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p-ADIC ÉTALE TATE TWISTS
AND ARITHMETIC DUALITY ✩

BY KANETOMO SATO

ABSTRACT. – In this paper, we define, for arithmetic schemes with semi-stable reduction, p-adic objects
playing the roles of Tate twists in étale topology, and establish their fundamental properties.
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RÉSUMÉ. – Dans cet article, nous définissons, pour les schémas arithmétiques à réduction semi-stable,
des objets p-adiques jouant les rôles de twists à la Tate pour la topologie étale, et nous établissons leurs
propriétés fondamentales.
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1. Introduction

Let k be a finite field of characteristic p > 0, and let X be a proper smooth variety over
Spec(k) of dimension d. For a positive integer m prime to p, we have the étale sheaf μm on X
consisting of m-th roots of unity. The sheaves Z/mZ(n) := μ⊗n

m (n � 0), so-called Tate twists,
satisfy Poincaré duality of the following form: There is a non-degenerate pairing of finite groups
for any i ∈ Z

Hi
ét

(
X,Z/mZ(n)

)
×H2d+1−i

ét

(
X,Z/mZ(d− n)

)
−→ Z/mZ.

On the other hand, we have the étale Hodge–Witt sheaf WrΩn
X and its logarithmic subsheaf

WrΩn
X,log for r � 1 and 0 � n � d ([6,27]). When we put Z/prZ(n) := WrΩn

X,log[−n], we
have an analogous duality theorem due to Milne [46,47].

In this paper, for a regular scheme X which is flat of finite type over Spec(Z) and a prime
number p, we construct an object Tr(n)X playing the role of ‘Z/prZ(n)’ in Db(Xét,Z/prZ),
the derived category of bounded complexes of étale Z/prZ-sheaves on X . The fundamental idea
is due to Schneider [56], that is, we will glue μ⊗n

pr on X[1/p] and a logarithmic Hodge–Witt sheaf
on the fibers of characteristic p to define Tr(n)X (cf. Lemma 1.3.1 below). We will further prove
a duality result analogous to the above Poincaré duality. The object Tr(n)X is a p-adic analogue
of the Beilinson–Deligne complex R(n)D on the complex manifold (X ⊗Z C)an, while μ⊗n

pr on
X[1/p] corresponds to (2π

√
−1)n ·R on (X ⊗Z C)an.

✩ Appendix A was written by Kei Hagihara.
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520 K. SATO
1.1. Existence result

We fix the setting as follows. Let p be a rational prime number. Let A be a Dedekind ring
whose fraction field has characteristic zero and which has a residue field of characteristic p. We
assume that

every residue field of A of characteristic p is perfect.

Let X be a noetherian regular scheme of pure-dimension which is flat of finite type over
B := Spec(A) and satisfies the following condition:

X is a smooth or semistable family around any fiber of X/B of characteristic p.

Let j be the open immersion X[1/p] ↪→X . The first main result of this paper is the following:

THEOREM 1.1.1. – For each n � 0 and r � 1, there exists an object Tr(n)X ∈ Db(Xét,
Z/prZ), which we call a p-adic étale Tate twist, satisfying the following properties:

T1 (Trivialization, cf. 4.2.4). There is an isomorphism t : j∗Tr(n)X � μ⊗n
pr .

T2 (Acyclicity, cf. 4.2.4). Tr(n)X is concentrated in [0, n], i.e., the q-th cohomology sheaf is
zero unless 0 � q � n.

T3 (Purity, cf. 4.4.7). For a locally closed regular subscheme i :Z ↪→ X of characteristic p
and of codimension c (� 1), there is a Gysin isomorphism

WrΩn−c
Z,log[−n− c] �−→ τ�n+cRi!Tr(n)X in Db(Zét,Z/prZ).

T4 (Compatibility, cf. 6.1.1). Let iy :y ↪→ X and ix :x ↪→X be points on X with ch(x) = p,
x ∈ {y} and codimX(x) = codimX(y) + 1. Put c := codimX(x). Then the connecting
homomorphism

Rn+c−1iy∗
(
Ri!yTr(n)X

)
−→ Rn+cix∗

(
Ri!xTr(n)X

)
in localization theory (cf. (1.9.3) below) agrees with the (sheafified ) boundary map of Galois
cohomology groups due to Kato (cf. §1.8 below){

Rn−c+1iy∗μ
⊗n−c+1
pr (ch(y) = 0)

iy∗WrΩn−c+1
y,log (ch(y) = p)

}
−→ ix∗WrΩn−c

x,log

up to a sign depending only on (ch(y), c), via the Gysin isomorphisms for iy and ix. Here the
Gysin isomorphism for iy with ch(y) = 0 is defined by the isomorphism t in T1 and Deligne’s
cycle class in R2c−2i!yμ⊗c−1

pr .

T5 (Product structure, cf. 4.2.6). There is a unique morphism

Tr(m)X ⊗L Tr(n)X −→ Tr(m + n)X in D−(Xét,Z/prZ)

that extends the natural isomorphism μ⊗m
pr ⊗ μ⊗n

pr � μ⊗m+n
pr on X[1/p].

If X is smooth over B, the object Tr(n)X is already considered by Schneider [56], §7 (see
also Remark 7.3.4 below). The properties T1–T3 and T5 are Z/prZ-coefficient variants of
4e SÉRIE – TOME 40 – 2007 – N◦ 4



p-ADIC ÉTALE TATE TWISTS AND ARITHMETIC DUALITY 521
the Beilinson–Lichtenbaum axioms on the conjectural étale motivic complex Γ(n)étX [4,43,44].
More precisely, T1 (resp. T2) corresponds to the axiom of Kummer theory for Γ(n)étV (resp. the
acyclicity axiom for Γ(n)étX ), and T3 is suggested by the purity axiom and the axiom of Kummer
theory for Γ(n − c)étZ . Although T4 is not among the Beilinson–Lichtenbaum axioms, it is a
natural property to be satisfied. We deal with this rather technical property for two reasons. The
first one is that the pair (Tr(n)X , t) (t is that in T1) is characterized by the properties T2, T3
and T4 (see Theorem 1.3.5 below). The second one is that we need T4 to prove the property T7
in the following functoriality result.

THEOREM 1.1.2. – Let X be as in 1.1.1, and let Z be another scheme which is flat of finite
type over B and for which the objects Tr(n)Z (n � 0, r � 1) are defined. Let f :Z → X be a
morphism of schemes and let ψ :Z[1/p]→ X[1/p] be the induced morphism. Then:

T6 (Contravariant functoriality, cf. 4.2.8). There is a unique morphism

f∗Tr(n)X −→ Tr(n)Z in Db(Zét,Z/prZ)

that extends the natural isomorphism ψ∗μ⊗n
pr � μ⊗n

pr on Z[1/p].

T7 (Covariant functoriality, cf. 7.1.1). Assume that f is proper, and put c := dim(X) −
dim(Z). Then there is a unique morphism

Rf∗Tr(n− c)Z [−2c]−→ Tr(n)X in Db(Xét,Z/prZ)

that extends the trace morphism Rψ∗μ
⊗n−c
pr [−2c]→ μ⊗n

pr on X[1/p].

Furthermore, these morphisms satisfy a projection formula (cf. 7.2.4 below).

We will explain how we find Tr(n)X in §1.3 below.

1.2. Arithmetic duality

We explain the second main result of this paper, the arithmetic duality for p-adic étale
Tate twists. We assume that A is an algebraic integer ring, and that X is proper over B. Put
V := X[1/p] and d := dim(X). For a scheme Z which is separated of finite type over B, let
H∗

c(Z,•) be the étale cohomology with compact support (cf. §10.2 below). There is a well-
known pairing

Hq
c

(
V,μ⊗n

pr

)
×H2d+1−q

ét

(
V,μ⊗d−n

pr

)
−→ Z/prZ,

and it is a non-degenerate pairing of finite groups by the Artin–Verdier duality ([2,45,48,12,
58]) and the relative Poincaré duality for regular schemes ([66, XVIII], [62], [15]). We extend
this duality to a twisted duality for X with coefficients in the p-adic étale Tate twists. A key
ingredient is a global trace map

H2d+1
c

(
X,Tr(d)X

)
−→ Z/prZ,

which is obtained from the trace morphism in T7 for the structural morphism X → B and the
classical global class field theory. See §10.2 below for details. The product structure T5 and the
global trace map give rise to a pairing

Hq
c

(
X,Tr(n)X

)
×H2d+1−q

ét

(
X,Tr(d− n)X

)
−→ Z/prZ.(1.2.1)

The second main result of this paper is the following:
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



522 K. SATO
THEOREM 1.2.2 (10.1.3). – The pairing (1.2.1) is a non-degenerate pairing of finite groups
for any q and n with 0 � n � d.

A crucial point of this duality result is the non-degeneracy of a pairing

Hq
ét

(
XΣ,Tr(n)XΣ

)
×H2d+1−q

Y

(
X,Tr(d− n)X

)
−→ Z/prZ,

which is an extension of a duality result of Niziol [50] for crystalline local systems. Here Σ
denotes the set of the closed points on B of characteristic p, XΣ denotes

∐
s∈Σ X ×B Bs with

Bs the henselization of B at s, and Y denotes X ×B Σ. To calculate this pairing, we will provide
an explicit formula (cf. 8.3.8 below) for a pairing of étale sheaves of p-adic vanishing cycles.

We state a consequence of Theorem 1.2.2. For an abelian group M , let Mp-tors be the subgroup
of p-primary torsion elements and let Mp-cotors be the quotient of Mp-tors by its maximal
p-divisible subgroup. The following corollary is originally due to Cassels and Tate ([11,59],
3.2) in the case that the structural morphism X → B has a section, and due to Saito [54] in the
general case.

COROLLARY 1.2.3. – Assume d = 2 and either p � 3 or A has no real places. Then
Br(X)p-cotors is finite and carries a non-degenerate skew-symmetric bilinear form with values
in Qp/Zp. In particular, if p � 3 then it is alternating and the order of Br(X)p-cotors is a square.

Indeed, by a Bockstein triangle (cf. §4.3) and a standard limit argument, Theorem 1.2.2 yields
a non-degenerate pairing of cofinitely and finitely generated Zp-modules

Hq
(
X,TQp/Zp

(1)
)
×H5−q

(
X,TZp(1)

)
−→ Qp/Zp,

where H∗(X,TQp/Zp
(1)) := lim−→r�1

H∗
ét(X,Tr(1)X) and H∗(X,TZp(1)) := lim←−r�1

H∗
ét(X,

Tr(1)X). By the Kummer theory for Gm (cf. 4.5.1 below), one can easily check that

Br(X)p-cotors � H2
ét

(
X,T∞(1)X

)
p-cotors � H3

ét

(
X,TZp(1)X

)
p-tors.

Hence the corollary follows from the same argument as for [65], 1.5 (cf. [61]) and the fact that the
bigraded algebra

⊕
q,n�0 Hq

ét(X,Tr(n)X) with respect to the cup-product is anti-commutative
in q.

1.3. Construction of Tr(n)X

We explain how to find Tr(n)X satisfying the properties in Theorem 1.1.1. Let Y ⊂ X
be the divisor on X defined by the radical ideal of (p) ⊂ OX and let V be the complement
X \ Y = X[1/p]. Let ι and j be as follows:

V
j−→X ι←− Y.

We start with necessary conditions for Tr(n)X to exist.

LEMMA 1.3.1. – Assume that there exists an object Tr(n)X ∈ Db(Xét,Z/prZ) satisfying
T1–T4. For a point x ∈X , let ix be the natural map x ↪→ X . Then:

(1) There is an exact sequence of sheaves on Xét

Rnj∗μ
⊗n
pr −→

⊕
y∈Y 0

iy∗WrΩn−1
y,log −→

⊕
x∈Y 1

ix∗WrΩn−2
x,log,(1.3.2)
4e SÉRIE – TOME 40 – 2007 – N◦ 4



p-ADIC ÉTALE TATE TWISTS AND ARITHMETIC DUALITY 523
where each arrow arises from the boundary maps of Galois cohomology groups.
(2) There is a distinguished triangle in Db(Xét,Z/prZ) of the form

ι∗ν
n−1
Y,r [−n− 1] g−→ Tr(n)X

t′−→ τ�nRj∗μ
⊗n
pr

σX,r(n)−−−−−→ ι∗ν
n−1
Y,r [−n].(1.3.3)

Here t′ is induced by t in T1 and the acyclicity property in T2, and τ�n denotes the
truncation at degree n. The object νn−1

Y,r is an étale sheaf on Y defined as the kernel of
the second arrow in (1.3.2) (restricted onto Y ), and the arrow σX,r(n) is induced by the
exact sequence (1.3.2).

The sheaf νn−1
Y,r agrees with WrΩn−1

Y,log if Y is smooth. See §2.2 below for fundamental

properties of νn−1
Y,r . Because this lemma is quite simple, we include a proof here.

Proof. – There is a localization distinguished triangle (cf. (1.9.2) below)

Tr(n)X
j∗−→ Rj∗j

∗Tr(n)X
δloc

U,Z−−−→ Rι∗Rι!Tr(n)X [1] ι∗−→ Tr(n)X [1].(1.3.4)

By T1, we have j∗Tr(n)X � j∗μ⊗n
pr via t. On the other hand, one can easily check

τ�n

(
Ri∗Ri!Tr(n)X [1]

)
� ι∗ν

n−1
Y,r [−n]

by T3 and T4 (cf. (1.9.4) below). Because the map Rnj∗μ
⊗n
pr → ι∗ν

n−1
Y,r of cohomology sheaves

induced by δloc
U,Z is compatible with Kato’s boundary maps up to a sign (again by T4), the

sequence (1.3.2) must be a complex and we obtain the morphism σX,r(n). Finally by T2, we
obtain the triangle (1.3.3) by truncating and shifting the triangle (1.3.4) suitably. The exactness
of (1.3.2) also follows from T2. Thus we obtain the lemma. �

We will prove the exactness of the sequence (1.3.2), independently of this lemma, in 3.2.4 and
3.4.2 below. By this exactness, we are provided with the morphism σX,r(n) in (1.3.3), and it
turns out that any object Tr(n)X ∈ Db(Xét,Z/prZ) fitting into a distinguished triangle of the
form (1.3.3) is concentrated in [0, n]. Because Db(Xét,Z/prZ) is a triangulated category, there is
at least one such Tr(n)X . Moreover, an elementary homological algebra argument (cf. 2.1.2 (3)
below) shows that a triple (Tr(n)X , t′, g) fitting into (1.3.3) is unique up to a unique isomorphism
(and that g is determined by (Tr(n)X , t′)). Thus there is a unique pair (Tr(n)X , t′) fitting into
(1.3.3). Our task is to prove that this pair satisfies the listed properties, which will be carried out
in §§4–7 below. As a consequence of Theorem 1.1.1 and Lemma 1.3.1, we obtain

THEOREM 1.3.5. – The pair (Tr(n)X , t) in 1.1.1 is the only pair that satisfies T2–T4, up to
a unique isomorphism in Db(Xét,Z/prZ).

1.4. Comparison with known objects

We mention relations between Tr(n)X and other cohomology theories (or coefficients).
Assume that A is local with residue field k and p � n+2. If X is smooth over B, then ι∗Tr(n)X

is isomorphic to Rε∗Sr(n), where Sr(n) denotes the syntomic complex of Fontaine–Messing
[14] on the crystalline site (Xr/Wr)cris with Xr := X ⊗A A/prA and Wr := Wr(k), and ε
denotes the natural continuous map (Xr/Wr)cris → (Xr)ét of sites. This fact follows from a
result of Kurihara [38] (cf. [32]) and Lemma 1.3.1 (see also 2.1.2 (3) below). The isomorphism t
in T1 corresponds to the Fontaine–Messing morphism Rε∗Sr(n) → τ�nι∗Rj∗μ

⊗n
pr . On the other

hand, ι∗Tr(n)X is not a log syntomic complex of Kato and Tsuji ([35,63]) unless n > dim(X),
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



524 K. SATO
because the latter object is isomorphic to τ�nι∗Rj∗μ
⊗n
pr by a result of Tsuji [64]. Therefore

Tr(n)X is a new object particularly on semistable families.
We turn to the setting in §1.1, and mention what can be hoped for Tr(n)X in comparison with

the étale sheafification Z(n)étX and the Zariski sheafification Z(n)Zar
X of Bloch’s cycle complex

([7,40]). By works of Levine ([40,41]), these two objects are strong candidates for the motivic
complexes Γ(n)étX and Γ(n)Zar

X , respectively. So Theorem 1.3.5 leads us to the following:

CONJECTURE 1.4.1. – (1) There is an isomorphism in Db(Xét,Z/prZ)

Z(n)étX ⊗L Z/prZ �−→ Tr(n)X .

(2) Let ε be the natural continuous map Xét → XZar of sites. Then the isomorphism in (1)
induces an isomorphism in Db(XZar,Z/prZ)

Z(n)Zar
X ⊗L Z/prZ �−→ τ�nRε∗Tr(n)X .

The case n = 0 is obvious, because Tr(0)X = Z/prZ (by definition). The case n = 1 holds
by the Kummer theory for Gm (cf. 4.5.1 below) and the isomorphisms

Z(1)étX � Gm[−1], Z(1)Zar
X � ε∗Gm[−1] (Levine, [41], 11.2),

R1ε∗Gm = 0 (Hilbert’s theorem 90).

As for n � 2, by results of Geisser ([17], 1.2 (2), (4), 1.3), Conjecture 1.4.1 holds if X/B is
smooth, under the Bloch–Kato conjecture on Galois symbol maps [9], §5. A key step in his
proof is to show that Z(n)Zar

X ⊗L Z/prZ is concentrated in degrees � n. We have nothing to say
about this problem for the general case in this paper.

1.5. Guide for the readers

This paper is organized as follows. In §2, we will review some preliminary facts from
homological algebra and results in [55], which will be used frequently in this paper. In §3,
which is the technical heart of this paper, we will provide preliminary results on étale sheaves
of p-adic vanishing cycles (cf. Theorem 3.4.2, Corollary 3.5.2) using the Bloch–Kato–Hyodo
theorem (Theorem 3.3.7). In §4, we will define p-adic étale Tate twists in a slightly more general
situation and prove fundamental properties including the product structure T5, the contravariant
functoriality T6, the purity property T3 and the Kummer theory for Gm. In §§5–6, we are
concerned with the compatibility property T4. Using this property, we will prove the covariant
functoriality T7 and a projection formula in §7. In §§8–10, we will study pairings of p-adic
vanishing cycles and prove Theorem 1.2.2. Appendix A due to Kei Hagihara includes a proof
of a semi-purity of the étale sheaves of p-adic vanishing cycles (cf. Theorem A.2.6 below),
which plays an important role in this paper. He applies his semi-purity result to the coniveau
filtration on étale cohomology groups of varieties over p-adic fields (cf. Theorems A.1.4, A.1.5
and Corollary A.1.9 below).

Notation and conventions

1.6. For an abelian group M and a positive integer n, nM and M/n denote the kernel and
the cokernel of the map M

×n−−→ M , respectively. For a field k, k denotes a fixed separable
closure, and Gk denotes the absolute Galois group Gal(k/k). For a discrete Gk-module M ,
H∗(k,M) denotes the Galois cohomology groups H∗

Gal(Gk,M), which are the same as the étale
cohomology groups of Spec(k) with coefficients in the étale sheaf associated with M .
4e SÉRIE – TOME 40 – 2007 – N◦ 4



p-ADIC ÉTALE TATE TWISTS AND ARITHMETIC DUALITY 525
1.7. Unless indicated otherwise, all cohomology groups of schemes are taken over the étale
topology. We fix some general notation for a scheme X . For a point x ∈ X , κ(x) denotes its
residue field and x denotes Spec(κ(x)). If X has pure dimension, then for a non-negative integer
q, Xq denotes the set of all points on X of codimension q. For an étale sheaf Λ of commutative
rings on X , we write D(Xét,Λ) for the derived category of étale Λ-modules on X (cf. [21], I, [5],
§1). We write D+(Xét,Λ) for the full subcategory of D(Xét,Λ) consisting of objects coming
from complexes of étale Λ-modules bounded below. For x ∈X and the natural map ix :x ↪→X ,
we define the functor Ri!x :D+(Xét,Λ) → D+(xét,Λ) as ξ∗Rϕ!, where ϕ denotes the closed
immersion {x} ↪→ X and ξ denotes the natural map x ↪→{x}. If ξ is of finite type, then Ri!x is
right adjoint to Rix∗, but otherwise it is not. If x is a generic point of X , Ri!x agrees with i∗x. For
F ∈D+(Xét,Λ), we often write H∗

x(X,F) for H∗
x(Spec(OX,x),F).

1.8. We fix some notation of arithmetic objects defined for a scheme X . For a positive integer
m invertible on X , μm denotes the étale sheaf of m-th roots of unity. If X is a smooth variety
over a perfect field of positive characteristic p > 0, then for integers r � 1 and q � 0, WrΩ

q
X,log

denotes the étale subsheaf of the logarithmic part of the Hodge–Witt sheaf WrΩ
q
X ([6,27]). For

q < 0, we define WrΩ
q
X,log as the zero sheaf. For a noetherian excellent scheme X (all schemes

in this paper are of this kind), we will use the following notation. Let y and x be points on X
such that x has codimension 1 in the closure {y} ⊂ X . Let p be a prime number, and let i and n
be non-negative integers. In [36], §1, Kato defined the boundary maps

Hi+1
(
y,μ⊗n+1

pr

)
−→Hi

(
x,μ⊗n

pr

)
(if ch(x) 	= p),

H0
(
y,WrΩn+1

y,log

)
−→H0

(
x,WrΩn

x,log

)
(if ch(y) = ch(x) = p),

Hn+1
(
y,μ⊗n+1

pr

)
−→H0

(
x,WrΩn

x,log

)
(if ch(y) = 0 and ch(x) = p).

We write ∂val
y,x for these maps. See (3.2.3) for the construction of the last map.

1.9. Let X be a scheme, let i :Z ↪→ X be a closed immersion, and let j :U ↪→ X be the open
complement X \ Z . Let m be a non-negative integer. For K ∈ D+(Xét,Z/mZ), we define the
morphism

δloc
U,Z(K) :Rj∗j

∗K−→ Ri∗Ri!K[1] in D+(Xét,Z/mZ)

as the connecting morphism associated with the semi-splitting short exact sequence of complexes
0 → i∗i

!I• → I• → j∗j
∗I• → 0 ([67], Catégories dérivées, I.1.2.4), where I• is an injective

resolution of K. The morphism δloc
X,U (K) is functorial in K, and

δloc
U,Z(K)[q] = (−1)q · δloc

U,Z

(
K[q]

)
(1.9.1)

for an integer q. Note also that the triangle

K j∗−→ Rj∗j
∗K δloc

U,Z(K)−−−−−→ Ri∗Ri!K[1] i∗−→K[1](1.9.2)

is distinguished in D+(Xét,Z/mZ), where the arrow i∗ (resp. j∗) denotes the adjunction map
Ri∗Ri! → id (resp. id→ Rj∗j

∗). We generalize the above connecting morphism to the following
situation. Let y and x be points on X such that x has codimension 1 in the closure {y} ⊂ X .
Put T := {y} ⊂X and S := Spec(OT,x), and let iT (resp. iy , ix, ψ) be the natural map T ↪→X
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



526 K. SATO
(resp. y ↪→X , x ↪→X , S ↪→ T ). Then for K ∈ D+(Xét,Z/mZ), we define

δloc
y,x(K) := RiT∗Rψ∗

{
δloc
y,x(ψ∗Ri!TK)

}
:Riy∗Ri!yK−→ Rix∗Ri!xK[1](1.9.3)

(Ri!y and Ri!x were defined in §1.6), which is a morphism in D+(Xét,Z/mZ). These connecting
morphisms for all points on X give rise to a local-global spectral sequence of sheaves on Xét

Eu,v
1 =

⊕
x∈Xu

Ru+vix∗(Ri!xK) =⇒Hu+v(K).

For a closed immersion i :Z ↪→X , there is a localized variant

Eu,v
1 =

⊕
x∈Xu∩Z

Ru+vix∗(Ri!xK) =⇒ i∗R
u+vi!K.(1.9.4)

1.10. Let k be a field, and let X be a pure-dimensional scheme which is of finite type over
Spec(k). We call X a normal crossing scheme over Spec(k), if it is everywhere étale locally
isomorphic to

Spec
(
k[T0, T1, . . . , TN ]/(T0T1 . . . Ta)

)
for some integer a with 0 � a � N = dim(X). This condition is equivalent to the assumption
that X is everywhere étale locally embedded into a smooth variety over Spec(k) as a normal
crossing divisor.

1.11. Let A be a discrete valuation ring, and let K (resp. k) be the fraction field (resp. residue
field) of A. Let X be a pure-dimensional scheme which is flat of finite type over Spec(A). We
call X a regular semistable family over Spec(A), if it is regular and everywhere étale locally
isomorphic to

Spec
(
A[T0, T1, . . . , TN ]/(T0T1 . . . Ta − π)

)
for some integer a with 0 � a � N = dim(X/A), where π denotes a prime element of A. This
condition is equivalent to the assumption that X is regular, X ⊗A K is smooth over Spec(K),
and X ⊗A k is reduced and a normal crossing divisor on X . If X is a regular semistable family
over Spec(A), then the closed fiber X ⊗A k is a normal crossing scheme over Spec(k).

2. Preliminaries

In this section we review some fundamental facts on homological algebra and results of the
author in [55], which will be used frequently in this paper.

2.1. Elementary facts from homological algebra

Let A be an abelian category with enough injective objects, and let D(A) be the derived
category of complexes of objects of A.

LEMMA 2.1.1. – Let m and q be integers. Let K be an object of D(A) concentrated in degrees
� m and let K′ be an object of D(A) concentrated in degrees � 0. Then we have

HomD(A)

(
K,K′[−q]

)
=
{

HomA(Hm(K),H0(K′)) (if q = m),
0 (if q > m),
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where for n ∈ Z and L ∈D(A), Hn(L) denotes the n-th cohomology object of L.

Proof. – By the assumption that A has enough injectives, the left-hand side is written as the
group of morphisms in the homotopy category of complexes of objects of A ([67], Catégories
dérivées, II, 2.3 (4)). The assertion follows from this fact. �

LEMMA 2.1.2. – Let N1
f−→N2

g−→N3
h−→N1[1] be a distinguished triangle in D(A).

(1) Let i :K→N2 be a morphism with g ◦ i = 0 and suppose that HomD(A)(K,N3[−1]) = 0.
Then there exists a unique morphism i′ :K→N1 that i factors through.

(2) Let p :N2 →K be a morphism with p ◦ f = 0 and suppose that HomD(A)(N1[1],K) = 0.
Then there exists a unique morphism p′ :N3 →K that p factors through.

