —NY—MV—0 is exact as S-modules.

COROLLARY 3.1.6.— With notations as above, MM is u-torsion free and (M")[1] =
(]

Proof. — The u-torsion freeness of 901V is obvious by definition and u-torsion freeness of 9t
(Proposition 2.3.2 (2)). To see the natural map 9V [1/u] — (9M[1/u])V is bijective, we reduce

the proof by Lemma 3.1.4 and dévissage to the case that 91 is killed by p, where 901 is a finite
free k[u]-module. Then the statement that (9")[1] = (M[L])" is obvious. O

u

PROPOSITION 3.1.7. — Keeping the above notations, there exists a unique p-semi-linear
endomorphism pgnv on MY such that

(1) (MY, ponv) € Mod;gr,

(2) the following diagram commutes

mvm)m\/

(3.1.4) V( j
PmV

MY —> MV

In particular, popv @ Og = pprv.
The assignment 9 — MY is an anti-equivalence on 1\/[0d1/ﬂ’(‘t50r and (IMY)Y =M for all M €

r,tor
Mod/6O .
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Proof. — Of course, (2) implies that we need to define that psnv := @prv |opv. We claim that
o is well defined in this way; that is, @av (91Y) C MY and the cokernel of ph;. : 6 @y &
MY —IMY is killed by E(u)" . To prove the claim, we first consider the case that 901 is a finite
free &,,-module. Let (o, ...,aq) be a basis of M and By, .., 34 the dual basis of V. Write
om(at,...,aq) = (a1,...,aq)A, where A is a d X d matrix with coefficients in &,,. Recall
from the proof of Lemma 3.1.2 that we have defined

orv (B, Ba) = (B, - -, Ba) (cg "E(u)") (A",

Since M € Mod;’éor, we see that F(u)"(A~1)! is a matrix with coefficients in &,,. Thus

opv (MY) C MY and E(u)" kills the cokernel of ¢f., i.e., MY € Mod;’g)r. For a general
M e Mod?’éor, there exists by Proposition 2.3.2 (5) a right exact sequence
(3.1.5) slmoam—o

in Mod;’g’r, where N, £ € Mod;’éor are finite free G,,-modules. By taking duals, we have a left
exact sequence

(3.1.6) 0—m¥ —mv L g,

Since O is flat over &, by tensoring Og¢ and using Lemma 3.1.6, we have the following
commutative diagram of (-modules:

0 mY v L gy
o v D

where M = M Rs Og, N =N ®Rs O¢ and L = £ ®g Og. Note that f¥ is a morphism in

Mod;’éor. By Lemma 2.3.6, we have that @onv = v |onv is well defined and (9N, ponv ) =

Ker(fV) € Mod;g‘)r. This completes the proof of (1) and (2). Since M — M is an anti-
equivalence on @Mg’; by the characterizing properties of @gnv, we see that the assignment
(—)V 9t — MY is a functor from Mod;’éor to itself which is exact by Corollary 3.1.5. It remains
to check that the natural map 9t — (9t¥)V is an isomorphism. If 90 is a finite free &,,-module,
this is obvious. For a general 9 & Mod;’g’r, we use Proposition 2.3.2 (4) and dévissage to
reduce the proof to the case that 901 is killed by p, where 9 is finite k[u]-free, in which case that
MM = (MY)V is obvious. O

3.2. Comparing 91 with T (90N)

Let 9T, 91 be p-modules over G; note that pgn e pm is a w-semi-linear map on M e N.
If £ is any finite Z,-module, we define a -semi-linear map on £ ®z, M by 1 @ pon.

r,tor

PROPOSITION 3.2.1.— Let M € Mod/G . There is a natural &" -linear morphism
MRs 6% — Té (o) Rz, Gl
such that
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(1) 7 is Goo-equivariant and p-equivariant,
2) [ R@gur O =1, where [ is defined in (2.2.2).

Proof. — This is a tautological proof, given Proposition 2.5.3. We may assume that p™ kills 2.
First, observe that

Ts(9M) = Home (M, S)) = Homgur (M @s 6, 617).

Note that for each f € Homgu: ,, (M ®s &, G}F), the Go-action on f is defined as f7(m) =
o(f(e7(m®s))) forany o € Go, and m @ s € M @e GU. We can define a natural morphism
"M ®e G — Homy, (T (M), GUT) by:

m®s— (f—f(m®s), VfeTs(M)).

On the other hand, since Ts (M) ~ P, ; Z,/p'Zy, as finite Z,-modules, we have a natural
isomorphism Homgz, (Ts (M), S)') ~ T(M) ®z, &"*. Combining this with i’, we have a
natural morphism 7:9 ®e 6" — TZ(M) ®z, ™. It is easy to check that i’ is G- and
p-equivariant. This settles (1). To prove (2), let M =M ®s Og € PM,.. By Lemma 2.2.2, we
have

Ts(9M) = Homg . (M, & [1/p] /&™) == Homoe, (M, E™ /O™) =T (M).
Repeating the argument in (1), we get a natural map
I Qgu O : M Ko, oV — Té (M) ®Z,) o,

By §1.2 of [8], L ®gur O™ = [ (with ¢ as defined in (2.2.2)) is an isomorphism. [

Combining Proposition 3.2.1 with Example 2.3.5, we have the following &}'-linear mor-
phism:

)]

with (1) = t" and t € & satisfying ¢(t) = c¢; ' E(u)t. Such choice of t is unique up to
multiplication by a unit in Z,, so we also denote the above morphism by t".

THEOREM 3.2.2. — Let 9 € Mod"2%°" or Mod";". There exist natural &"* -linear morphisms

/6 /6"

3.2.1) I:Mrg 6™ — Té(im) ®z, Gha
and

(3.2.2) iV TE(M) @z, 6" - M s 6" (—r)
such that

(1) i, iV are compatible with G -actions and -structures on both sides,
(2) if we identify G with GV by ignoring the @-structures, then

iVoi=Ild®st".
In the following, we only consider the case that 9 is of p-power torsion. The case that 907 is

G-finite free is an easy consequence by taking inverse limits of torsion objects. The construction
of 7 is completed in Proposition 3.2.1, but the construction of 7V requires the following lemma.
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LEMMA 3.2.3. - Forany M € Mod;’g)r, there is a natural isomorphism

(3.2.3) Home (6", M@ &) = Home , (M, &) = TY(M)(r).
Proof. — By Cartier duality, § 3.1, it suffices to construct a natural isomorphism
Homg (&Y, MY ¢ 617) = Homg (M, 51M).
We first claim that by ignoring -structures, we have natural isomorphisms
(3.2.4) Homg (6,M" ©¢ 617) 25 MV @61 2 Home (M, 517).
In fact, it suffices to check that the natural morphism
(3.2.5) MY @e 6 = Home (M, S,,) ®e &) — Home (M, S

is an isomorphism. (3.2.5) is certainly an isomorphism if 901 is a finite free &,,-module.
For general 90, there exists by Proposition 2.3.2 (5) a morphism of ¢-modules f:97 — N

with 91 and 9 finite free over S,, such that 9 = Cok(f). Let f':Homg(MN, G%T)) —
Home(‘ﬁ’,G;(T)) be the natural map induced by f. Then Homg (9N, G;(T)) = Ker(f").
Similarly, we have MY ®g 61" = Ker(fY) where f¥:NY ®g &I . Vessl is
induced by fV. Since (3.2.5) is an isomorphism for 9’ and 9N, Ker(f’) = Home (M, GL") ~
MY ®s 6L = Ker(fY). It remains to check that o-structures on both sides of (3.2.4) cut

out the same elements under the given isomorphism. Let f € Homg (&Y, MY ®g &) and
f(1) =3, fi®a; with f; € 9" and a; € &), Then we have

e et (F(1) = feev(1) = f(co"E(u)") = cg"E(u)" f(1).

Setting h = 3", a; fi € Homg ,, (9, &), we have
(3.2.6) "B aifi=Y_ olai)emy (fi)-

It now suffices to check that for any m € 9, ¢(h(m)) = h(pon(m)). Using (3.2.6), we have

o "E(u)"h(pam(m)) = Z e(a;)emv (fi) (pom(m)).

(2

By Lemma 3.1.2, o (f;)(wom(m)) = cg " E(u)"(f;(m)). Then the above formula implies
that ¢, " E(u)"h(wom(m)) = cg " E(u)"¢(h(m)), and we thus have that p(h(m)) = h(pom(m)),
as ¢, ' E(u) is not a zero divisor in &,,. O

COROLLARY 3.2.4. — Keep notations as above and let M = M Qg O¢.
(1) T\/ (M) (T) = HOmOur)y;(Our’v7 M ®O€ Our),
(2) the natural map
i: HOmGur’LP(GuLv, m Ra 6ur) — Homour,w(our’v, M ®Og Our)

is an isomorphism of 7, |G ) -modules.
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Proof. — By Proposition 3.2.1 (2), we have an O"-linear isomorphism
(3.2.7) t" @gu O OV ~ O (—r).
Thus,

Homour , (O™, M @ O") = Homour ,(O" (—71), M ®0, O")
= (M ®o, O")*~(r)
=T"(M)(r),

which settles (1). Consider the natural map

Homg (6, M s Gf(r)) — Homguw (&Y, Mes &™)
_ H0m0\1r7¢(0ur’v, M ®O£ Our)-

Since the first term and the last term have been proved to be isomorphic to 7" (M), which is
a finite set, it suffices to check the above natural maps are injections. Therefore, it is enough to
check that the maps

m Qs Gf(’r) N m®6 S 5 M ®0 ok

are injections. By Proposition 2.3.2 (4), noting that Gfﬁ’") , G and O are flat over G,,, we
can reduce the problem to the case that 97 is a finite free k[u]-module, where the injectivity is
obvious. O

Proof of Theorem 3.2.2. — By Corollary 3.2.4, we have
Té/ (Dﬁ) (71) == HOmGur’(p (6111‘,\/, m ®6 GUI‘) .

Using the same idea as in the proof for Proposition 3.2.1, we see that there exists a natural
p-equivariant, G -equivariant and &""-linear morphism

iV TE (M) ®z, &Y - Mee & (—r).
It now suffices to check that ;¥ o i =Id ®gt". Let M =M @ O¢. It suffices to check that
(328) (Zv R ur Our) o) (Z R gur Our) = Id]\/[ ®O£ (tr R gur Our).

