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ANALYTIC SHEAVES IN BANACH SPACES ✩

BY LÁSZLÓ LEMPERT AND IMRE PATYI

ABSTRACT. – We introduce a class of analytic sheaves in a Banach space X , that we shall call
cohesive sheaves. Cohesion is meant to generalize the notion of coherence from finite dimensional analysis.
Accordingly, we prove the analog of Cartan’s Theorems A and B for cohesive sheaves on pseudoconvex
open subsets Ω ⊂ X , provided X has an unconditional basis. We also give a few applications.
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RÉSUMÉ. – On introduit une classe de faisceaux analytiques dans un espace de Banach complexe X ,
que nous appelons faisceaux cohésifs. La cohésion généralise l’idée de cohérence en dimension finie.
On démontre l’analogue des Théorèmes A et B de Cartan pour un faisceau cohésif sur un ouvert
pseudoconvexe Ω ⊂ X , en supposant que X admette une base inconditionnelle. Finalement, on propose
quelques applications.

© 2007 Elsevier Masson SAS

0. Introduction

In finite dimensional complex analysis and geometry coherent analytic sheaves play a central
role, for the following four reasons:

(i) Most sheaves that occur in the subject are coherent.
(ii) Over pseudoconvex subsets of C

n their higher cohomology groups vanish.
(iii) The class of coherent sheaves is closed under natural operations.
(iv) Whether a sheaf is coherent can be decided locally.
The purpose of this paper is to introduce a comparable class of sheaves, that we shall call

cohesive, in Banach spaces. This notion is different from coherence, which formally makes
sense in infinite dimensions as well. However, coherence is not relevant for infinite dimensional
geometry, since it has to do with finite generation, while in infinite dimensional spaces one
frequently encounters sheaves, such as tangent sheaves and ideal sheaves of points, that are not
finitely generated over the structure sheaf. The structure sheaf itself is not known to be coherent
in any infinite dimensional Banach space, either.

We shall define cohesive sheaves in general Banach spaces (always over C). However, we
are able to prove meaningful results about cohesive sheaves only in some Banach spaces,
e.g., in those that have an unconditional basis. (Our main results do not generalize to certain
nonseparable spaces, and we do not know whether they hold in all separable spaces, or at least
in those that have a Schauder basis.—For the notion of Schauder and unconditional bases, see
Section 1.)

✩ Research partially supported by NSF grant DMS 0203072 and a Research Initiation Grant from Georgia State
University.
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454 L. LEMPERT AND I. PATYI
Cohesive sheaves are sheaves of modules with an extra structure and a special property. We
shall arrive at their definition in four steps. Given Banach spaces X,E, and an open Ω ⊂ X ,
the sheaf OE = OE

Ω of germs of holomorphic functions U → E, U ⊂ Ω open, will be called
a plain sheaf. It is regarded as a sheaf of modules over O = OC. If U ⊂ Ω is open, F is
another Banach space and Hom(E,F ) denotes the Banach space of bounded linear operators,
then any holomorphic ϕ :U → Hom(E,F ) induces a homomorphism OE |U → OF |U . Such
homomorphisms will be called plain.

Next one defines when a sheaf A of O-modules over Ω is analytic. In traditional finite
dimensional terminology analytic sheaves are the same as sheaves of O-modules. However, the
latter notion is adequate only if one is satisfied with studying O-modules of finite type; already
in finite dimensional spaces the sheaf of Banach (space or bundle) valued holomorphic germs
has a richer structure than a mere O-module. For example, certain infinite sums of sections make
sense, which cannot be explained in terms of the O-module structure. In the finite dimensional
context Leiterer in [13] proposed to capture this richness by introducing a Fréchet space structure
on Γ(U,A), U ⊂ Ω open; in this way he obtained the notion of an analytic Fréchet sheaf. For
infinite dimensional Ω the corresponding notion would not be practical, though, and instead our
definition will be inspired by a suggestion of Douady [7]. To generalize the notion of a complex
analytic space, he proposed that the infinite dimensional analog of a ringed space should be a
“functored space”. We shall say that a sheaf A of O-modules over Ω is endowed with an analytic
structure if for every plain sheaf E a submodule Hom(E ,A) ⊂ HomO(E ,A) is specified. The
correspondence E �→ Hom(E ,A) should satisfy two natural conditions; then we also say that
A is an analytic sheaf. An O-homomorphism E → A will be called analytic if its germs are in
Hom(E ,A). Any plain sheaf A has a natural analytic structure, namely Hom(E ,A) will consist
of germs of plain homomorphisms.

Our notion of analyticity slightly conflicts with the traditional terminology: while every sheaf
of O-modules admits an analytic structure, this structure is not unique, see 3.7.

Now consider an infinite sequence

· · · → F2 →F1 →A→ 0(∗)

of analytic sheaves and homomorphisms over Ω, with each Fn plain. We shall say that (∗) is a
complete resolution of A if for each pseudoconvex U ⊂ Ω the induced sequence on sections

· · · → Γ(U,F2) → Γ(U,F1) → Γ(U,A)→ 0(∗∗)

is exact and, moreover, the same is true if in (∗∗) each Fn is replaced by Hom(E ,Fn) and A by
Hom(E ,A), for any plain sheaf E .