(3) Suppose that HomD(A)(N2,N1) = 0 (resp. HomD(A)(N3,N2) = 0). Then relatively to a
fixed triple (N1,N3, h), the other triple (N2, f, g) is unique up to a unique isomorphism,
and f (resp. g) is determined by the pair (N2, g) (resp. (N2, f)).

Proof. – These claims follow from the same arguments as in [5], 1.1.9. The details are straight-
forward and left to the reader. �
2.2. Logarithmic Hodge–Witt sheaves

Throughout this subsection, n denotes a non-negative integer and r denotes a positive integer.
Let k be a perfect field of positive characteristic p. Let X be a pure-dimensional scheme of finite
type over Spec(k). For a point x ∈ X , let ix be the canonical map x ↪→ X . We define the étale
sheaves νn

X,r and λn
X,r on X as

νn
X,r := Ker

( ⊕
x∈X0

ix∗WrΩn
x,log

∂val−−−→
⊕

x∈X1

ix∗WrΩn−1
x,log

)
,

λn
X,r := Im

(
(Gm,X)⊗n d log−−−→

⊕
x∈X0

ix∗WrΩn
x,log

)
,

where ∂val denotes the sum of ∂val
y,x’s with y ∈ X0 and x ∈ X1 (cf. §1.8). By definition, λn

X,r is
a subsheaf of νn

X,r . If X is smooth, then both νn
X,r and λn

X,r agree with the sheaf WrΩn
X,log. See

also Remark 3.3.8 (4) below.
We define the Gysin morphism for logarithmic Hodge–Witt sheaves as follows. We define the

complex of sheaves C•
r (X,n) on Xét to be⊕

x∈X0

ix∗WrΩn
x,log

(−1)n−1·∂−−−−−−−→
⊕

x∈X1

ix∗WrΩn−1
x,log

(−1)n−1·∂−−−−−−−→ · · ·

(−1)n−1·∂−−−−−−−→
⊕

x∈Xq

ix∗WrΩ
n−q
x,log

(−1)n−1·∂−−−−−−−→ · · · .

Here the first term is placed in degree 0 and ∂ denotes the sum of sheafified variants of ∂val
y,x’s

with y ∈ Xq and x ∈ Xq+1 (cf. §1.8). The fact ∂ ◦ ∂ = 0 is due to Kato ([36], 1.7). If X is a
normal crossing scheme, this complex is quasi-isomorphic to the sheaf νn

X,r by [55], 2.2.5 (1).

DEFINITION 2.2.1. – Let X be a normal crossing scheme over Spec(k) and let i :Z ↪→X be
a closed immersion of pure codimension c � 0. We define the Gysin morphism

Gysn
i :νn−c

Z,r [−c]−→ Ri!νn
X,r in Db(Zét,Z/prZ)
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as the adjoint morphism of the composite morphism in Db(Xét,Z/prZ)

i∗ν
n−c
Z,r [−c]−→ i∗C

•
r (Z,n− c)[−c]−→ C•

r (X,n) �←− νn
X,r,

where the second arrow is the natural inclusion of complexes. See also Remark 2.2.6 below.

THEOREM 2.2.2 (Purity, loc. cit., 2.4.2). – For i :Z ↪→X as in Definition 2.2.1, Gysn
i induces

an isomorphism τ�c(Gysn
i ) :νn−c

Z,r [−c] �−→ τ�cRi!νn
X,r .

We next state the duality result in loc. cit. For integers m,n � 0, there is a natural biadditive
pairing of sheaves

νn
X,r × λm

X,r −→ νm+n
X,r(2.2.3)

induced by the corresponding pairing on the generic points of X (loc. cit., 3.1.1).

THEOREM 2.2.4 (Duality, loc. cit., 1.2.2). – Let k be a finite field, and let X be a normal
crossing scheme of dimension N which is proper over Spec(k). Then:

(1) There is a trace map trX :HN+1(X,νN
X,r) → Z/prZ such that for an arbitrary closed

point x ∈X the composite map

H1(x,Z/prZ)
GysN

ix−−−−→ HN+1(X,νN
X,r)

trX−−→ Z/prZ

coincides with the trace map of x, i.e., the map that sends a continuous character of Gκ(x)

to its value at the Frobenius substitution. Furthermore trX is bijective if X is connected.
(2) For integers q and n with 0 � n � N , the natural pairing

Hq(X,νn
X,r)×HN+1−q(X,λN−n

X,r ) (2.2.3)−−−→ HN+1(X,νN
X,r)

trX−−→ Z/prZ(2.2.5)

is a non-degenerate pairing of finite Z/prZ-modules.

We will give the definition of trX in Remark 2.2.6 (4) below.

Remark 2.2.6. – We summarize the properties of the Gysin morphisms and the trace
morphisms, which will be used in this paper.

(1) The Gysin morphisms defined in Definition 2.2.1 satisfy the transitivity property.
(2) For i :Z ↪→X as in Definition 2.2.1, Gysn

i agrees with the Gysin morphism considered in
[55], 2.4.1, up to a sign of (−1)c. In particular if X and Z are smooth, then Gysn

i agrees
with the Gysin morphism for i :Z ↪→ X in the sense of Gros ([18], II.1) up to the sign
(−1)c by [55], 2.3.1. This fact will be used in Lemma 6.4.1 below.

(3) Let X and Z be normal crossing schemes over Spec(k) of dimension N and d,
respectively, and let f :Z → X be a separated morphism of schemes. We define the
morphism

trf :Rf!ν
d
Z,r[d]−→ νN

X,r[N ] in Db(Xét,Z/prZ)

by applying the same arguments as for [29], Theorem 2.9 to the complexes C•
r (Z,d)[d]

and C•
r (X,N)[N ]. Then trf agrees with that in loc. cit., Theorem 2.9 up to the sign

(−1)N−d. In particular if X and Z are smooth and f :Z → X is proper, then trf agrees
with the Gysin morphism for f in the sense of Gros ([18], II.1) up to the sign (−1)N−d.

(4) We define the trace map trX in Theorem 2.2.4 (1) as the map induced by trf for
f :X → Spec(k) and the trace map of Spec(k). The map trX agrees with (−1)N -times
of the trace morphism constructed in [55], §3.4. This fact will be used at the end of §9
below.
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3. Boundary maps on the sheaves of p-adic vanishing cycles

This section is devoted to technical preparations on the étale sheaves of p-adic vanishing
cycles. The main results of this section are Theorem 3.4.2 and Corollary 3.5.2 below. Throughout
this section, n and r denote integers with n � 0 and r � 1.

3.1. Milnor K-groups and boundary maps

We prepare some notation on Milnor K-groups. Let R be a commutative ring with unity.
We define the 0-th Milnor K-group KM

0 (R) as Z. For n � 1, we define the n-th Milnor
K-group KM

n (R) as (R×)⊗n/J , where J denotes the subgroup of (R×)⊗n generated by
elements of the form x1 ⊗ · · · ⊗ xn with xi + xj = 0 or 1 for some 1 � i < j � n. An element
x1 ⊗ · · · ⊗ xn mod J will be denoted by {x1, . . . , xn}. Now let L be a field endowed with a
discrete valuation v. Let Ov be the valuation ring with respect to v, and let Fv be its residue field.
Fix a prime element πv of Ov . We define the homomorphism

∂M
πv

:KM
n (L)−→KM

n−1(Fv)

(resp. spπv
:KM

n (L)−→KM
n (Fv))

by the assignment

{πv, x1, . . . , xn−1} �→ {x1, . . . , xn−1} (resp. 0)

{x1, . . . , xn} �→ 0 (resp. {x1, . . . , xn})

with each xi ∈ O×
v (cf. [3], I.4.3). Here for x ∈ O×

v , x denotes its residue class in F×
v . The map

∂M
πv

is called the boundary map of Milnor K-groups, and depends only on the valuation ideal
pv ⊂ Ov . We will denote ∂M

πv
by ∂M

pv
. On the other hand, the specialization map spπv

depends
on the choice of πv , and its restriction to Ker(∂M

pv
) ⊂ KM

n (L) depends only on pv . Indeed,
Ker(∂M

πv
) is generated by the image of (O×

v )⊗n and symbols of the form {1 + a,x1, . . . , xn−1}
with a ∈ pv and each xi ∈ L×.

3.2. Boundary map in a geometric setting

Let p be a prime number. Let K be a henselian discrete valuation field of characteristic 0
whose residue field k has characteristic p. Let OK be the integer ring of K . Let X be a regular
semistable family over Spec(OK) of pure dimension (cf. §1.11), or more generally, a scheme
over Spec(OK) satisfying the following condition:

CONDITION 3.2.1. – There exist a discrete valuation subring O′ ⊂ OK with OK/O′ finite
and a pure-dimensional regular semistable family X ′ over Spec(O′) with X � X ′ ⊗O′ OK .

Later in §3.4 and §3.5 below, the extension OK/O′ will be assumed to be unramified or tamely
ramified. Let Y be the reduced divisor on X defined by a prime element π ∈ OK , and let ι and j
be as follows:

XK
j−→ X ι←− Y.

In this section, we are concerned with the étale sheaf

Mn
r := ι∗Rnj∗μ

⊗n
pr
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on Y and the composite map of étale sheaves

∂n
X,r :Mn

r −→
⊕

y∈Y 0

iy∗i
∗
yMn

r
∂val−−−→

⊕
y∈Y 0

iy∗WrΩn−1
y,log.(3.2.2)

Here for a point y ∈ Y , iy denotes the canonical map y ↪→ Y . For each y ∈ Y 0 the second arrow
∂val is defined as follows:

(i∗yMn
r )y � KM

n

(
Osh

X,y[1/p]
)
/pr

∂M
py−−→ KM

n−1

(
κ(y)

)
/pr d log−−−→WrΩn−1

y,log,(3.2.3)

where py denotes the maximal ideal of the discrete valuation ring Osh
X,y . The first isomorphism is

due to Bloch–Kato [9], (5.12), and the arrow ∂M
py

denotes the boundary map of Milnor K-groups.
We first show the following fundamental fact:

LEMMA 3.2.4. – The image of ∂n
X,r is contained in νn−1

Y,r . See §2.2 for the definition of νn−1
Y,r .

Proof. – For x ∈XK , let ıx be the natural map x ↪→X . Consider a diagram on Yét

Mn
r

a ⊕
x∈(XK)0 ι∗Rnıx∗μ

⊗n
pr

∂2

∂1

⊕
x∈(XK)1 ι∗Rn−1ıx∗μ

⊗n−1
pr

∂3

0 νn−1
Y,r

⊕
y∈Y 0 iy∗WrΩn−1

y,log

∂4 ⊕
y∈Y 1 iy∗WrΩn−2

y,log.

Here a denotes the canonical adjunction map and each ∂i (i = 1, . . . ,4) is the sum of sheafified
variants of boundary maps in §1.8. The right square is anti-commutative by a result of Kato
[36], 1.7. The upper row is a complex by the smoothness of XK . The lower row is exact by the
definition of νn−1

Y,r . Hence we have Im(∂n
X,r) = Im(∂1 ◦ a)⊂ νn−1

Y,r . �
By this lemma, ∂n

X,r induces a map

σn
X,r :Mn

r −→ νn−1
Y,r ,(3.2.5)

which is a geometric version of the boundary map of Milnor K-groups (modulo pr).

3.3. Bloch–Kato–Hyodo theorem

We give a brief review of the Bloch–Kato–Hyodo theorem on the structure of Mn
r , which

will be useful in this and later sections. See also Remark 3.3.8 below. We define the étale sheaf
KM

n,XK/Y on Y as (ι∗j∗O×
XK

)⊗n/J , where J denotes the subsheaf generated by local sections

of the form x1 ⊗ · · · ⊗ xn (xi ∈ ι∗j∗O×
XK

) with xi + xj = 0 or 1 for some 1 � i < j � n. There
is a natural map due to Bloch and Kato [9], (1.2)

KM
n,XK/Y −→ Mn

r ,(3.3.1)

which is a geometric version of Tate’s Galois symbol map. We define the filtrations U• and V •

on Mn
r using this map, as follows.

DEFINITION 3.3.2. – (1) Let π be a prime element of OK . Let U0
XK

be the full sheaf
ι∗j∗O×

X . For q � 1, let Uq
X be the étale subsheaf of ι∗j∗O×

X generated by local sections

K K K
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of the form 1 + πq · a with a ∈ ι∗OX . We define the subsheaf UqKM
n,XK/Y (q � 0) of KM

n,XK/Y

as the part generated by Uq
XK

⊗ {ι∗j∗O×
XK

}⊗n−1.
(2) We define the subsheaf UqMn

r (q � 0) of Mn
r as the image of UqKM

n,XK/Y under (3.3.1).

We define the subsheaf V qMn
r (q � 0) of Mn

r as the part generated by Uq+1Mn
r and the image

of UqKM
n−1,XK/Y ⊗ 〈π〉 under (3.3.1).

Remark 3.3.3. – (1) U•KM
n,XK/Y and U•Mn

r are independent of the choice of π ∈ OK by
definition.

(2) V 0Mn
r and V •Mn

1 are independent of the choice of π ∈ OK by Theorem 3.3.7 below.

To describe the graded pieces grq
U/V Mn

r := UqMn
r /V qMn

r and grq
V/UMn

r := V qMn
r /

Uq+1Mn
r (especially in the case where Y is not smooth), we introduce some notation from

log geometry in étale topology. See [33] for the general framework of log schemes in the Zariski
topology. See also e.g., [30], §2 and §3 for the corresponding framework in the étale topology.
For a regular scheme Z and a normal crossing divisor D on Z , we define the étale sheaf LZ(D)
of pointed sets on Z as

LZ(D) := {f ∈OZ ; f is invertible outside of D} ⊂OZ .

We regard this sheaf as a sheaf of monoids by the multiplication of functions. The natural
inclusion LZ(D) ↪→OZ gives a log structure on Z , and the associated sheaf LZ(D)gp of abelian
groups is étale locally generated by O×

Z and primes of OZ defining irreducible components of
D. Now we turn to our situation. Put B := Spec(OK) and s := Spec(k), and let Ls be the
inverse image of LB := LB(s) onto sét in the sense of log structures. We define the log structure
LY on Yét as follows. By 3.2.1, there exist a discrete valuation subring O′ ⊂ OK and a regular
semistable family over B′ := Spec(O′) such that OK/O′ is finite totally ramified and such that
X ′ ⊗O′ OK � X . Note that Y is a normal crossing divisor on X ′. We fix such a pair (O′,X ′)
and define the log structure LX on Xét as that obtained from LX′(Y ) by base-change (in the
category of log schemes):

(X,LX) :=
(
X ′,LX′(Y )

)
×(B′,LB′ (s)) (B,LB).

Finally we define LY as the inverse image of LX onto Yét in the sense of log structures. We note
some fundamental facts we need in what follows.

• The log scheme (X ′,LX′(Y )) (resp. (X,LX), (Y,LY )) is smooth over the log scheme
(B′,LB′(s)) (resp. (B,LB), (s,Ls)) with respect to the natural map induced by the
structure map X ′ → B′.

• The relative differential modules ω∗
(Y,LY )/(s,Ls) on Yét are locally free OY -modules of finite

rank and coincide with the modified differential modules ω∗
Y defined in [25].

• There is a natural surjective homomorphism

ι∗j∗O×
XK

� ι∗(Lgp
X ) −→Lgp

Y(3.3.4)

of sheaves of abelian groups on Yét (see [63], (3.2.1) for the first isomorphism).
• By the definition of ω1

(Y,LY )/(s,Ls) = ω1
Y , there is a natural map taking the logarithmic

differentials of local sections of Lgp
Y :

d log :Lgp
Y −→ ω1

Y .(3.3.5)
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,

• There is an analogous map for each n � 0 and r > 0

d log : (Lgp
Y )⊗n −→

⊕
y∈Y 0

iy∗WrΩn
y,log.(3.3.6)

The modified logarithmic Hodge–Witt sheaf Wrω
n
Y,log defined by Hyodo ([25], (1.5))

agrees with the image of this map. See also Remark 3.3.8 (4) below.
Now we state the theorems of Bloch–Kato [9], (1.4) and Hyodo [25], (1.6). For local sections

xi ∈ ι∗j∗O×
XK

(1 � i � n), we will denote the image of {x1, x2, . . . , xn} ∈ KM
n,XK/Y under the

symbol map (3.3.1) again by {x1, x2, . . . , xn}, for simplicity.

THEOREM 3.3.7 (Bloch–Kato/Hyodo). –
(1) The symbol map (3.3.1) is surjective, that is, the subsheaf U0Mn

r is the full sheaf Mn
r for

any n � 0 and r > 0.
(2) There are isomorphisms

gr0U/V Mn
r � Wrω

n
Y,log; {x1, x2, . . . , xn} mod V 0Mn

r �→ d log(x1 ⊗ x2 ⊗ · · · ⊗ xn),

gr0V/UMn
r � Wrω

n−1
Y,log; {x1, . . . , xn−1, π} mod U1Mn

r �→ d log(x1 ⊗ · · · ⊗ xn−1),

where for x ∈ ι∗j∗O×
XK

, x denotes its image into Lgp
Y via (3.3.4).

(3) Let e be the absolute ramification index of K , and let r = 1. Then for q with 1 � q < e′ :=
pe/(p− 1), there are isomorphisms

grq
U/V Mn

1 �
{

ωn−1
Y /Bn−1

Y (p � q),
ωn−1

Y /Zn−1
Y (p | q),

grq
V/UMn

1 � ωn−2
Y /Zn−2

Y ,

given by the following, respectively:

{1 + πqa,x1, . . . , xn−1} mod V qMn
1 �→

{
a · d log(x1)∧ · · · ∧ d log(xn−1) mod Bn−1

Y (p � q),
a · d log(x1)∧ · · · ∧ d log(xn−1) mod Zn−1

Y (p | q)

{1 + πqa,x1, . . . , xn−2, π} mod Uq+1Mn
1 �→ a · d log(x1)∧ · · · ∧ d log(xn−2) mod Zn−2

Y ,

where Bm
Y (resp. Zm

Y ) denotes the image of d :ωm−1
Y → ωm

Y (resp. the kernel of d :ωm
Y → ωm+1

Y ),
a denotes a local section of OX and a denotes its residue class in OY .

(4) We have UqMn
1 = V qMn

1 = 0 for any q � e′.

Remark 3.3.8. – (1) By Theorem 3.3.7 (1) and (2), the natural adjunction map

Mn
r /U1Mn

r −→
⊕

y∈Y 0

iy∗i
∗
y

(
Mn

r /U1Mn
r

)
(3.3.9)

is injective. We will use this injectivity to calculate the kernel of the map σn
X,r defined in (3.2.5).

See the proof of Theorem 3.4.2 below.
(2) If Y is smooth over s = Spec(k), then we have Wrω

m
Y,log = WrΩm

Y,log and ωm
Y = Ωm

Y =
Ωm

Y/k , and the isomorphisms in Theorem 3.3.7 (2) yield the direct decomposition

Mn
r /U1Mn

r � WrΩn
Y,log ⊕WrΩn−1

Y,log(3.3.10)
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(cf. [9], (1.4.1.i)). By this decomposition, it is easy to see that the kernel of σn
X,r is generated by

U1Mn
r and the image of (ι∗O×

X)⊗n under (3.3.1). In the next subsection, we will extend the last
fact to the regular semistable case, although the decomposition (3.3.10) does not hold any longer
in that case.

(3) Theorem 3.3.7 (3) and (4) will be used in later sections.
(4) There are inclusions of étale sheaves (cf. [55], 4.2.1)

λn
Y,r ⊂ Wrω

n
Y,log ⊂ νn

Y,r.

These inclusions are not equalities, in general (loc. cit., 4.2.3). If n = dim(Y ), then we have
Wrω

n
Y,log = νn

Y,r by loc. cit., 1.3.2.

3.4. Structure of Ker(σn
X,r)

We define the étale subsheaf FMn
r of Mn

r as the part generated by U1Mn
r and the image

of (ι∗O×
X)⊗n under (3.3.1). In the rest of this section, we are concerned with the map σn

X,r in
(3.2.5) and the filtration

0 ⊂ U1Mn
r ⊂ FMn

r ⊂Mn
r .

Remark 3.4.1. – Clearly, FMn
r is contained in the kernel of σn

X,r .

The main result of this section is the following theorem, which plays an important role in later
sections (see also Corollary 3.5.2 below):

THEOREM 3.4.2. – Suppose that X is a regular semistable family over Spec(OK). Then σn
X,r

induces an isomorphism

Mn
r /FMn

r
�−→ νn−1

Y,r ,(3.4.3)

that is, σn
X,r is surjective and FMn

r = Ker(σn
X,r). Furthermore there is an isomorphism

FMn
r /U1Mn

r
�−→ λn

Y,r(3.4.4)

sending a symbol {x1, x2, . . . , xn} (xi ∈ ι∗O×
X) to d log(x1 ⊗x2 ⊗· · ·⊗xn). Here for a section

x ∈ ι∗O×
X , x denotes its residue class in O×

Y . See §2.2 for the definition of λn
Y,r .

Remark 3.4.5. – Theorem 3.4.2 is not included in Theorem 3.3.7 unless X is smooth over
OK . See also Remark 3.3.8 (2). In fact, V 0Mn

r is not related to FMn
r directly. However,

Theorem 3.3.7 (1) and (2) plays a key role in the proof of Theorem 3.4.2 as the injectivity of
(3.3.9).

We first prove the following lemma, which is an essential step in the proof of Theorem 3.4.2:

LEMMA 3.4.6. – Let

τ :Ker(σn
X,r)/U1Mn

r −→
⊕

y∈Y 0

iy∗WrΩn
y,log

be the natural map induced by the first map in (3.2.2) and the exact sequence

0 −→
⊕

y∈Y 0

iy∗WrΩn
y,log −→

⊕
y∈Y 0

iy∗i
∗
y(Mn

r /U1Mn
r ) ∂val−−−→

⊕
y∈Y 0

iy∗WrΩn−1
y,log

(cf. Remark 3.3.8 (2), see (3.2.2) for ∂val). Then τ is injective, and Im(τ) is contained in λn
Y,r .
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



534 K. SATO
Proof. – The injectivity of τ immediately follows from that of (3.3.9). We prove that Im(τ)
is contained in λn

Y,r . Since the problem is étale local on Y , we may assume that Y has simple
normal crossings on X . For y ∈ Y 0, let Yy be the irreducible component of Y whose generic
point is y. For x ∈ Y , let ix be the canonical map x ↪→ Y . Let Y (1) (resp. Y (2)) be the disjoint
union of irreducible components of Y (resp. the disjoint union of intersections of two distinct
irreducible components of Y ), and let ai :Y (i) → Y (i = 1,2) be the natural map. Fix an ordering
on the set Y 0. There is a Čech restriction map ř :a1∗WrΩn

Y (1),log
→ a2∗WrΩn

Y (2),log
, and its

kernel agrees with λn
Y,r by [55], 3.2.1. Our task is to prove the following two claims:

(1) For arbitrary points y ∈ Y 0 and x ∈ (Yy)1, the composite map

αy,x :Ker(σn
X,r)

τy−→ iy∗WrΩn
y,log

∂val
y,x−−−→ ix∗WrΩn−1

x,log

is zero, where τy denotes the natural map induced by τ . Consequently, τ induces a map
τ ′ :Ker(σn

X,r) → a1∗WrΩn
Y (1),log

.
(2) The following composite map is zero:

β :Ker(σn
X,r)

τ ′−→ a1∗WrΩn
Y (1),log

ř−→ a2∗WrΩn
Y (2),log.

Proof of Claim (1). – It suffices to show that the stalk (αy,x)x is the zero map. Let Ysing be the
singular locus of Y . The case x /∈ (Ysing)0 immediately follows from the direct decomposition
(3.3.10). To show the case x ∈ (Ysing)0, we fix some notation. Put R := Osh

X,x, which is a strict
henselian regular local ring of dimension 2. Let T1 and T2 be the irreducible components of
Spec(Osh

Y,x). We suppose that T1 lies above Yy . Fix a prime element ti ∈ R (i = 1,2) defining
Ti. Put w1 := t1 mod (t2) ∈ R/(t2) and w2 := t2 mod (t1) ∈ R/(t1). Because the divisor
T1 ∪T2 ⊂ Spec(R) has simple normal crossings, R/(t1) and R/(t2) are discrete valuation rings
and w1 (resp. w2) is a prime element in R/(t2) (resp. R/(t1)). Let ηi (i = 1,2) be the generic
point of Ti. There is a commutative diagram with exact rows

Ker(∂) KM
n (R[1/p])/pr ∂

(3.3.1)

KM
n−1(κ(η1))/pr ⊕KM

n−1(κ(η2))/pr

d log �

Ker(σn
X,r)x

⊂ (Mn
r )x

(σn
X,r)x

(iy∗WrΩn−1
y,log)x ⊕ (iy′∗WrΩn−1

y′,log)x.

(3.4.7)

Here ∂ is the direct sum of the boundary maps of Milnor K-groups modulo pr , and y′ denotes the
generic point of Y corresponding to T2. In this diagram, the right vertical arrow is bijective by a
theorem of Bloch–Gabber–Kato [9], (2.1), and the central vertical map is surjective by Theorem
3.3.7 (1). Hence the left vertical map, resulting from the right square, is surjective. On the other
hand, there is a composite map

spt1,R[1/p] :K
M
n

(
R[1/p]

)
/pr −→ KM

n

(
Frac(R)

)
/pr spt1−−−→KM

n

(
κ(η1)

)
/pr.(3.4.8)

See §3.1 for spt1 . The restriction of this map to Ker(∂) fits into a commutative diagram

Ker(∂)
spt1,R[1/p]|Ker(∂)

surj.

KM
n (κ(η1))/pr

∂M
(w2)

d log

KM
n−1(κ(x))/pr

d log

Ker(σn
X,r)x

(τy)x (iy∗WrΩn
y,log)x

(∂val
y,x)x

WrΩn−1
x,log,

(3.4.9)
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where the composite of the lower row gives (αy,x)x. The composite of the upper row is the zero
map by a commutative diagram of Milnor K-groups modulo pr

KM
n (R[1/p])/pr

∂M
(t2)

spt1,R[1/p]

KM
n−1(κ(η2))/pr

spw1

KM
n (κ(η1))/pr

∂M
(w2)

KM
n−1(κ(x))/pr,

(3.4.10)

whose commutativity is shown explicitly by the direct decomposition R[1/p]× � R× × 〈t1〉 ×
〈t2〉. Hence (αy,x)x is the zero map by the diagram (3.4.9), and we obtain Claim (1).