Note that M ~ @?:108,7“, as Og-modules, TV (M) ~ EBf:IZ/p”iZ as Zp-modules and
I ®auw O™ =1 by Proposition 3.2.1 (2), so it suffices to show that

(i ®ew O) o (i¥ Qg O") =10 (I¥ @gw O") =Idpv (i) Rz, (1" Qgu ON).
Note that we have used the isomorphism (3.2.7) to establish
Homour , (O, M ®@p, O™) =T (M)(r),
50 IV ®eur QY is a composition of the two maps
Id®z, (" @ O"): TV (M) @z, O™V (r) =TV (M) @z, O™
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and
it ITV(M) Rz, oY — M Rog o,

Therefore,
io(lY®e Og) =10 (Id®z, (f" ®gu O")) 0 i ' =1d @y, (" @gw O™),
as required. O

COROLLARY 3.2.5.— Restricting i to TE(IM) ®z, &) gives a natural injection
VI TE (M) @z, 61 - Mee & (—r).

Proof. — By Lemma 3.2.3, we see that iV (TV (M) ®z, V) C M@ & (—r). Since iV is
G -linear, it suffices to check that (") . Gf(") c Gf(27), Recall from § 2.5 that FT (&) is
the set consisting of finite G-submodules inside G for which the cokernel of ¢* is killed
by E(u)". Let M, N € FT(SY) and let £ be the G-submodule generated by 90T - 9N. We see
that £ is a G-submodule inside &) and is obviously @-stable. For any x € 9 and y € N,
since M, N € FI(GY), there exist z; € M and y; € N such that E(u) "z =Y, a;p(z;)
and E(u)"y = >, bjp(y;) with a;,b; € &. Thus, we have E(u)*"zy = Y, aibjp(xiy;).

Therefore, £=91-N € Fé(”)(@zr)- d

4. Proof of the main theorems in part I
4.1. Reducing the proof to the rank-1 case

We will use the Theorem 3.2.2 to reduce Theorem 2.4.2 to the case that 9 is a finite free
rank-1 &,,-module. As in the beginning of § 3, we assume that 9t and 9 in Theorem 2.4.2 are
killed by p™. First of all,

LEMMA 4.1.1. — To prove Theorem 2.4.2 it suffices to consider the case that
fiTe (M) — T (M)

is an isomorphism, with 9 a finite free &,,-module and there exists a morphism of p-modules

g: 9 — 9N such that Te (g) = 1.

Proof. — We reduce the proof of Theorem 2.4.2 to the above case in three steps. Let M =
M@e O, M' =M @e O and f: M — M’ the morphism in @MS: induced by f. Note that
the statement of Theorem 2.4.2 is equivalent to the existence of a constant ¢ such that p* f (o) C
M. First, we reduce to the case that 91 is a finite free &,,-module. By Proposition 2.3.2 (5), we

have a surjection ¢: 9 — M1 in Mod;’gjr with 91 a finite free G,,-module. Let N = N ®g O¢

and ¢ = q ®s Og. We see that p‘f(im) C 90 if and only if p f o G(M) C M'. Thus it suffices to
prove the theorem when 91 is a finite free module over G,,. Second, by taking the Cartier dual
constructed in §3.1, we reduce the proof to the case that 91’ is a finite free &,,-module. Finally,
let I be the image of 1 X fin M x M’. We have an exact sequence in 'I)M%);:

0—-T—->Mx M2 M —0.
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Let 01 = pr(M x M), and let iy : I <— M X M’ and i5 : M’ — M x M’ be the natural injections;
we have

1) me Mod;g",

(2) (proiz) ®s Og : M' — N is an isomorphism, where N =N ®¢g Ok,

3) ((prois) ®e Og) Lo ((proir) @ O) = .
Thus we get pr oig: 9 — N with M’ a finite free S,-module and (pr ois) ®g Og is an
isomorphism. Thus, if we can prove Theorem 2.4.2 for this case, i.e., assuming that there exists
g : M — M’ such that g’ ®e O = p*((pr 0iz) Ve Og)~ %, then let g := g’ o (pr oiy), and we
see that g ®s O¢ = p° f as required. O

Since g ®g Og = f~! is an isomorphism, g: 9" — M is an injection, so we may regard M’
as a submodule of 9. It thus suffices to prove the following:

LEMMA 4.1.2.— Let MM, M € Mod;’éor with 9 finite &,,-free such that M C M and

M Re O = M ®s Of. There exists a constant ¢ only depending on e and r such that
PN C M.

By Corollary 3.2.5, we have the following commutative diagram:

M (L) @z, B1)0 o (A 0 S0 (1))

o (TY(M) @7, S

Since M’ is a finite free &,,-module, we have

(M @6 67 (=) 7 =M @, (G127 (—r)) 7.

By Theorem 3.2.2, we have

2ol (M) = M D 6, - C iVoig(M) C M ®, (67 (—r)) ™,

so it suffices to prove that
@.1.1) P (S (=)™ c e, -t
Let us further shrink (G%QT)(fT))GN by claiming that (6;(2”(77'))(;00 C Og,p - 1. In fact,

recall that we have an isomorphism t” @ gur O™ : OF"Y =5 OW(—r). Taking G oo-invariants of
both sides, we have (O (—r))%> = Og ,, - t". Thus,

(&5 (=) C (02 (=) ™ = Og ., - .

Now we have reduced the proof of Lemma 4.1.2 (hence the proof of Theorem 2.4.2) to proving
that there exists a constant ¢ only depending on e and r such that

(6 N0e, ) CB, -t

For any = € &l Og - t7, let N be the G-submodule generated by ¢" (x) for all n. Using
Corollary 2.3.9, we can reduce the proof to the following:
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LEMMA 4.1.3.— There exists a constant ¢ only depending on e and r such that for any
M € Mod 7™, if &, - " CMC Og - ', then p M C &, -7

4.2. Proof of Lemma 4.1.3

We first need a Weierstrass Preparation Theorem to proceed with our calculation. There are
several versions of such a theorem available; the version we use is from [23]. For any f € G,,,
let f = f mod p, the order of f is defined to be the order of f, i.e., ord(f) = min{s |
a; mod pis aunit} where f =5 a;u’.

THEOREM 4.2.1 (Venjakob). — Let f € G,, have order d. Then there exist a unit € € S,, and
a polynomial F € W, (k)[u] of degree d such that F = u® mod p and f = €F.

Proof. — Corollary 3.2in [23]. O

The above corollary allows us to study division by an irreducible polynomial in &,,. For
f € 6&,, and a positive integer m < n, we write E(u) | f mod p™ if there exists h € &,, such
that f = E(u)h mod p™. For a real number z, recall that [z] = max{m | m is an integer such
that m < z}.

LEMMA 4.2.2.— Let f,g € &,, and n > 2. Suppose that E(u) | gf mod p". Then either
E(u) | g mod p™/? or E(u) | h mod pln/2]

Proof. — By Theorem 4.2.1, we may assume that g and h are polynomials of degrees d and
d’ such that g = u? mod p and h = u? mod p, respectively. Since £(u) is a monomial, we
can write g = E(u)q1 + g1 and h = E(u)g} + hy with deg(g1),deg(h1) < deg(E(u)). If either
g1 or hy is zero then the proof is complete. Suppose that neither of them is zero. We may write
g1 = p“gr and hy = p© "hy with g1,h1 Z0 mod p. It suffices to prove that

a+a =>n—1.

Suppose that the above inequality is not true. Then there exists § € G such that g1h) =

E(u)d mod p?. By Theorem 4 2.1, we may assume that g; (resp. h1) has degree d (resp. d’) and
g1 =u? mod p (resp. hy =u? mod p). Since g1h; = F(u)§ mod p, we have d +d’' =e + ¢’
where ¢’ is the degree of § mod p, so we get 0 < d,d < e and ¢ < min(d,d’). Write
g1 = E?:o a;ut, hy = Zj:o bju!, E(u) = u® + Zl o Giut, &= Z;io f;u’. Comparing the

¢/-degree terms on both sides of the equation g; h; = F(u)d mod p?, we have

Z ab; = Z cifj=cofe +Zcife’7i~
=1

i+j=e’ it+j=e’

Since d,d’ > €', we have p | a;,p | b; for any 4, satisfying i + j = €/, so the left hand side
is 0 mod p?. On the other hand, since ¢’ < e, we have p | e;,p | for—; forall i =1,... ¢
and f. #0 mod p, so we have that the right-hand side is pp mod p? with p a unit in Z,,
a contradiction. O

Let o =r([;%7]) + 1. Putc; =0ifer <p—1andc =2%"cyifer >p— 1.

LEMMA 4.2.3. — With hypotheses as in Lemma 4.1.3, suppose that I is a finite free rank-1
&,,-module. Then if n > ¢; we have M =G, - t
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Proof. — Since M C Og ,, - t7 and M is &,,-free of rank 1, there exists f' € Og,, such
that 9 = &,, - f't". Note that &,, - t* C M, so there exists f € &, such that f’f = 1. Thus,

we can write M =G, - % By Theorem 4.2.1, we may assume that f is a polynomial with

f=u? mod p. It suffices to prove that f is a unit in &,,, or equivalently, d = 0 if n > ¢;. We
have

lr _C—l U,T _lr
w(?t)—(o B) 1/6l0)- 3¢

Since the cokernel of ¢y, is killed by E(u)?", if we let g := E(u)" f/@(f) € Gy, then there
exists h € &,, such that gh = E(u)?". Put f := f mod p and §:= g mod p. Then

deg(u"®f/f?) =re—(p—1)d = deg(g) > 0.

Therefore, d < pe_Tl and deg(g) < er. In particular, if er < p — 1, then d =0, i.e., f is a unit.
Now suppose that d > 0, so deg(g) < er. Since E(u)?" = gh mod p", by Lemma 4.2.2, we see
that either E(u) | g mod p[*/? or E(u) | h mod p[™*/?l. Suppose that E(u) | g mod p[™*/?l and
write g = E(u)g; mod p[™/2l. Then we have E(u)?>" ' = g;h mod p[*/2]. Similarly, we have
E(u)? ' = ghy mod p!"/? if E(u)|h mod p[*/?. Induction on 2r shows that

4.2.1) g=¢€eE(u)™ mod p*
with 7y <rand e € &, aunit, so E(u)" f/¢(f) = E(u)" e mod p; that is,
4.2.2) E(u)"" "™ f=¢(f)e mod p.