Finally, we shall call an analytic sheaf A over Ω cohesive if Ω can be covered by open sets
over which A has a complete resolution.

Analytic sheaves locally isomorphic to plain sheaves obviously are cohesive, but at first glance
the notion of a complete resolution is quite formidable, and it is not clear how such a resolution
can be constructed beyond trivial situations. An exact sequence like (∗) is perhaps doable, but
how will one ensure the exactness of (∗∗) before cohomology vanishing is known? An answer is
that in the spaces we consider it suffices to check the exactness of (∗∗) for U in an appropriate
subclass of pseudoconvex sets, see Section 6. Using this device it is possible to show that certain
important ideal sheaves are cohesive (see Section 10):

THEOREM 1. – Suppose a Banach space X has an unconditional basis, Ω ⊂ X is open, and
M ⊂ Ω is a direct submanifold (see Section 1). If E is another Banach space, then the sheaf
J ⊂OE

Ω of germs that vanish on M is cohesive.
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ANALYTIC SHEAVES IN BANACH SPACES 455
The main result of this paper is the following generalization of Cartan’s Theorems A and B
(see Section 9):

THEOREM 2. – If a Banach space X has an unconditional basis, Ω ⊂ X is pseudoconvex, and
A is a cohesive sheaf over Ω, then

(a) A admits a complete resolution over Ω; and
(b) Hq(Ω,A) = 0 for q � 1.

If coherence was useful because of the four reasons listed earlier, it would make sense to test
the notion of cohesion against (i), . . . , (iv). As to (iv) and (ii), being a cohesive sheaf is a local
property, and at least in spaces with unconditional bases, higher cohomology groups of cohesive
sheaves do vanish. As to (i), so far two types of sheaves have occurred in infinite dimensional
analysis and geometry: the sheaf of sections of a holomorphic Banach bundle, and the ideal
sheaf of a submanifold. The former is always cohesive, and, as said, the ideal sheaf of a direct
submanifold is also, provided one works in a Banach space that has an unconditional basis. For
this reason, the theory of cohesive sheaves allows one to study geometry and analysis on direct
submanifolds.

In the Appendix we show that the ideal sheaf of certain analytic subsets is not cohesive; but,
since those analytic subsets are “pathological” anyway, this result counts in favor of the notion
of cohesion. Indeed, it suggests that intuitively bizarre analytic subsets can be eliminated from
complex geometry by testing whether their ideal sheaf is cohesive. We shall briefly introduce and
study analytic subvarieties along these lines in Section 11.

Finally, item (iii) above. The class of cohesive sheaves is closed under certain sheaf theoretical
operations, but not under all operations that coherent sheaves admit; we give various examples
as we develop the theory. This seems to be a feature one has to learn to live with, and is due
to peculiarities that Banach space valued functions can exhibit, even those of finitely many
variables.

The reader may nevertheless ask why do sheaf theory in infinite dimensional spaces? Are there
applications? There certainly are many, within infinite dimensional geometry, and in Section 12
we give a sample. These applications follow from our Theorems 1 and 2 in the same way as many
geometric consequences follow from Cartan’s analogous theorems; and there does not seem to
be any other way to obtain them. In fact, as in finite dimensions, to understand the analysis and
geometry of complex submanifolds, one must develop sheaf theory.

The present paper is the fruit of research independently done by the two authors. Since our
main results were essentially equivalent, and the proofs very similar, we decided to publish them
jointly. (However, Sections 11 and 13 are solely due to the first author, and the manuscript [29]
contains some further applications not discussed here.)

A few words about the history of analytic cohomology vanishing in vector spaces. Cartan’s
Theorems A and B were generalized by Bishop and Bungart, and then by Leiterer to certain, so
called Banach coherent analytic Fréchet sheaves over finite dimensional Stein spaces. Douady
proved the vanishing of higher cohomology groups of certain sheaves over compact subsets of
Banach spaces; see [1,3,4,7,13]. More recently the first author considered pseudoconvex sets Ω
in Banach spaces that have an unconditional basis, and proved in [17] that for a trivial Banach
(or even Fréchet) bundle over Ω higher cohomology groups vanish. This was generalized in [23,
24], and finally in [19] and [27] to arbitrary locally trivial holomorphic Banach bundles. Further
results on sheaf cohomology were obtained by the second author in [25,26,28]. The present paper
borrows ideas from most of these works.
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1. Glossary

1.1. For matters of sheaf theory we refer to [32] or [2], for complex analysis in Banach spaces
to [21], and for basic notions of infinite dimensional complex geometry to [14, Sections 1–2].
In this glossary we shall nevertheless spell out a few basic definitions of infinite dimensional
complex analysis and geometry. Let X and E be Banach spaces, always over C, and Ω ⊂ X
open. We denote the space of continuous linear operators X → E by Hom(X,E), endowed with
the operator norm.