Proof of Claim (2). – Let Z be a connected component of Y (2). Let Y1 and Y2 be the
irreducible components of Y such that a2(Z) ⊂ Y1 ∩ Y2. Our task is to show that the composite
map

βZ :Ker(σn
X,r)

τ ′−→ a1∗(WrΩn
Y1,log ⊕WrΩn

Y2,log)
ř−→ a2∗WrΩn

Z,log

is zero, where the last map sends (ω1, ω2) (ωi ∈ a1∗WrΩn
Yi,log

) to ω1|Z − ω2|Z . Let x be the
generic point of a2(Z). Since the canonical map a2∗WrΩn

Z,log → ix∗WrΩn
x,log is injective, we

have only to show that the stalk (βZ)x is zero. Put R := Osh
X,x, and let the notation be as in

the proof of Claim (1). Suppose that Ti (i = 1,2) is the irreducible component of Spec(Osh
Y,x)

lying above Yi. Let Ni (i = 1,2) be the kernel of the boundary map KM
n (κ(ηi))/pr →

KM
n−1(κ(x))/pr . By the commutative diagram (3.4.10), spti,R[1/p] in (3.4.8) induces a map

fi :Ker(∂) −→ Ni.

See (3.4.7) for ∂. This map fits into a commutative diagram

Ker(∂)
(f1,f2)

surj.

N1 ⊕N2
f3

d log

KM
n (κ(x))/pr

d log

Ker(σn
X,r)x

τ ′
(WrΩn

T1,log ⊕WrΩn
T2,log)x

ř WrΩn
x,log,

(3.4.11)

where f3 sends (u1, u2) (ui ∈Ni) to spw2
(u1)− spw1

(u2). See (3.4.7) for the left vertical map.
The composite of the lower row gives (βZ)x. The composite of the upper row is zero by a
commutative diagram

KM
n (R[1/p])/pr

spt2,R[1/p]

spt1,R[1/p]

KM
n (κ(η2))/pr

spw1

KM
n (κ(η1))/pr

spw2
KM

n (κ(x))/pr,

whose commutativity is checked in the same way as for (3.4.10). Thus (βZ)x is the zero map,
and we obtain Claim (2) and Lemma 3.4.6. �

Proof of Theorem 3.4.2. – The surjectivity of (3.4.3) follows from the same argument as for
[55], 2.4.6 (see the surjectivity of the map (2.4.9) in loc. cit.). We prove the injectivity of (3.4.3)
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and construct the bijection (3.4.4). There are injective maps

FMn
r /U1Mn

r ↪→Ker(σn
X,r)/U1Mn

r

τ
↪→λn

Y,r

(see Lemma 3.4.6 for τ ). These two arrows are both bijective, because the sheaves FMn
r /U1Mn

r

and λn
Y,r are generated by symbols from (ι∗O×

X)⊗n and (O×
Y )⊗n, respectively. Therefore we

have FMn
r = Ker(σn

X,r) as subsheaves of Mn
r and the composite of the above two maps gives

the desired bijective map (3.4.4). This completes the proof of Theorem 3.4.2.

3.5. Tamely ramified case

Assume that X satisfies the following condition over OK :

CONDITION 3.5.1. – There exist a discrete valuation subring O′ ⊂ OK with OK/O′ finite
tamely ramified and a regular semistable family X ′ over O′ with X �X ′ ⊗O′ OK .

Let Y and Mn
r (resp. U1Mn

r , FMn
r ) be as we defined in §3.2 (resp. §3.3, §3.4). By Theorems

3.3.7 and 3.4.2, we obtain

COROLLARY 3.5.2. – The map σn
X,r induces an isomorphism Mn

r /FMn
r � νn−1

Y,r , and there
is an isomorphism FMn

r /U1Mn
r � λn

Y,r described in the same way as (3.4.4).

Proof. – The second assertion is an immediate consequence of Remark 3.3.8 (1) for X and the
definitions of FMn

r and λn
Y,r (cf. Lemma 3.4.6). We prove the first assertion. Since the problem

is étale local on Y , we may assume that OK/O′ is totally tamely ramified. Then the divisor
on X ′ defined by a prime element π′ ∈ O′ agrees with Y . Let e1 be the ramification index of
OK/O′ and let ι′ and j′ be as follows:

X ′
K′

j′−→ X ′ ι′←− Y,

where K ′ denotes Frac(O′). Let Mn
r,X′ be the étale sheaf ι′∗Rnj′∗μ

⊗n
pr . There is a commutative

diagram with exact rows

0 FMn
r,X′/U1Mn

r,X′ Mn
r,X′/U1Mn

r,X′

σn
X′,r

mod U1Mn
r,X′

res

νY,r

×e1

0

0 Ker(σn
X,r)/U1Mn

r Mn
r /U1Mn

r

σn
X,r mod U1Mn

r νY,r,

where the exactness of the upper row follows from Theorem 3.4.2. Because (e1, p) = 1 by
assumption, the central vertical arrow is bijective by Theorem 3.3.7 (1), (2) (for X ′ and X),
and the right vertical arrow is bijective as well. Hence σn

X,r is surjective and the left vertical map
is bijective, which implies the equality FMn

r = Ker(σn
X,r). �

4. p-adic étale Tate twists

In this section, we define the objects Tr(n)X (n � 0, r � 1) stated in Theorem 1.1.1 and
discuss their fundamental properties including T1, T2, T3, T5 and T6.
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4.1. Setting

Let A be a Dedekind ring whose fraction field has characteristic zero and which has a maximal
ideal of positive characteristic. Let p be a prime number which is not invertible in A, and
we assume that the residue fields of A at maximal ideals of characteristic p are perfect. Put
B := Spec(A) and write Σ for the set of the closed points on B of characteristic p. For a point
s on B, let Bs be the henselization of B at s. Let X be a pure-dimensional scheme which is
flat of finite type over B. We assume that X satisfies the following condition, unless mentioned
otherwise:

CONDITION 4.1.1. – X[1/p] is regular. For any s ∈ Σ, each connected component X ′ of
X ×B Bs satisfies the condition 3.5.1 over the integral closure of Bs in Γ(X ′,OX′).

We will often work under the following stronger assumption:

CONDITION 4.1.2. – X is regular. For any s ∈ Σ, each connected component X ′ of X×B Bs

is a regular semistable family over the integral closure of Bs in Γ(X ′,OX′).

Let X be a pure-dimensional flat of finite type B-scheme satisfying 4.1.1. Let Y ⊂ X be the
divisor defined by the radical of (p) ⊂OX . We always assume that Y is non-empty. Let νn

Y,r be
as in §2.2. Put V := X \ Y = X[1/p]. Let ι and j be as follows:

V
j−→ X ι←− Y.

Define the étale sheaf Mn
r on Y to be ι∗Rnj∗μ

⊗n
pr .

4.2. Definition of Tr(n)X

Let X and p be as before. We define Tr(0)X := Z/prZX . For n � 1, let

σX,r(n) : τ�nRj∗μ
⊗n
pr −→ ι∗ν

n−1
Y,r [−n] in Db(Xét,Z/prZ)(4.2.1)

be the morphism induced by the map ι∗(σn
X,r) :Rnj∗μ

⊗n
pr = ι∗M

n
r → ι∗ν

n−1
Y,r of sheaves on Xét

(cf. Lemma 2.1.1). See (3.2.5) for σn
X,r .

LEMMA 4.2.2. – Suppose n � 1, and let

ι∗ν
n−1
Y,r [−n− 1] g−→K t−→ τ�nRj∗μ

⊗n
pr

σX,r(n)−−−−−→ ι∗ν
n−1
Y,r [−n](4.2.3)

be a distinguished triangle in Db(Xét,Z/prZ). Then K is concentrated in [0, n], the triple
(K, t, g) is unique up to a unique isomorphism and g is determined by the pair (K, t).

Proof. – The map ι∗(σn
X,r) is surjective by Theorem 3.4.2 and Corollary 3.5.2. Hence K is

acyclic outside of [0, n] and there is no non-zero morphism from K to ι∗ν
n−1
Y,r [−n − 1] by

Lemma 2.1.1. The uniqueness assertion follows from this fact and Lemma 2.1.2 (3). �
DEFINITION 4.2.4. – For n � 1, we fix a pair (K, t) fitting into a distinguished triangle of the

form (4.2.3), and define Tr(n)X := K. The morphism t determines an isomorphism j∗K� μ⊗n
pr ,

and Tr(n)X is concentrated in [0, n], that is, Tr(n)X satisfies T1 and T2 in 1.1.1. Moreover,
t induces isomorphisms

Hq
(
Tr(n)X

)
�
{

Rqj∗μ
⊗n
pr (0 � q < n),

ι FMn (q = n),
(4.2.5)
∗ r
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where we have used Theorem 3.4.2 and Corollary 3.5.2 for q = n.

We prove here the existence of a natural product structure (T5 in 1.1.1).

PROPOSITION 4.2.6 (Product structure). – For m,n � 0, there is a unique morphism

Tr(m)X ⊗L Tr(n)X −→ Tr(m + n)X in D−(Xét,Z/prZ)(4.2.7)

that extends the natural map μ⊗m
pr ⊗ μ⊗n

pr → μ⊗m+n
pr on Vét.

Proof. – If m = 0 or n = 0, then the assertion is obvious. Assume m,n � 1, and put L :=
Tr(m)X⊗L Tr(n)X . By the definition of Tr(m + n)X and Lemma 2.1.2 (1), it suffices to show
that the following composite morphism is zero in D−(Xét,Z/prZ):

L−→ τ�mRj∗μ
⊗m
pr ⊗L τ�nRj∗μ

⊗n
pr −→ τ�m+nRj∗μ

⊗m+n
pr

σX,r(m+n)−−−−−−−→ ι∗ν
m+n−1
Y,r [−m− n],

where the second arrow is induced by the natural map μ⊗m
pr ⊗ μ⊗n

pr → μ⊗m+n
pr on V . We prove

this triviality. Because L is concentrated in degrees � m + n, this composite morphism is
determined by the composite map of the (m + n)-th cohomology sheaves (cf. Lemma 2.1.1)

Hm+n(L)−→ ι∗M
m
r ⊗ ι∗M

n
r −→ ι∗M

m+n
r

ι∗(σm+n
X,r

)
−−−−−−→ ι∗ν

m+n−1
Y,r .

The image of Hm+n(L)(� ι∗FMm
r ⊗ι∗FMn

r ) into ι∗M
m+n
r is contained in ι∗FMm+n

r . Hence
this composite map is zero and we obtain Proposition 4.2.6. �

The following proposition (T6 in 1.1.2) follows from a similar argument as for Proposi-
tion 4.2.6.

PROPOSITION 4.2.8 (Contravariant functoriality). – Let X and Z be flat B-schemes satisfy-
ing 4.1.1. Let f :Z → X be a morphism of schemes, and let ψ :Z[1/p]→ X[1/p] be the induced
morphism. Then there is a unique morphism

f∗ :f∗Tr(n)X −→ Tr(n)Z in Db(Zét,Z/prZ)

that extends the natural isomorphism ψ∗μ⊗n
pr � μ⊗n

pr on (Z[1/p])ét. Consequently, these pull-
back morphisms satisfy the transitivity property.

4.3. Bockstein triangle

We prove the following proposition:

PROPOSITION 4.3.1. – For r, s � 1, the following holds:
(1) There is a unique morphism p :Tr(n)X → Tr+1(n)X in Db(Xét,Z/pr+1Z) that extends

the natural inclusion μ⊗n
pr ↪→ μ⊗n

pr+1 on Vét.

(2) There is a unique morphism R :Tr+1(n)X → Tr(n)X in Db(Xét,Z/pr+1Z) that extends
the natural projection μ⊗n

pr+1 → μ⊗n
pr on Vét.

(3) There is a canonical Bockstein morphism δs,r :Ts(n)X → Tr(n)X [1] in Db(Xét)
satisfying
(3-1) δs,r extends the Bockstein morphism μ⊗n

ps → μ⊗n
pr [1] in Db(Vét) associated with the

short exact sequence 0 → μ⊗n
pr → μ⊗n

r+s → μ⊗n
ps → 0.
p
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(3-2) δs,r fits into a distinguished triangle

Tr+s(n)X
Rr−−→ Ts(n)X

δs,r−−→ Tr(n)X [1]
ps[1]
−−−→ Tr+s(n)X [1].

Proof. – The claims (1) and (2) follow from the fact that Tr(n)X is concentrated in [0, n] and
from Lemma 2.1.2 (1). The details are straight-forward and left to the reader. We prove (3). For
two complexes M• = ({Mu}u∈Z,{du

M :Mu → Mu+1}u∈Z), N• = ({Nv}v∈Z,{dv
N}v∈Z) and

a map h• :M• → N• of complexes, let Cone(h)• be the mapping cone (cf. [66], XVII)

Cone(h)q := Mq+1 ⊕Nq, dq
Cone(h) := (−dq+1

M , hq+1 + dq
N ).

We construct a morphism δs,r satisfying (3-1) and (3-2) in a canonical way. Take injective
resolutions μ⊗n

pv → I•v (v = r, r + s) and an injective resolution μ⊗n
ps → J•

s in the category of
sheaves on Vét for which there is a short exact sequence of complexes of the form

0 −→ I•r −→ I•r+s −→ J•
s −→ 0.

Let av : τ�nj∗I
•
v → ι∗ν

n−1
Y,v [−n] (v = r, r + s) and bs : τ�nj∗J

•
s → ι∗ν

n−1
Y,s [−n] be the natural

maps of complexes that represent σX,v(n) : τ�nRj∗μ
⊗n
pv → ι∗ν

n−1
Y,v [−n] with v = r, r + s and s,

respectively (cf. §4.2). The complexes Cone•(av) (v = r, r + s) and Cone•(bs) represent
Tv(n)X with v = r, r + s and s, respectively. We show that the sequence of complexes

0 −→ Cone•(ar)−→ Cone•(ar+s)
f−→Cone•(bs) −→ 0(4.3.1)

is exact. Indeed, this exactness follows from that of the sequence 0 → νn−1
Y,r → νn−1

Y,r+s →
νn−1

Y,s → 0 ([55], 2.2.5 (2)) and that of the sequence of complexes

0 −→ τ�nj∗I
•
r −→ τ�nj∗I

•
r+s −→ τ�nj∗J

•
s −→ 0(4.3.2)

(cf. Theorem 3.3.7 (1)). Finally, we define δs,r as the composite Cone•(bs) → Cone•(f) �
Cone•(ar)[1] in Db(Xét), i.e., connecting morphism associated with (4.3.1). By definition, δs,r

is canonical and satisfies the properties (3-1) and (3-2). This completes the proof. �
Remark 4.3.4. – One can construct a map δ′s,r :Ts(n)X → Tr(n)X [1] in Db(Xét,Z/ps+rZ)

satisfying (3-1) and (3-2) in the same way as above. Clearly, δ′s,r = δs,r in Db(Xét).

4.4. Gysin morphism and purity

We define Gysin morphisms for closed subschemes of X contained in Y and prove T3 in
1.1.1. See §6 below for a purity result for horizontal subschemes.

LEMMA 4.4.1. – (1) There is a unique morphism

g′ :νn−1
Y,r [−n− 1]−→ Rι!Tr(n)X in Db(Yét,Z/prZ)
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fitting into a commutative diagram with distinguished rows

Tr(n)X
t

τ�nRj∗μ⊗n
pr

−σX,r(n)
ι∗νn−1

Y,r [−n]
g[1]

Rι∗(g′)[1]

Tr(n)X [1]

Tr(n)X
j∗

Rj∗μ⊗n
pr

δloc
V,Y (Z/prZ(n)X )

Rι∗Rι!Tr(n)X [1]
ι∗

Tr(n)X [1].

(4.4.2)

Here t and g denote the same morphisms as in Lemma 4.2.2, and the lower row is the localization
distinguished triangle (1.9.2).

(2) g′ induces an isomorphism

τ�n+1(g′) :νn−1
Y,r [−n− 1] �−→ τ�n+1Rι!Tr(n)X in Db(Yét,Z/prZ).

Proof. – We first calculate the cohomology sheaves of Rι!Tr(n)X . In the lower row of (4.4.2),
the map of the q-th cohomology sheaves of α ◦ t is bijective (resp. injective) if q < n (resp.
q = n), by (4.2.5). Hence by T2, we obtain

Rqι!Tr(n)X �
{

0 (q < n + 1),
ι∗Rq−1j∗μ

⊗n
pr (q > n + 1),(4.4.3)

and a short exact sequence

0 −→ FMn
r −→ Mn

r

ι∗Hn(δloc
V,Y (Tr(n)X))−−−−−−−−−−−−−−→ Rn+1ι!Tr(n)X −→ 0.(4.4.4)

By Lemma 2.1.1, (4.4.3) and T2, we have

HomDb(Yét,Z/prZ)

(
Tr(n)X [1],Rι∗Rι!Tr(n)X [1]

)
= 0.

Hence the first assertion of the lemma follows from Lemma 2.1.2 (2). The second assertion
follows from (4.4.4). �

DEFINITION 4.4.5. – Let φ :Z ↪→ Y be a closed immersion of pure codimension. Put c :=
codimX(Z), and let i be the composite map Z ↪→ Y ↪→X . We define the morphism

Gysn
i :νn−c

Z,r [−n− c]−→ Ri!Tr(n)X in Db(Zét,Z/prZ)(4.4.6)

as follows, where νn−c
Z,r means the zero sheaf if n < c. If Z = Y (hence c = 1 and i = ι), then

we define Gysn
ι as the morphism g′ in Lemma 4.4.1. This morphism agrees with the adjoint of

g in Lemma 4.2.2 by the commutativity of the right square of (4.4.2). For a general Z , we define
Gysn

i as the composite

νn−c
Z,r [−n− c]

Gysn−1
φ

[−n−1]
−−−−−−−−−−→ Rφ!νn−1

Y,r [−n− 1]
Rφ!(Gysn

ι )−−−−−−−→ Rφ!Rι!Tr(n)X = Ri!Tr(n)X .

See Definition 2.2.1 for Gysn−1
φ .

THEOREM 4.4.7 (Purity). – The morphism

τ�n+c(Gysn
i ) :νn−c

Z,r [−n− c]−→ τ�n+cRi!Tr(n)X

is an isomorphism.
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Proof. – By the definition of Gysn
i , the morphism τ�n+c(Gysn

i ) is decomposed as follows:

νn−c
Z,r [−n− c]

τ�n+c(Gysn−1
φ

[−n−1])
−−−−−−−−−−−−−−−→ τ�n+c

(
Rφ!νn−1

Y,r [−n− 1]
)

τ�n+cRφ!{τ�n+1(Gysn
ι )}−−−−−−−−−−−−−−−−→ τ�n+c

{
Rφ!

(
τ�n+1Rι!Tr(n)X

)}
canonical−−−−−−→ τ�n+cRi!Tr(n)X .

The first two arrows are isomorphisms by Theorem 2.2.2 and Lemma 4.4.1. We show that the
last arrow is an isomorphism as well. There is a distinguished triangle of the form

τ�n+1Rι!Tr(n)X −→Rι!Tr(n)X −→ τ�n+2Rι!Tr(n)X −→
(
τ�n+1Rι!Tr(n)X

)
[1]

and we have τ�n+2Rι!Tr(n)X � (τ�n+1ι
∗Rj∗μ

⊗n
pr )[−1] (cf. (4.4.3)). Hence it suffices to show

τ�n+c−1Rφ!
(
τ�n+1ι

∗Rj∗μ
⊗n
pr

)
= 0.(4.4.8)

By the exactness of (4.3.2), there is a distinguished triangle of the form

τ�n+1Rj∗μ
⊗n
pr−1 −→ τ�n+1Rj∗μ

⊗n
pr −→ τ�n+1Rj∗μ

⊗n
p −→

(
τ�n+1Rj∗μ

⊗n
p

)
[1].

Hence (4.4.8) is reduced to the case r = 1 and then to the following semi-purity due to Hagihara
(cf. Theorem A.2.6 below):

Rqφ!(ι∗Rmj∗μ
⊗n
p ) = 0 for any m,q with q � c− 2,

where one must note c = codimY (Z) + 1. This completes the proof. �
COROLLARY 4.4.9. – Let i :Z → X be a closed immersion of codimension � n + 1. Then

we have Rqi!Tr(n)X = 0 for any q � 2n + 1.

Proof. – If Z[1/p] is empty, then we have Rqi!Tr(n)X = 0 for q � 2n + 1 by Theorem 4.4.7.
We next prove the case that Z[1/p] is non-empty. Put U := Z[1/p] and T := Z \ U . Let
α :T ↪→ Z , β :U ↪→ Z and γ :T ↪→X be the natural immersions. There is a long exact sequence
of sheaves on Zét

· · · −→ α∗R
qγ!Tr(n)X −→Rqi!Tr(n)X −→ Rqβ∗β

∗Ri!Tr(n)X −→ · · · ,

where α∗R
qγ!Tr(n)X is zero for q � 2n + 1 by the previous case. We show that

Rqβ∗β
∗Ri!Tr(n)X is zero for q � 2n + 1. Indeed, we have β∗Ri!Tr(n)X = Rψ!μ⊗n

pr with ψ
the closed immersion U ↪→ V , and it is concentrated in degrees � 2n + 2 by the absolute purity
of Thomason–Gabber ([62,15]) and the assumption that codimX(Z) � n + 1. �

We next prove a projection formula, which will be used later in §5 and §6.

PROPOSITION 4.4.10 (Projection formula). – Let i :Z ↪→ X be as in 4.4.5. We define the
morphism i∗ :Tr(n)X → i∗λ

n
Z,r[−n] in Db(Xét,Z/prZ) by the natural pull-back of symbols on

the n-th cohomology sheaves (cf. (4.2.5)). Then the square

i∗ν
m−c
Z,r [−m− c]⊗L Tr(n)X

Gysm
i ⊗Lid

(
)

Tr(m)X ⊗L Tr(n)X

(4.2.7)

i∗ν
m+n−c
Z,r [−m− n− c]

Gysm+n
i

Tr(m + n)X
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commutes in D−(Xét,Z/prZ). Here the left vertical arrow (�) is the composite map

i∗ν
m−c
Z,r [−m− c]⊗L Tr(n)X

id⊗Li∗−−−−→ i∗ν
m−c
Z,r [−m− c]⊗L i∗λ

n
Z,r[−n]

−→ i∗ν
m+n−c
Z,r [−m− n− c],

and the last arrow is induced by the pairing (2.2.3) on the (m + n + c)-th cohomology sheaves.

Proof. – One can easily check the case Z = Y by the commutativity of the central square in
(4.4.2). The general case is, by the previous case, reduced to the commutativity of a diagram

φ∗ν
m−c
Z,r [−m− c]⊗L λn

Y,r[−n]
Gysm−1

φ
[−m−1]⊗Lid[−n]

νm−1
Y,r [−m− 1]⊗L λn

Y,r[−n]

φ∗ν
m+n−c
Z,r [−m− n− c]

Gysm+n−1
φ

[−m−n−1]

νm+n−1
Y,r [−m− n− 1]

in D−(Yét,Z/prZ) with φ :Z ↪→ Y . Here the vertical arrows are defined in a similar
way as for (�). We prove the commutativity of this square. For two complexes M• =
({Mu}u∈Z,{du

M :Mu → Mu+1}u∈Z) and N• = ({Nv}v∈Z,{dv
N}v∈Z), we define the double

complex M• ⊗N• as

(M• ⊗N•)u,v := Mu ⊗Nv, ∂u,v
1 := du

M ⊗ idNv , ∂u,v
2 := (−1)u idMu ⊗ dv

N .

We write (M• ⊗ N•)t for the associated total complex, whose image into the derived category
gives M• ⊗L N• if either M• or N• is bounded above and consists of flat objects. Now for
T ∈ {Y,Z} and a � 0, let C•

r (T,a) be the complex of sheaves defined in §2.2. Because λn
Y,r is

flat over Z/prZ by [55], 3.2.3, the commutativity in question follows from that of a diagram of
complexes on Yét

(φ∗C
•
r (Z,m− c)[−m− c]⊗ λn

Y,r[−n])t

product

(C•
r (Y,m− 1)[−m− 1]⊗ λn

Y,r[−n])t

product

φ∗C
•
r (Z,m + n− c)[−m− n− c] C•

r (Y,m + n− 1)[−m− n− 1],

where the vertical arrows are induced by the pairings (2.2.3) and the horizontal arrows are natural
inclusions of complexes. This completes the proof. �
4.5. Kummer sequence for Gm and purity of Brauer groups

We study the case n = 1.

PROPOSITION 4.5.1. – Put Gm :=O×
X . Then there is a unique morphism

Gm ⊗L Z/prZ[−1]−→ Tr(1)X in Db(Xét,Z/prZ)

that extends the canonical isomorphism j∗(Gm ⊗L Z/prZ[−1]) � μpr . Moreover it is an
isomorphism, if X satisfies 4.1.2.
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Proof. – Put M := Gm ⊗L Z/prZ[−1]. By definition, (i) M is concentrated in [0,1], and (ii)
there are natural isomorphisms

H0(M)� Ker(Gm
×pr

−−−→ Gm) and H1(M)� Gm/pr.

Because j∗M � μpr canonically in Db(Vét,Z/prZ), there is a natural morphism M −→
τ�1Rj∗μpr in Db(Xét,Z/prZ) by (i). The composite morphism

M−→ τ�1Rj∗μpr
σX,r(1)−−−−−→ ι∗ν

0
Y,r[−1]

is zero by (ii) and Lemma 2.1.1. Hence by Lemma 2.1.2 (1), we obtain a unique morphism
M−→ Tr(1)X that extends the isomorphism j∗M� μpr . Next we prove that this morphism is
bijective on cohomology sheaves, assuming that X satisfies 4.1.2. By the standard purity for Gm

([20], (6.3)–(6.5)), there is an exact sequence

0 −→ Gm −→ j∗j
∗Gm −→

⊕
y∈Y 0

ιy∗Z −→ 0,

where for x ∈ X , ιx denotes the canonical map x ↪→ X . Since
⊕

y∈Y 0 ιy∗Z is torsion-free, we
have H0(M) � j∗μpr and there is an exact sequence

0 −→H1(M) −→ R1j∗μpr −→
⊕

y∈Y 0

ιy∗Z/prZ(= ι∗ν
0
Y,r)

by (ii) and the snake lemma. Here we have used the isomorphism (j∗j∗Gm)/pr � R1j∗μpr

obtained from Hilbert’s theorem 90: R1j∗j
∗Gm = 0. Now the assertion follows from (4.2.5). �

As an application of Corollary 4.4.9 and Proposition 4.5.1, we prove the p-primary part of the
purity of Brauer groups (cf. [20], §6).

COROLLARY 4.5.2 (Purity of Brauer groups). – Assume that X satisfies 4.1.2. Let i :Z ↪→X
be a closed immersion with codimX(Z) � 2. Then the p-primary torsion part of R3i!Gm is zero.