Write f = Z?:o a;u’ and let by be the coefficient of the constant term of ¢. Comparing the
constant terms of both sides of (4.2.2), we get (cop)" " ag = p(ag)by mod p. Since by is a
unit of Z,, agp =0 mod p*2. Therefore, E(u)" " f! = ¢o(f')e mod p2 with f' = Z?:l a;u’.
Comparing the coefficients of u-terms both sides, we have (cop)” " a; =0 mod p2. Hence
a; =0 mod p®~". Since ¢z = r([;#7]) + 1 > rd + 1, an easy induction shows that ag =
0 mod p. This contradicts the fact that f = u? mod p, which we assumed at the beginning
of the proof. Thus, deg(g) = er, d = 0 and therefore f is a unit. O

Let M e Mod?’gor with M := M ®g O¢ a finite free O ,,-module. In general, 9t may not
be a finite free G,,-module. However, we will prove that 9t “contains” finite free pieces by
employing the following trick. For 0 <¢ < j < n, let

(4.2.3) M 1= Ker(p'an £ piam).

Since p'M and p/M are in Modigwr, M € Mod?%’tor by Lemma 2.3.3. Easy computations

show that p*OMH7 = M*+4J forany s < j —i and M @ Og ~ M /p’~* M. For any [ > 0 such
that [ + j < n, the natural injections p’ ™90t < p*Mt and p? M — p 9N induce a map

ai,j,l :g)'ti-i-l,j-‘rl N ml,j

It is easy to check that o' ®g Op is an isomorphism. In particular, for [ = 1 and i = j we get
the following decreasing chain

(4.2.4) ot cmb2 com®t c My
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such that M1 @g Og = M; for0<i<n — 1.

LEMMA 4.2.4.— Notations as above. In the decreasing chain (4.2.4), if there exist iy and s
such that

4.2.5) mioJrS*l,ioJrs — = ’Jﬁi"“’i“” — mioyio+1
2. )
then Mi0-0+s s & -finite free.

Proof. —For any 0 < m < s, let T, = 9tot(s=m)iots and T' = T',. Obviously, we have
Ty, =p* ™T. We claim that Ty, 1 /p™ T 41 = I To see the claim, considering the following
commutative diagram:

m

_— mz’o—&-(s—m—l),io—&-s p% gﬁio+(s—m—1),i0+s _ Fm+1

1_‘m-‘,-l
(4.2.6) l 5 WT

o (se1).d a jo+(s—m—1),io+(s—
mzo—i—(s 1),10—&-3%%10-"-(9 m—1),ig+(s m)7

where a := qfot(s—m=1io+(s=m)m g an jsomorphism by (4.2.5). The map (3 is induced
by p™:plot(s=m=Dgn — piot(s—D9n and it is a surjection. The map v is induced by
P plot (=M s pio TS and it is an injection. Tensoring (4.2.6) by Og, it is easy to check
that diagram (4.2.6) is commutative. Since « is an isomorphism, we see that I',, 11 /p™ 41 =
Cok(7y). By the Snake lemma and chasing the diagram, we have

Cok(y) = Ker(pi"*(sfm)i)ﬁ 2, p“’“im) =T,,.

Therefore, we have Iy, 1/p" 11 = I'y. Now we prove that Ty, is a finite free &,,,-module
by induction on m. The case m = 1 is obvious. Now assume that I',, is a finite free
&,,-module with rank d. Select x1,...,z4 € ';,+1 such that pzq,...,pzy is a basis of T',.
Since T'y41/p™Timy1 = Ty, by Nakayama’s lemma, x1,...,24 generates I',, . Therefore,
we have a natural surjection f: @?:1 Smi1 — D1, Since M, 1 = M/p™T1 M is a finite
free Og ,41-module with rank d, we see that f ® Og is a bijection. Note that I' is u-torsion free.
So f is an injection. Thus '}, 41 is &,,,41-finite free. O

Letc=0ifer <p—landc=[;*7](cy —1)+1lifer>p—1.

Proof of Lemma 4.1.3. — We will follow the idea of the proof for Proposition 1.0.6 in [19].
Keep notations as in Lemma 4.1.3. Define

M = Ker(p' I L Pm).
Then, as in the argument above Lemma 4.2.4, we have
4.2.7) G-t hr et Ot COg g -t

Suppose that M+l =&, - ;l with f; € &,. By Theorem 4.2.1, we may assume that f; = u™

since the cokernel of o3y, .4, has to be killed by u2". As in the beginning of the proof of

Lemma 4.2.3, we have that 0 < \; < %7, so if er <p — 1, then M+l = &, - ¢ for all i. Thus
M is a finite free &,,-module and M = S, - t” by Lemma 4.2.3. If er > p — 1, then there are at

most [ ]+ 1 distinct terms in (4.2.7). Thus, if n > [-<7] + 1, then there must be repeated terms
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in427).Ifn>c= [pe_rl
By Lemma 4.2.4, there exists ip < ¢ such that 9o+ <1 is a finite free rank &,,-module of
rank 1. By Lemma 4.2.3, we see that %90+t = G - ", In particular, 9t'0-0 1 = &, - " and
so MHi+l =&, - for all i > iy. Therefore, MO C S, -7, s0pMC S, -t". O

](c; — 1)+ 1, then there exist at least ¢; terms which coincide in (4.2.7).

Now we complete the proof of Theorem 2.4.2. As a consequence, we have

COROLLARY 4.2.5.— Suppose that MM, M € Mo d/6 ° are such that T (M) ~ T (IM). If
we identify M@ Of with M ®s Og, then

(1) p*M C M and p*IN C M, ~

(2) if M and IMN are finite free S,,-modules with n > ¢ then M, = M, _..

Proof. — We only need to prove (2). p*M C M implies that p*9 C IMO-"—<_where MO —¢ =

Ker(p™~<: 9 — p"~*M). Since M is finite S,,-free, MO~ = p°IN. Therefore PN C peIM,
and for the same reason we have p‘im CpMm. O

As the consequence of Theorem 2.4.2, we also get another proof of Proposition 2.1.12 in [14].
Let Repfzrp (Goo) denote the category of continuous finite free Z,-representations of G

COROLLARY 4.2.6. — The functor T :Mod;’é]r — Repfzrp (Go) is fully faithful.

Proof. —Let M, N € Mod;g, M =M O, N :=N®s O¢ and f:Ts MN) — Ts (M)
a morphism of Z,[G,]-modules. Then we get a morphism f: M — N such that T'(f) = f. It
suffices to show that f(0%) C 91. By Theorem 2.4.2, we see that p° f(,,) C N, for any n > c.

Since M, N are finite free, we see that f(M,,_) C Ny,—.. Thus fF(M) CN. O
4.3. Proof of Theorem 2.4.1

LEMMA 43.1.— Let M € Mod;g’r such that M := M g Og is a finite free Og ,-module.

Suppose that n > 2¢ + 1; then there exists a finite free &, _oc-module 9 € Mod;éor such that
M e O ~ M /p> M.
Proof. — Use the same notations in Lemma 4.2.4 and set 9%/ := Ker(p'O LA pI9N), and

I := M. We claim that O is a finite free S,,—2.-module. By Lemma 4.2 .4, it suffices to
prove

mn—c—l,n—c = m’tﬁﬂ-l

For any 0 < i < n — ¢ — 1, we have a natural injection « : p"~ 1901 — 9MHi+e+L Tt is easy to
see that a ®6 (95 is an isomorphism. Thus, by Corollary 4.2.5,

pcmi,i+c+1 cC pn—c—lm«t.

Since p kills p*OM>+<+1 we have p*Obitetl c gn—c—Ln=¢ On the other hand, we have

prmbitetl = gniteiterl Therefore, MMHoiTerl Dﬁ"—‘_l "=¢. But by (4.2.7), we always

have a decreasing chain -1 ¢ MHLi+2 < My for 0 <i < n— 2, so we get M~ Ln—c —
=Mt asrequired. O

Proof of Theorem 2.4.1. — Suppose that for each n, there exists M ,,) € Mod;gr such that
Te(M(yy) =T, =T/p"T. For n a fixed integer, let

n+4c

43.1) M, = M3 = p MG = pf Ker(p M 50) L p" > M 0.
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We claim that Dﬁz ) € Mod;’éOr and is finite free over &,, and that we have Dﬁzn 1) / p"fm’(n )

Dﬁzn). If this is the case, letting MM = lim | Em’(n), we see that 9 € Mod”" and Ts(M) =T, as

/6
required. Hence, it suffices to prove the claim. By the proof of Lemma 4.3.1, we see that Dﬁzn"ji;

,n+2c . n
En:écc) is &, -free. To see MY, ;) /p" M, 1) =

fmzn), it suffices to show that pim’(n ) i)ﬁ’(n). Note that pmg;{ff;w and fmgn’gﬂ;i; are both
finite free G,,;.-modules and give the same finite free Z,, .-representation 7;, . of G.. Thus,

by Corollary 4.2.5,

is a finite free S, .-module, so im’(n) =pM

,n+2 ~ ,n+2c¢
PIMGy1) = PG gy = PPN = M- O

4.4. A refinement of Theorem 2.4.1

In order to prove Conjecture 1.0.1, we need a slight variant of Theorem 2.4.1. Recall that
G := Gal(K/K).Let T be a finite free Z,,-representation of G. Suppose that, for each n, there
exist G-stable Z,-lattices L’(n) C Ly in a Q,-representation V{,,y of G such that

(1) L(n)/L{,,y = Ty = T/p"T as Zy[G]-modules,

(2) there exist finite free G-modules £,,), Szn) € Mod’/"’ér such that

Ts(Lwmy) =Lm)le.. and Ts(Li,)) = Lin)lc.-

Letting M,y := 2’(n)/£(n), we have T's (M ,,)) ~ Ty|c.. - By Theorem 2.4.1, there exists an

M e Mod?’ér such that T (M) ~ 7|, . In general, it is not necessarily true that 90, ~ M,,).
To remedy this, we have the following:

LEMMA 4.4.1. — We can always choose G-stable lattices L’(n) C L(n) in Viy) such that
M, = Szn)/ﬁ(n).

Proof. — Using the covariant functor will be more convenient here. For 9t € Mod” ¥ or

/6
M e Mod;’ém, recall that

\

V(M) :=T" (MRe O) = (Mg O~ = (Ts (M) "

Applying the functor TV to the exact sequence 0 — £,,) — 2’(n) — M,y — 0, we get
an exact sequence of Zp[G]-modules 0 — Ly, — L, — T,)—0. By (4.3.1) in the proof of
Theorem 2.4.1, we see that

Qﬁn = 9:)'{?;’:3:; = Ker(pzcﬁ)?(n+3c) — p"+2‘93?(n+3c)).