1.2. DEFINITION. – A function f :Ω → E is holomorphic if for each x ∈ Ω there is an
L ∈Hom(X,E) such that

f(y)− f(x) = L(y − x) + o
(
‖y − x‖X

)
, Ω � y → x.

This leads to the notion of what is called in [14] a rectifiable complex Banach manifold: it is a
Hausdorff space, sewn together from open subsets of Banach spaces (charts), with holomorphic
sewing functions. Using the charts one can define holomorphic maps between rectifiable complex
Banach manifolds.

1.3. Let M be a rectifiable complex Banach manifold.

DEFINITION. – (a) A closed subset N ⊂ M is a submanifold if for each x ∈ N there are a
neighborhood U ⊂ M , an open subset O of a Banach space X , a closed subspace Y ⊂ X , and a
biholomorphic map U → O that maps U ∩N onto O ∩ Y .

(b) N is a direct submanifold if, in addition, Y above has a closed complement.

The definition implies that the submanifold N itself is a rectifiable complex Banach manifold.

DEFINITION. – A locally trivial holomorphic Banach bundle over M is a holomorphic map
π :L → M , where L is a rectifiable complex Banach manifold, and each fiber π−1x, x ∈ M , is
endowed with the structure of a complex vector space. It is required that for every x ∈ M there
be a neighborhood U ⊂ M , a Banach space E, and a biholomorphic map π−1U → E × U that
maps each fiber π−1y, y ∈ U , linearly on E × {y} ≈ E.

1.4. DEFINITION. – An upper semicontinuous function u :Ω → [−∞,∞) is plurisubhar-
monic if for every pair x, y ∈X the function C � λ �→ u(x + λy) is subharmonic where defined.

DEFINITION. – The open set Ω is pseudoconvex if for each finite dimensional subspace Y ⊂ X
the set Ω∩ Y is pseudoconvex in Y .

It follows from the characterization of pseudoconvexity in [21, 37.5 Theorem (e) or (f)] that if
Ω is pseudoconvex, then so is any Ω′ ⊂ X ′ biholomorphic to it.

1.5. DEFINITION. – In a Banach space X a sequence e1, e2, . . . is a Schauder basis if every
x ∈ X can be uniquely represented as a norm convergent sum

x =
∞∑

n=1

λnen, λn ∈ C.

The basis is unconditional if, in addition, the above series converge after arbitrary rearrange-
ments.

The spaces lp, Lp[0,1] for 1 < p < ∞, l1, and the space c0 of sequences converging to zero
all have unconditional bases, but L1[0,1] and C[0,1] have Schauder bases only, see [33].
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2. Plain sheaves

2.1. Fix a Banach space (X,‖ ‖) and an open Ω ⊂ X . This notation will be used throughout
the paper. As explained in the Introduction, if E is another Banach space, the sheaf OE = OE

Ω

of germs of holomorphic functions U → E, U ⊂ Ω open, is called a plain sheaf. In particular,
O = OC is a sheaf of rings and each OE is in a natural way a sheaf of O-modules. In general,
a sheaf of O-modules will simply be called an O-module. The sheaf of homomorphisms between
O-modules A and B will be denoted HomO(A,B), itself an O-module.

If F is also a Banach space and U ⊂ Ω is open, any holomorphic ϕ :U → Hom(E,F )
defines a homomorphism OE |U � e �→ ϕe ∈ OF |U . Such homomorphisms are called plain
homomorphisms. The following is obvious:

PROPOSITION. – If a plain homomorphism induced by ϕ :U → Hom(E,F ) annihilates germs
of constant functions, then ϕ = 0.

It follows that germs of plain homomorphisms OE |U →OF |U form an O-module

Homplain

(
OE ,OF

)
⊂HomO

(
OE ,OF

)
,

isomorphic to OHom(E,F ); its sections over any open U ⊂ Ω are in one-to-one correspondence
with the plain homomorphisms OE |U →OF |U .

3. Analytic sheaves

3.1. If A is an O-module over Ω, an analytic structure on A is the choice, for each plain
sheaf E , of a submodule Hom(E ,A)⊂HomO(E ,A), subject to

(i) if E and F are plain sheaves, x ∈Ω, and ϕ ∈Homplain(E ,F)x, then
ϕ∗ Hom(F ,A)x ⊂Hom(E ,A)x;

(ii) Hom(O,A) = HomO(O,A).
An O-module endowed with an analytic structure is called an analytic sheaf. The restriction

of an analytic sheaf to an open U ⊂ Ω inherits an analytic structure. Given analytic sheaves A,B
over Ω and an open U ⊂ Ω, a homomorphism ϕ :A|U → B|U is called analytic if for every
plain E the induced homomorphism

ϕ∗ :HomO(E|U,A|U)→HomO(E|U,B|U)

maps Hom(E|U,A|U) in Hom(E|U,B|U).
Any plain sheaf F can be endowed with an analytic structure Hom(E ,F) = Homplain(E ,F).