If dim(X) � 3, then the full sheaf R3i!Gm is zero by a theorem of Gabber [16].

Proof. – By Proposition 4.5.1, there is a distinguished triangle

Gm[−1]−→ Tr(1)X −→ Gm
×pr

−−−→ Gm in Db(Xét),(4.5.3)

which yields an exact sequence R3i!Tr(1)X → R3i!Gm
×pr

−−−→ R3i!Gm. Hence the corollary
follows from the vanishing result in Corollary 4.4.9. �

5. Cycle class and intersection property

Throughout this section, we work with the setting in §4.1 and assume that X satisfies the
condition 4.1.2. In this section we define the cycle class clX(Z) ∈H2n

Z (X,Tr(n)) for an integral
closed subscheme Z ⊂ X of codimension n � 0, and prove an ‘intersection formula’

clX(Z)∪ clX(Z ′) = clX(Z ∩Z ′) in H2(m+n)
Z

(
X,Tr(m + n)

)
,
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assuming that Z of codimension m and Z ′ of codimension n are regular and meet transversally.
In §6, we will prove T4 in Theorem 1.1.1 using this result.

5.1. Cycle class

We first note a standard consequence of Corollary 4.4.9.

LEMMA 5.1.1. – Let Z be a closed subscheme of X of pure codimension n � 0. Let Z ′ be a
dense open subset of Z , and let T be the complement Z \Z ′. Then the natural map

H2n
Z

(
X,Tr(n)X

)
−→ H2n

Z′
(
X \ T,Tr(n)X\T

)
is bijective.

Proof. – There is a long exact sequence of cohomology groups with supports

· · · →H2n
T

(
X,Tr(n)X

)
→ H2n

Z

(
X,Tr(n)X

)
→ H2n

Z′
(
X \ T,Tr(n)X

)
→H2n+1

T

(
X,Tr(n)X

)
→ · · · .

Since codimX(T ) � n + 1, we have H2n
T (X,Tr(n)X) = H2n+1

T (X,Tr(n)X) = 0 by Corol-
lary 4.4.9, which shows the lemma. �

DEFINITION 5.1.2. – For an integral closed subscheme Z ⊂ X of codimension n � 0, we
define the cycle class clX(Z) ∈H2n

Z (X,Tr(n)X) as follows.
(1) If Z is regular and contained in Y , then we define clX(Z) to be the image of 1 ∈ Z/prZ

under the Gysin map

Gysn
i :Z/prZ −→ H2n

Z

(
X,Tr(n)X

)
induced by the Gysin morphism defined in Definition 4.4.5.

(2) If Z is regular and not contained in Y , then we have Gabber’s refined cycle class
clV (U) ∈ H2n

U (V,μ⊗n
pr ) (cf. [15]), where we put U := Z[1/p] and V := X[1/p]. We define

clX(Z) as the inverse image of clV (U) under the natural map

H2n
Z (X,Tr(n)X)−→H2n

U (V,μ⊗n
pr ).

This map is bijective by Lemma 5.1.1 and excision, and hence clX(Z) is well-defined.
Note that Gabber’s refined cycle class agrees with Deligne’s cycle class ([66], Cycle) in
any situation where the latter is defined (cf. [15], 1.1.5).

(3) For a general Z , we take a dense open regular subset Z ′ ⊂ Z and define clX(Z) to be the
inverse image of clX′(Z ′) ∈ H2n

Z′ (X ′,Tr(n)X) (X ′ := X \ (Z \ Z ′)) under the natural
map

H2n
Z

(
X,Tr(n)X

)
−→ H2n

Z′
(
X ′,Tr(n)X′

)
,

which is bijective by Lemma 5.1.1 and clX(Z) is well-defined.

We prove the following result:

PROPOSITION 5.1.3 (Intersection property). – Let Z and Z ′ be integral regular closed
subschemes of X of codimension a and b, respectively. Assume that Z and Z ′ meet transversally
on X . Then we have

clX(Z)∪ clX(Z ′) = clX(Z ∩Z ′) in H2(a+b)
Z∩Z′

(
X,Tr(a + b)X

)
.
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Here, if Z ∩ Z ′ is not connected, then clX(Z ∩ Z ′) means the sum of the cycle classes of the
connected components.

5.2. Proof of Proposition 5.1.3

Without loss of generality, we may assume that Z ∩ Z ′ is connected (hence integral and
regular). If Z ∩ Z ′ is not contained in Y , the assertion follows from Lemma 5.1.1 and the
corresponding property of Gabber’s refined cycle classes [15], 1.1.4. We treat the case that
Z ∩ Z ′ ⊂ Y . Let x be the generic point of Z ∩ Z ′. By Lemma 5.1.1, we may replace X
by Spec(OX,x). Because Z and Z ′ are regular and meet transversally at x, there is a normal
crossing divisor D =

⋃a+b
i=1 Di on X with each Di integral regular such that

⋂a
i=1 Di = Z and⋂a+b

i=a+1 Di = Z ′. Therefore we are reduced to the following local assertion:

LEMMA 5.2.1. – Suppose that X is local with closed point x of characteristic p. Put
n := codimX(x) � 1. Let D =

⋃n
i=1 Di be a normal crossing divisor on X with each Di

integral regular such that
⋂n

i=1 Di = x. Then the cohomology class

clX(x;D) := clX(D1)∪ clX(D2)∪ · · · ∪ clX(Dn) ∈H2n
x

(
X,Tr(n)X

)
depends only on the flag: D1 ⊃D1 ∩D2 ⊃ · · · ⊃D1 ∩ · · · ∩Dn−1 ⊃ x, and agrees with clX(x).

We prove this lemma by induction on n � 1. The case n = 1 is clear. Suppose that n � 2 and
put S :=

⋂n−1
i=1 Di. Let ψ (resp. ix) be the closed immersion S ↪→X (resp. x → S). Note that S

is regular, local and of dimension 1.
We first show the case that S ⊂ Y . By the induction hypothesis and Lemma 5.1.1, we have

clX(D1)∪ · · · ∪ clX(Dn−1) = clX(S), and hence

clX(x;D) = clX(S)∪ clX(Dn) = Gysn
ψ

(
Gysn−c

ix
(1)

)
= clX(x).

Here the second equality follows from Proposition 4.4.10 for ψ and the last equality follows from
Remark 2.2.6 (1). In particular, cl(x;D) depends only on the flag of D.

We next show the case that S 	⊂ Y . Let y be the generic point of S. Since ch(y) = 0, we have
clX(D1)∪ · · · ∪ clX(Dn−1) = clX(S) by Lemma 5.1.1 and [15], 1.1.4. We have to show

SUBLEMMA 5.2.2. – Let E and E′ be regular connected divisors on X each of which meets
S transversally at x. Then we have clX(S)∩ clX(E) = clX(S)∩ clX(E′).

We first finish the proof of the lemma, admitting this sublemma. It implies that clX(x;D)
depends only on the flag of D, and moreover that clX(x;D) is independent of D by [67], Cycle,
2.2.3. Hence we obtain clX(x;D) = clX(x) by the computation in the previous case.

Proof of Sublemma 5.2.2. – Let E be a regular divisor on X as in the sublemma. The map

H2
E

(
X,Tr(1)X

)
−→H2n

x

(
X,Tr(n)X

)
, α �→ clX(S)∪ α

factors through a natural pull-back map

ψ∗ :H2
E

(
X,Tr(1)X

)
−→H2

x

(
S,ψ∗Tr(1)X

)
.
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We compute ψ∗(clX(E)) as follows. Since ch(y) = 0, we have (ψ∗Tr(1)X)|y � μpr on yét and
there is a commutative diagram with exact rows

H1(X,Tr(1)X)

ψ∗

H1(X \E,Tr(1)X\E)
δ1

ψ∗

H2
E(X,Tr(1)X)

ψ∗

H1(S,ψ∗Tr(1)X) H1(y,μpr )
δ2 H2

x(S,ψ∗Tr(1)X),

where δ1 denotes δloc
X\E,E(ψ∗Tr(1)X) and δ2 denotes δloc

y,x(ψ∗Tr(1)X) (cf. (1.9.2)). Take a prime

element πE ∈OX,x which defines E, and let {πE} ∈H1(X \E,Tr(1)X\E) be the image of πE

under the boundary map of Kummer theory (cf. (4.5.3))

Γ(X \E,O×
X\E) −→ H1

(
X \E,Tr(1)X\E

)
.

We have clX(E) = −δ1({πE}) by [67], Cycle, 2.1.3 (cf. (1.9.1)). By the diagram,

ψ∗(clX(E)
)

= −δ2

(
ψ∗{πE}

)
= −δ2

(
{πE}

)
.

Here πE denotes the residue class of πE in OS,x and it is a prime element by the assumption that
E meets S transversally at x. Moreover we have δ2({u}) = 0 for any unit u ∈ O×

S,x, because
every u ∈ O×

S,x lifts to O×
X,x. Hence for a fixed prime πx ∈ OS,x we have ψ∗(clX(E)) =

−δ2({πx}), which shows the sublemma. �
This completes the proof of Lemma 5.2.1 and Proposition 5.1.3.

6. Compatibility and purity for horizontal subschemes

In this section, we prove T4 in Theorem 1.1.1. This result is rather technical, but we will need
its consequence, Theorem 6.1.3, to prove the covariant functoriality T7 in §7.

6.1. Gysin maps

We work with the setting in §4.1, and assume that X satisfies 4.1.1. Let b and n be integers
with n � b � 0. For x ∈Xb, we define the complex Z/prZ(n)x on xét as

Z/prZ(n)x :=
{

μ⊗n
pr (if ch(x) 	= p),

WrΩn
x,log[−n] (if ch(x) = p).

We define the Gysin map

Gysn
ix

:Hn−b
(
x,Z/prZ(n− b)x

)
−→ Hn+b

x

(
X,Tr(n)X

)
:= Hn+b

x

(
Spec(OX,x),Tr(n)X

)
as the map induced by the Gysin morphism for ix :x ↪→ X , if ch(x) = p (cf. Definition 4.4.5).
If ch(x) 	= p, we define Gysn

ix
by sending α ∈ Hn−b(x,μ⊗n−b

pr ) to clV (x) ∪ α, where clV (x) ∈
H2b

x (V,μ⊗b
pr ) denotes Gabber’s refined cycle class we mentioned in Definition 5.1.2 (2). The aim

of this section is to prove the following two theorems:
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THEOREM 6.1.1 (Compatibility). – Let x and y be points with x ∈ {y} ∩ Y ∩ Xb and
y ∈Xb−1 (hence ch(y) = 0 or p). Then the diagram

Hn−b+1(y,Z/prZ(n− b + 1)y)
−∂val

y,x

Gysn
iy

Hn−b(x,Z/prZ(n− b)x)

Gysn
ix

Hn+b−1
y (X,Tr(n)X)

δloc
y,x(Tr(n)X)

Hn+b
x (X,Tr(n)X)

(6.1.2)

is commutative (see (1.9.3) for the definition of the bottom arrow).

Sheafifying this commutative diagram, we obtain T4 in Theorem 1.1.1. As for the case x /∈ Y ,
the corresponding commutativity is proved in [29], §1.

THEOREM 6.1.3 (Purity). – Let Z be an integral locally closed subscheme of X which is
flat over B and satisfies 4.1.1. Put c := codimX(Z) and U := Z[1/p]. Let i and ψ be the locally
closed immersions Z ↪→X and U ↪→ V , respectively. Then for n � c, there is a unique morphism

Gysn
i :Tr(n− c)Z [−2c]−→ Ri!Tr(n)X in Db(Zét,Z/prZ)

that extends the purity isomorphism (cf. [62,15])

Gysn
ψ :μ⊗n−c

pr [−2c] �−→ Rψ!μ⊗n
pr in Db(Uét,Z/prZ).

Moreover, Gysn
i induces an isomorphism

τ�n+c(Gysn
i ) :Tr(n− c)Z [−2c] �−→ τ�n+cRi!Tr(n)X .

This result extends Theorem 4.4.7 to horizontal situations. Before starting the proof of these
theorems, we state a consequence of Theorem 6.1.1. For a point x ∈ Xn and a closed subscheme
S ⊂ X containing x there is a natural map

H2n
x

(
X,Tr(n)X

)
−→H2n

S

(
X,Tr(n)X

)
by Lemma 5.1.1. By Theorem 6.1.1 and [29], Theorem 1.1, we obtain

COROLLARY 6.1.4 (Reciprocity law). – Let y be a point with y ∈Xn−1, and put S := {y} ⊂
X . Then for any α ∈H1(y,Z/prZ(1)y), we have∑

x∈Xn∩S

Gysn
ix

(
∂val

y,x(α)
)

= 0 in H2n
S

(
X,Tr(n)X

)
.

Consequently, the sum of Gysin maps∑
x∈Xn

Gysn
ix

:
⊕

x∈Xn

Z/prZ −→H2n
(
X,Tr(n)X

)
factors through the Chow group of algebraic cycles modulo rational equivalence:

clnX,r :CHn(X)/pr −→ H2n
(
X,Tr(n)X

)
.
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Remark 6.1.5. – (1) The case ch(y) = p of Theorem 6.1.1 follows from the definition of
Gysin maps (cf. 2.2.1, 4.4.5) and similar arguments as for [55], 2.3.1 (see also (1.9.1)). On the
other hand, the case ch(y) = 0 of Theorem 6.1.1 is closely related to Theorem 6.1.3.

(2) Corollary 6.1.4 is not a new result if X is smooth over B. In fact, by an argument of
Geisser [17], §6, Proof of 1.3, one can construct a canonical map from higher Chow groups
of X to H∗(X,Tr(n)X). A key ingredient in his argument is the localization exact sequences
for higher Chow groups due to Levine [41]. In this paper, we give a more elementary proof of
Theorem 6.1.1 without using Levine’s localization sequences.

In what follows, we refer the case ch(y) = 0 of Theorem 6.1.1 as Case (M). We will proceed to
the proof of Theorems 6.1.1 and 6.1.3 in three steps. In §6.2, we will prove Case (M) of Theorem
6.1.1 assuming that X satisfies 4.1.2 and that S := {y} is normal at x. In §6.3, we will prove
Theorem 6.1.3 assuming that X satisfies 4.1.2 and then reduce Case (M) of Theorem 6.1.1 to the
case where X is smooth over B (and S is arbitrary). The last case will be proved in §6.4, which
will complete the proof of Theorems 6.1.1 and 6.1.3.

6.2. Proof of the theorems, Step 1

In this step, we prove Case (M) of Theorem 6.1.1 assuming that X and S(= {y}) are regular
at x. Replacing X by Spec(Oh

X,x) and replacing y by the point on Spec(Oh
X,x) lying above y,

we suppose that X is regular henselian local with closed point x. Note that it suffices to show
the desired compatibility in this situation, and that OS,x is a henselian discrete valuation ring. By
the Bloch–Kato theorem [9], (5.12), Hn−b+1(y,μ⊗n−b+1

pr ) is generated by symbols of the forms

(i) {β1, . . . , βn−b+1} and (ii) {πx, β1, . . . , βn−b},

where each βλ belongs to O×
S,x, and πx denotes a prime element of OS,x. We show that the

diagram (6.1.2) commutes for these two kinds of symbols. Recall that Gysn
iy

is given by the cup-

product with the cycle class clV (y) ∈ H2b−2
y (V,μ⊗b−1

pr ), and that this cycle class extends to the

cycle class clX(S) ∈H2b−2
S (X,Tr(b−1)X) (cf. Definition 5.1.2). We first show that the diagram

(6.1.2) commutes for symbols of the form (i). Because a symbol ω of this form lifts to ω̃ ∈
Hn−b+1(X,Tr(n − b + 1)X), its image Gysn

iy
(ω) lifts to clX(S) ∪ ω̃ ∈ Hn+b−1

S (X,Tr(n)X).
Hence we have δloc

y,x ◦ Gysn
iy

(ω) = 0, which implies the assertion. We next consider symbols of
the form (ii). The map δloc

y,x(Tr(n)X) ◦Gysn
iy

sends a symbol {πx, β1, . . . , βn−b} to

δ
(
clV (y)∪ {πx}

)
∪ ω ∈Hn+b

x

(
X,Tr(n)X

)
.(6.2.1)

Here ω denotes a lift of {β1, . . . , βn−b} to Hn−b(X,Tr(n− b)X), and δ denotes the connecting
map δloc

y,x(Tr(b)X). Since clV (y) extends to clX(S), we have δ(clV (y) ∪ {πx}) = −clX(x) by
Proposition 5.1.3 (see also the proof of Sublemma 5.2.2). Hence we have

(6.2.1) = −clX(x)∪ ω = −Gysn
ix

(ω) = −Gysn
ix
◦ ∂val

y,x

(
{πx, β1, . . . , βn−b}

)
,

where ω denotes the residue class of ω in H0(x,WrΩn−b
x,log) and the second equality follows from

Proposition 4.4.10 for ix. Thus we obtain the desired commutativity. This completes Step 1.

6.3. Proof of the theorems, Step 2

In this step we prove Theorem 6.1.3 assuming that X satisfies 4.1.2 (see also Remark 6.3.4
below). Let i :Z ↪→X and ψ :U ↪→ V be as in Theorem 6.1.3. Let T be the divisor on Z defined
4e SÉRIE – TOME 40 – 2007 – N◦ 4



p-ADIC ÉTALE TATE TWISTS AND ARITHMETIC DUALITY 549
by the radical of (p) ⊂OZ . We obtain a commutative diagram of schemes

U
β

ψ �

Z

i

T
α

V
j

X Y.
ι

Put φ := i ◦α : T ↪→X , L := Tr(n− c)Z [−2c] and M := Ri!Tr(n)X . By Theorem 4.4.7 for φ,
there is an isomorphism

νn−c−1
T,r [−n− c− 1]� τ�n+c+1Rφ!Tr(n)X = τ�n+c+1Rα!M.(6.3.1)

Consider a diagram with distinguished rows in D+(Zét,Z/prZ)

L
t[−2c]

(τ�n−cRβ∗μ
⊗n−c
pr )[−2c]

−σ[−2c]

Rβ∗(Gysn
ψ)

α∗ν
n−c−1
T,r [−n− c]

g[−2c]

Rα∗(Gysn
φ)[1]

L[1]

M
β∗

Rβ∗β
∗M

δloc
U,T (M)

Rα∗Rα!M[1]
α∗

M[1].

(6.3.2)

Here the upper row is the distinguished triangle defining Tr(n − c)Z shifted by degree −2c,
and we wrote σ for σZ,r(n − c). The lower row is the localization distinguished triangle for M

(cf. (1.9.2)). We show that the square of (6.3.2) commutes. Indeed, by (6.3.1) and Lemma 2.1.1, it
is enough to show that the induced diagram of the (n+c)-th cohomology sheaves is commutative
at the generic points of T , which was shown in Step 1. Hence the square commutes, and there is
a unique morphism Gysn

i :L → M that extends Gysn
ψ by Lemma 2.1.2 (1), because

HomD+(Zét,Z/prZ)(L,Rα∗Rα!M) = 0

by (6.3.1) and Lemma 2.1.1.
We next show that τ�n+c(Gysn

i ) is an isomorphism. By the commutativity of the square of
(6.3.2), the morphism δloc

U,T (M) is surjective on the (n + c)-th cohomology sheaves, and there is
a distinguished triangle

τ�n+cM
β∗
−−→ τ�n+cRβ∗β

∗M
δloc

U,T (M)−−−−−−→ (τ�n+c+1Rα∗Rα!M)[1] (α∗)′−−−→ (τ�n+cM)[1],

where the arrow (α∗)′ is obtained by decomposing α∗ :Rα∗Rα!M)[1] → M[1]. Replacing
the lower row of (6.3.2) with this distinguished triangle, we see that τ�n+c(Gysn

i ) is an
isomorphism. This completes Step 2.

COROLLARY 6.3.3. – Let i :Z ↪→ X be as in Theorem 6.1.3, and assume further that X
satisfies 4.1.2. Let h :Z ′ ↪→ Z be a closed immersion of pure codimension with ch(Z ′) = p.
Put g := i ◦ h and c′ := codimX(Z ′). Then we have Gysn

g = Rh!(Gysn
i ) ◦ (Gysn−c

h [−2c]) as
morphisms

νn−c′

Z′ [−n− c′]−→ Rg!Tr(n)X in Db(Z ′
ét,Z/prZ).

Proof. – Because τ�n+c′−1Rg!Tr(n)X = 0 by Theorem 4.4.7, a morphism νn−c′

Z′ [−n− c′]→
Rg!Tr(n)X is determined by a map on the (n + c′)-th cohomology sheaves (cf. Lemma 2.1.1).
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Because Rn+c′g!Tr(n)X is isomorphic to the sheaf νn−c′

Z′ by Theorem 4.4.7, we are reduced
to the case that X and Z are local with closed point Z ′, and moreover, to the case that Z ′ is a
generic point of Z ⊗Z Fp (that is, c′ = c + 1). This last case follows from the commutativity of
(6.1.2) proved in Step 1. �

Remark 6.3.4. – (1) By the results in this step and the bijectivity of Gysn
ix

in (6.1.2)

(cf. Theorem 4.4.7), Case (M) of Theorem 6.1.1 (with X and {y} arbitrary) is reduced to the
case where X is smooth over B. We will prove this case in the next step.

(2) Once we finish the proof of Theorem 6.1.1, we will obtain Theorem 6.1.3 by repeating the
same arguments as for Step 2.

6.4. Proof of the theorems, Step 3

Assume that X is smooth over B. In this step, we prove Case (M) of Theorem 6.1.1 for this
X , which will complete the proof of Theorems 6.1.1 and 6.1.3 (cf. Remark 6.3.4). We first show
Lemma 6.4.1 below. Let m be a positive integer, and put P := Pm

X . Consider cartesian squares of
schemes

PV
β

ψ �

P

f �

PY
α

g

V
j

X Y.
ι

For this diagram, we prove

LEMMA 6.4.1. – (1) There is a unique morphism

trn
f :Rf∗Tr(n + m)P[2m]−→ Tr(n)X in Db(Xét,Z/prZ)

that extends the trace morphism for ψ ([66], XVIII.2.9, XII.5.3)

trn
ψ :Rψ∗μ

⊗n+m
pr [2m]−→ μ⊗n

pr in Db(Vét,Z/prZ).

(2) trn
f fits into a commutative diagram

Rι∗Rg∗WrΩn+m−1
PY ,log [m− n− 1]

(�)

Rι∗(trn−1
g )[−n−1]

Rf∗Tr(n + m)P[2m]

trn
f

ι∗WrΩn−1
Y,log[−n− 1]

Gysn
ι

Tr(n)X .

Here trn−1
g denotes (−1)m-times of the Gysin morphism of Gros ([18], II.1.2.7). The arrow (�)

is induced by the isomorphism Rι∗Rg∗ = Rf∗Rα∗ and the Gysin morphism Gysm+n
α .
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Proof. – Because Rf∗Tr(n + m)P[2m] is concentrated in degrees � n ([66], XII.5.2, X.5.2),
it is enough to show that the square

Rf∗(τ�n+mRβ∗μ
⊗n+m
pr )[2m]

Rf∗(σP,r(n+m))[2m]
Rf∗(α∗WrΩn+m−1

PY ,log )[m− n]

Rι∗(trg)[−n]

τ�nRj∗μ
⊗n
pr

σX,r(n)
ι∗WrΩn−1

Y,log[−n]

is commutative in Db(Xét,Z/prZ) (cf. Lemma 2.1.2 (1)). Here the left vertical arrow is defined
as the composite of the natural morphism

Rf∗(τ�n+mRβ∗μ
⊗n+m
pr )[2m]−→ τ�n

(
Rf∗Rβ∗μ

⊗n+m
pr [2m]

)
= τ�n

(
Rj∗Rψ∗μ

⊗n+m
pr [2m]

)
and τ�nRj∗(trψ). The vertices of this diagram are concentrated in degrees � n. Hence we are
reduced to the commutativity of the diagram of the n-th cohomology sheaves, which one can
check by taking a section s :X ↪→ PX of f and using the compatibility proved in Step 1 (see also
Remark 2.2.6 (2)). More precisely, using (4.4.8) one can construct a Gysin map

Gyss :Rnj∗μ
⊗n
pr −→Rmf∗(Rm+nβ∗μ

⊗n+m
pr ) =Hn

(
Rf∗(τ�n+mRβ∗μ

⊗n+m
pr )[2m]

)
,

induced by that for sV :V ↪→ PV . One can further check that it is surjective by Theorem 3.3.7
with r = 1 and [18], I.2.1.5, I.2.2.3. The details are straightforward and left to the reader. �

We turn to the proof of Theorem 6.1.1. Replacing X by Spec(OX,x), we assume that X

is local with closed point x. Suppose that S(= {y}) is not normal, and let n :T → S be the
normalization of S. Since n is finite, the composite T → S ↪→ X is projective, i.e., factors as

T
i

↪→Pm
X =:P f−→ X with i closed, for some m � 1. Let ψ :Pm

V → V be the morphism induced
by f . Let Tx be the fiber n−1(x) ⊂ T with reduced structure, and let h :Tx → x be the natural
map. Consider the diagram in Fig. 1 below, where we wrote Gys for Gysin maps for simplicity. In
this diagram, the outer large square commutes by the definition of δval

y,x and [29], Lemma A.1. The
square (1) commutes by Step 1. The square (2) commutes by [67], Cycle, 2.3.8 (i). The square (3)
commutes by the property j∗(trn

f ) = trn
ψ of trn

f . The square (4) commutes by Lemma 6.4.1 (2)

���� ����

����
����

�

	

	

� �

	

	

Gys Gys

GysGys

trn−b
h

−∂val
y,Tx

−∂val
y,x

trn
ψ

trn
f

δloc
y,Tx

(Tr(n + m)
P
)

δloc
y,x(Tr(n)X )

(1)

(2) (3) (4)

(5)

H0(Tx,WrΩn−b
Tx,log)Hn−b+1(y,μ⊗n−b+1

pr )

Hn−b+1(y,μ⊗n−b+1
pr ) H0(x,WrΩn−b

x,log)

Hn+2m+b
Tx

(P,Tr(n + m)P)Hn+2m+b−1
y (PV , μ⊗m+n

pr )

Hn+b−1
y (V,μ⊗n

pr ) Hn+b
x (X,Tr(n)X)

Fig. 1. Diagram for Step 3.
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and Remark 2.2.6 (1). Hence the square (5) commutes, which is the commutativity of (6.1.2).
This completes the proof of Theorems 6.1.1 and 6.1.3.