A%
(n+3c)

— P**M(s430) 1s a surjection and TV (p*f) is a surjection of

Let f:£2n+3c) — IM(430) be the surjection such that T(f) is the surjection L
Tyt 3. Then p*f:p* &

Z,|G]-modules p** LV

nt3e) = p* T, 5. For the same reason, T (p""2%) is a surjection of
Z,|G)-modules p" 2 L7V

Orrse) — PP 5. Let 9= Ker(p?(), OV := Ker(p"*2f), N :=
Ker(TV (p*f)) and N’ := Ker(T" (p""2¢})). By Lemma 2.3.8, M and N’ are S-finite free.
Therefore, we get an exact sequence 0 — 9N’ — N — M, — 0 in Mod;e; applying the functor
TV to this sequence, we get an exact sequence of Z,[G]-modules 0 - N’ - N - T,y —0. O

—

n+3c)
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5. Preliminaries on semi-stable Galois representations

We begin the second part with this section. In this section we first briefly review several
theories for constructions of semi-stable p-adic Galois representations from Fontaine, Breuil and
Kisin and then set up several variations of Theorem 3.2.2 to connect Galois representations and
their various associated p-adic Hodge structures. These comparisons will play central technical
roles in the later calculations.

5.1. Semi-stable Galois representations and (¢, NV )-modules

Recall that a p-adic representation is a continuous linear representation of G := Gal(K/K)
on a finite dimensional Q,,-vector space V.

Definition 5.1.1 [10]. — A p-adic representation V' of G is called semi-stable if
(5.1.1) dimg, (Bs ®q, V)¢ = dimg, V,

where Byt is the period ring constructed by Fontaine, see for example [9] or § 5.2 for the
construction.

If V is any p-adic representation of G, then one always has dim g, (By; ®g, V)¢ < dimg, V
([11]). To prove that T' ®z, Q, in Conjecture 1.0.1 is semi-stable, it therefore suffices to prove
that dimg, (By ®z, T)® > Rankz, T.

Recall that a filtered (¢, N')-module is a finite dimensional K-vector space D endowed with:

(1) a Frobenius semi-linear injection: ¢: D — D,

(2) alinear map N : D — D such that Ny = ppN,

(3) a decreasing filtration (Fili Dg)iez on Dg := K ®k, D by K-vector spaces such that

Fil' Dy = D for i < 0 and Fil' D = 0 for i >> 0.

If D is a 1-dimensional (p, N)-module and v € D is a basis vector, then ¢(v) = aw for some
a € Ky. We write tn (D) for the p-adic valuation of « and ¢z (D) the unique integer ¢ such
that gr' D is nonzero. If D has dimension d € NT, then we write ¢y(D) = tx(A” D) and
ty(D) =ty (A D). A filtered (¢, N)-module is called weakly admissible if t (D) = t (D)
and for any (¢, N)-submodule D' C D, ty(D’) < tn(D’), where D} C Dy is equipped with
the induced filtration. A (¢, N)-module is called positive if Fil” D = Dg. We denote by
MF(p, N) the category of positive filtered (¢, N)-modules, and by MF" (¢, N) the subcategory
consisting of weakly admissible (¢, N)-modules. In [7], Fontaine and Colmez proved that the
functor D} : V — (By ®q, V)¢ establishes an equivalence of categories between the category
of semi-stable p-adic representations of G and the category of weakly admissible filtered
(¢, N)-modules. Therefore, we can always use weakly admissible filtered (i, N)-modules to
describe semi-stable Galois representations. In the sequel, we will instead use the contravariant
functor Dy (V') := DX, (VV), where V'V is the dual representation of V. The advantage of this
is that the Hodge—Tate weights of V' are exactly the i € Z such that gr’ Dy (V) # 0. A quasi-
inverse to Dy is then given by

(512) Kt(D) = HOIHLP)N(D, Bst) N HOIHFil- (DK,K ®K0 Bst)-
Convention 5.1.2. — From now on, we always assume that the filtration on the weakly
admissible filtered (p, N)-module D under consideration is such that Fil’ Dix = Dy and

Fil"™ Dg = 0. Equivalently, the Hodge-Tate weights of the semi-stable p-adic Galois
representation Vg (D) are always contained in {0, ..., r}.
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5.2. Theory of Breuil modules

We denote by S the p-adic completion of the divided power envelope of W (k)[u] with respect
to Ker(s) where s: W (k)[u] — O is the canonical surjection sending u to 7. For any positive
integer i, let Fil’'S C S be the p-adic closure of the ideal generated by the divided powers
v (u) = %@J for all j > 4. There is a unique map (Frobenius) ¢:S — S which extends the
Frobenius on W (k) and satisfies ¢(u) = u?. Define a continuous Ky-linear derivation N : S — S
such that N (u) = —u. Finally, we denote S[1/p] by Sk, . Following [5], a filtered ¢-module over
Sk, is a finite free Sk ,-module D with

(1) a g, -semi-linear morphism ¢p : D — D such that the determinant of ¢p is invertible

in SKO s
(2) a decreasing filtration over D of Sk,-modules (Fil'(D));cz with Fil’(D) = D and
Fil' Sk, - Fil? (D) c Fil'*/ (D).
Similarly, a filtered p-module over S is a finite free S-module M with
(1) a ¢pg-semi-linear morphism ¢ : M — M such that the determinant of ¢ is invertible
in SKO s
(2) a decreasing filtration over M of S-modules (Fil'(M));cz with Fil’(M) = M and
Fil' S - Fi/ (M) C Fil'™/(M).
Clearly, if M is a filtered ¢-module over S, then M ®z, Q, is a filtered ¢-module over Sk, .
A filtered (yp, N)-module over Sk, or a Breuil module is a filtered p-module D over Sk, with
following extra monodromy structure:
(1) a Ky-linear (monodromy) map N : D — D such that
(a) forall f € Sk, andm €D, N(fm)=N(f)m+ fN(m),
(b) No=ppN,
(c) N(Fil'D) c Fil'""}(D).
We denote the category of filtered ¢-modules over Sk, by Mod‘fSKO, the category of filtered

w-modules over S by Modfs and the category of Breuil modules by Mod“/"gz . It turns out that
0

the categories MF(p, N) and Mod%jf\i are equivalent. More precisely, for any filtered (¢, N)-
0

module D € MF(p, N), we can associate an object D € Mod%ﬁ by defining D = S @y (1) D;
0

©p =95 ® ¢p; Np := N @ Id+1d®@N; Fil'(D) := D if Fil' D = D and by induction
Fil'"' D:={z € D| N(z) € Fil'D and f,(z) € Fil'™" Dk},

where fr:D — D is defined by s(u) ® z +— s(m)z. In §6 of [5], Breuil proved the above
functor D: D — D ®yy (i) S is an equivalence of categories. Furthermore, D and D(D) give
rise to the same Galois representations. Several periods rings have to be constructed to make the
statement more precise. Recall R = lim O /p and the unique surjective map 6: W (R) — 6;(
which lifts the projection R — O /p onto the first factor in the inverse limit. We denote by Ac,is
the p-adic completion of the divided power envelope of W ( R) with respect to Ker(6). Recall that
[zx] € W(R) is the Teichmiiller representative of w = (7,,),>0 € R. We embed the T (k)-algebra
W (k)[u] into W(R) via u +— [x]. Since 6(m) = =, this embedding extends to an embedding
S — 8§ — A, and 0|g is the Kp-linear map s : S — O defined by sending u to 7. The
embedding is compatible with Frobenius endomorphisms. As usual, we write B:;is = Acis[1/p],
and denote by B the Ker(6)-adic completion of W (R)[1/p).

For any field extension F/Q,, set Fjee = J;— | F({pn) with (,n a primitive p"-th root of
unity. Note that Ko peo = oo, K( 7/7, (pn) is Galois over K. Let G := Gal(K s poo , Kpoo ),
Hg = Gal(K o poe, Koo) and G := Gal(K oo oo /K). If Koo N Ko, = K then we easily see that
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G =Gox Hg and Go ~ Zy(1). In fact, Lemma 5.1.2 in [18] shows that K- N K, = K always
holds unless p = 2. Therefore,

Assumption 5.2.1. — From now to §7, we always assume that p > 3 or Kjc N Koo = K if
p=2.

§8 will deal with the case when the above assumption breaks.

For any g € G, let €(g) = g([x])/[x]. Then e(g) is a cocycle from G to the group of units
of Agis. In particular, fixing a topological generator 7 of G, Assumption 5.2.1 implies that
e(T) = [(€:)i=0] € W(R) with ¢; a primitive p’~th root of unity. Therefore, ¢ := —log(e(7)) €
Acris is well defined and for any g € G, g(t) = x(g)t where x is the cyclotomic character.
Let Bar := Biy[3]. u :=log([x]) € Bar is well defined. We define B := B, [u] and
By :=B}[1]. Let D € Modfé]z be a Breuil module. Using the monodromy N on D, we can
define a semi-linear G-action on %? ®g Acris bY

oo

(5.2.1) oz ®a) :ZNi(a:) ® o(a)y;(—log(e(0)))

=0

foro € G, x € D and a € A.,s. In particular, the G-action preserves the Frobenius and filtration
on D ®g Aeis and forany g € G and 2 ® a € D ®g Acris, We have g(z ® a) =z ® g(a) (see
Lemma 5.1.1 in [18]). Define

Vit (D) := Homa,,, ril,o (D ©s5 Acris, Bahis)-
Since D ®g Aeris has a natural G-action defined by (5.2.1), we can define a G-action on V(D)

by (go f)(z) =g(f(g~*(z))) forany f € Vi (D), g € G and z € D ®g Acyis. Thus, Vi (D) is a
Q,[G]-module.

PROPOSITION 5.2.2 (Breuil). — Forany D € MF(p, N), let D :=D(D) = D @y () S. Then
there is a natural isomorphism Vi (D) ~ Vi (D) of Qp[G]-modules.

Proof. — This result has been explicitly or non-explicitly used in several papers (e.g.,
Proposition 2.1.5 in [14]). Lemma 5.2.1 in [18] gives a proof by using the main result of [S]. O

By the above proposition, we always identify Vi (D) with Vi (D) as the same Galois
representations.