In what follows, we shall automatically use this analytic structure on plain sheaves. More gener-
ally, the sheaf S of holomorphic sections of a locally trivial holomorphic Banach bundle S → Ω
has a canonical analytic structure: if over an open U ⊂ Ω the restriction S|U is isomorphic to a
trivial bundle F ×U → U , this isomorphism induces an isomorphism of O-modules

HomO
(
OE ,OF

)∣∣U ∼−→HomO
(
OE ,S

)∣∣U,

and we define Hom(OE ,S) so that its restriction to such U is the image of Hom(OE ,OF )|U .
Analytic homomorphisms between plain sheaves are just the plain homomorphisms, and,

more generally, a homomorphism between plain, resp. analytic, sheaves E and B is analytic if
its germs are in Hom(E ,B). We shall write Hom(A,B) for the sheaf of germs of analytic
homomorphisms between analytic sheaves A and B; if A is plain, this is consistent with
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



458 L. LEMPERT AND I. PATYI
notation already in use. Further, we shall write Hom(A,B) for the Abelian group of analytic
homomorphisms A → B; it is canonically isomorphic to the group Γ(Ω,Hom(A,B)) of
sections.

It is possible to define an analytic structure on the sheaf Hom(A,B) itself, but in this
generality the structure will not have useful properties. To keep the discussion simple we shall
therefore not consider Hom(A,B) as an analytic sheaf.

3.2. The notion of an analytic structure is naturally expressed in the language of category
theory—even in more than one way—, of which we shall avail ourselves only very sparingly.
Consider the category S of O-modules and O-homomorphisms over Ω (a monoidal category
with unit O). Now O-modules over Ω also form a category enriched over S, or an S-category,
see [12], that we shall denote by O. This means that with any pair A,B ∈ObO, i.e., O-modules,
an O-module HomO(A,B) ∈ S is associated (the “hom-object”); further, homomorphisms

HomO(A,B)⊗HomO(B,C)→HomO(A,C)

are specified, satisfying certain axioms. There is also the S-subcategory P of O, whose objects
are plain sheaves and the hom-object associated with E ,F ∈ObP is Homplain(E ,F).

Any A∈ ObO determines a contravariant S-functor HomO(·,A) from P to O. This functor
associates with E ,F ∈ObP the homomorphism

Homplain(E ,F)→HomO
(
HomO(F ,A),HomO(E ,A)

)
,

induced by composition. In this language an analytic structure on A ∈ ObO is an S-subfunctor
Hom(·,A) of HomO(·,A) satisfying Hom(O,A) = HomO(O,A); subfunctor meaning that
Hom(E ,A)⊂HomO(E ,A) is a submodule for every E ∈ObP.

3.3. The sum A⊕B of analytic sheaves has a natural analytic structure: one simply says that
ϕ ∈HomO(E ,A⊕B) is analytic if prA ϕ and prB ϕ are both analytic. If C is a further analytic
sheaf, an O-homomorphism θ :C|U →A⊕B|U will be analytic precisely when α = prA θ and
β = prB θ are. Now θ is uniquely determined by α and β, and is denoted by α⊕ β. Conversely,
an O-homomorphism ψ :A ⊕ B|U → C|U will be analytic if its compositions γ, δ with the
embeddings ιA :A→A⊕B, ιB :B→A⊕B are; in this case we write ψ = γ + δ.

Clearly, OE ⊕OF is analytically isomorphic to OE⊕F .

3.4. If A is an analytic sheaf, an analytic structure can be defined on any O-submodule S ⊂A
by letting

Hom(E ,S) = Hom(E ,A)∩HomO(E ,S).

It is straightforward that (i) and (ii) in 3.1 are satisfied. Similarly, there is an analytic structure
on A/S . With the projection π :A→A/S one lets

Hom(E ,A/S) = π∗ Hom(E ,A)⊂HomO(E ,A/S).(3.1)

Again, (i) in 3.1 is straightforward to check. As for (ii), let τ ∈ HomO(O,A/S)x. Over a
neighborhood U of x there is a section a ∈ Γ(U,A) such that τ1 = πa(x). If an analytic
homomorphism α :O|U →A|U is defined by αf = fa, its germ α at x will satisfy

τ = π∗α ∈ π∗ Hom(O,A) = Hom(O,A/S).

In view of (3.1) therefore indeed Hom(O,A/S) = HomO(O,A/S).
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3.5. In particular, if ϕ :A → B is an analytic homomorphism, Kerϕ ⊂ A, Imϕ ⊂ B, and
Cokerϕ = B/ Imϕ all have natural analytic structures. Also, ϕ factors through an isomorphism
of O-modules

ψ :A/Kerϕ→ Imϕ,(3.2)

which is easily seen to be analytic. In spite of this, ψ is not necessarily an isomorphism of analytic
sheaves, as the following example shows.