7. Covariant functoriality and relative duality

In this section, we prove the covariant functoriality T7 in Theorem 1.1.2 and prove a relative
duality result (see Theorem 7.3.1 below). Throughout this section, we work with the setting in
§4.1. Let X and Z be integral schemes which are flat of finite type over B and satisfy 4.1.1,
and let f :Z → X be a separated morphism of finite type. Put c := dim(X) − dim(Z), and let
ψ :Z[1/p]→X[1/p] = V be the morphism induced by f . By the absolute purity ([62,15]), there
is a trace morphism

trn
ψ :Rψ!μ

⊗n−c
pr [−2c]−→ μ⊗n

pr in Db(Vét,Z/prZ),

which extends the trace morphism defined by Deligne [66], XVIII.2.9 and satisfies the transitivity
property.

7.1. Covariant functoriality

The first result of this section is the following:

THEOREM 7.1.1 (Covariant functoriality). – For f :Z → X as before, there is a unique
morphism

trn
f :Rf!Tr(n− c)Z [−2c]−→ Tr(n)X in Db(Xét,Z/prZ)

that extends trn
ψ . Consequently, these trace morphisms satisfy the transitivity property.

This theorem will be proved in the next subsection. In this subsection, we prove the following:

LEMMA 7.1.2. – Let k be a perfect field of characteristic p > 0, and let Y be a normal
crossing variety over Spec(k). Let g :T → Y be a separated morphism of finite type, and
assume that T has dimension � a. Put c := dim(Y ) − a. Assume that L ∈ Db(Tét,Z/prZ)
and M ∈ D−(Yét,Z/prZ) are concentrated in degrees � � and � m, respectively. Let F be a
locally free (OY )p-module of finite rank. Then for an integer q < c− �−m, we have

HomD−(Yét,Z/prZ)

(
(Rg!L)⊗L M, νn

Y,r[q]
)
= 0 and

HomD−(Yét,Z/prZ)

(
(Rg!L)⊗L M,F [q]

)
= 0.

Proof. – We prove the assertion only for νn
Y,r . One can check the assertion for F by repeating

the same arguments as for νn
Y,r , using Lemma A.2.8 below.

We first prove the case that L has constructible cohomology sheaves. If there are closed
subschemes φi :Ti ↪→ T (i = 1,2) such that T = T1 ∪ T2 and dim(T1 ∩ T2) � a− 1, then there
is a distinguished triangle of the form

Rφ12∗φ
∗
12L[−1]−→ L −→ Rφ1∗φ

∗
1L⊕Rφ2∗φ

∗
2L −→ Rφ12∗φ

∗
12L

in Db(Tét,Z/prZ), where φ12 denotes the closed immersion T1 ∩ T2 ↪→ T . Hence by induction
on a � 0, we may assume that T is irreducible. Let b be the dimension of g(T ) ⊂ Y . Noting that
Rg!L has constructible cohomology sheaves by [66], XIV.1.1, we prove
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SUBLEMMA 7.1.3. – For i ∈ Z, the support of Rig!L has dimension � min{b, a + � − i},
i.e., there is a closed subscheme φ :W ↪→ Y of dimension � min{b, a+ �− i} for which we have
Rig!L = φ∗φ

∗Rig!L.

Proof of Sublemma 7.1.3. – Without loss of generality, we may assume that g is proper (hence
Rg! = Rg∗). Since Rig∗L is zero outside of g(T ), the support of Rig∗L has dimension � b. We
show that the support of Rig∗L is at most (a + �− i)-dimensional. Let y be a point on g(T ). Put
Ty := T ×Y y = g−1(y). Since dim{y}+dimTy equals the dimension of the closure of Ty in T

([66], XIV.2.3 (iii)), we have dim{y}+ dimTy � a. Now suppose that (Rig∗L)y 	= 0. Because
(Rqg∗L)y is zero for q > dimTy + � (loc. cit., XII.5.2, X.5.2), we have

i � dimTy + � � a− dim{y}+ �,

that is, dim{y} � a + �− i. Thus we obtain the sublemma. �
We turn to the proof of the lemma and compute a spectral sequence

Eu,v
2 = Extu

Y,Z/prZ

(
(R−vg!L)⊗L M, νn

Y,r

)
=⇒ Extu+v

Y,Z/prZ

(
(Rg!L)⊗L M, νn

Y,r

)
.

For (u, v) with u + v < c− �−m and b � a + � + v, we have u + m < dim(Y )− b and

Eu,v
2 = Extu

Y,Z/prZ

(
(φ∗φ

∗R−vg!L)⊗L M, νn
Y,r

)
= Extu

Y,Z/prZ

(
Rφ∗φ

∗(R−vg!L⊗L M), νn
Y,r

)
= Extu

W,Z/prZ

(
φ∗(R−vg!L⊗L M),Rφ!νn

Y,r

)
= 0

by Theorem 2.2.2 and Lemma 2.1.1. Here W denotes the closure of g(T ) and φ denotes the
closed immersion W ↪→ Y . For (u, v) with u + v < c − � − m and b > a + � + v, we have
u + m < dim(Y ) − (a + � + v). There is a closed subscheme φ :W ↪→ Y of codimension
� dim(Y )− (a + � + v) such that R−vg!L = φ∗φ

∗R−vg!L, by the sublemma. Hence

Eu,v
2 = Extu

Y,Z/prZ

(
φ∗(R−vg!L⊗L M),Rφ!νn

Y,r

)
= 0

again by Theorem 2.2.2 and Lemma 2.1.1. Thus we obtain the assertion.
We next prove the case that L is general. Take a bounded complex of Z/prZ-sheaves L•

which is concentrated in degrees � � and represents L. Take a filtered inductive system {L•
λ}λ∈Λ

consisting of bounded complexes of constructible Z/prZ-sheaves which are concentrated in
degrees � � and whose limit is L•. Then for q < c− �−m, we have

Extq
Y,Z/prZ

(
(Rg!L)⊗L M, νn

Y,r

)
= Extq

T,Z/prZ

(
L,Rg!RHom(M, νn

Y,r)
)

= lim←−
λ∈Λ

Extq
T,Z/prZ

(
L•

λ,Rg!RHom(M, νn
Y,r)

)
= lim←−

λ∈Λ

Extq
Y,Z/prZ

(
(Rg!L

•
λ)⊗L M, νn

Y,r

)
= 0

by the previous case. Here Rg! denotes the twisted inverse image functor of Deligne [66], XVIII,
and we have used the adjointness between Rg! and Rg!. The second equality follows from the
vanishing of the groups Extq−1

Y,Z/prZ
((Rg!L

•
λ)⊗L M, νn

Y,r) for all λ ∈Λ and a standard argument
which is similar as for (8.4.2) below. This completes the proof of the lemma. �

As a special case of Lemma 7.1.2, we obtain
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



554 K. SATO
COROLLARY 7.1.4 (Semi-purity). – Under the same setting as in Lemma 7.1.2, we have

τ�c−1Rg!νn
Y,r = τ�c−1Rg!F = 0.

Proof. – For T ′ étale separated of finite type over T , G ∈ {νn
Y,r,F} and q � c− 1, we have

HomD+(T ′
ét,Z/prZ)

(
Z/prZ,Rh!G[q]

)
= HomDb(Yét,Z/prZ)

(
Rh!Z/prZ,G[q]

)
= 0

by Lemma 7.1.2, where h denotes the composite map T ′ → T → Y . Hence τ�c−1Rg!G = 0. �
7.2. Proof of Theorem 7.1.1

Let j :V ↪→ X and ι :Y ↪→ X be as in §4.1. Put L := Tr(n − c)Z [−2c], for simplicity. We
first show

HomDb(Xét,Z/prZ)

(
Rf!L,Rι∗Rι!Tr(n)X

)
= 0.(7.2.1)

Indeed, for g :T := Z ×X Y → Y induced by f , we have

HomDb(Xét,Z/prZ)

(
Rf!L,Rι∗Rι!Tr(n)X

)
= HomDb(Yét,Z/prZ)

(
Rg!α

∗L,Rι!Tr(n)X

)
by the adjointness between ι∗ and Rι∗ and the proper base-change theorem: ι∗Rf! = Rg!α

∗,
where α denotes the closed immersion T ↪→ Z . The latter group is zero by Lemma 7.1.2 and a
similar argument as for the vanishing (4.4.8). By (7.2.1) and Lemma 2.1.2 (1), it remains to show
that the composite morphism

Rf!L
Rj∗(trn

ψ)−−−−−−→Rj∗μ
⊗n
pr

δloc
V,Y (Tr(n)X)−−−−−−−−−→ Rι∗Rι!Tr(n)X [1](7.2.2)

is zero in Db(Xét,Z/prZ). We show the following:

LEMMA 7.2.3. – (1) Let {Zλ}λ∈Λ be an open covering of Z with Λ finite, and let
fλ :Zλ →X be the composite map Zλ ↪→ Z → X for each λ ∈Λ. Then the adjunction map

HomDb(Xét,Z/prZ)

(
Rf!L,Rι∗Rι!Tr(n)X [1]

)
−→

⊕
λ∈Λ

HomDb(Xét,Z/prZ)

(
Rfλ!(L|Zλ

),Rι∗Rι!Tr(n)X [1]
)

is injective.
(2) Assume that f is flat. Let Y ′ ⊂ Y be a closed subscheme of codimension � 1. Put

U := X \ Y ′. Then the following natural restriction map is injective:

HomDb(Xét,Z/prZ)

(
Rf!L,Rι∗Rι!Tr(n)X [1]

)
−→ HomDb(Uét,Z/prZ)

(
(Rf!L)|U ,

(
Rι∗Rι!Tr(n)X [1]

)∣∣
U

)
.

Proof of Lemma 7.2.3. – (1) It suffices to consider the case that Λ = {1,2}. Put Z12 := Z1∩Z2.
Let f12 be the composite map Z12 ↪→ Z → X . There is a distinguished triangle of the form

Rf12!(L|Z12) −→ Rf1!(L|Z1)⊕Rf2!(L|Z2)−→ Rf!L −→ Rf12!(L|Z12)[1].

Hence the assertion follows from the vanishing (7.2.1) for f12 :Z12 → X .
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(2) Let φ be the closed immersion Y ′ ↪→ X . The kernel of the map in question is a quotient
of HomDb(Xét,Z/prZ)(Rf!L,Rφ∗Rφ!Tr(n)X [1]). One can check that it is zero by a similar
argument as for (7.2.1), noting that Y ′ ×X Z has codimension � 1 in T by the flatness of f . �

We show that the composite morphism (7.2.2) is zero. We first assume that Z = Pm
X (m � 1)

and that f is the natural projection. By Lemma 7.2.3 (2), we are reduced to the case that Y
is smooth. In this case, (7.2.2) is zero by Lemma 6.4.1. We next prove the general case. By

Lemma 7.2.3 (1), we may assume that f is affine. Take a decomposition Z
i

↪→Pm
X =:P h−→ X of

f for some integer m � 0, where i is a locally closed immersion. We have morphisms

Rf!L
Rh∗(Gysm+n

i
)[2m]−−−−−−−−−−−−→ Rh∗Tr(m + n)P[2m]

trn
h−−→ Tr(n)X ,

where trn
h is obtained from the vanishing of (7.2.2) for h. See Theorem 6.1.3 for Gysm+n

i . Since
this composite morphism extends trn

ψ , we see that (7.2.2) is zero. This completes the proof of
Theorem 7.1.1. �

The following corollary is a horizontal variant of Proposition 4.4.10:

COROLLARY 7.2.4 (Projection formula). – For f :Z → X as before, the diagram

Rf!Tr(m− c)Z [−2c]⊗L Tr(n)X

trm
f ⊗Lid

id⊗Lf∗

Tr(m)X ⊗L Tr(n)X
(4.2.7)

Tr(m + n)X

Rf!Tr(m− c)Z [−2c]⊗L Rf∗Tr(n)Z
(4.2.7)

Rf!Tr(m + n− c)Z [−2c]
trm+n

f

Tr(m + n)X

commutes in D−(Xét,Z/prZ). See Proposition 4.2.8 for f∗ :Tr(n)X → Rf∗Tr(n)Z .

Proof. – Because the diagram in question commutes on X[1/p], the assertion follows from
Lemma 2.1.2 (1) and a vanishing

HomD−(Xét,Z/prZ)

(
Rf!Tr(m− c)Z [−2c]⊗L Tr(n)X ,Rι∗Rι!Tr(m + n)X

)
= 0,

which one can check by Lemma 7.1.2 and a similar argument as for (7.2.1). �
7.3. Relative duality

Let f :Z → X be as before. Let j :V ↪→ X and ι :Y ↪→ X be as in §4.1. Let T be the divisor
on Z defined by the radical of (p) ⊂OZ . There is a commutative diagram of schemes

Z[1/p]
β

�

Z

f

T
α

g

V
j

X Y.
ι

Put d := dim(X), b := dim(Z) and c := d − b. We prove the following result, which was
included in the earlier version of [29]:

THEOREM 7.3.1 (Relative duality). – (1) trd
f induces an isomorphism

trf :Tr(b)Z [−2c] �−→ Rf !Tr(d)X in Db(Zét,Z/prZ).
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(2) There is a commutative diagram in Db(Xét,Z/prZ)

Rι∗Rg!ν
b−1
T,r [b− 1]

(�)

Rι∗(trg)

Rf!Tr(b)Z [2b]

trd
f [2d]

ι∗ν
d−1
Y,r [d− 1]Gysd

ι [2d] Tr(d)X [2d],

where trg denotes the trace morphism in Remark 2.2.6 (3), and the arrow (�) is induced by the
isomorphism Rι∗Rg! = Rf!Rα∗ and the Gysin morphism Gysb

α.

To prove this theorem, we first note a standard fact (cf. [29], Lemma 3.8).

LEMMA 7.3.2. – For a torsion sheaf F on Vét and an integer q > d, we have Rqj∗F = 0.

As an immediate consequence of Lemma 7.3.2 and (4.4.3), we obtain

LEMMA 7.3.3. – The natural morphism τ�d+1Rι!Tr(d)X → Rι!Tr(d)X is an isomorphism
in Db(Yét,Z/prZ). Consequently, Gysd

ι : νd−1
Y,r [−d− 1]→ Rι!Tr(d)X is an isomorphism.

Proof of Theorem 7.3.1. – We first show (2). By Lemma 7.1.2 and a similar argument as for
the vanishing of (7.2.2), one can reduce the assertion to Lemma 6.4.1 (2) and Corollary 6.3.3
(see also Remark 2.2.6 (3)). The details are straightforward and left to the reader. We next
show (1). Let trf :Tr(b)Z [−2c]→Rf !Tr(d)X be the adjoint morphism of trd

f . Because β∗(trf )
is an isomorphism by the absolute purity ([62,15]), we have only to show that Rα!(trf ) is an
isomorphism. By (2), there is a commutative diagram in D+(Tét,Z/prZ)

νb−1
T,r [b− 1]

Gysb
α[2b]

trg

Rα!Tr(b)Z [2b]

Rα!(trf )[2d]

Rg!νd−1
Y,r [d− 1]

Rg!(Gysd
ι )[2d]

Rα!Rf !Tr(d)X [2d].

The horizontal arrows are isomorphisms by Lemma 7.3.3 for Z and X , respectively. The left
vertical arrow, defined as the adjoint morphism of trg , is an isomorphism by [29], Theorem 2.8.
Consequently, Rα!(trf ) is an isomorphism. This completes the proof of Theorem 7.3.1. �

Remark 7.3.4. – By Theorem 7.3.1, Tr(d)X [2d] is canonically isomorphic to the object
DX,pr ∈ Db(Xét,Z/prZ) considered in [29], Theorem 4.4.

8. Explicit formula for p-adic vanishing cycles

In this section we construct a canonical pairing on the sheaves of p-adic vanishing cycles in
the derived category, and prove an explicit formula for that pairing, which will be used in §9.

8.1. Setting

The setting is the same as in §3.2. Note the condition 3.2.1 assumed there. We further assume
that K contains a primitive p-th root of unity and that k is finite. We put

νn
Y := νn

Y,1, μ′ := ι∗j∗μp and μ := μp(K)(8.1.1)
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for simplicity. Note that μ′ is the constant étale sheaf on Y associated with the abstract group
μ(� Z/pZ), because the sheaf μp on XK is constant and the sheaf j∗μp on X is also constant
by the normality of X (cf. [63], 1.5.1). Now let N be the relative dimension dim(X/OK). Let n
be a positive integer with 1 � n � N + 1. Put n′ := N + 2− n, Mq := Mq

1 = ι∗Rqj∗μ
⊗q
p , and

let U• be the filtration on Mq defined in Definition 3.3.2. The aim of this section is to construct
a morphism

Θn :U1Mn ⊗U1Mn′
[−N − 2]−→ μ′ ⊗ νN

Y [−N − 1] in Db(Yét,Z/pZ)

and to prove an explicit formula for this morphism (cf. Theorem 8.3.8 below).

8.2. Construction of Θn

Because μ′ is (non-canonically) isomorphic to the constant sheaf Z/pZ, we will write μ′ ⊗K
(K ∈ D−(Yét,Z/pZ)) for the derived tensor product μ′ ⊗L K in D−(Yét,Z/pZ). For q with
1 � q � N + 1, fix a distinguished triangle

(Mq/U1Mq)[−q − 1] g′
−→ A(q) t′−→ τ�qι

∗Rj∗μ
⊗q
p −→ (Mq/U1Mq)[−q],

where the last arrow is defined as the composite τ�qι
∗Rj∗μ

⊗q
p →Mq[−q]→ (Mq/U1Mq)[−q].

Clearly, A(q) is concentrated in [0, q], and the triple (A(q), t′, g′) is unique up to a unique
isomorphism (and g′ is determined by (A(q), t′)) by Lemma 2.1.2 (3). We construct Θn by
decomposing the morphism

A(n)⊗L A(n′)−→ (τ�nι∗Rj∗μ
⊗n
p )⊗L (τ�n′ι∗Rj∗μ

⊗n′

p )

−→ ι∗Rj∗μ
⊗N+2
p

(8.2.1)

induced by the natural isomorphism μ⊗n
p ⊗ μ⊗n′

p � μ⊗N+2
p in characteristic zero. By Lemma

7.3.2 and the assumption that ζp ∈K , there is a morphism

ι∗Rj∗μ
⊗N+2
p � μ′ ⊗ (τ�N+1ι

∗Rj∗μ
⊗N+1
p ) id⊗(4.2.1)−−−−−−−→ μ′ ⊗ νN

Y [−N − 1],(8.2.2)

which, together with (8.2.1), induces a morphism

A(n)⊗L A(n′)−→ μ′ ⊗ νN
Y [−N − 1].(8.2.3)

Noting that A(q) is concentrated in [0, q] with Hq(A(q)) � U1Mq , we show the following:

LEMMA 8.2.4. – There is a unique morphism

A(n)⊗L
(
U1Mn′

[−n′]
)
−→ μ′ ⊗ νN

Y [−N − 1] in D−(Yét,Z/pZ)(8.2.5)

that the morphism (8.2.3) factors through.

Proof. – There is a distinguished triangle of the form

A(n)⊗L
(
τ�n′−1A(n′)

)
→A(n)⊗L A(n′)→ A(n)⊗L

(
U1Mn′

[−n′]
)

→A(n)⊗L
(
τ�n′−1A(n′)

)
[1].
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By Lemma 2.1.2 (2), it suffices to show that (i) the morphism

A(n)⊗L
(
τ�n′−1A(n′)

)
−→ μ′ ⊗ νN

Y [−N − 1]

induced by (8.2.3) is zero and that (ii) we have

HomD−(Yét,Z/pZ)

(
A(n)⊗L

(
τ�n′−1A(n′)

)
[1], μ′ ⊗ νN

Y [−N − 1]
)

= 0.

The claim (ii) follows from Lemma 2.1.1. As for the claim (i), because A(n)⊗L (τ�n′−1A(n′))
is concentrated in degrees � N +1, the problem is reduced to the triviality of the induced map on
the (N +1)-th cohomology sheaves (cf. Lemma 2.1.1). One can check this by a similar argument
as for Proposition 4.2.6. �

Applying a similar argument as for this lemma to the morphism (8.2.5), we obtain a morphism(
U1Mn[−n]

)
⊗L

(
U1Mn′

[−n′]
)
−→ μ′ ⊗ νN

Y [−N − 1].(8.2.6)

Finally because Z/pZ-sheaves are flat over Z/pZ, there is a natural isomorphism(
U1Mn[−n]

)
⊗L

(
U1Mn′

[−n′]
)
� U1Mn ⊗U1Mn′

[−N − 2] in D−(Yét,Z/pZ)

induced by the identity map on the (n + n′)-th cohomology sheaves. We thus define Θn by
composing the inverse of this isomorphism and the morphism (8.2.6).

8.3. Explicit formula for Θn

We formulate an explicit formula (see Theorem 8.3.8 below) to calculate the morphism Θn.
Let

χ :μ′ ⊗ (ωN
Y /BN

Y )−→ μ′ ⊗ νN
Y [1] in Db(Yét,Z/pZ)

be the connecting morphism associated with a short exact sequence ([25], (1.5.1))

0 −→ μ′ ⊗ νN
Y

id⊗incl−−−−−→ μ′ ⊗ ωN
Y

id⊗(1−C−1)−−−−−−−−→ μ′ ⊗ (ωN
Y /BN

Y )−→ 0.

Here BN
Y denotes the image of d :ωN−1

Y → ωN
Y , C−1 denotes the inverse Cartier operator defined

in loc. cit., (2.5) (cf. (9.3.2) below) and we have used the isomorphism ωN
Y,log � νN

Y in Remark
3.3.8 (4). We next construct a key map fq,n (cf. Definition 8.3.6 (2) below). Let e be the
absolute ramification index of K and put e′ := pe/(p − 1). Because K contains primitive p-th
roots of unity by assumption, e′ is an integer divided by p. Fix a prime element π ∈ OK . Put
s := Spec(k). Let LY (resp. Ls) be the log structure on Y (resp. on s) defined in §3.3. We use
the trivial log structure s× on s and a map on Yét analogous to (3.3.5)

d log :Lgp
Y −→ ω1

(Y,LY )/(s,s×).(8.3.1)

Remark 8.3.2. – (1) The composite of (8.3.1) with the canonical projection ω1
(Y,LY )/(s,s×) →

ω1
Y agrees with the map d log in (3.3.5).
(2) Let π be the residue class of π in LY under (3.3.4). Then we have d log(π) = 0 in ω1

Y , but
not in ω1

(Y,LY )/(s,s×). Indeed, by the definition of relative differential modules ([33,30]), there is
a short exact sequence on Yét

0 −→OY
a�→a·d log(π)−−−−−−−−−→ ω1

(Y,L )/(s,s×) −→ ω1
Y −→ 0.
Y
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The isomorphism (8.3.3) below follows from this fact.

Now let n and q satisfy 1 � n � N + 1 and 1 � q � e′ − 1. Put n′ := N + 2− n. Let Uq
XK

be
the étale subsheaf of ι∗j∗O×

XK
defined in Definition 3.3.2, and put

Symbq,n := Uq
XK

⊗ (ι∗j∗O×
XK

)⊗n−1 ⊗Ue′−q
XK

⊗ (ι∗j∗O×
XK

)⊗n′−1.

The sheaf UqMn ⊗Ue′−qMn′
is a quotient of Symbq,n (cf. Definition 3.3.2):

UqMn ⊗Ue′−qMn′
= Im(Symbq,n −→ U1Mn ⊗U1Mn′

).

We define the homomorphism of étale sheaves

F q,n : Symbq,n −→ ωN
Y /BN

Y

by sending a local section (1 + πqα1) ⊗ (
⊗n−1

i=1 βi) ⊗ (1 + πe′−qα2) ⊗ (
⊗N

i=n βi) with
α1, α2 ∈ ι∗OX and β1, . . . , βN ∈ ι∗j∗O×

XK
, to the following:

q · α1α2 ·
(

N∧
i=1

d logβi

)
+ g−1

(
α2 · dα1 ∧

(
N∧

i=1

d logβi

))
mod BN

Y ,

where for x ∈ ι∗OX (resp. x ∈ ι∗j∗O×
XK

), x denotes its residue class in OY (resp. in Lgp
Y under

(3.3.4)) and g denotes the following OY -linear isomorphism (cf. Remark 8.3.2 (2)):

g :ωN
Y

�−→ ωN+1
(Y,LY )/(s,s×), ω �→ d log(π)∧ ω.(8.3.3)

LEMMA 8.3.4. – Let n and q be as above. Then F q,n factors through UqMn ⊗Ue′−qMn′
.

Proof. – Let Ysing be the singular locus of Y , and let jY be the open immersion Y \Ysing ↪→ Y .
Replacing X by X \Ysing, we may assume that Y is smooth over s = Spec(k), because ωN

Y /BN
Y

is a locally free (OY )p-module and the canonical map ωN
Y /BN

Y → jY ∗j
∗
Y (ωN

Y /BN
Y ) is injective.

We show that F q,n factors through grq
UMn⊗gre′−q

U Mn′
, assuming that Y is smooth. For m � 1

and � with 1 � � � e′ − 1, let

ρ�,m :Ωm−2
Y ⊕Ωm−1

Y −→ gr�
UMm

be the Bloch–Kato map (cf. [9], (4.3)) defined as{
(α · d logβ1 ∧ · · · ∧ d logβm−2,0) �→ {1 + π�α̃, β̃1, . . . , β̃m−2, π} mod U �+1Mm,

(0, α · d logβ1 ∧ · · · ∧ d logβm−1) �→ {1 + π�α̃, β̃1, . . . , β̃m−1} mod U �+1Mm

for α ∈OY and each βi ∈O×
Y , where α̃ ∈OX (resp. each β̃i ∈O×

X ) denotes a lift of α (resp. βi).
There are short exact sequences

0 −→ Ωm−2
Y

θ	,m−−−→ Ωm−2
Y ⊕Ωm−1

Y
ρ	,m

−−−→ gr�
UMm −→ 0 (if p � �),

0 −→Zm−2
Y ⊕Zm−1

Y
incl.−−−→ Ωm−2

Y ⊕Ωm−1
Y

ρ	,m

−−−→ gr�
UMm −→ 0 (if p | �),

(8.3.5)
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where θ�,m is given by ω �→ ((−1)m · � · ω,dω) (cf. [9], Lemma (4.5)). Let

h�,m :U �
XK

⊗ (ι∗j∗O×
XK

)⊗m−1 −→Ωm−2
Y ⊕Ωm−1

Y

be the map that sends (1 + π�α)⊗ (
⊗m−1

i=1 βi) with α ∈ ι∗OX and βi ∈ ι∗O×
X ∪ {π} to

⎧⎨⎩
(0, α ·

∧
1�i�m−1 d logβi) (if βi ∈ ι∗O×

X for all i),
((−1)m−1−i′ · α ·

∧
1�i�m−1,i 
=i′ d logβi,0) (if βi = π for exactly one i =: i′),

(0,0) (otherwise).