5.3. Comparisons

In this subsection, we set up a variant of Theorem 3.2.2 to compare filtered ¢-modules over .S
with their associated G o -representations. Note that the natural embedding & < S is compatible
with Frobenius structures. As in [4], for any finite free ¢-module 9 € Mod;’ér of finite height,
we can associate a filtered p-module over S via Mg (M) := S ®, e M, a @g-semi-linear
endomorphism ¢ v (9m) = ¥s @ won (as usual, we drop the subscript from ¢ (on) if nO
confusion will arise) and a decreasing filtration on Mg (9N) via

Fil'(Mg (M) = {m € M (M) | (1 ® ¢)(m) € Fil' S @ M}.
To see that M := Mg(9M) is a filtered p-module over S, note that the cokernel of ¢y
is killed by E(u)", so the determinant of ¢aq is a divisor of ¢(E(u)"), which is a unit

in Sk,. Once can easily check that Fil’ S - Fil/ M C Fil'*7 M from the definition. We set
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Dg (M) = Mg (M) @z, Qp, which is a filtered p-module over S, . To any M € Mod’/“"ér and
M := Mg (M), we can associate a Z, |G |-module by:

ﬂt (M) = HomS,Lp,Fil' (M7 Acris)-

Since G acts trivially on S, Ty (M) is a Z,[Gw]-module. Note that & C W(R) C Acyis.
Given f € T (M) = Homg (M, &™), we define an S-linear map f: Mg (M) — Acyis by

(5.3.1) f(s@m)=sp(f(m)), foranys®@meS @, e M.
It is easy to check that f is compatible with Frobenius and filtration. Thus, we have a map
(5.3.2) Ts(9M) — Ty (Ms(I)).

LEMMA 5.3.1. - The map (5.3.2) is an injection, and is compatible with G o -actions.

Proof. — 1t suffices to check that the map is an injection. By (5.3.1), if f = 0, then note that 90t
is a finite free G-module, so ¢(f) = 0. But ¢: " — A, is easily checked to be an injection,
sof=0. O

Remark 5.3.2.— If r < p — 1, then the map (5.3.2) is an isomorphism (cf. Lemma 3.3.4 of
[18]). However, if p > r — 1, we may only get an injection as in the following example.

Example 53.3.— Let SY := Mg(&Y). Then pgv(1) = ¢(cg"E(u)"), Fil'S¥ = S for
. . -1

0<i<rand Fil' ¥ = Fil'™" S for i > r. Let ¢ = [} ¢" (2 2“Y) and 5* be the rank-1
¢-module over S with @g- (1) = p”, Fil’ §* = § for 0 <4 < r and Fil’ * = Fil'’"" S for i > 7.
Note that ¢ is a unit in S. Then the map ¢ : S* — SV sending 1 to ¢” is an isomorphism of
filtered ¢-modules over S, s0 Ty (S*) ~ Ty (S") ~ Z,(r). In particular, there exists a generator
f € T (S*) such that f(1) = t{"}, where 1"} = "W, (771 /p) and n = (p— 1)G(n) +7(n)
with 0 < r(n) < p — 1 (here we use the notations in §5.2 of [9]). Hence, if » = p — 1, then we
see that 1P~} ¢ W(R) and T (&V) — Ty (S*) is not surjective. f p >3 and r =1<p — 1,
by Remark 5.3.2, we have

Te(S"Y) ~ Homg pir o (S, Acris)-

Therefore, cp(t) = ugt with ug a unit in Z,. If p =2 and r = 1, then we only have an injection
Ts(8Y) — T (S*). Therefore, co(t) = At with a A € Z,,. We claim that X is a unit in Z,,.
In fact, using that ¢(t) = co~ E(u)t, one can easily compute that ¢(t) — ¢/E(u)? € 2W(R)
with ¢’ a unit in W (k). Therefore, ¢(t) € 24 and @(t) ¢ 4Aq and we still have that
co(t) = 2upt = ugt with a ug an unit in Z,.

Let M e Mod;’ér be a finite free p-module over & of finite E(u)-height. By Theorem 3.2.2, we
have Frobenius equivariant G""-linear morphisms

1M Re 6™ — TL(M) @z, &™

and

Y TE(M) @, &Y — M e & (—r)
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such that 7Voi = Id ®t". In order to extend the comparison of G-actions, we tensor ¢ and £V with
Acris via the map ¢ : 6" — A5 We have

Z®Lp Acris B¢ ®6,Lp Acris - Té (m) ®ZP Acris

and
Zv@WACYiS : Té (m) ®Zp A;/ris - m ®67<P Acris(_r)y

where o on AY, sends 1+ ¢(cy ' E(u)"). Let A, = S* ®g Acris Where S* is constructed
in Example 5.3.3. For the same reason as in Example 5.3.3, the A.s-linear isomorphism
e A¥ . — AY. sending 1 to ¢” is compatible with Frobenius and filtration on both sides. We

cris cris

summarize the above discussion in the following lemma:

LEMMA 5.3.4. — Notations as above, there exist Acys-linear injections
. Y%
LI ®67Lp Acris - TG (E)n) ®Zp Acris

and
L Té/ (m) ®Zp A:ris — M ®G,Lp Acris(fr)

such that v and * are compatible with Frobenius and G . -actions on both sides. Furthermore,
¥ o1 =1d®t" if we identify A%.. with Acis.

Cris
Proof. —Let 1 = [ ®y Acris and * = ¢" (1Y ®yp Acris). Note that { @y Acis and 0¥ @y Acris
are Acpis-linear. By Theorem 3.2.2, * o . = Id ®(¢(t)c)". In Example 5.3.3, we showed that
o(t)c = ugt for a unit ug € Z,, and we can modify ¢* by multiplication by u," so that
t* o1 =1Id®t". Since ¢" is not a zero divisor in A,is, we see that ¢ and +* are injections. O

*

Remark 5.3.5.—In the applications that follow, we abuse the notation by identifying A’ .
with A,s. The map ¢* is no longer compatible with Frobenius with such identification. However,
we do not use the Frobenius compatibility of +* in our applications (cf. Proposition 6.1.1).

5.4. Kisin’s theory on (, N)-modules over &

In this subsection, we input Kisin’s theory ([14]) on the classification of semi-stable Galois
representations by (¢, N)-modules over S. A (¢, N)-module over G is a finite free p-module

M e Mod;’ér equipped with a K-linear endomorphism N : t/udt @z, Q, — M/uM @z, Q,
such that Ny = ppN. We denote by Mod“f’GN the category of (¢, N)-modules over &, and by
Mod"/DéN ®z, Q) the associated isogeny category. The following theorem summarizes results we
need from [14] (cf. Corollary 1.3.15, Proposition 2.1.5 and Lemma 2.1.15 there).

THEOREM 5.4.1 (Kisin). — There exists a fully faithful ®-functor © from the category of
positive weakly admissible filtered (¢, N)-modules MF" (p, N) to Modf’GN ®z,Qp. Let D €

MFY(p, N) and I := ©(D). Then there exists a canonical bijection

(5.4.1) n:Ts (M) @z, Qp = Vir(D)

compatible with the action of G on both sides. Let V = Te (M) @z, Qp. The map N —
Homg (M, &™) is a bijection between the set of finite free p-stable S-modules M C € @ M
such that N/ p*N is killed by E(u)" and the set of G oo-stable Z,-lattices L C V.
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In fact, Kisin also gave a criterion to detect whether an 9t € Modf’GN ®z, Qp is in the essential
image of functor ©. In particular, let 9t = ©(D) for D € MF¥(p, N) and D := Dg ().
§3.2 in [18] showed that this criterion implies that there exists a unique monodromy operator
N defined over D such that the data (D, Fil’ D, , N) is a Breuil module and D(D) ~ D in
Mod%}i . (where D(-) is the functor constructed in §5.2). For our purposes, it will be convenient

to reconstruct (5.4.1) somewhat differently from [14] following the idea in [18]. By Lemma 5.3.1,
we have injections of Z,[G o ]-modules:

(542) T@ (Sﬁ) — Lgt (M) — HOHIS’FHA’@('D, BJr )

cris
Note that

Homg pi1, (D, BE,,) ~ Homa,,,_ Filp (D @5 Acris, B

cris Cris) -

Vie(D)

which is compatible with GG -actions on both sides. By Proposition 5.2.2, we have a natural
injection

Ts (M) ®z, Qp — Vit (D) ~ Vi (D)
compatible with G -actions on both sides. On the other hand, since D is weakly admissible, an

argument in Proposition 4.5 of [7] shows that dimg, Vit (D) < dimg, (D) = d. Since (5.4.2) is
an injection and rankz, T's (M) = d, we must have dimg, V¢ (D) = dimg, (D) = d and

(5.4.3) Ts(M) ®z, Qp = Homa,,,_ pile (D ®s Acis, Biis) = Vit (D),

where the first isomorphism is compatible with G, -actions and the second is compatible with
G-actions. Note that the second isomorphism allows us to construct a B, -linear map

cris
L/ . D ®S Acris — V;*.\t/ (D) ®Zp Acris

that is compatible with GG-actions, Frobenius and filtration. On the other hand, by Lemma 5.3.4,
we have

LM ®6,Lp Acris - Téj/ (m) ®Zp Acris~

Note that (M @ Aeris) @z, Qp = M s, Sk @54, Beris = D (M) @5 Acris, we claim that
L®z, Q, =/ thatis, [ @, B}

s = . To prove the claim, note that T (9) = Homgur (MR
G, &), The functor

Mee 6™ — (Ms &) @gu, B,

cris

=Dg(M) ®s B

cris

induces a natural map

Homgur (M ®e 6", 6") ®z, Q) — Homa,,,, Fiie (Ds (M) ©5 By, B

cris? cris) :

Since the left-hand side is T (97) ®z, Q,, and the right-hand side is isomorphic to Vi, (D), (5.4.3)
shows that the above map is an isomorphism. Therefore, by the construction of +’ and ¢, we have
t ®z, Qp = /. In summary, we have proved the following:

THEOREM 5.4.2.— Let T be a G-stable Zy-lattice in a semi-stable Galois representa-
tion V, and let MM € Mod;’ér be such that n(Ts(9M)) =T, as in Theorem 5.4.1. We have the
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following commutative diagram:

1®z,Q
ey oY R, Bt

cris

9ﬁ®6,¢ BT

(5.4.4) j

m ®6790 Acris =TV ®Zp Acris

where | @z, Q, preserves G-actions, Frobenius and filtrations and v preserves G «-actions and
Frobenius.