Let Ω = X = {0}, and consider a closed subspace K of a Banach space E. The epimorphism
E → E/K = F induces an analytic epimorphism ϕ :OE → OF over Ω. In this case (3.2)
becomes ψ :OE/OK → OF , with each plain sheaf OE ,OF ,OK endowed with its canonical
analytic structure. Now the image of the induced map

ψ∗ :Hom
(
OF ,OE/OK

)
→Hom

(
OF ,OF

)
contains idOF only if K is complemented. Otherwise ψ∗ is not surjective, and the inverse of ψ
is not analytic.

3.6. Another way to express the same is that given an exact sequence

0 →A β−→B γ−→C → 0

of analytic homomorphisms, it is not necessarily the case that A ≈ Imβ and B/ Imβ ≈ C as
analytic sheaves. These isomorphisms hold precisely when for all plain E the induced sequence

0 →Hom(E ,A) β∗−−→Hom(E ,B) γ∗−−→Hom(E ,C) → 0

is also exact. For this reason, whenever one considers analytic homomorphisms and their
diagrams, one should also consider the diagrams obtained by applying the functors Hom(E , ·).
This, at least partly, motivates the definitions in Section 4 to be presented.

3.7. Any sheaf A of O-modules can be endowed with an analytic structure by setting
Hom(E ,A) = HomO(E ,A). In addition to this maximal structure there is also a minimal
analytic structure defined as follows. If U ⊂ Ω is open, let us say that a homomorphism α :E|U →
A|U is of finite type if there are a finite dimensional Banach space F , a plain homomorphism
ϕ :E|U → OF |U , and a homomorphism β :OF |U → A|U such that α = βϕ. Germs of
finite type homomorphisms form a sheaf Hommin(E ,A), and the choice Hom(E ,A) =
Hommin(E ,A) defines an analytic structure. Clearly, any analytic structure on A satisfies

Hommin(E ,A)⊂Hom(E ,A)⊂HomO(E ,A).

Neither of the two extreme structures will be of any importance in the sequel, except when A
is locally finitely generated. In this case it is often useful to endow it with the minimal analytic
structure Hommin(E ,A).

3.8. Further examples of analytic sheaves come from analytic Fréchet sheaves over a finite
dimensional Ω, as defined in [13]. If A is such a sheaf, the sheaves Hom(OE ,A) of so called
AF -homomorphisms endow A with an analytic structure in the sense of this paper.
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4. Resolutions

4.1. DEFINITION. – A sequence A → B → C of analytic homomorphisms over Ω is called
completely exact if for each pseudoconvex U ⊂ Ω and each plain sheaf E over Ω the induced
sequence on sections

Γ
(
U,Hom(E ,A)

)
→ Γ

(
U,Hom(E ,B)

)
→ Γ

(
U,Hom(E ,C)

)
or, equivalently,

Hom(E|U,A|U)→Hom(E|U,B|U)→ Hom(E|U,C|U),

is exact. In general, a sequence of analytic homomorphisms is completely exact if its
subsequences of length three are all completely exact.

Completely exact sequences are clearly exact, and an exact sequence 0 → A β−→ B → C is
completely exact precisely when β is an isomorphism between the analytic sheaves A and
β(A) ⊂B.

PROPOSITION. – If B γ−→ C → 0 is a completely exact sequence over a pseudoconvex Ω, F
is a plain sheaf over Ω, and ϕ :F → C is an analytic homomorphism, then there is an analytic
homomorphism ψ :F →B such that ϕ = γψ.

Proof. – Choose ψ in the preimage of ϕ under the surjective homomorphism

γ∗ :Hom(F ,B)→ Hom(F ,C).

4.2. DEFINITION. – An infinite completely exact sequence

· · · ϕ2−−→F2
ϕ1−−→F1

ϕ0−−→A→ 0(4.1)

is called a complete resolution of A if each Fn is plain.

We shall denote (4.1) by F• →A→ 0, or even A• → 0, with A0 = A, An = Fn for n � 1.

PROPOSITION. – In a complete resolution (4.1) each Kerϕn−1 = Imϕn has a complete
resolution.

Proof. – Indeed, · · · ϕn+1−−−→Fn+1
ϕn−−→ Imϕn → 0 is a complete resolution.

4.3. A homomorphism β• = (βn) of analytic complexes A• and B• is called analytic if each
βn :An →Bn is analytic.

PROPOSITION. – Given a complete resolution A• → 0 and a completely exact sequence
B• → 0 over a pseudoconvex Ω, any analytic homomorphism ϕ0 :A0 → B0 can be extended
to an analytic homomorphism A• →B•.

Proof. – Let αn :An+1 →An and βn :Bn+1 →Bn denote the differentials of the complexes,
α−1 = 0, β−1 = 0. Suppose for 0 � j � n analytic homomorphisms ϕj have been constructed so
that ϕj−1αj−1 = βj−1ϕj . Then βn−1(ϕnαn) = ϕn−1αn−1αn = 0; since Hom(An+1,B•) → 0
is exact, there is a

ϕn+1 ∈Hom(An+1,Bn+1) with ϕnαn = βnϕn+1.