Here for x ∈ ι∗OX (resp. x ∈ ι∗O×
X ), x denotes its residue class in OY (resp. in O×

Y ). Now there
is a diagram

Symbq,n hq,n⊗he′−q,n′

(Ωn−2
Y ⊕Ωn−1

Y )⊗ (Ωn′−2
Y ⊕Ωn′−1

Y )
ρq,n⊗ρe′−q,n′

ϕq,n

grq
UMn ⊗ gre′−q

U Mn′

ΩN
Y /BN

Y ,

where ϕq,n is defined as

(ω1, ω2)⊗ (ω3, ω4) �→
(
q · ω2 ∧ ω4 + (−1)n−1 · (dω1)∧ ω4 + (−1)n′−1 · ω2 ∧ dω3

)
mod BN

Y .

In this diagram, the composite of the top row agrees with the symbol map, and the composite
of hq,n ⊗ he′−q,n′

and ϕq,n agrees with F q,n (see also Remark 8.3.2 (2)). Hence to prove the
assertion, it suffices to show that the subsheaf

Ker(ρq,n ⊗ ρe′−q,n′
)⊂ (Ωn−2

Y ⊕Ωn−1
Y )⊗ (Ωn′−2

Y ⊕Ωn′−1
Y )

has trivial image under ϕq,n, which follows from (8.3.5) with (�,m) = (q,n), (e′ − q,n′) (note
that p|q ⇔ p|(e′ − q), because p|e′). Thus we obtain Lemma 8.3.4. �

DEFINITION 8.3.6. – (1) For ζ ∈ μ = μp(K) with ζ 	= 1, let v(ζ) ∈ k× be the residue class of
(1− ζ)/πe/(p−1) ∈ O×

K . We define u := ζ ⊗ v(ζ)−p ∈ μ⊗k, which is independent of the choice
of ζ 	= 1.

(2) Let k be the constant sheaf on Yét associated with k. We define the homomorphism

fq,n :UqMn ⊗Ue′−qMn′ −→ (μ′ ⊗ k)⊗k (ωN
Y /BN

Y ) � μ′ ⊗ (ωN
Y /BN

Y )

as u⊗k (−1)N+n F q,n. Here we regard u ∈ μ⊗k as a global section of μ′⊗k, and F q,n denotes
the map induced by F q,n (cf. Lemma 8.3.4).

Remark 8.3.7. – fq,n is independent of the choice of π by the definitions of F q,n and u.

Now we state the main result of this section.
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THEOREM 8.3.8 (Explicit formula). – Assume that X is proper over B. Then for (q,n) with
1 � q � e′ − 1 and 1 � n � N + 1, the following square commutes in Db(Yét,Z/pZ):

UqMn ⊗Ue′−qMn′ fq,n

canonical

μ′ ⊗ (ωN
Y /BN

Y )

χ

U1Mn ⊗U1Mn′ Θn[N+2]
μ′ ⊗ νN

Y [1].

We will prove Theorem 8.3.8 in §§8.4–8.7 below. We will first reduce the problem to an
induced diagram of cohomology groups of Y in §8.4, and then to an induced diagram of
cohomology groups of higher local fields in §8.5. In §8.6, we will prove a Galois descent of
invariant subgroups of Galois modules. We will finish the proof of Theorem 8.3.8 in §8.7 by
computing symbols, whose details are standard in higher local class field theory (cf. [31]) but
will be included for the convenience of the reader.

8.4. Reduction to cohomology groups

In this step, we reduce Theorem 8.3.8 to the equality (8.4.3) below. We first show the
following:

PROPOSITION 8.4.1. – Assume that Y is proper over Spec(k). Let F be a Z/pZ-sheaf on
Yét. Then for i ∈ Z, the Yoneda pairing

Hi(Y,F)×ExtN−i+1
Y,Z/pZ

(F , νN
Y )−→HN+1(Y, νN

Y ) trY−−→ Z/pZ

(see Theorem 2.2.4 for trY ) induces an isomorphism

ExtN−i+1
Y,Z/pZ

(F , νN
Y ) � Hom

(
Hi(Y,F),Z/pZ

)
.

Proof. – If F is constructible, then the isomorphism in question is an isomorphism of finite
groups by the duality theorem of Moser [49] (note that the complex ν̃n

r,Y defined in loc. cit.
is quasi-isomorphic to the sheaf νn

Y,r by [55], 2.2.5 (1)). We prove the general case. Write F
as a filtered inductive limit lim−→λ∈Λ

Fλ, where Λ is a filtered small category and each Fλ is a
constructible Z/pZ-sheaf. Replacing {Fλ}λ∈Λ with their images into F if necessary, we suppose
that the transition maps are injective. Since Hi(Y,F)� lim−→λ∈Λ

Hi(Y,Fλ) and

Hom
(
Hi(Y,F),Z/pZ

)
� lim←−

λ∈Λ

Hom
(
Hi(Y,Fλ),Z/pZ

)
,

it is enough to show that

ExtN−i+1
Y,Z/pZ

(F , νN
Y )� lim←−

λ∈Λ

ExtN−i+1
Y,Z/pZ

(Fλ, νN
Y ).(8.4.2)

Take an injective resolution νN
Y → I• in the category of Z/pZ-sheaves on Yét. The group

Extm
Y,Z/pZ(F , νN

Y ) (m ∈ Z) is the m-th cohomology group of the complex HomY (F , I•) �
lim←−λ∈Λ

HomY (Fλ, I•). Noting that Extm
Y,Z/pZ(Fλ, νN

Y ) is finite for any λ ∈ Λ and that the
transition maps Fλ →Fλ′ (λ < λ′) are injective, we are reduced to the following standard fact
on projective limits:
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Fact. Let Λ be a cofiltered small category, and let {C•
λ}λ∈Λ be a projective system of

complexes of abelian groups. For m ∈ Z and λ ∈ Λ, put Hm
λ := Hm(C•

λ), the m-th cohomology
group of C•

λ. Now fix m ∈ Z, and assume that {Cm−1
λ }λ∈Λ, {Cm

λ }λ∈Λ and {Hm
λ }λ∈Λ satisfy

the Mittag–Leffler condition. Then we have lim←−λ∈Λ
Hm+1

λ �Hm+1(lim←−λ∈Λ
C•

λ).
This completes the proof of Proposition 8.4.1. �
We turn to the proof of Theorem 8.3.8. Without loss of generality, we may assume that X is

connected. Then by Proposition 8.4.1 for i = N , we have

HomDb(Yét,Z/pZ)

(
UqMn ⊗Ue′−qMn′

, μ′ ⊗ νN
Y [1]

)
� Hom

(
HN (Y,UqMn ⊗Ue′−qMn′

), μ⊗HN+1(Y, νN
Y )

)
.

Hence we are reduced to the equality of induced maps on cohomology groups

HN (Y,Θq,n) = HN (Y,χ ◦ fq,n),(8.4.3)

where we wrote Θq,n for the composite morphism

Θq,n :UqMn ⊗Ue′−qMn′ canonical−−−−−−→ U1Mn ⊗U1Mn′ Θn[N+2]−−−−−−→ μ′ ⊗ νN
Y [1].

8.5. Reduction to higher local fields

In this step, (8.4.3) will be reduced to (8.5.3) below. We define a chain on Y to be a sequence
(y0, y1, y2, . . . , yN ) of points (=spectra of fields) over Y such that y0 is a closed point on Y and
such that for each m with 1 � m � N , ym is a closed point on the scheme[

Spec
(
· · ·

(
(Oh

Y,y0
)hy1

)
· · ·
)h
ym−1

]
\ {ym−1},

where the superscript h means the henselization at the point given on subscript. For a chain
(y0, y1, . . . , yN ) on Y , each κ(ym) (0 � m � N ) is an m-dimensional local field. We write
Ch(Y ) for the set of chains on Y . Now for K ∈ Db(Yét,Z/pZ) and d = (y0, y1, . . . , yN ) ∈
Ch(Y ), there is a composite map

H0(yN ,K)→ H1
yN−1

(Yd,N−1,K)→ · · · →HN−1
y1

(Yd,1,K)→HN
y0

(Yd,0,K)→ HN (Y,K).

Here Yd,m (0 � m � N ) denotes the henselian local scheme

Spec
(
· · ·

(
(Oh

Y,y0
)hy1

)
· · ·
)h
ym

and the map HN−m
ym

(Yd,m,K)→ HN−m+1
ym−1

(Yd,m−1,K) (1 � m � N ) is defined as the composite

HN−m
ym

(Yd,m,K) = HN−m
ym

(
Yd,m−1 \ {ym−1},K

)
−→ HN−m

(
Yd,m−1 \ {ym−1},K

)
δloc(K)−−−−−→HN−m+1

ym−1
(Yd,m−1,K).

Taking the direct sum with respect to all chains on Y , we obtain a map

δY (K) :
⊕

(y0,y1,...,yN )∈Ch(Y )

H0(yN ,K)−→ HN (Y,K).
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LEMMA 8.5.1. – The map δY (UqMn ⊗Ue′−qMn′
) is surjective.

Proof. – By Theorem 3.3.7, the sheaf UqMn ⊗Ue′−qMn′
is a finitely successive extension of

étale sheaves of the form F ⊗ G, where F and G are locally free (OY )p-modules of finite rank
and the tensor product is taken over Z/pZ. We are reduced to the following sublemma.

SUBLEMMA 8.5.2. – Let Z be a noetherian scheme which is of pure-dimension and
essentially of finite type over Spec(k). Put d := dim(Z). Let F and G be locally free (OZ)p-
modules of finite rank. Then:

(1) For any x ∈ Z and i > codimZ(x), Hi
x(Z,F ⊗G) is zero.

(2) We have Hi(Z,F ⊗ G) = 0 for i > d, and the natural map
⊕

x∈Zd Hd
x(Z,F ⊗ G) →

Hd(Z,F ⊗G) is surjective.
(3) If Z is henselian local, then Hi(Z,F ⊗G) is zero for i > 0.

Proof of Sublemma 8.5.2. – Since the absolute Frobenius morphism FZ :Z → Z is finite by
assumption, we have H∗(Z,F⊗G) � H∗(Z,FZ∗(F⊗G)) and H∗

x(Z,F⊗G) � H∗
x(Z,FZ∗(F⊗

G)) for any x ∈ Z . Hence we are reduced to the case where F and G are locally free OZ -modules
of finite rank.

We first show (3). Let R be the affine ring of Z , which is a henselian local ring by assumption.
Let Rsh be the strict henselization of R. Without loss of generality, we may assume that F = G =
OZ . By the isomorphism Hq(Z,OZ ⊗OZ) � Hq

Gal(GR,Rsh ⊗Rsh) with GR := Gal(Rsh/R),
our task is to show that the right-hand side is zero for q > 0. We show that for a finite étale
Galois extension R′/R with Galois group G := Gal(R′/R), we have Hq(G,R′ ⊗ R′) = 0 for
q > 0. Indeed, by taking a normal basis, we have R′ � R[G] as left R[G]-modules, and there is
an isomorphism of left G-modules

R[G]⊗R[G] �−→ R[G]⊗
(
R[G]◦

)
, a[g]⊗ b[h] �→ a[g]⊗ b[g−1h],

where a and b (resp. g and h) are elements of R (resp. of G), and R[G]◦ denotes the abelian
group R[G] with trivial G-action. Hence R′ ⊗ R′ is an induced G-module in the sense of [57],
I.2.5 and we obtain the assertion.

We next prove (1) and (2) by induction on d and a standard local-global argument (cf. [52],
1.22). The case d = 0 follows from (3). Assume d � 1 and that (1) and (2) hold true for schemes
of dimension � d− 1. We first show (1). Indeed, the case codimZ(x) = 0 follows from the case
d = 0. If codimZ(x) � 1 and i � 1, then the connecting homomorphism

δloc(K) :Hi−1
(
Spec(Oh

Z,x) \ {x},F ⊗G
)
−→Hi

x

(
Spec(Oh

Z,x),F ⊗G
)

= Hi
x(Z,F ⊗G)

is surjective by (3), and the left-hand side is zero for i > codimZ(x) by the induction hypothesis.
Thus we obtain (1). Finally one can easily check (2) by (1) and a local–global spectral sequence

Eu,v
1 =

⊕
x∈Zu

Hu+v
x (Z,F ⊗G) =⇒ Hu+v(Z,F ⊗G).

This completes the proof of Sublemma 8.5.2 and Lemma 8.5.1. �
By Lemma 8.5.1, (8.4.3) is reduced to the formula

H0(yN ,Θq,n) = H0(yN , χ ◦ fq,n)(8.5.3)

for all chains (y0, y1, . . . , yN ) ∈Ch(Y ), which will be proved in §8.7 below.
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8.6. Galois descent by corestriction maps

We prove here the following lemma:

LEMMA 8.6.1. – Let F be a field of characteristic p > 0. Let V1 and V2 be discrete
GF -Z/pZ-modules which are finitely successive extensions of finite direct sums of copies of
F as GF -modules. Then (V1 ⊗ V2)GF agrees with⋃

F ′/F : finite Galois

Im
(
(V1)GF ′ ⊗ (V2)GF ′ ↪→ (V1 ⊗ V2)GF ′ coresF ′/F−−−−−−→ (V1 ⊗ V2)GF

)
,

where all tensor products are taken over Z/pZ, and F ′ runs through all finite Galois field
extensions of F contained in F .

Proof. – It suffices to show the case V1 = V2 = F . We prove that the corestriction map

coresF ′/F :F ′ ⊗ F ′ −→ (F ′ ⊗ F ′)G, x⊗ y �→ Σg∈Ggx⊗ gy

is surjective for a finite Galois extension F ′/F with G := Gal(F ′/F ), which implies the
assertion by a limit argument. Since F ′ � F [G] as F [G]-modules, we have

(F ′ ⊗ F ′)G � (F ⊗ F )⊗
(
Z/pZ[G]⊗Z/pZ[G]

)G

by the finiteness of G and the flatness of Z/pZ-modules over Z/pZ. Hence the surjectivity of
coresF ′/F follows from that of the map

Z/pZ[G]⊗Z/pZ[G]−→
(
Z/pZ[G]⊗Z/pZ[G]

)G
, x⊗ y �→ Σg∈G gx⊗ gy.

Thus we obtain the lemma. �
8.7. Proof of (8.5.3)

In this step, we finish the proof of Theorem 8.3.8. Fix an arbitrary chain (y0, y1, . . . , yN ) ∈
Ch(Y ). Put FN := κ(yN ) and

LN+1 := Frac
[(
· · ·

(
(Oh

X,y0
)hy1

)
· · ·
)h
yN

]
,

which is a henselian discrete valuation field (of characteristic 0) with residue field FN , that is,
LN+1 is an (N +1)-dimensional local field. Now let F/FN be a finite separable field extension.
Put y := Spec(F ) and

Aq,n(F ) := H0(y,UqMn)⊗H0(y,Ue′−qMn′
) ⊂H0(y,UqMn ⊗Ue′−qMn′

).

By Lemma 8.6.1 (for the subfield (FN )p ⊂ FN ) and the naturality of corestriction maps, the
formula (8.5.3) for yN is reduced to the formula

H0(y,Θq,n)|Aq,n(F ) = H0(y,χ ◦ fq,n)|Aq,n(F ).(8.7.1)

To prove this equality, we compute the left-hand side, i.e., the composite map

Aq,n(F ) ↪→H0(y,UqMn ⊗Ue′−qMn′
) H0(y,Θq,n)−−−−−−−→ μ′ ⊗H1(y,ΩN

y,log).(8.7.2)
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Let L/LN+1 be the finite unramified extension corresponding to F/FN . For i > 0, put kM
i (L) :=

KM
i (L)/pKM

i (L). By a similar argument as for [9], (5.15), we have

Aq,n(F ) =
{
UqkM

n (L)/Ue′
kM

n (L)
}
⊗
{
Ue′−qkM

n′ (L)/Ue′
kM

n′ (L)
}
.

Let us recall that 1 � q � e′ − 1 by assumption. In view of the construction of Θn (cf. §8.2) and
the fact that Ue′+1kM

N+2(L) = 0 ([9], (5.1.i)), the map (8.7.2) is written by the product of Milnor
K-groups and boundary maps of Galois cohomology groups:

Aq,n(F ) product−−−−−→ Ue′
kM

N+2(L) Galois symbol−−−−−−−−−→ HN+2(L,μ⊗N+2
p )

�−→ μ⊗H1
(
F,HN+1(Lur, μ⊗N+1

p )
) id⊗(3.2.3)−−−−−−−→ μ⊗H1(y,ΩN

y,log),
(8.7.3)

where Lur denotes the maximal unramified extension of L, and the third arrow is obtained from
a Hochschild–Serre spectral sequence together with the facts that cdp(F ) = 1 and cdp(Lur) =
N + 1 (cf. Lemma 7.3.2). Here we compute the product of symbols:

LEMMA 8.7.4. – For α1, α2 ∈OL \ {0} and β1, . . . , βN ∈ L×, we have

{1 + πqα1, β1, . . . , βn−1,1 + πe′−qα2, βn, . . . , βN}
= (−1)N+n · q · {1 + πe′

α1α2, β1, . . . , βN , π}+ (−1)n · {1 + πe′
α1α2, α1, β1, . . . , βN}

in kM
N+2(L). The second term on the right-hand side is zero if βi belongs to O×

L for all i.

Proof. – We compute the symbol {1 + πqα1,1 + πe′−qα2} ∈ kM
2 (L):

{1 + πqα1,1 + πe′−qα2} = {1 + πqα1 + πe′
α1α2,1 + πe′−qα2}

−
{
(1 + πqα1 + πe′

α1α2)(1 + πqα1)−1,1 + πe′−qα2

}
(1)
= −{1 + πqα1 + πe′

α1α2,−πqα1}
(2)
= −

{
1 + πe′

α1α2(1 + πqα1)−1,−πqα1

}
(3)
= −{1 + πe′

α1α2, π
qα1}.

(1) follows from the equality {1 + x1x2, x1} = −{1 + x1x2,−x2} (applied to the first term)
and the fact that the second term is contained in Ue′+1kM

2 (L) = 0 ([9], (4.1), (5.1.i)). (2) follows
from the equality {1 + x,−x} = 0, and (3) follows from loc. cit., (4.3). The equality assertion in
the lemma follows from this computation. The last assertion follows from loc. cit., (4.3) and the
fact that ΩN+1

F = 0. �
To calculate the last two maps in (8.7.3), we need the following lemma, which is a kind of

explicit formula for L (see §8.3 for u and χ):

LEMMA 8.7.5. – The following square commutes:

ΩN
F

ω �→u⊗kω

ρe′

(μ⊗ k)⊗k (ΩN
F /BN

F )

H0(y,χ)

HN+2(L,μ⊗N+2
p ) �

μ⊗H1(y,ΩN
y,log),

(8.7.6)
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where the bottom arrow is the composite of the last two maps in (8.7.3) and ρe′
denotes

the Bloch–Kato map sending α · d log(β1) ∧ · · · ∧ d log(βN ) (α ∈ F , βi ∈ F×) to {1 +
πe′

α̃, β̃1, . . . , β̃N , π} (α̃ and β̃i’s are lifts of α and βi’s, respectively).

Proof. – This commutativity would be well-known to experts (cf. [34] for the case p > N + 3,
see also [13], VII.4). However we include here a simple proof using a classical argument
originally due to Hasse [24] to verify the above commutativity including signs. By [31], p. 612,
Lemma 2, the bottom horizontal arrow of the diagram (8.7.6) maps

ζ ∪ Inf(x)∪ {β̃1, β̃2, . . . , β̃N , π} �→ ζ ⊗ (−x)∪ (d log(β1)∧ · · · ∧ d log(βN ))

for ζ ∈ μ, x ∈ H1(F,Z/pZ) and βi ∈ F×. Hence it is enough to show the following:

CLAIM. – Fix a primitive p-th root of unity ζp ∈ μ, and consider the composite map

F −→ H1(F,Z/pZ) Inf−−→ H1(L,Z/pZ)
1 �→ζp−−−−→ H1(L,μp) �−→ L×/(L×)p,

where the first map is the boundary map of Artin–Schreier theory and the last isomorphism is the
inverse of the boundary map of Kummer theory. Then this composite map sends −v(ζp)−pα ∈ F

to 1 + πe′
α̃ mod (L×)p, where α̃ denotes a lift of α to OL (note that Ue′+1L× ⊂ (L×)p). See

Definition 8.3.6 for the definition of v(ζp).

Proof of claim. – It suffices to show that α ∈ F maps to 1− (1− ζp)pα̃ mod (L×)p. Consider
the following equations in T over F and L, respectively:

T p − T = α,(8.7.7)

T p = 1− (1− ζp)p · α̃.(8.7.8)

We show that the Artin–Schreier character GF → Z/pZ associated with (8.7.7) induces the
Kummer character GL → μ associated with (8.7.8) by the composition GL →GF → Z/pZ → μ.
Let β ∈ L be a solution to (8.7.8). By the congruity relation

(−1)p · p≡ (1− ζp)p−1 mod πe′
OL,

one can easily show that β is contained in Our
L and that

γ := (1− β)/(1− ζp) mod πOur
L ∈ F

is a solution to (8.7.7). Moreover, σ ∈ GL satisfies σ(β)/β = ζm
p ∈ μ if and only if σ(γ)− γ =

m ∈ Z/pZ, where GL acts on F via the canonical projection GL → GF . Thus we obtain the
claim and Lemma 8.7.5. �

We turn to the proof of (8.7.1). Let α1, α2 ∈ OL \ {0}, and βi ∈ O×
L ∪ {π} (1 � i � N ). By

Lemmas 8.7.4 and 8.7.5, the value of the symbol

{1 + πqα1, β1, . . . , βn−1} ⊗ {1 + πe′−qα2, βn, . . . , βN} ∈ UqkM
n (L)⊗Ue′−qkM

n′ (L)
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under (8.7.2) agrees with the value of the following element of μ⊗ (ΩN
F /BN

F ) under H0(y,χ):⎧⎪⎪⎪⎨⎪⎪⎪⎩
u⊗k (−1)n+N [q · α1α2 · (

∧
1�i�N d logβi) mod BN

F ] (if βi ∈O×
L for all i),

u⊗k (−1)n+N+i′ [α2 · dα1 ∧ (
∧

1�i�N, i 
=i′ d logβi) mod BN
F ]

(if βi = π for exactly one i =: i′),
0 (otherwise),

where for x ∈ OL (resp. x ∈O×
L ), x denotes its residue class in F (resp. in F×). Thus comparing

this presentation of (8.7.2) with the definition of fq,n (cf. §8.3), we conclude that the equality
(8.7.1) holds. This completes the proof of Theorem 8.3.8. �

9. Duality of p-adic vanishing cycles

In this section we prove Theorem 9.1.1 below, which will be used in §10.

9.1. Statement of the result

Let the notation be as in §8.1. We prove the following:

THEOREM 9.1.1. – Let n be 1 � n � N +1 and put n′ := N +2−n. Assume that X is proper
over Spec(OK). Then for an integer i, the pairing induced by Θn and trY (cf. Theorem 2.2.4)

ai :Hi(Y,U1Mn)×HN−i(Y,U1Mn′
) Θn−−→ μ⊗HN+1(Y, νN

Y ) id⊗trY−−−−−→ μ(9.1.2)

is a non-degenerate pairing of finite Z/pZ-modules.

To prove this theorem, we first calculate the map fq,n defined in §8.3 (cf. Lemma 9.1.4 below).
Let U•Mn and V •Mn be as in Definition 3.3.2. We further define the subsheaf T qMn ⊂ UqMn

(q � 1) as the part generated by V qMn and symbols of the form

{1 + πqαp, β1, . . . , βn−1}

with α ∈ ι∗OX and each βi ∈ ι∗j∗O×
XK

. By definition we have

Uq+1Mn ⊂ V qMn ⊂ T qMn ⊂ UqMn.

For q � 1, we put

grq
U/T Mn := UqMn/T qMn, grq

T/V Mn := T qMn/V qMn and

grq
V/UMn := V qMn/Uq+1Mn.

Let us recall that e′ = pe/(p− 1) is an integer divided by p (because ζp ∈K). By Theorem 3.3.7
(3), (4), the sheaf Ue′

Mn is zero, and for q with 1 � q � e′ − 1 we have isomorphisms

ρq,n
1 : grq

U/T Mn �−→ ωn−1
Y /Zn−1

Y ,

ρq,n
2 : grq

T/V Mn �−→
{
Zn−1

Y /Bn−1
Y (p � q),

0 (p | q),(9.1.3)

ρq,n
3 : grq

V/UMn �−→ ωn−2
Y /Zn−2

Y ,
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given by the following, respectively:

ρq,n
1 :{1 + πqα,β1, . . . , βn−1} mod T qMn �→ α ·

(n−1∧
i=1

d logβi

)
mod Zn−1

Y ,

ρq,n
2 :{1 + πqαp, β1, . . . , βn−1} mod V qMn �→ αp ·

(n−1∧
i=1

d logβi

)
mod Bn−1

Y (p � q),

ρq,n
3 :{1 + πqα,β1, . . . , βn−2, π} mod Uq+1Mn �→ α ·

(n−2∧
i=1

d logβi

)
mod Zn−2

Y .

Here α (resp. each βi) denotes a local section of ι∗OX (resp. ι∗j∗O×
XK

), and α (resp. βi)
denotes its residue class in OY (resp. in Lgp

Y under (3.3.4)). The following lemma follows from
straightforward computations on symbols, whose proof is left to the reader (cf. Remark 8.3.2 (2),
Definition 8.3.6):

LEMMA 9.1.4. – Let n and n′ be as in Theorem 9.1.1, and assume 1 � q � e′ − 1. Then:
(1) fq,n annihilates the subsheaf of UqMn ⊗ Ue′−qMn′

generated by Uq+1Mn ⊗
Ue′−qMn′

, UqMn ⊗Ue′−q+1Mn′
, V qMn ⊗ T e′−qMn′

and T qMn ⊗ V e′−qMn′
.

(2) The composite map

ωn−1
Y /Zn−1

Y ⊗ ωn′−2
Y /Zn′−2

Y

(ρq,n
1 ⊗ρe′−q,n′

3 )−1

−−−−−−−−−−−−→ grq
U/T Mn ⊗ gre′−q

V/U Mn′

fq,n

−−−→ μ′ ⊗ (ωN
Y /BN

Y )

sends a local section x⊗ y to u⊗k (−1)n · (dx)∧ y. Similarly, the composite map

ωn−2
Y /Zn−2

Y ⊗ ωn′−1
Y /Zn′−1

Y

(ρq,n
3 ⊗ρe′−q,n′

1 )−1

−−−−−−−−−−−−→ grq
V/UMn ⊗ gre′−q

U/T Mn′

fq,n

−−−→ μ′ ⊗ (ωN
Y /BN

Y )

sends a local section x⊗ y to u⊗k (−1)N · x∧ dy.
(3) If q is prime to p, then the composite map

Zn−1
Y /Bn−1

Y ⊗Zn′−1
Y /Bn′−1

Y

(ρq,n
2 ⊗ρe′−q,n′

2 )−1

−−−−−−−−−−−−→ grq
T/V Mn ⊗ gre′−q

T/V Mn′

fq,n

−−−→ μ′ ⊗ (ωN
Y /BN

Y )

sends a local section x⊗ y to u⊗k (−1)N+nq · x∧ y.