Remark 5.4.3.—1In the following applications of Theorem 5.4.2 and Lemma 5.3.4, we
sometimes replace MM @g , Acris by M ®g Acris Where M := Mg (9N). It is possible to define
filtrations on both sides of ¢ such that ¢ is compatible with these filtrations, but we do not need
filtrations in the applications below.

6. The G-action on M Qg , Acyis

Let T" be the finite free Z,-representation of G in Conjecture 1.0.1. By the hypotheses of
Conjecture 1.0.1, we have T,, = T/p"T = L(n)/L’(n) for each n > 0, where LG) C L) are
G-stable Z,-lattices in a semi-stable Galois representation V() with Hodge-Tate weights in

{0,...,7}. By Theorem 5.4.1, there exist finite free ¢-modules £,,), Szn) € Mod;’ér and an

injection i,, : £,y — E’(n) in M0d76 such that Ts (£(n)) ~ Ln)|ao.» T (2'(71)) ~ L’(n) |g.. and
Ts(ip,) is the inclusion L’(n) C L. Setting 951(,1) = Ezn)/ﬁ(n), we have T (95?(,,)) ~ThlG..-
Thus, by Theorem 2.4.1, there exists a finite free G-module 9t € Mod;’ér such that Tig (9) ~
T|c.. - A refinement of Theorem 2.4.1 in §4.4 shows that we can assume that 9t,, ~ ﬁjl(n). Let
M= Mg(M) =51, e M. Note that M ®g Acris = M X, Acris- By Lemma 5.3.4, we have
the following commutative diagram

M®s B

6.0.1) J

M ®s Acris — T ®Zp Acris L**> M Xs Acris(_’r)~

®z,Q
+ oy 2, B

cris cris

Since T' is a Zj,-representation of G, the second column has a natural G-action. Unlike
diagram (5.4.4), we do not know whether M ®g Bctis is stable under the (G-action on
TV ®z, Bctis because there is no monodromy on Dg (M) = M ®z, Q, available, which is
crucial in defining the G-action on M ®g B,  via (5.2.1).

This section is devoted to proving that M ®g B;is is indeed GG-stable under the hypotheses
of Conjecture 1.0.1. We also describe the precise image of the G-action of M in M ®g B;is.
For any integer n > 0, recall that t{"} = "™~ (#7=1 /p) and n = (p — 1)(n) + r(n) with

0 < r(n) < p— 1. Define a subring R, of B, by

cris

oo
RKO = {Jizz‘fit{i}, fi GSKO and fi—>0asi—>+oo}.

=0

Put R := Rk, N Acris- The main goal of this section is to prove the following:
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PROPOSITION 6.0.4. — Under the hypotheses of Conjecture 1.0.1, M ®g Bj;is is stable under
the action of G and G(M) C M ®s R,

6.1. Action of Gp on M ®g Acris

Suppose that T' is a G-stable Zj-lattice in a semi-stable Galois representation V. Let

M e Mod;’ér be such that n(Tg(9)) = T as in Theorem 5.4.2 and M := Mg (). We first
+

cris*

analyze the action of Gy on M ®g B
Go = Gal(K oy, Kpoo ) (§5.2).

PROPOSITION 6.1.1. — There exists a constant sg > 0 only depending on the maximal Hodge—
Tate weight r of V such that p*°T(M) C M &g R.

Remark 6.1.2.— Whenr < p—1, we proved in §5.3 [18] that 7(M) C M ®g R. Thus, s may
be chosen to be 0. Little is known about the minimal bound for s¢ if r > p — 1.

Recall that 7 is a fixed topological generator of

To prove Proposition 6.1.1, we need a fact about A.,;s. Following the notations in §5.2 of [9],
let

I = {a € Auis | ¢"(a) € Fil® Ay for all n}.
By Proposition 5.3.1 in [9],

[[i] — { Zajt{j}

jzi

aj € W(R), a; —>Oasj—>+oo}.

LEMMA 6.1.3. — There exists a constant \ > 0 only depending on v such that for all m > A
and all a € Agyis, if t"a € p'™ Acyis then

ac Z pilm.
i+j=m—XA

Proof. — By Theorem 5.2.7 in [9], for any a € A5, we can write a in the following form:
a=3"4 antt™, where a,, € W(R) and a,, — 0 as n — 4o00. Thus, t"a = > apeptintrt
with

Pt g(n+r)!
Cp = ——= = v
P ()
Itis easy to check that G(n +7) — §(n) is bounded and n — v(c,, ) — +o00 as n — 400, where v(-)
is the standard valuation in Z,,. Thus, A = —min{n — v(c,)} > 0 is well defined. Now suppose

that m > X and t"a € p"* A.,is. Then there exists b,, € W (R) such that

i anentt"trt = p™" (i bnt{"}) .
n=0

n=0

Looking at this equation modulo I'"), we get pm(z:;g batt™) =0 mod I"l. By Proposi-
tion 5.3.5 in [9], Acyis/I ("] has no p-torsion. Therefore, ZZ;B b,tt"t € I so without loss of
generality, we can assume that

oo [e%S)
Z At = pm ( Z bnt{nJrr}) '
n=0 n=0

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



664 T.LIU
Looking modulo I"*+! gives that (agcy — p™bo)t"} € II"+11, Since
" ((aoco — pmbo)t{’"}) =" (agco — p””bo)p"t{’"} eFil" ™ A

and " € Fil” Aqyis — Fil" ™ Ao, we get (agco — p™bo) € I, Note that m > X > v(cy), so
we may write agco — p™by = p¥(°)dy, and, clearly, dy € I'"l. Therefore, ag = (calpv(c‘)))do +
p™(cy )by and we get

a=p"(cg")bo + (Co prddo + > ait{”}> :

n=1

Hence, we can write a = Y oo a,ti"}, where ag € p™*Auis and agcy € p™ Acyis. It now
suffices to prove that we can always write a = ZZO:O a,tt™} such that a, € pm’A*”AcriS and
p™ | ancy for 0 < n < m — A. We prove this by induction on n. The above argument settles the
case n = 0. Now suppose that we have a,, € pm’A*"AcriS and p™ | apc, for 0 < n <l — 1.

Consider the case that n = [. Since a,c,, € p" Acis for 0 < n <1 — 1, we have

e’} s} -1
6.1.1) 3 anent = pm <Z bt =3 %t{"+r}> .
n=I[ n=0

m
n=0 p

As in the case n = 0, using the fact that A.s/1 [+7] has no p-torsion, we can rewrite (6.1.1) as
the following:

o o
Z ClnC”t{n+r} — pm (Z b”t{n+r}> )
n=l

n=lI

Repeating the same argument as in the case n = 0, we have a;¢; — p™b; = d; with d; € I,
We claim that v(c;) < m. In fact, if v(¢;) <, then v(¢;) <I<m — A< m;if v(¢) > 1, then
v(er) = (v(ey) = 1) +1 < A +1< X +m — X\ =m. Therefore, d; € p*(°) A;s and we can write
ar = (¢; 'p™)by + ¢ 'dy with ¢; *d; € I, Thus,

-1 %S
a=> ant!™ + (¢ bt + ()t + Y gt
n=1 n=Il+1

Rewrite a; = (¢; 'p™)b;. Note that v(c;) — I < A, so m — v(¢;) = m — A — [, and obviously
ajc; € p Aeis- Thus we have proved the case n = [, which proves the lemma. O

Proof of Proposition 6.1.1. —Let so = A + r. We choose m big enough so that p"'7(M ®g¢
Aeris) € (M ®g Aegyis). Put 7 := p™7. By Theorem 5.4.2 and Lemma 5.3.4, we have the
following commutative diagram:

M ®s Acris % T ®Zp Acris
(6.1.2) l% ime

M ®s Acris — T ®Zp ACFiS — M Xs Acris-

It suffices to show that if m > s¢, then p | 7. Note that M = M ®s , S with M € Mod"/"g. Let
(e1,...,eq) be abasis of M and pon(e1,...,eq) = (e1,-..,eq)A, where Ais a d x d matrix with
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coefficients in &. Then there exists a matrix B such that BA = AB = E(u)"I (I is the identity
matrix). Clearly, we can regard eq, ..., e, as a basis of M. Let (y1,...,yq4) := (e1,...,e4)B in
M. Then
oMy, ya) = pmler, ... ea)p(B)
=(e1,...,eq)p(A)p(B)=p"(c1)"(e1,...,eq),

where ¢; = ¢(E(u))/pis a unitin S. By (6.1.2), we have

L*oLof(yl,...,yd):L* Omeob(yla-nvyd)-

Write 7(y1,...,Ya) = (€1,...,eq)C where C' = (¢;j)axa is a d X d matrix with coefficients in
Acris. Since ¢* o = Id®t" by Lemma 5.3.4, t"c;; € p™ Acris for all 4,5 = 1,...,d. Thus, by
Lemma 6.1.3, we have

cye Y pIbl ij=1,..d
i+j=m—A

In particular, (c;;) € p™ A Ags forall 4,7 = 1,...,d. On the other hand,

(p(e1), ... plea)(C) = (Y1, ya) =7 (2W1,- -, Ya))
%(pr(cl)T(el, . ,ed)),

so we have 7(e1,...,eq) € p™ %0 Ags; thatis, p | 7. O
6.2. Proof of Proposition 6.0.4

Since G, acts on M trivially, it suffices to prove that there must exist a constant s; only
depending on e and 7 such that p*17(M) C M ®g R. Since T'/p™T is torsion semi-stable, there
exist G-stable lattices L’(n) C L(y) in semi-stable Galois representations V/{,,) with Hodge-Tate
weights in {0,...,r} such that L(n)/L’n) ~T,. Let £,y — 2’(n) be the injection in Mod;’ér
corresponding to LG) C L(y) as Zp|Goo]-modules. We may assume that £/(n)/£(n) =M, as
explained in § 4.4. By Theorem 3.2.2, we have

0—— Lz/n) Rz, G o L/(YL) ®z, GY > (T/pnT)V ®Zp &Y ——0

]

0—— E(n) Rs O — £/(n) Reg G

mn®6 Sur 0

where the two rows are short exact. Tensoring the above diagram with A5 via @ : " — Acys,
we have

00— LE/n) ®Zp Acris ——> L/(\r/L) ®Zp Agris ——= (T/pnT)v ®ZP Agis —=0

J J |

0—— S(n) ®6,g0 Acris —_— ’8271) ®G,Lp Acris _— mn ®G,4p Acris

0.