Continuing in the same way we obtain the desired homomorphism ϕ• :A• →B•.
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4.4. THEOREM. – Let · · · α1−−→ A1
α0−−→ A0 → 0 be a completely exact sequence over a

pseudoconvex Ω. If An has a complete resolution for n � 1, then so does A0.

Proof. – First we construct a completely exact sequence B• →A0 → 0, where each Bn has a
complete resolution, and B1 is plain. Let · · · → F ′

n →Fn
ϕn−−→An → 0 be a complete resolution

of An, n � 1. By 4.3 there are analytic homomorphisms ψn such that the diagram

0 0 0

· · · A3
α2 A2

α1 A1
α0 A0 0

· · · F3
ψ2

ϕ3

F2
ψ1

ϕ2

F1

ϕ1

(4.2)

commutes. We claim that the sequence

· · · β3−−→F3 ⊕Kerϕ2
β2−−→F2 ⊕Kerϕ1

β1−−→F1
β0−−→A0 → 0(4.3)

is completely exact, where we write ιn for the inclusion Kerϕn → Fn and, with notation
introduced in 3.3,

β0 = α0ϕ1, β1 = ψ1 − ι1, βn = (ιn ⊕ψn−1)(ψn − ιn), n � 2.

One checks that the βn’s do map into the sheaves indicated in (4.3).
With a pseudoconvex U ⊂ Ω and a plain E , apply Γ(U,Hom(E , ·)) to both diagrams (4.2)

and (4.3). We obtain diagrams of Abelian groups

· · · a3
A3

a2
A2

a1
A1

a0
A0 0

· · · p3
F3

p2

f3

F2
p1

f2

F1

f1(4.4)

and

· · · b3−→ F3 ⊕Kerf2
b2−→ F2 ⊕Kerf1

b1−→ F1
b0−→ A0 → 0;(4.5)

the first is commutative, its top row is exact, and each fn is surjective. Here

b0 = a0f1, b1 = p1 − i1, bn = (in ⊕ pn−1)(pn − in), n � 2,

where in = Kerfn → Fn is the inclusion. It is straightforward computation that (4.5) is a
complex. To prove (4.3) is completely exact we have to show (4.5) is exact.

First, b0 is surjective because both a0 and f1 are. Second, if ξ ∈Ker b0 then

f1ξ ∈Kera0 = Ima1 = Ima1f2 = Imf1p1;

we used the fact that f2 is surjective. Let f1ξ = f1p1ζ and ω = p1ζ − ξ ∈ Kerf1, so that
ξ = b1(ζ,ω) ∈ Im b1. Third, if n � 1 and (ξ, η) ∈ Ker bn = Ker(pn − in), then η = pnξ and
0 = fnpnξ = anfn+1ξ. Hence, as before

fn+1ξ ∈ Iman+1 = Iman+1fn+2 = Imfn+1pn+1.
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Choose ζ so that fn+1ξ = fn+1pn+1ζ; then ω = pn+1ζ − ξ ∈ Kerfn+1. We conclude (ξ, η) =
bn+1(ζ,ω) ∈ Im bn+1. Thus (4.5) is exact and (4.3) is completely exact. It follows from the
Proposition in 4.2 that each Fn ⊕ Kerϕn−1 has a complete resolution; hence indeed there is a
completely exact sequence

· · · → B3
β2−−→B2

β1−−→E1
ε0−→A0 → 0,

where E1 = F1 is plain and each Bn has a complete resolution.
Consider the completely exact sequence

· · · → B3
β2−−→B2

β1−−→ Kerε0 → 0.

By what we have proved there are completely exact sequences

· · · → C4 →C3 →E2
ε1−→ Kerε0 → 0, and so

· · · → C4 →C3 →E2
ε1−→E1

ε0−→A0 → 0,

with E2 plain and each Cn having a complete resolution. Continuing in this way we obtain a
complete resolution E• →A0 → 0.

4.5. THEOREM (“Three lemma”). – Suppose 0 → A β−→ B γ−→ C → 0 is a completely exact
sequence over a pseudoconvex Ω. If two among A,B, and C have a complete resolution, then so
does the third.