9.2. Proof of Theorem 9.1.1

In this subsection, we reduce the theorem to Lemma 9.2.7 below. The finiteness of the groups
in the pairing (9.1.2) follows from the finiteness of k, the properness of Y and the fact that
the sheaves U1Mn and U1Mn′

are finitely successive extensions of coherent (OY )p-modules
(cf. (9.1.3)). To show the non-degeneracy of (9.1.2), we introduce an auxiliary descending
filtration ZrMn (r � 1) on U1Mn defined as

ZrMn :=

⎧⎨⎩UqMn (if r ≡ 1 mod 3 and q = (r + 2)/3),
T qMn (if r ≡ 2 mod 3 and q = (r + 1)/3),
V qMn (if r ≡ 0 mod 3 and q = r/3).

Note that Z1Mn = U1Mn and ZrMn = 0 for r � 3e′ − 2. We first show
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LEMMA 9.2.1. – Assume 1 � r � 3e′ − 3. Then:
(1) The composite map

HN (Y,U1Mn ⊗Z3e′−2−rMn′
) −→ HN (Y,U1Mn ⊗U1Mn′

)
H2N+3(Y,Θn)−−−−−−−−−→ μ⊗HN+1(Y, νN

Y ) id⊗trY−−−−−→
�

μ

induces a map

HN
(
Y, (U1Mn/Zr+1Mn)⊗Z3e′−2−rMn′)−→ μ.(9.2.2)

(2) The composite map

HN (Y,grr
ZMn ⊗Z3e′−2−rMn′

) −→ HN
(
Y, (U1Mn/Zr+1Mn)⊗Z3e′−2−rMn′)

(9.2.2)−−−→ μ

induces a map

HN (Y,grr
ZMn ⊗ gr3e′−2−r

Z Mn′
) −→ μ.(9.2.3)

(3) We put

Fr,n := (U1Mn/Zr+1Mn)⊗Z3e′−2−rMn′
,

Gr,n :=Fr,n/(grr
ZMn ⊗Z3e′−1−rMn′

),

Hr,n := grr
ZMn ⊗ gr3e′−2−r

Z Mn′

(note that grr
ZMn ⊗ Z3e′−1−rMn′

is a subsheaf of Fr,n, because a Z/pZ-sheaf is flat
over Z/pZ). Then the map (9.2.2) induces a map

HN (Y,Gr,n) −→ μ.(9.2.4)

If r � 2, then this map makes the following diagram commutative:

HN (Y,Hr,n)⊕HN (Y,Fr−1,n)

(9.2.3)⊕ (9.2.2) for r−1

HN (Y,Gr,n)

(9.2.4)

μ⊕ μ
product

μ,

(9.2.5)

where the top horizontal arrow is induced by a natural inclusion Hr,n ⊕Fr−1,n ⊂ Gr,n.

Proof of Lemma 9.2.1. – We prove only (1). (2) and (3) are similar and left to the reader. We
use the notation we fixed in (3). Let q be the maximal integer with 3(q − 1) < r. Noting that
ZrMn ⊗Z3e′−2−rMn′ ⊂ UqMn ⊗Ue′−qMn′

, consider the composite map

HN (Y,ZrMn ⊗Z3e′−2−rMn′
) −→ HN (Y,U1Mn ⊗Z3e′−2−rMn′

) (∗)−−→ μ,

where the arrow (∗) denotes the first composite map in (1). By Theorem 8.3.8 (cf. (8.4.3)), this
composite map agrees with that induced by χ ◦ fq,n. By Lemma 9.1.4 (1), fq,n annihilates the
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subsheaf Zr+1Mn ⊗Z3e′−2−rMn′
of ZrMn ⊗Z3e′−2−rMn′

. Hence the arrow (∗) induces a
map of the form (9.2.2) by the short exact sequence of sheaves

0 −→ Zr+1Mn ⊗Z3e′−2−rMn′ −→ U1Mn ⊗Z3e′−2−rMn′ −→Fr,n −→ 0

and Sublemma 8.5.2 (2) (cf. (9.1.3)). Thus we obtain the lemma. �
We turn to the proof of Theorem 9.1.1. By the trace maps (9.2.2) and (9.2.3), there are induced

pairings

bi,r :Hi(Y,U1Mn/Zr+1Mn)×HN−i(Y,Z3e′−2−rMn′
) −→ μ,

ci,r :Hi(Y,grr
ZMn)×HN−i(Y,gr3e′−2−r

Z Mn′
) −→ μ,

(9.2.6)

for i and r with 1 � r � 3e′ − 3. Note that bi,3e′−3 = ai and bi,1 = ci,1. By the commutative
diagram (9.2.5), there is a commutative diagram with exact rows for r � 2 (after changing the
signs of (�) suitably)

Hi−1(Y, U1Mn/ZrMn)

bi−1,r−1

Hi(Y, grr
Z

Mn)

ci,r

Hi(Y, U1Mn/Zr+1Mn)

bi,r

Hi(Y, U1Mn/ZrMn)

bi,r−1

Hi+1(Y, grr
Z

Mn)

ci+1,r

H	+1(Y, Zt+1Mn′
)∗

(
)
H	(Y, grt

Z
Mn′

)∗ H	(Y, ZtMn′
)∗ H	(Y, Zt+1Mn′

)∗
(
)

H	−1(Y, grt
Z

Mn′
)∗,

where we put � := N − i, t := 3e′ − 2− r and E∗ := Hom(E,μ) for a Z/pZ-module E. Hence
Theorem 9.1.1 is reduced to the following lemma by induction on r � 1 and the five lemma.

LEMMA 9.2.7. – ci,r in (9.2.6) is non-degenerate for any i and r with 1 � r � 3e′ − 3.

We prove this lemma in the next subsection.

9.3. Proof of Lemma 9.2.7

We first give a brief review of linear Cartier operators. Let (s,Ls) and LY be as in §8.3, and
let (Y ′,LY ′) be the log scheme defined by a cartesian diagram

(Y ′,LY ′)
pr2

pr1 �

(Y,LY )

(s,Ls)
Fabs

(s,Ls)
(s,Ls),

(9.3.1)

where Fabs
(s,Ls) denotes the absolute Frobenius on (s,Ls). Let pr2 :Y ′ → Y be the underlying

morphism of schemes of pr2, and let FY/s :Y → Y ′ be the unique morphism of schemes such
that pr2 ◦FY/s agrees with the absolute Frobenius on Y . Note that FY/s is a finite morphism of
schemes. We put ωN

Y ′ := ωN
(Y ′,LY ′ )/(s,Ls) for simplicity, where we regard (Y ′,LY ′) as a smooth

log scheme over (s,Ls) by pr1 in (9.3.1). By [30], 5.3 and the same argument as for [37], 7.2,
there is a OY ′ -linear isomorphism

C−1
lin :ωN

Y ′
�−→ FY/s∗(ωN

Y /BN
Y ).(9.3.2)
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(The following composite map gives the inverse Cartier operator C−1 defined in [25]:

ωN
Y

canonical−−−−−−→ pr2∗ωN
Y ′

pr2∗(C−1
lin )

−−−−−−−→ pr2∗FY/s∗(ωN
Y /BN

Y ) = ωN
Y /BN

Y .)

Now we start the proof of Lemma 9.2.7. Let Clin be the inverse of C−1
lin . By [26], 3.2 and the same

argument as for [46], 1.7, there are OY ′ -bilinear perfect pairings of locally free OY ′ -modules of
finite rank

FY/s∗(ωn−1
Y /Zn−1

Y )×FY/s∗(ωn′−2
Y /Zn′−2

Y ) −→ ωN
Y ′ , (x, y) �→ Clin

(
(dx)∧ y

)
,

FY/s∗(Zn−1
Y /Bn−1

Y )×FY/s∗(Zn′−1
Y /Bn′−1

Y )−→ ωN
Y ′ , (x, y) �→ Clin(x∧ y),

FY/s∗(ωn−2
Y /Zn−2

Y )×FY/s∗(ωn′−1
Y /Zn′−1

Y ) −→ ωN
Y ′ , (x, y) �→ Clin(x∧ dy).

By [26], 3.1 and the Serre–Hartshorne duality [21], ωN
Y ′ is a dualizing sheaf for Y ′ in the sense

of [23], p. 241, Definition. Hence by (9.1.3) and Lemma 9.1.4, the pairing

Hi(Y,grr
ZMn)×HN−i(Y,gr3e′−2−r

Z Mn′
) fq,n

−−−→ μ⊗HN (Y,ωN
Y /BN

Y )
id⊗tr′Y/s−−−−−−→ μ⊗ k

(q is the maximal integer with 3(q − 1) < r) is a non-degenerate pairing of finite-dimensional
k-vector spaces. Here tr′Y/s denotes the k-linear trace map

HN (Y,ωN
Y /BN

Y ) = HN
(
Y ′,FY/s∗(ωN

Y /BN
Y )
) Clin−−−→HN (Y ′, ωN

Y ′) −→ k.

Finally, ci,r is non-degenerate by commutative squares

HN (Y,grr
ZMn ⊗ gr3e′−2−r

Z Mn′
)

fq,n

(9.2.3)

μ⊗HN (Y,ωN
Y /BN

Y )
id⊗tr′Y/s

χ

μ⊗ k

id⊗trk/Fp

μ μ⊗HN+1(Y, νN
Y )

id⊗trY id⊗trY
μ⊗ Fp,

where the left square commutes by Theorem 8.3.8 and the right square commutes by
Remark 2.2.6 (4) and [55], 3.4.1. This completes the proof of Lemma 9.2.7 and Theorem 9.1.1.

10. Duality of p-adic étale Tate twists

In this section we prove Theorem 1.2.2 using Theorem 9.1.1.

10.1. Statement of the results

The setting is the same as in §4.1. In this section, we assume that X is proper over B =
Spec(A), and that A is either an algebraic integer ring (global case) or a henselian discrete
valuation ring whose fraction field has characteristic 0 and whose residue field is finite of
characteristic p (local case). Let d be the absolute dimension of X . Throughout this section, n
and r denote integers with 0 � n � d and 1 � r. The aim of this section is to prove the following
duality results:

THEOREM 10.1.1. – Assume that A is local. Then:
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(1) There is a canonical trace map tr(X,Y ) :H2d+1
Y (X,Tr(d)X)→ Z/prZ, which is bijective

if X is connected.
(2) For i ∈ Z, the natural pairing arising from (4.2.7) and tr(X,Y )

Hi
Y

(
X,Tr(n)X

)
×H2d+1−i

(
X,Tr(d− n)X

)
−→ Z/prZ(10.1.2)

is a non-degenerate pairing of finite Z/prZ-modules.

THEOREM 10.1.3 (1.2.2). – Assume that A is global. Then:
(1) There is a canonical trace map trX :H2d+1

c (X,Tr(d)X)→ Z/prZ, where the subscript c
means the étale cohomology with compact support (see §10.2 below). If X is connected,
then trX is bijective.

(2) For i ∈ Z, the natural pairing arising from (4.2.7) and trX

Hi
c

(
X,Tr(n)X

)
×H2d+1−i

(
X,Tr(d− n)X

)
−→ Z/prZ(10.1.4)

is a non-degenerate pairing of finite Z/prZ-modules.

In §10.2, we will define the localized trace map tr(X,Y ) and the global trace map trX . After
showing a compatibility of these trace maps, we will reduce Theorem 10.1.3 (2) to Theorem
10.1.1 (2). We will prove Theorem 10.1.1 (2) in §§10.3–10.5.

Remark 10.1.5. – If A is local, there is a natural pairing of finite Z/prZ-modules

Hi(V,μ⊗n
pr )×H2d−i(V,μ⊗d−n

pr )−→H2d(V,μ⊗d
pr ) � Z/prZ,(10.1.6)

where V denotes XK with K := Frac(A). As is well-known, this pairing is non-degenerate by
the Tate duality for K and the Poincaré duality for VK . Theorem 10.1.1 (2) does not follow from
these facts, although Theorem 10.1.1 implies the non-degeneracy of (10.1.6). We will deduce
Theorem 10.1.1 (2) from Theorems 2.2.4 and 9.1.1.

10.2. Trace maps

We first construct the localized trace map tr(X,Y ), assuming that A is local. Let ι :Y ↪→X be
the natural closed immersion. By Lemma 7.3.3 and Theorem 2.2.4, Hi

Y (X,Tr(d)X) is zero for
any i � 2d + 2. We define tr(X,Y ) as the composite

tr(X,Y ) :H2d+1
Y

(
X,Tr(d)X

) (Gysd
ι )−1

−−−−−−→
�

Hd(Y, νd−1
Y,r ) trY−−→ Z/prZ,

which is bijective if X is connected (i.e., Y is connected). We next define the global trace
map trX , assuming that A is global. For a scheme Z which is separated of finite type over B
and an object K ∈ D+(Zét,Z/prZ), we define H∗

c(Z,K) as H∗
c(B,Rf!K), where f denotes

the structural morphism Z → B and H∗
c(B,•) denotes the étale cohomology groups with

compact support of B (cf. [48], II.2). By the Kummer sequence (4.5.3) and the isomorphism
H3

c(B,Gm) � Q/Z (cf. [48], II.2.6), there is a trace map H3
c(B,Tr(1)B) → Z/prZ (cf. [29],

Corollary 4.3 (a)). We normalize this map so that for a closed point is :s ↪→ B, the composite
map

H1(s,Z/prZ)
Gys1is−−−−→ H3

c

(
B,Tr(1)B

)
−→ Z/prZ
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coincides with the trace map of s (defined in 2.2.4 (1)). We define the trace map trX as the
composite

trX :H2d+1
c

(
X,Tr(d)X

)
−→ H3

c

(
B,Tr(1)B

)
−→ Z/prZ,

where the first arrow arises from the trace morphism in Theorem 7.1.1. The bijectivity assertion
for trX in Theorem 10.1.3 (1) will follow from 10.1.3 (2). We show here the following:

LEMMA 10.2.1. – Assume that A is global. Then there is a commutative diagram

H2d+1
Y (X,Tr(d)X)

tr(X,Y )

ι∗

Z/prZ

H2d+1
c (X,Tr(d)X)

trX Z/prZ,

where the arrow ι∗ denotes the canonical adjunction map and tr(X,Y ) denotes the sum of the
localized trace maps for the connected components of Y .

Proof. – Let {Yi}i∈I be the connected components of Y . Let x be a closed point on Y with
ix :x ↪→X . Noting that H2d+1

Y (X,Tr(d)X)�
⊕

i∈I Z/prZ, consider a diagram

H1(x,Z/prZ)
Gysd

ix
H2d+1

Y (X,Tr(d)X)
tr(X,Y )

ι∗

Z/prZ

H1(x,Z/prZ)
Gysd

ix H2d+1
c (X,Tr(d)X)

trX Z/prZ.

Since the left square commutes, it suffices to show that the composite of the upper row is bijective
and that the outer rectangle is commutative. The composite of the upper row agrees with the
trace map for x by Theorem 2.2.4 (1). In particular it is bijective. The composite of the lower
row agrees with the trace map for x by Theorem 7.3.1 (2). We are done. �

We reduce Theorem 10.1.3 (2) to Theorem 10.1.1 (2). Assume that A is global. We use the
notation in §4.1. Put XΣ :=

∐
s∈Σ X ×B Bs. Since j∗Tr(n)X � μ⊗n

pr , there is a distinguished
triangle

Tr(n)X
ι∗−→ Rι∗ι

∗Tr(n)X −→ j!μ
⊗n
pr [1] j!−→ Tr(n)X [1],

where the arrow ι∗ (resp. j!) denotes the canonical adjunction morphism id → Rι∗ι
∗ (resp.

Rj!j
∗ → id). By Lemma 10.2.1 and the proper base-change theorem: H∗(Y, ι∗Tr(n)X) �

H∗(XΣ,Tr(n)XΣ), we obtain a commutative diagram with exact rows (after changing the signs
of (�) suitably)

Hi−1(XΣ,Tr(n)XΣ )

(10.1.2)

Hi
c(V,μ⊗n

pr )

a

Hi
c(X,Tr(n)X)

(10.1.4)

Hi(XΣ,Tr(n)XΣ )

(10.1.2)

Hi+1
c (V,μ⊗n

pr )

a

H	+1
Y

(X,Tr(m)X)∗
(
)

H	(V,μ⊗m
pr )∗ H	(X,Tr(m)X)∗ H	

Y (X,Tr(m)X)∗
(
)

H	−1(V,μ⊗m
pr )∗.

Here the superscript ∗ means the Pontryagin dual and we put � := 2d+1− i and m := d−n. The
lower row is the dual of the localization long exact sequence and the vertical arrows arise from
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duality pairings. The arrows a are isomorphisms of finite groups by the Artin–Verdier duality
and the absolute purity ([62,15]). Thus Theorem 10.1.3 (2) is reduced to Theorem 10.1.1 (2) by
the five lemma.

10.3. Reduction to the case r = 1

We start the proof of Theorem 10.1.1 (2), which will be completed in §10.5. By the
distinguished triangle in Proposition 4.3.1 (3), the problem is reduced to the case r = 1.
Furthermore we may assume that K = Frac(A) contains a primitive p-th root of unity ζp. Indeed,
otherwise the scalar extension XA′ := X ⊗A A′, where A′ denotes the integer ring of K(ζp),
again satisfies the condition 4.1.1 over Spec(A). Hence once we show Theorem 10.1.1 (2) for
XA′ , we will obtain Theorem 10.1.1 (2) for X by a standard norm argument and Corollary 7.2.4.

10.4. Descending induction on n

Assume that ζp ∈ K and r = 1. We prove this case of Theorem 10.1.1 (2) by descending
induction on n � d. Let N be the relative dimension dim(X/B). If n = N + 1 (= d), (10.1.2)
is isomorphic to the pairing

Hi−N−2(Y, νN
Y,1)×H2N+3−i(Y,Z/pZ) −→ HN+1(Y, νN

Y,1) � Z/pZ

by the proper base-change theorem and Lemma 7.3.3. This pairing is a non-degenerate pairing
of finite Z/pZ-modules by Theorem 2.2.4. To proceed to the descending induction on n, we
study the inductive structure of {T1(n)X}n�0 on n. We fix some notation. Let ι :Y ↪→ X and
j :V (= XK) ↪→ X be as before. Let νn

Y , μ′ and μ be as in (8.1.1). See also the remark after
(8.1.1). Put λn

Y := λn
Y,1 and T(n)X := T1(n)X . Now for n with 1 � n � N + 1, we define the

morphism

indn : (j∗μp)⊗T(n− 1)X

(
:= (j∗μp)⊗L T(n− 1)X

)
−→ T(n)X

by restricting the product structure T(1)X ⊗L T(n−1)X → T(n)X to the 0-th cohomology sheaf
j∗μp of T(1)X .

LEMMA 10.4.1. – Let

K(n)[−1] bn−−→ μ′ ⊗ ι∗T(n− 1)X
ι∗(indn)−−−−−→ ι∗T(n)X

an−−→ K(n)(10.4.2)

be a distinguished triangle in Db(Yét,Z/pZ). Then:
(1) The triple (K(n), an, bn) is unique up to a unique isomorphism in Db(Yét,Z/pZ), and bn

is determined by the pair (K(n), an).
(2) K(n) is concentrated in [n− 1, n] and an induces isomorphisms

Hq
(
K(n)

)
�
{

μ′ ⊗ νn−2
Y (q = n− 1),

FMn (q = n),

where Mn denotes the étale sheaf ι∗Rnj∗μ
⊗n
p on Y , and FMn denotes the étale subsheaf

of Mn defined in §3.4.
(3) There is a distinguished triangle in Db(Yét,Z/pZ)

K(n)[−1] cn−−→ μ′ ⊗Rι!T(n− 1)X
Rι!(indn)−−−−−−→ Rι!T(n)X

dn−−→ K(n),(10.4.3)
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where cn and dn are morphisms determined by the pair (K(n), an).
(4) There is an anti-commutative diagram

ι∗T(n)X
canonical

an

μ′ ⊗ ι∗Rj∗μ
⊗n−1
p

idμ′⊗ι∗(δloc
V,Y (T(n−1)X))

K(n)
cn[1]

μ′ ⊗Rι!T(n− 1)X [1].

(10.4.4)

Proof. – (2) follows from the long exact sequence of cohomology sheaves associated with
(10.4.2) and the isomorphism of sheaves μ′ ⊗ ι∗Rqj∗μ

⊗n−1
p � ι∗Rqj∗μ

⊗n
p (cf. (4.2.5)). The

details are straightforward and left to the reader. By (2) and Lemma 2.1.1, there is no non-zero
morphism from μ′ ⊗ ι∗T(n − 1)X to K(n)[−1]. The assertion (1) follows from this fact and
Lemma 2.1.2 (3). We next prove (3). Let

F [−1] b′−→ (j∗μp)⊗T(n− 1)X
indn−−−→ T(n)X

a′−→F

be a distinguished triangle in Db(Xét,Z/pZ). By a similar argument as for (2), the cohomology
sheaves of F are supported on Y , which implies that F = Rι∗ι

∗F . By (1), the triple
(ι∗F , ι∗(a′), ι∗(b′)) is isomorphic to (K(n), an, bn) by a unique isomorphism. We have a′ �
Rι∗(an) under this identification, and b′ is determined by the pair (F , a′) = (Rι∗K(n),Rι∗(an))
by a similar argument as for (1). Hence applying Rι! to the above triangle, we obtain the
distinguished triangle (10.4.3) with cn = Rι!(b′) and dn = Rι!Rι∗(an). Finally, (4) follows from
an elementary computation on connecting morphisms, whose details are straightforward and left
to the reader. �

In what follows, we fix a pair (K(n), an) fitting into (10.4.2) for each n with 1 � n � N + 1.
By Lemma 10.4.1, the morphisms bn, cn and dn fitting into (10.4.2) and (10.4.3) are determined
by (K(n), an). Next we construct a pairing on {K(n)}1�n�N+1 using {an}1�n�N+1. Let us
note that for objects K1,K2 ∈D−(Yét,Z/pZ), and K3 ∈ D+(Yét,Z/pZ), we have

HomD(Yét,Z/pZ)(K1 ⊗L K2,K3)� HomD(Yét,Z/pZ)

(
K1,RHomY,Z/pZ(K2,K3)

)
.

For K ∈D−(Yét,Z/pZ), we define

D(K) := RHomY,Z/pZ

(
K, μ′ ⊗ νN

Y [−N − 2]
)
∈ D+(Yét,Z/pZ).(10.4.5)

LEMMA 10.4.6. – Let n be as before and put n′ := N + 2 − n. Then there is a unique
morphism (

K(n)[−1]
)
⊗L K(n′) −→ μ′ ⊗ νN

Y [−N − 2] in D−(Yét,Z/pZ)(10.4.7)

whose adjoint morphism K(n)[−1] → D(K(n′)) fits into a commutative diagram with distin-
guished rows (cf. (10.4.2), (10.4.3))

K(n)[−1]
cn

μ′ ⊗Rι!T(n− 1)X

Rι!(indn)

(
)

Rι!T(n)X
dn

(
)

K(n)

D(K(n′))
D(an′ )

D(ι∗T(n′)X)
D(indn′ )

D(μ′ ⊗ ι∗T(n′ − 1)X)
−D(bn′ )

D(K(n′)[−1]).
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Here the vertical arrows (�) come from the product structure of {T(n)X}n�0, the identity map of
μ′ and the Gysin isomorphism GysN+1

ι in Lemma 7.3.3 (the commutativity of the central square
is easy and left to the reader).

Proof. – The assertion follows from Lemma 2.1.2 (1) and the fact that

HomD+(Yét,Z/pZ)

(
K(n),D

(
μ′ ⊗ ι∗T(n′ − 1)X

))
� HomD−(Yét,Z/pZ)

(
K(n)⊗L

(
μ′ ⊗ ι∗T(n′ − 1)X

)
, μ′ ⊗ νN

Y [−N − 2]
)

= 0,

where the last equality follows from Lemma 10.4.1 (2) and Lemma 2.1.1. �
We turn to the proof of Theorem 10.1.1 (2) and claim the following:

PROPOSITION 10.4.8. – Let n and n′ be as in Lemma 10.4.6. Then for i ∈ Z, the pairing

Hi
(
Y,K(n)

)
×H2N+2−i

(
Y,K(n′)

)
−→ μ⊗HN+1(Y, νN

Y ) id⊗trY−−−−−→ μ(10.4.9)

induced by (10.4.7) is a non-degenerate pairing of finite Z/pZ-modules.

We will prove this proposition in the next subsection. We first finish the proof of Theorem
10.1.1 (2) by descending induction on n � N + 1, admitting Proposition 10.4.8. See the
beginning of this subsection for the case n = N + 1. Indeed, we obtain Theorem 10.1.1 (2)
from Proposition 10.4.8, applying the following general lemma to the commutative diagram in
Lemma 10.4.6:

LEMMA 10.4.10. – Let K1 → K2 → K3 → K1[1] and L3 → L2 → L1 → L3[1] be distin-
guished triangles in Db(Yét,Z/pZ), and suppose that we are given a commutative diagram

K1

α1

K2

α2

K3

α3

K1[1]

α1[1]

D(L1) D(L2) D(L3) D(L1)[1]

(with distinguished rows) in D+(Yét,Z/pZ). For m ∈ {1,2,3} and i ∈ Z, let

βi
m :Hi(Y,Km)×H2N+3−i(Y,Lm)−→ μ⊗HN+1(Y, νN

Y ) id⊗trY−−−−−→ μ

be the pairing induced by the adjoint morphism Km ⊗L Lm → μ′ ⊗ νN
Y [−N − 2] of αm. Put

� := 2N + 3− i. Then there is a commutative diagram with exact rows

Hi−1(Y,K3)

γi−1
3

Hi(Y,K1)

γi
1

Hi(Y,K2)

γi
2

Hi(Y,K3)

γi
3

Hi+1(Y,K1)

γi+1
1

H�+1(Y,L3)∗
(�)

H�(Y,L1)∗ H�(Y,L2)∗ H�(Y,L3)∗
(�)

H�−1(Y,L1)∗

after changing the signs of (�) suitably. Here for a Z/pZ-module E, E∗ denotes HomZ/pZ(E,μ),
and γi

m denotes the natural map induced by βi
m. Furthermore, if γi

1 and γi
3 are bijective for any i,

then γi
2 is bijective for any i.