The injectivity of the first two columns is guaranteed by Theorem 5.4.2. Since A.,;s is flat over
Z,, the top row is exact, then the second row is also exact by the injectivity of the first column.
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For the same reason, we have the following commutative diagram:

0—— Lz/n) ®ZP Acris E— L/v) ®Zp Acris —_— (T/pnT)\/ ®Zp Acris — ()

(n

| J |

0—— S(n) ®G,Lp Acris — S/(n) 6,0 Acris M, R&,p Acris 0
0——=Lmn ®s,p, R E/(n) ®e,p, R M, ®e,e R 0

and the third row is exact. By Proposition 6.1.1, p*°7(£(,,)) C £) @, R and pSOT(,Q/(n)) -
E’(n) ®e,p R. Then 7, := p*°7 and 7, := p*°7 are well defined on M,, ®s,, R and M,, R,
Acis, respectively. Let ¢, :== ¢ mod p™, where ¢ is constructed in Lemma 5.3.4; we have the
following commutative diagram:

mtn ®6,<p R—— mn ®6,<p Acris L> (T/p"T)V ®Zp Acris
(62.1) . l lp

m, ®G,<p R—— M, ®G,Lp Acris # (T/pnT)v ®Zp Acris-

The above diagram tells us that for all n,
PPT (LM Be 4 R)) CLUMBs o R) +p" (T @z, Acxis)-
Since M ®e,, R is p-adically complete, we have
pSOT(L(i)ﬁ ®6,e R)) C(MRs,,R)

and therefore 7 is stable on M ®g B, and G(M) C M ®s R, This proves Proposition 6.0.4.

cris

7. G-invariants in M ®g B

In this section, we will show dimg,(M ®s Bf)® > d, where d = rankz, (T), and
then prove that 7' ®z, QQ, is semi-stable. Recall that under Assumption 5.2.1, we have

G = Gal(Kpo/K) ~ Gy x Hig where G := Gal(Kog poo /Kpeo) >~ Zp(1) and Hg :=
Gal(K oo poe / Koo).

7.1. G-action on D ®s Rk,

Recall that D := M ®z, Q, = M ®¢,, Sk,. By Proposition 6.0.4, we have a G-action on
D ®s R, such that
(1) the action is R, -semi-linear, i.e., for any t ® a € D ®g Rk, and g € G, g(z®a)=
9(x) ®g(a),
(2) the action is compatible with Frobenius, i.e., p(g(z ® a)) = g(p(z ® a)),
(3) Hp acts trivially on D.
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Let D :=D/uD. Then there is a Frobenius ¢: D — D induced by Frobenius on D. Proposition
6.2.1.1 in [5] (also see Lemma 7.3.1) shows that there exists a unique section s: D — D such
that s is Frobenius equivariant, i.e., so pp = pp o s.

Thinking of D as a Ky-submodule of D via s, we have

PROPOSITION 7.1.1. — Notations as above, there exists a Kq-morphism N : D — D such that
(1) ppN =Ne,
(2) forany g€ G and x € D,

(7.1.1) ZNZ ) @7 (—loge(g)),

where e(g) = g([x)) /[] and i () = ' /i

Note that ppo N = N implies that N is nilpotent. Thus (7.1.1) is well defined. To prove the
above proposition, we need to analyze the structure of R i, more carefully.

LEMMA 7.1.2.— Let x =Y 2 f;t} € Ry, with f; € Sk, for all j > 0. If x = 0; then
fi=0forall j > 0.

Proof. — Without loss of generality, we can assume that x = Z;’;O fjt{j } e A with fies
for all j. Let f;, be the first nonzero term. For any n > 0,

z) = Z " (fi)pm (t9h) Z o™ (f;)p Ut

Jj=Jo J=jo

Note that ¢ € Fil' A.yis, SO <p"(f o € Fil’° ™ A s for all n. Since %0 € Fil’® A, and
tho ¢ Fil° T Acns, ¢"(fj,) € Fil' S for all n > 1. We claim that this is impossible unless
fjo = 0. In fact, write

u .
f]o(u)zzw2M7 ’IUZEW(]{), ’Lli)r{.lowzzoa Wi, #Oa

i=ig

where i = e - e(i) + r(i) with 0 <7 (i) < e and wy, is the first nonzero term. ©"(f;,) € Fil' S

oo

implies that o™ (f;, ) (7?") = 0 where 0" (f) := Dimio P (W) e(l) . Butitis easy to see that there
exists ng such that for any n > ny,

ip™ N (4 YioP”
o[ T2 s (i) for all i > i,
e(i)! e(io)!

where v(-) is the valuation on W (k). Thus, v(c"(f;,)(7?")) = v(%), which

contradicts the fact that o™ (f},)(7?") = 0. Therefore, f;, =0,s0 f; =0forall j. O

By Lemma 7.1.2, we may regard K[t] and R, as subrings of Ko[z,y] via u +— = and
t — y. Define R := R, N Ko[t]. The element 2 € R has the following shape:

o0
x:Zait{i}, a; € Ko, a; — 0asn — +oo.
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LEMMA 7.1.3. — Notations as in Proposition 7.1.1, G(D) C D ®, R.

Proof. —Let eq, ..., eq be a basis of D. Recall that 7 is a topological generator of Gy. Write
T(e1,...,eq) = (x1,...,24)A where Ais a d x d matrix with coefficients in R i, . Forany n > 0,
we have
(7.1.2) T(<p”(el, R ed)) =" (7’(61, ol ed)) =" (e1,...,eq)p" (A).

Note that ¢ is a bijection on D, so there exists an invertible matrix B,, with coefficients in
Ky such that " (eq,...,eq) = (e1,...,eq)B,. Thus, comparing both sides of (7.1.2), we have
AB,, = B,¢"(A).

Write A = Zfio A;t1} where A; is a d x d matrix with coefficients in S K,- Then we have

D B At =3 "o (4) Bprtth
=0 =0

By Lemma 7.1.2, B, A; = p"¢"(A;) B, for all n and all . Now we claim that all coefficients of
A; have to be in K. In fact, write 4; = Z;io Cju? with the C; coefficients in K. Note that

(A =202, ©"(C;)uP"7 and B, is an invertible matrix with coefficients in K. Then we
have C; = 0 for all j > 0 by comparing the coefficients of u/ terms. O

Proof of Proposition 7.1.1. — Recall that (§5.2) G =Gy x Hg, Hg ~ Gal(Kp~/K) C
Gal(Qp,pe /Qp) ~Z, and G =~ Z,(1). If we identify H with a closed subgroup of Z,;, Hx
acts on G via the p-adic cyclotomic character ; that is, for any g € Hy, we have g7 = 7X(9) g,
Let (eq,...,eq) be a basis of D. Write

T(e1,.. . eq) = (e1,...,ea)A, A=Y Aiyi(t),

=0

where A; is a d x d matrix with coefficients in K. Then for any g € Hp,

gt(er,...,eq) = (e1,..., e@g(ZAi%(t))
i=0
= (ela ey €d) ZA[YZ (g(t)>
i=0

=(e1,---,€q) ZAi%‘ (x(9)t).
i=0
On the other hand,
gr(er,...,eq) :TX(g)g(el,...,ed) :TX(g)(el,...,ed) = (eq, ...,ed)AX(g).

Writing A := A(t), we have A(x(g)t) = A(t)X) and log(A(x(9)t)) = x(g)log(A(t)).
Choosing g € H such that x(g) # 1, we have log(A(t)) = Nt for some matrix N; thus,

A(t)=) N'y(t) and 7(er,....eq) = (e1,...,eq) D N'%(t).
i=0 =0
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We can then define a K(-linear endomorphism on D by using the matrix N, which settles (7.1.1).
To check that pp N = N, note that p7(e1,...,eq) = Tp(eq,...,eq). We get

d
(ela"'7 BQP(ZNV% > 617 ~-7€d>ZNi’Yi(t)By
=0

where p(e1,...,eq) = (e1,...,eq)B. Therefore, pPBN = N B and we have shown that pp N =
Ne. O

7.2. The proof of Conjecture 1.0.1 for semi-stable representations

We now calculate dim g, (M ®g BZ)€. Recall that u = log([x]) € BZ and for any g € G,
g(u) —u=1log(e(g)). Consider the Ky-vector space

{ZN’ ® i (u eM@SB;yeD}.

It is easy to see that dimy,(D) = dimg, (D) = d. We claim that D C (M ®g B)%. In
fact, since G, acts on u and D trivially, it suffices to check that 7(z) = x for any = =
S50 Ni(y) ® 7i(u) € D with y € D. We have

ZNl y) © i (7(w)
—ZZNW ) @75 (—1log(e(7))) - vi(log(e(T)) +u)

i=0 j=0

—ZNZ ® Y vtm(-t+u)
=i

—ZNZ ®7i(u

=z

Therefore,

dim, (TV ®z, B) > dimg, (M ®g B})“ > dimg, (D) = d.
Thus, T'®z, Q, is semi-stable.
7.3. The case of crystalline representations

In this subsection, we give the proof of Conjecture 1.0.1 for crystalline representations.
Though the arguments above have already shown that T' ®z,, @, has to be semi-stable provided
that 7'/p™ T is torsion crystalline for all n, we need a further argument to prove that T' ®z, Q,
is indeed crystalline. This is mainly due to the fact that we need more precise information
from torsion representations. Use the notations of the previous subsection and further suppose
that T'/p"T is torsion crystalline. Recall that there exists 9 € Mod"/"ér corresponding to the

representation 1’| . Let M := Mg (M), D = M ®z, Q, and M := M /udM = M /uM.
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LEMMA 7.3.1.— There exists a unique section 1) : D — D such that ' o p = p on'. Also
there exists a constant sg only depending on the absolute ramification index e and the maximal
Hodge—Tate weight r such that

P (M) C M.