Proof. – We can assume that A⊂B and β is the inclusion map.
(a) If A and B have a complete resolution, then 4.4 implies that C also has one.
In both remaining cases C is known to have a complete resolution · · · → F ϕ−→ C → 0. By the

Proposition in 4.1 there is a commutative diagram

0

0 A
β

B
γ

C 0

F

ψ

F ,

ϕ

(4.6)

where ψ :F →B is an analytic homomorphism. We let ι :Kerϕ →F denote the inclusion, and
claim that the sequence

0 → Kerϕ
ψ⊕ι−−−→A⊕F β−ψ−−−→B→ 0(4.7)

is completely exact.
With a pseudoconvex U ⊂ Ω and a plain E apply Γ(U,Hom(E , ·)) to (4.6) and (4.7) to obtain

diagrams of Abelian groups

0 A
b

B
c

C 0

F

p

F

f
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and

0 → Kerf
p⊕i−−→ A⊕ F

b−p−−−→ B → 0.(4.8)

The first is commutative, its top row is exact, and f is surjective. The latter is clearly a complex
and exact at Kerf ; we have to check it is exact at the next two terms. If (ξ, η) ∈Ker(b− p) then
pη = bξ = ξ, whence 0 = cpη = fη. Thus η ∈ Kerf and (ξ, η) = (p ⊕ i)η ∈ Imp ⊕ i. On the
other hand, if ζ ∈ B then with some η ∈ F

−cζ = fη = cpη, i.e., ζ + pη = ξ ∈Ker c = A.

Thus ζ = ξ − pη ∈ Im(b − p). We conclude that (4.8) is exact and so (4.7) is completely exact.
Note that Kerϕ has a complete resolution by 4.2.

(b) Now suppose A too has a complete resolution. Then A⊕F also has one and by part (a)
of this proof, (4.7) implies that so does B.

(c) If B, rather than A, is known to have a complete resolution, then by part (b) (4.7) implies
that A⊕F has a complete resolution. In view of the completely exact sequence

0 →F →A⊕F →A→ 0,

part (a) lets us conclude A has a complete resolution.

4.6. There is a clear parallel between properties of coherent sheaves and sheaves that have
complete resolutions. However, one should bear in mind that if A and B have complete
resolutions and ϕ :A→ B is an analytic homomorphism, then Kerϕ ⊂ A will not necessarily
have a complete resolution, not even locally; nor will Imϕ ⊂ B, see 5.3 below. Because of this,
the proof of the Three lemma is more complicated than the corresponding proof for coherent
sheaves.

5. Cohesive sheaves

5.1. DEFINITION. – An analytic sheaf A over Ω is called cohesive if each x ∈ Ω has a
neighborhood over which A admits a complete resolution.

An analytic sheaf A that is locally isomorphic to plain sheaves (in other words, the sheaf of
sections of a locally trivial holomorphic Banach bundle) is cohesive. Indeed, if E is a plain sheaf
over an open U ⊂ Ω such that E ≈A|U , then · · · → 0 →E ≈−→A|U → 0 is a complete resolution.
Over a finite dimensional Ω there are many more examples of cohesive sheaves. It can be shown
that coherent sheaves with their minimal analytic structure discussed in 3.7 are cohesive. We
do not know whether Leiterer’s Banach coherent analytic Fréchet sheaves, with their analytic
structure defined in 3.8, are cohesive or not.—The theory developed in this paper nevertheless
can be generalized so that it includes the sheaves considered by Leiterer. In the definition of
plain sheaves OE one can restrict to Banach spaces E in some full subcategory of all Banach
spaces, and base the notion of cohesive sheaves on this restricted class of plain sheaves. As long
as the subcategory of Banach spaces we choose is closed under (an appropriate completion of)
countable direct sums, all our results up to Section 9 carry over. If the subcategory consists of L1

spaces of discrete measure spaces, also known as l1 spaces, the resulting cohesive sheaves over
finite dimensional Ω will be the same as Banach coherent analytic Fréchet sheaves. This follows
from [13, 1.3. Proposition, Theorems 2.2, 2.3, and Lemma 3.4].

Further examples of cohesive sheaves can be constructed by the following theorem, an
immediate consequence of 4.5.
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THEOREM. – Suppose 0 → A → B → C → 0 is a completely exact sequence over Ω. If two
among A,B, and C are cohesive, then so is the third one.

5.2. If X ′ is another Banach space, Ω′ ⊂ X ′ is open, and f :Ω →Ω′ is biholomorphic, sheaves
of OΩ′ -modules can be pulled back by f to sheaves of OΩ-modules. The pullback of a plain sheaf
will be plain, and the pullback of an analytic sheaf will carry a natural structure of an analytic
sheaf; finally, the pullback of a cohesive sheaf will be cohesive.

5.3. However, not all properties of coherent sheaves carry over to cohesive ones. The
following is an adaptation of an example of Leiterer [13, p. 94].

Example. – Over C there is an analytic endomorphism ϕ :F → F of a plain sheaf such that
the sequence

0 → Kerϕ→F → Imϕ→ 0

is completely exact, but neither Kerϕ nor Imϕ is cohesive.

Let F = l2, F = OF
C

, and with ζ ∈ C consider ψ(ζ) ∈Hom(F,F ),

ψ(ζ)(y0, y1, . . .) = (y1 − ζy0, y2 − ζy1, . . .), y = (yn) ∈ F.

In fact, ψ :C → Hom(F,F ) is holomorphic, and induces an analytic endomorphism ϕ of F .
The kernel K of ϕ is supported on the disc D = {ζ ∈ C: |ζ| < 1}, where it is generated by the
function h(ζ) = (ζn)∞n=0.