Proof. – For each m and i, γi
m factors as follows:

Hi(Y,Km) Hi(Y,αm)−−−−−−→ Exti−N−2
Y,Z/pZ

(Lm, μ′ ⊗ νN
Y )−→ HomZ/pZ

(
H2N+3−i(Y,Lm), μ

)
,
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where the last map arises from a Yoneda pairing and the trace isomorphism HN+1(Y,μ′⊗νN
Y ) �

μ. The commutativity of the diagram of cohomology groups in the lemma follows from the
functoriality of this decomposition. The last assertion follows from the five lemma. �
10.5. Proof of Proposition 10.4.8

Let us recall that the canonical pairings

Hi(Y, νq
Y )×HN+1−i(Y,λN−q

Y ) (2.2.5)−−−→ Z/pZ,

Hi(Y,U1Mn)×HN−i(Y,U1Mn′
) (9.1.2)−−−→ μ

(10.5.1)

(q = n′ − 2 or n − 2) are non-degenerate pairings of finite groups for any i by Theorems 2.2.4
and 9.1.1, respectively. We deduce Proposition 10.4.8 from these results. Let U(n) be an object
of Db(Yét,Z/pZ) fitting into a distinguished triangle

λn
Y [−n− 1]−→ U(n)−→ K(n) −→ λn

Y [−n],

where the last morphism is defined as the composite K(n) →Hn(K(n))[−n] � FMn[−n] →
λn

Y [−n] (cf. Lemma 10.4.1 (2), Theorem 3.4.2, Corollary 3.5.2). By Lemma 10.4.1 (2) and
Lemma 2.1.2 (3), U(n) is concentrated in [n − 1, n] and unique up to a unique isomorphism.
We have

Hq
(
U(n)

)
�
{

μ′ ⊗ νn−2
Y (q = n− 1),

U1Mn (q = n).
(10.5.2)

For K ∈ Db(Yét,Z/pZ), let D(K) be as in (10.4.5). In view of Lemma 10.4.10 and the non-
degeneracy of the pairings in (10.5.1), we have only to show the following:

LEMMA 10.5.3. – (1) There is a unique morphism

f :U(n)[−1]−→ D
(
FMn′

[−n′]
)

in D+(Yét,Z/pZ)

fitting into a commutative diagram with distinguished rows

U(n)[−1]

f

K(n)[−1]

(10.4.7)

λn
Y [−n− 1]

(−1)n·f1

U(n)

f [1]

D(FMn′
[−n′]) D(K(n′)) D(μ′ ⊗ νn′−2

Y [−n′ + 1]) D(FMn′
[−n′])[1].

(10.5.4)

Here the lower row arises from a distinguished triangle obtained by truncation

μ′ ⊗ νn′−2
Y [−n′ + 1]−→ K(n′)−→ FMn′

[−n′]−→ μ′ ⊗ νn′−2
Y [−n′ + 2]

(cf. Lemma 10.4.1 (2)), and we have chosen the signs of the connecting morphisms (= the last
arrows) of both rows suitably. The arrow f1 is defined as the adjoint morphism of the map
λn

Y [−n − 1] ⊗L (μ′ ⊗ νn′−2
Y )[−n′ + 1] → μ′ ⊗ νN

Y [−N − 2] induced by the identity map of μ′

and the pairing (2.2.3).
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(2) There is a commutative diagram with distinguished rows in D+(Yét,Z/pZ)

μ′ ⊗ νn−2
Y

[−n]

f2

U(n)[−1]

f

U1Mn[−n − 1]

f3

μ′ ⊗ νn−2
Y

[−n + 1]

f2[1]

D(λn′
Y [−n′]) D(FMn′

[−n′]) D(U1Mn′
[−n′]) D(λn′

Y [−n′])[1].

(10.5.5)

Here the upper row is the distinguished triangle obtained by truncation (cf. (10.5.2)), the lower
row arises from the short exact sequence 0 → U1Mn → FMn → λn

Y → 0, and we have chosen
the signs of the connecting morphisms (= the last arrows) of the both rows suitably. The arrow
f2 is defined in a similar way as for f1 in (1), and f3 denotes the morphism induced by Θn[−1].
See §8.2 for Θn.

To prove Lemma 10.5.3, we first show Lemma 10.5.6 below. Note that for K ∈ Db(Xét,Z/pZ),
Rj∗j

∗K and Rι!K are both bounded (cf. Lemma 7.3.2). For K,L ∈ Db(Xét,Z/pZ), K⊗L L is
bounded, because a Z/pZ-sheaf is flat over Z/pZ.

LEMMA 10.5.6. – For K,L ∈Db(Xét,Z/pZ), there is a commutative diagram

(Rj∗j
∗K)⊗L L

δloc
V,Y (K)⊗Lid

Rj∗j
∗(K⊗L L)

δloc
V,Y (K⊗LL)

(ι∗Rι!K[1])⊗L L ι∗Rι!(K⊗L L)[1],

(10.5.7)

where the horizontal arrows are natural product morphisms.

The commutativity of the induced diagram of cohomology sheaves of (10.5.7) would be well-
known. However, we include a proof of the lemma, because we need the commutativity in the
derived category to show especially Lemma 10.5.3 (2).

Proof of Lemma 10.5.6. – For two complexes M• and N•, let (M• ⊗ N•)t be as in the
proof of Proposition 4.4.10. For a map h• : • → N• of complexes, let Cone(h)• be as in proof
of Proposition 4.3.1 and let uh :N• → Cone(h)• be the canonical map. Let Cb(Xét,Z/pZ)
be the category of bounded complexes of Z/pZ-sheaves on Xét. Take an ι!-acyclic resolution
K• ∈Cb(Xét,Z/pZ) of K (see the remark before Lemma 10.5.6) and a bounded complex L• ∈
Cb(Xét,Z/pZ) which represents L. Note that K• is a j∗-acyclic resolution of K as well. We
further take an injective resolution J• ∈ C+(Xét,Z/pZ) of (K• ⊗ L•)t. Let f :K• → j∗j

∗K•

and g :J• → j∗j
∗J• be the canonical maps, and let f ′ : (K• ⊗L•)t → ((j∗j∗K•)⊗L•)t be the

map induced by f . Then in Db(Xét,Z/pZ), the diagram (10.5.7) decomposes as follows:

((j∗j∗K•) ⊗ L•)t

δloc
V,Y

(K)⊗Lid (1)

((j∗j∗K•) ⊗ L•)t

(uf ⊗id)t (2)

((j∗j∗K•) ⊗ L•)t
ϕ1

u
f′ (3)

j∗j∗J•

ug (4)

j∗j∗J•

δloc
V,Y

(K⊗LL)

((ι∗ι!K•[1]) ⊗ L•)t
ϕ2

� (Cone(f)• ⊗ L•)t
ϕ3

= Cone(f ′)•
ϕ4

Cone(g)• ι∗ι!J•[1],
ϕ5

�

where ϕ1, ϕ2, ϕ4 and ϕ5 are canonical maps of complexes and ϕ2 and ϕ5 are isomorphisms
in Db(Xét,Z/pZ). The arrow ϕ3 is defined as the natural identification of complexes, and the
composite of the lower row agrees with the bottom arrow in (10.5.7). The squares (2) and (3)
commute in the category of complexes, and the squares (1) and (4) commute in Db(Xét,Z/pZ)
by the definition of connecting morphisms. Thus the diagram (10.5.7) commutes. �

4e SÉRIE – TOME 40 – 2007 – N◦ 4



p-ADIC ÉTALE TATE TWISTS AND ARITHMETIC DUALITY 579
Proof of Lemma 10.5.3. – There is a commutative diagram in Db(Xét,Z/pZ)

(Rj∗μ
⊗n−1
p [−1])⊗L T(n′)X

(δ1[−1])⊗Lid

Rj∗μ
⊗N+1
p [−1]

(4.2.1)

δ2[−1]

ι∗ν
N
Y [−N − 2]

ι∗Rι!T(n− 1)X ⊗L T(n′)X ι∗Rι!T(N + 1)X ι∗ν
N
Y [−N − 2],

−GysN+1
ι

�

where the left horizontal arrows are product morphisms and we wrote δ1 and δ2 for
δloc
V,Y (T(n − 1)X) and δloc

V,Y (T(N + 1)X), respectively. The left square commutes by Lem-
ma 10.5.6, and the right square commutes by (4.4.2). By this commutative diagram and the
anti-commutativity of (10.4.4), the square

(ι∗T(n)X [−1])⊗L ι∗T(n′)X

product

(an[−1])⊗Lan′

ι∗Rj∗μ
⊗N+2
p [−1]

(8.2.2)

(K(n)[−1])⊗L K(n′)
(10.4.7)

μ′ ⊗ νN
Y [−N − 2]

(10.5.8)

commutes in Db(Yét,Z/pZ) (cf. the diagram in Lemma 10.4.6). Now we prove Lemma 10.5.3,
using a similar argument as for Lemma 10.4.6. We first show (1). Because there is no non-zero
morphism from U(n) to D(μ′ ⊗ νn′−2

Y [−n′ + 1]), it suffices to show the commutativity of the
central square in (10.5.4). Our task is to show that the composite morphism

(K(n)[−1])⊗L (μ′ ⊗ νn′−2
Y )[−n′ + 1]−→ (K(n)[−1])⊗L K(n′) (10.4.7)−−−−−→ μ′ ⊗ νN

Y [−N − 2]

induces (−1)n · f1, which follows from the commutativity of (10.5.8) and Lemmas 10.4.1 (2)
and 2.1.1. The details are straightforward and left to the reader. We next show (2). There are no
non-zero morphisms from μ′⊗νn−2

Y [−n+1] to D(U1Mn′
[−n′]), and the left square in (10.5.5)

commutes by a similar argument as for (1). Hence there is a unique morphism f4 :U1Mn[−n] →
D(U1Mn′

[−n′ − 1]) fitting into (10.5.5) (cf. Lemma 2.1.2 (2)), which necessarily agrees with
f3 by the commutativity of (10.5.8) and the construction of these maps. Thus we obtain the
lemma. �

This completes the proof of Proposition 10.4.8 and Theorems 10.1.1 and 10.1.3. �
10.6. Consequences in the local case

We state some consequences of Theorem 10.1.1. Let the notation be as in Theorem 10.1.1
and Remark 10.1.5. Let Hi

ur(V,μ⊗n
pr ) be the image of the canonical map Hi(X,Tr(n)X) →

Hi(V,μ⊗n
pr ).

COROLLARY 10.6.1. – Hi
ur(V,μ⊗n

pr ) and H2d−i
ur (V,μ⊗d−n

pr ) are exact annihilators of each
other under the non-degenerate pairing (10.1.6).

Proof. – By Theorem 6.1.1 and a similar argument as for Lemma 10.2.1, one can easily check
that the composite map

H2d(V,μ⊗d
pr )

δloc
V,Y (Tr(d)X)−−−−−−−−−→ H2d+1

Y (X,Tr(d)X)
tr(X,Y )−−−−−→ Z/prZ
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agrees with the trace map trV . Hence the diagram with exact rows

Hi(X,Tr(n)X)

(10.1.2) �

Hi(V,μ⊗n
pr ) δloc

(10.1.6) �

Hi+1
Y (X,Tr(n)X)

(10.1.2) �

H2d+1−i
Y (X,Tr(d− n)X)∗

(δloc)∗

H2d−i(V,μ⊗d−n
pr )∗ H2d−i(X,Tr(d− n)X)∗

commutes up to signs. Here the superscript ∗ means the Pontryagin dual, and the bijectivity of
the left and the right vertical arrows follows from Theorem 10.1.1. Now the assertion follows
from a simple diagram chase on this diagram. �

Corollary 10.6.1 includes some non-trivial duality theorems in the local class field theory.
More precisely, we have the following consequence, where K := Frac(A) and Br(C) :=
H2(C,Gm):

COROLLARY 10.6.2. – Let C be a proper smooth curve over K with semistable reduction.
Then there is a non-degenerate pairing of finite Z/prZ-modules

Pic(C)/pr × pr Br(C)−→ Z/prZ.

This corollary recovers the p-adic part of the Lichtenbaum duality [42] for C and the Tate
duality [59] for the Jacobian variety of C (cf. [53], p. 413). However our proof is not new,
because we use Artin’s proper base-change theorem for Brauer groups.

Proof. – Take a proper flat regular model X over B of C with semistable reduction. Let Y
be the closed fiber of X/B, and define Br(X) := H2(X,Gm). There is a commutative diagram
with exact rows

0 Pic(X)/pr H2(X,Tr(1)X) pr Br(X) 0

0 Pic(C)/pr H2(C,μpr ) pr Br(C) 0

See (4.5.3) for the upper row. In view of Corollary 10.6.1, our task is to show Pic(C)/pr =
H2

ur(C,μpr ). Because the left vertical arrow is surjective, it is enough to show Br(X) = 0. Now
by Artin’s proper base-change theorem: Br(X) � H2(Y,Gm) (cf. [20], III.3.1), we are reduced
to showing H2(Y,Gm) = 0, which follows from the classical Hasse principle for the function
fields of Y (cf. [53], §3, p. 388). Thus we obtain the corollary. �
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Appendix. An application of p-adic Hodge theory to the coniveau filtration

By KEI HAGIHARA 1

Department of Mathematical Sciences, University of Tokyo,
Komaba, Meguro-ku, Tokyo 153-8914 Japan

e-mail: keihagi@ms.u-tokyo.ac.jp

A.1. Every ‘suitable’ cohomology theory H∗ for schemes, for example étale cohomology, is
naturally accompanied with an important filtration called coniveau filtration, which is defined as
follows:

NrHi(X) := Im
(

lim−→
Z∈X�r

Hi
Z(X) −→ Hi(X)

)
= Ker

(
Hi(X) −→ lim−→

Z∈X�r

Hi(X −Z)
)
,

where H∗
Z(X) denotes cohomology groups with support in Z and we put

X�r =
{
Z ⊂ X | closed in X and codimX(Z) � r

}
for non-negative integer r. This filtration, built into any cohomology group, is intimately related
to algebraic cycles and often enables us to control their behavior by various cohomological tools,
although the filtration per se has not been well understood yet. The aim of this appendix is to
analyze this interesting filtration on étale cohomology groups by means of p-adic Hodge theory.
More precisely, we give an upper bound of it, assuming that X is a variety over a ‘p-adic’
field. This appendix is included here to provide Theorem A.2.6 below, which has been used in
Theorem 4.4.7 of the main body.

A.1.1. To state our results more precisely, we fix the setting. Let A be a henselian discrete
valuation ring A whose fraction field K has characteristic 0 and whose residue field k is perfect
of characteristic p > 0. Consider the following diagram of schemes:

Y
i

�

X

�

X
j

Spec(k) Spec(A) Spec(K),

where the vertical arrows are proper and flat, and both squares are cartesian. We assume that X

is a regular semistable family over A, i.e., X is regular, X is smooth over K and Y is a reduced
divisor on X with normal crossings. Fix an algebraic closure K of K , let A be the integral closure
of A in K and let k be its residue field. We denote Y ⊗k k, X⊗A A and X ⊗K K by Y , X and
X , respectively, and write i and j for the canonical maps Y → X and X → X, respectively. For
simplicity we always suppose that X and X are connected. Throughout this appendix, we use the
general notation fixed in §§1.6–1.7 of the main body.

1 The Appendix is based on his master’s thesis at Tokyo University on 1999. He expresses his gratitude to Professors
Kazuya Kato and Shuji Saito for helpful conversations and much encouragement. He is supported by the 21st century
COE program at Graduate School of Mathematical Sciences, University of Tokyo.
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A.1.2. By standard theorems in étale cohomology theory, we have spectral sequences

Ea,b
2 = Ha

(
Y, i∗Rbj∗Z/pn(m)

)
=⇒ Ha+b

(
X,Z/pn(m)

)
,

Ea,b
2 = Ha(Y , i

∗
Rbj∗Z/pn) =⇒ Ha+b(X,Z/pn),

where Z/pn(m) denotes the sheaf μ⊗m
pn on Xét. We define the filtration F • ⊂Hq(X,Z/pn(m))

as that induced by the former spectral sequence. Alternatively, one can define

F rHq
(
X,Z/pn(m)

)
:= Im

(
Hq

(
X, τ�q−rRj∗Z/pn(m)

)
→ Hq

(
X,Z/pn(m)

))
.

Now we have two filtrations N• and F • on Hq(X,Z/pn(m)). One defines the filtrations N• and
F • on Hi(X,Z/pn) as well in the same way.

A.1.3. Our results are stated as follows.

THEOREM A.1.4. – Let r, s and n be non-negative integers with 0 � r � s/2. Then

NrHs
(
X,Z/pn(s− r)

)
⊂ F rHs

(
X,Z/pn(s− r)

)
.

THEOREM A.1.5. – Let r, s and n be non-negative integers with 0 � r � s/2. Then

NrHs(X,Z/pn)⊂ F rHs(X,Z/pn).

Remark A.1.6. – If r is outside of this interval, these assertions are straightforward by
coniveau spectral sequences (cf. [10]).

A.1.7. If r = 1, s = 3 and X is smooth, then Theorem A.1.4 is originally due to Langer
and Saito ([39], 5.4). Their proof is K-theoretic and reduces the problem to semi-purity of
cohomology groups with coefficients in K2-sheaves. On the other hand, our proof is p-adic
Hodge theoretic, i.e., we will reduce the problem to semi-purity of cohomology groups with
coefficients in étale sheaves of p-adic vanishing cycles.

A.1.8. The filtration F • is highly non-trivial in the p-adic coefficients case, in contrast with
the ‘�-adic coefficients’ case, where for instance in the good reduction case, the corresponding
filtration is trivial. In fact, as an application of Theorem A.1.5 we will prove the following:

COROLLARY A.1.9. – Let s, r and n be non-negative integers with 0 � r � s/2. Assume that
X is ordinary, i.e., Ha(Y ,Bb

Y
) = 0 for all a and b (see Theorem 3.3.7 for Bb

Y
). Then we have

lengthZ/pnNrHs(X,Z/pn) �
∑

r�a�s

lengthWn(k)H
a(Y ,Wnωs−a

Y
),

where Wnω•
Y denotes the de Rham–Witt complex defined in [25].

A.1.10. Bloch and Esnault [8] proved that Γ(Y,Ωm
Y ) 	= 0 ⇒ N1Hm(X,Z/p) 	=

Hm(X,Z/p), assuming that X has ordinary good reduction and that the spectral sequence

Ea,b
2 = Ha(Y , i

∗
Rbj∗Z/p) =⇒ Ha+b(X,Z/p)

degenerates at E2-terms. Corollary A.1.9 recovers and generalizes this fact.
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A.1.11. We will prove Theorems A.1.4, A.1.5 and Corollary A.1.9 in §A.2, §A.3 and §A.4
below, respectively.

A.2. Proof of Theorem A.1.4

We first reduce Theorem A.1.4 to Lemma A.2.2 below. For Z ∈ X�r , let Z be the closure of
Z in X. There is a commutative diagram

Hs
Z(X,Z/pn(s− r)) Hs(X,Z/pn(s− r))

Hs
Z(X, τ�s−rRj∗Z/pn(s− r)) Hs(X, τ�s−rRj∗Z/pn(s− r)).

(A.2.1)

Put A := Rj∗Z/pn(s − r). Since Hi
Z(X,A) � Hi

Z(X,Z/pn(s − r)), there is a long exact
sequence

· · · →Hs
Z(X, τ�s−rA)→ Hs

Z

(
X,Z/pn(s− r)

)
→ Hs

Z(X, τ�s−r+1A)→ Hs+1
Z

(X, τ�s−rA)

→ · · · .
Now Theorem A.1.4 is reduced to

LEMMA A.2.2. – Hs
Z(X, τ�s−r+1A) = 0 for any Z ∈ X�r and any r, s ∈ Z as in the

theorem.

Indeed, by this lemma the left vertical arrow in (A.2.1) is surjective, and Theorem A.1.4
follows from a diagram chase on (A.2.1).

A.2.3. The rest of this subsection is devoted to Lemma A.2.2. The following sublemma
follows from a simple argument on flatness, whose proof is left to the reader:

LEMMA A.2.4. – For Z ∈ X�r , put Zp := Z ⊗A k with Z the closure of Z ⊂ X. Then
Zp ∈ Y �r .

A.2.5. Let Z , Z and Zp be as in Lemma A.2.4. For q ∈ Z, we put Cn(q) := i∗Rj∗Z/pn(q).
Since Rmj∗Z/pn(q) � i∗i

∗Rmj∗Z/pn(q) for m > 0, we have

Hs
Z

(
X, τ�s−r+1Rj∗Z/pn(s− r)

)
� Hs

Zp

(
Y, τ�s−r+1 Cn(s− r)

)
.

We prove that the right-hand side is zero. There are distinguished triangles

τ�s−r+1Cn−1(s− r)−→ τ�s−r+1Cn(s− r)−→ τ�s−r+1C1(s− r),

i∗Rmj∗Z/p(s− r)[−m]−→ τ�mC1(s− r)−→ τ�m+1C1(s− r)

in D+(Yét), where the former triangle is obtained from the short exact sequence

0 −→ Z/pn−1(s− r) −→ Z/pn(s− r)−→ Z/p (s− r)−→ 0

and, in fact, distinguished because the map i∗Rs−rj∗Z/pn(s − r) → i∗Rs−rj∗Z/p (s − r)
is surjective (cf. Theorem 3.3.7 (1) in the main body). By these distinguished triangles and
Lemma A.2.4, Lemma A.2.2 is reduced to the following semi-purity result:

THEOREM A.2.6 (Semi-purity). – For any Zp ∈ Y �r and any a,m, q with a � r−1, we have

Ha
Zp

(
Y, i∗Rmj∗Z/p (q)

)
= 0.
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A.2.7. By a standard norm argument, Theorem A.2.6 is reduced to the case where K contains
primitive p-th roots of unity. In this case, we have Z/p (q) � Z/p (m) on X , and it suffices to
consider the case m = q. Hence Theorem A.2.6 is reduced to the vanishing

Ha
Zp

(Y,ωb
Y,log) = Ha

Zp
(Y,ωb

Y /Bb
Y ) = Ha

Zp
(Y,Bb

Y ) = 0 for any a, b with a � r − 1

by the Bloch–Kato–Hyodo theorem (cf. Theorem 3.3.7). By a similar argument as for [46], 1.7,
the sheaves ωb

Y /Bb
Y and Bb

Y are locally free (OY )p-modules of finite rank. By [25], (1.5.1), there
is an exact sequence

0 −→ ωb
Y,log −→ ωb

Y
1−C−1

−−−−−→ ωb
Y /Bb

Y −→ 0.

Therefore we are further reduced to the following lemma:

LEMMA A.2.8. – Let F be a locally free (OY )p-module of finite rank. Then Ha
Zp

(Y,F) is
zero for any a � r − 1.

A.2.9. Since the absolute Frobenius morphism FY :Y → Y is finite, H∗
Zp

(Y,F) is isomorphic
to H∗

Zp
(Y,FY ∗(F)). Hence we are reduced to the case that F is a locally free OY -module of

finite rank. Take an étale covering {Ui}i∈I of Y which trivializes F . By a local-global spectral
sequence ([66], V.6.4 (3)), it suffices to prove that

Ha
Zp×Y Ui

(Ui,OUi) = 0 for any a � r − 1 and any i ∈ I,

where H∗
Z(X,•) denotes the sheaf of cohomology groups with support ([66], V.6). One can

easily check this triviality by the comparison theorem on Zariski and étale cohomology groups
for coherent sheaves ([66], VII.4.3) and standard facts on depth (see, e.g., [22], (3.8)), noting
that Y and Ui (i ∈ I) are Cohen–Macauley ([1], VII.4.8). This completes the proof of claim,
Lemma A.2.2 and Theorem A.1.4. �

COROLLARY A.2.11. – Let q, r and s be integers with 0 � r � s/2. Then

NrHs
(
X,Z/p (q)

)
⊂ F rHs

(
X,Z/p (q)

)
.

Proof. – Indeed the restriction on Tate twists is unnecessary in this n = 1 case by a standard
norm argument. �
A.3. Proof of Theorem A.1.5

Because we do not need to care about Tate twists on X , the proof becomes much simpler. As
in the proof of Theorem A.1.4, it is enough to show that

Hs
Zp

(Y , τ�s−r+1i
∗
Rj∗Z/pn) = 0

for arbitrary Zp ∈ Y
�r

. Since Z/pn(1)� Z/pn on X for any n, we have an exact sequence

0 −→ i
∗
Rqj∗Z/pn−1(q)−→ i

∗
Rqj∗Z/pn(q) −→ i

∗
Rqj∗Z/p (q) −→ 0

(cf. [9], p. 142, line 9 and [25], (1.11.1)). Hence it suffices to show that

Ha
Z

(
Y , i

∗
Rqj∗Z/p(q)

)
= 0
p
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for any a, q with 0 � a � r − 1. Take a finite extension k0/k over which Zp ⊂ Y is defined,
and take a closed subset Zp,0 of Y ⊗k k0 such that Zp,0 ⊗k0 k � Zp under the isomorphism
(Y ⊗k k0)⊗k0 k � Y . Now let K ′ be a finite extension of K whose residue field k′ contains k0,
and let A′ be the integer ring of K ′. By [66], VII.5.8, our task is to show that

Ha
Zp,0⊗k0k′

(
Y ⊗k k′, i′∗Rqj′∗Z/p(q)

)
= 0

for any a, q with 0 � a � r − 1, where i′ (resp. j′) denotes the morphism Y ⊗k k′ → X ⊗A A′

(resp. X ⊗K K ′ → X ⊗A A′). This assertion follows from the same argument as in Theorem
A.2.6. Thus we obtain Theorem A.1.5. �
A.4. Proof of Corollary A.1.9

Let Wnω∗
Y ,log

be the modified logarithmic Hodge–Witt sheaves (cf. §3.3 of the main body).
The ordinarity assumption implies that

Ha(Y , i
∗
Rbj∗Z/pn) � Ha(Y ,Wnωb

Y ,log
)

([9], (9.2), [25], (1.10)) and that

Ha(Y ,Wnωb
Y ,log

)⊗Z/pn Wn(k)� Ha(Y ,Wnωb
Y

)

([9], (7.3), [28], (2.3)). Hence Corollary A.1.9 follows from Theorem A.1.5. �
Remark A.4.1. – The theorem of Bloch–Esnault in [8], (1.2) is a direct consequence of

Corollary A.1.9 with r = n = 1 and X/A smooth. They derived some interesting results on
algebraic cycles from this case. Therefore Corollary A.1.9 would provide us with much more
information.
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