Proof. — The case r = 1 was proved in an early version of [13], but is no longer included
there. Here we include the details of the proof for any r > 0 by modifying Kisin’s argument.
Let ng: M — M be any W (k)-linear section. Since M = M /uM = M /u9 and E(u)" kills
M/ o* M, we see that p" M C p(M). Therefore,

(pomgop ™ —no)(M)Cp~"uM,

sofori>1, (¢longop t—¢i=tonyop! =) (M)C p_"upiil./\/l. Thus,

n =n+ Z((pz onyo <p_i — gpi_l orngo (pl_i) M — M Qw (x) Ko
=1

is a well defined map and satisfies ' o ¢ = ¢ o 1/, Taking s5 = Max{ri — v(e(p*~1)!)} where
pl=c-e(™t) +r(pt) with 0 <r(p~1) < e, we have /(M) C p~2 M. The uniqueness
of ' will be a consequence of Lemma 7.3.3 below, which extends the uniqueness of such 1’ to
the torsion level. O

Let = p*21. Then 1: M — M is well defined and q o = p*2 Id where ¢: 91 — M is the
canonical projection. If V' =T ®z, Q,, is crystalline, then N acts as 0 on D := Dy (V). Thus,
the semi-linear G-action defined by (5.2.1) is trivial on D. Therefore, we have

LEMMA 7.3.2. - T'®z, Q, is crystalline if and only if i o n(M) C (TV®ZpAcriS)G, where
M — TV ®z, Acris is the composite of the embedding M — M ®g Acris and 1: M ®g
Acris = TV @z, Acris is constructed in Lemma 5.3.4.

Since T'/p™T is torsion crystalline, as in the beginning of §6.2 we have a short exact sequence
in Mod) g

0— Liny — L(n) = My, — 0

corresponding to the short exact sequence of Z,[G]-modules

0— L(vn)—J/(XL) — (T/p"T)¥ —0.

Let Lin) = Me (L)), L{,,) == Me(L(,,)), Mn := M/p"M and M, := My, /uM,,. We
then have a commutative diagram

0 L) L, M, 0
M2 () T2 ﬁnT

0—— £(n)/u£(n) —_— ,Cl(n)/uﬁln) — M, ——0

where 7),, is induced by 7., and ey, - Note that the bottom row is short exact because
L ny/uLyy is finite W (k)-free. Therefore, 7, is @-equivariant and g, o 7, = p*?Id, where
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qn : M, — M, is the canonical projection. Furthermore, since L(n) and LG) are lattices in a
crystalline representation, Lemma 7.3.2 implies that

Zﬁ(n) o nﬁ(n) (ﬁ(n) /Uc(n)) C (Lz/n) ®ZP Acris)G

and
(E/(n)/u’cln)) - ( /(\7/7,) ®Zp Acris)G

Hence, letting z,, := iy¢ mod p™, we have

Z ’ 0] /
c(n) 771:(")

n 0 (M) C (T/p"T)" @2, Acris)

Now let 7, :== n mod p™ where 1 := p2n': M — M is constructed in Lemma 7.3.1. By
Lemma 7.3.2, to prove that T'®z,, Qy is crystalline, it suffices to show that there exists a constant
A2 only depending on 7 and e such that p*27),, = p*2n,,. This is settled in the following lemma.

LEMMA 7.3.3.— Let M, = M/p"IM with M € Mod’/ﬂ’ér finite S-free, M = Mg (M),
M, = M/p" M and M, := M, /uM,,. Suppose that there exist two W (k)-linear morphisms
n,m2: M, — M, such that

(1) m and ng are p-equivariant, i.e., n; o Y1, = Pm, 0N fori=1,2,

(2) qomn =qomny where q: M,, — M, is the canonical projection.

Then there exists a constant \y depending only on e and r such that p*2 (1, — 12) = 0.

Proof. — Select a basis eq, . .., eq of M,, such that g(e1),...,q(eq) is a basis of M,,. Suppose
that (m1 —n2)(q(e1),.-.,q(eq)) = (e1,...,eq)A where A is a d x d matrix with coefficients in S.
Let I be the ideal of S given by

I:{gwi% |wi eW(k),wi—>Oasi—>+oo},
i>1

where i = e - e(i) + 7(¢) with 0 < r(¢) < e. Since g o (71 — 12) = 0, all the coefficients of A
belong to I. Note that (; — 72) is Frobenius equivariant, so we have

(m —n2)(e(q(er)), .., v(qleq))) = o ((m —n2)(q(e1), .- ., q(eq)))
(7.3.1) =p(e1,...,eq)p(A).

Write ¢(eq,...,eq) = (e1,...,eq4)X where X is a d x d matrix with coefficients in S.
Then p(q(e1),...,q(eq)) = (q¢(e1),...,q(eq))Xo, where Xo = X mod I. By (7.3.1), we get
Xp(A) = AXy. Since M, = M/p"M, by repeating the same argument as in the proof of
Proposition 6.1.1, there exists a matrix Y such that XY = p"c¢;", where ¢; = ¢o(E(u))/p a
unit in S. Then we have XYy = (¢op)” Id where Yy :=Y mod I and pcy is the constant term
of E(u). Therefore,

(7.3.2) Xp(A)Yy = (cop)"A.
Write A=3"""0 A; h with the coefficients of the A; in W,,(k); then
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An easy calculation shows that v,,(e(pi)!/e(i)!) — 400 as i — +oo and there exists a constant
ip depending only on e and r such that v,(e(pi)!/e(i)!) > r for all ¢ > ig. Now put Ay = io7.
To prove the lemma, it suffices to show that p*2 A = 0. We first prove that p*2 A; = 0 for i < 4.
To see this, note that A € I, so Ag = 0. If Ay # 0, then the lowest term in the right-hand side
of (7.3.2) is (cop)” Ayu, but then the lowest term in p(A) is (A1)u?, so p” A; = 0. Therefore,
if we repeat the same argument for the lowest term of p'" A for i < ig, then we have p*2 4; = 0
for i < ig. Now suppose that p*2 A;

in p*27" X p(A)Yy. We claim that

i e(l ), is the lowest term in p*2 A. Consider the lowest term

uP?

e(i)!

(7.3.3) pAz—Qp(Ai) =0 foralli<iy,

so the lowest possible term of p*2~"p(A) is p*2 " p(A;, )e(“) Comparing the lowest term of
p*2 A with that of p*2~" X ¢(A)Yp, we see that p*2 A;, = 0, and hence p*2 A = 0. It remains to

prove claim (7.3.3). We have seen that p(io_l)TAi =0fori < ig,s019 < 1. Forig <17 <11, note
that

pr 1 pi
)\277‘ A U — (’i()*l)’r‘e(pl)' A U
By definition of io, we see that v, (p(io—1)" p((m)), ) > igr = Ao. Since p*2 A; = 0 for all i < iy, we

see that plio—1)" ee((pl)), ©(A;) = 0. This proves the claim. O

8. The case p =2

Recall that Koo = U,,50 K(7y) and Kpee = U, 50 K (Cpr) With 7}y = 7 and (pn primi-
tive p™-th root of unity. We have proved Conjecture 1.0.1 in previous sections under Assump-
tion 5.2.1, that is, p > 3 or Kpe N K, = K if p = 2. In this section, we prove Conjecture 1.0.1
for p = 2 and we assume p = 2 throughout this section.

LEMMA 8.0.4. - Let K = Qo(C) N K. If [K : Qq] > 1, then Koo N Koo = K.

Proof. — Gal(Q2((s)/Q2) ~ Z/27 x Z/2Z. Therefore, Q2((s) contains three quadratic
extensions over Qq: Q3(v/—1), Q2(v/2) and Q2 (v/—2). Since [K : Q5] > 1, K must contain one
of the above three quadratic extensions. If K contains (4 = /—1, then the proof of Lemma 5.1.2
in [18] (where we proved the case p > 3) also works here. So we may assume that K N Q3 ((s) =
Q2(v/2) or K NQy(¢g) = (v/—2). We only prove the case that K N Q5(Cg) = Q2(1/2) because
another case is totally symmetric. Now we prove that F,, := K (m,) N K2 = K by induction
on n. The case that n = 0 is trivial. Now assume that F,, = K but F,,11 # K. Then [F},11 -
K(my,) : K(mp,)] is nontrivial. So [Fy41 - K(my,) : K(mp)] =2 and Fiqq - K(mp) = K(7p41).
Note that F,,.1 N K(m,) C F,, = K; we have Gal(K (m,+1)/K(m,)) =~ Gal(F,+1/F,) and
[Fri1: Fp) = [Fhy1 : K] = 2. Now we claim that F,, 11 has to be K((g). Let us accept the
claim for a while. Now (g € Ok(x,, ), We may write (g = a + bmp, 41 with a, b € Og(r,,). Let
o € Gal(K(mp41)/K (7)) be the nontrivial element; we have o((g) = a + bo(m,11) = a —
by 1. Since Gal(K (m,41)/K (7)) = Gal(Fp,41/K), we have 0((s) = —(s = —a — bmp41.
Therefore a = 0 and (s = bm,, 1. This contradicts that (g is a unit. Thus F},;; has to be K. Now
it suffices to show that F, ;1 = K(Cg). Let K’ :== K N Qqe and F = Qy(1/2). We claim that
K’ = F. In fact, Gal(Qq /F') ~ 1 4+ 2Z5 which is a procyclic 2-group. If [K’ : F] > 1, then
K’ must contain Q4 ((g) and this contradicts the fact that K N Q3 ((s) = Q2(1/2). Thus we must
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have K’ = F. Therefore, Gal(Kae /K) ~ Gal(Qge /F') ~ 1 4 2Z5. Since [Fy, 41 : K] =2 and
Fn+1 CKQOO, Fn+1 must be K(Cg) O

Now to complete the proof of Conjecture 1.0.1, we only need to consider the case that
Q2(¢) N K = Qq. Let Ky = K(v/—1) and Ky = K(v/2). Clearly, K; N K5 = K. Recall
that 7" is the Z,-representation in Conjecture 1.0.1 and set V :=T ®z, Q,. From the above
discussion, we see that V restricted to Gal(K/K;) and to Gal(K/K>) is semi-stable (resp.
crystalline) with Hodge-Tate weights in {0,...,7}. Now Let D := (V ®q, By ) K/ K(Cs)
(resp. D = (V ®q, Beris) ! K/K () Then dimg, D = dimg, V and Gal(K (¢s)/K) acts
on D. Now it suffices to show that Gal(K ({g)/K) acts on D trivially. Since V' is semi-stable
(resp. crystalline) over K; and Kj, Gal(K((s)/K1) and Gal(K((s)/K>) act trivially on D.
Therefore, Gal(K ((g)/K) acts on D trivially.
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