As to J = Imϕ, over D it agrees with F . Indeed, ψ(ζ) has a right inverse

(yn)∞0 �→
(

n∑
ν=1

ζν−1yn−ν

)∞

0

when ζ ∈ D. It follows that over D ϕ has an analytic right inverse F →F , whence J |D = F|D;
also for any plain E = OE and open U ⊂ D the sequence

0 → Γ
(
U,Hom(E ,K)

)
→ Γ

(
U,Hom(E ,F)

) ϕ∗−−→ Γ
(
U,Hom(E ,J )

)
→ 0(5.1)

is exact.
In fact, (5.1) is exact for all open U ⊂ C. To prove this we shall need two auxiliary results.

PROPOSITION 1. – Let W ⊂ C be open and σ :W → Hom(E,F ). If for each e ∈ E the
function σ(·)e :W → F is holomorphic, then σ itself is holomorphic.

Proof. – This is the content of [21, Exercise 8E], whose solution rests on Cauchy’s formula
and the principle of uniform boundedness.

PROPOSITION 2. – Let c ∈ ∂D, let U ⊂ C be a neighborhood of c, and σ :U\D →
Hom(E,F ) holomorphic. If for each e ∈ E the function σ(·)e analytically continues across
c, then so does σ.

Proof. – Fix ε > 0 so that c is the unique point on ∂(U\D) at distance � ε to (1 + ε)c = c′.
With A ∈ (0,∞) and B ∈ (0,1/ε) consider

EAB =
{
e ∈ E:

∥∥σ(k)(c′)e
∥∥ � ABkk!, k = 0,1, . . .

}
.

F
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These are closed subsets of E, and the assumption, combined with Cauchy estimates, implies
that their union is all of E. By Baire’s category theorem some EAB has an interior point, whence
0 ∈ int EAB for some (perhaps other) A,B; and in fact∥∥σ(k)(c′)e

∥∥
F

� ABkk!‖e‖E , e ∈E

(with yet another A,B). But then this implies that the Taylor series of σ about c′ has radius of
convergence � 1/B > ε, and represents the analytic continuation of σ across c.

Now we return to the analysis of the example, and show that for every plain E = OE the
sequence

0 →Hom(E ,K)→Hom(E ,F) ϕ∗−−→Hom(E ,J ) → 0(5.2)

is exact; exactness over D we already know. As always, the issue is whether ϕ∗ is surjective.
To verify this, consider c ∈ C\D and a germ ι ∈Hom(E ,J )c represented by a homomorphism
E → J over some connected neighborhood U ⊂ C of c. Let this homomorphism be induced by
a holomorphic function θ :U →Hom(E,F ), and write

θ(ζ)e =
(
θn(ζ)e

)∞
n=0

∈ F, ζ ∈ U, e ∈E.

For each e ∈ E then θ(·)e induces a section of J |U . Since K|C \ D = 0, there is a unique F
valued holomorphic function g = (gn) on a neighborhood of U \D such that

θ(ζ)e = ψ(ζ)g(ζ), i.e., θν(ζ)e = gν+1(ζ)− ζgν(ζ)

for ν = 0,1,2, . . . and ζ ∈ U \D.
One computes

−
∑

n�ν<N

ζn−ν−1θν(ζ)e = gn(ζ)− ζn−NgN (ζ)

for N � n, hence

lim
N→∞

(
−

∑
n�ν<N

ζn−ν−1θν(ζ)e
)∞

n=0

= g(ζ).(5.3)

For fixed ζ ∈ U \ D, if we vary e, the N -th term on the left-hand side of (5.3) represents a
continuous linear operator SN :E → F . According to (5.3) the SN converge pointwise, so that
by the principle of uniform boundedness σ(ζ) = limSN is a continuous linear operator. Hence
we have a function σ :U\D → Hom(E,F ),

σ(ζ)e =

(
−

∞∑
ν=n

ζn−ν−1θν(ζ)e

)∞

n=0

∈ F, e ∈ E,

to which Proposition 1 applies, cf. (5.3). We conclude that σ is holomorphic; also ψσ = θ over
U\D.

Now if c /∈ ∂D then U\D is a neighborhood of c. If c ∈ ∂D then by (5.3) σ(·)e continues
across c for each e ∈ E. Therefore Proposition 2 implies that σ itself continues across c. In either
case there are a neighborhood V of c and a holomorphic σ :V → Hom(E,F ) satisfying ψσ = θ
over V . Passing to germs at c we obtain ι ∈ Imϕ∗, and (5.2) is indeed exact.

Note that for any open U ⊂ C

H1
(
U,Hom(E ,K)

)
= H1

(
U ∩D,Hom(E ,O)

)
= H1

(
U ∩D,OE∗)

= 0,
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see [1, Theorem 4], [3, p. 331], [13, Theorem 2.3], or 9.1 below. Hence the cohomology sequence
of (5.2) gives that (5.1) is exact.

Thus we proved that 0 → K → F → J → 0 is completely exact. However, K = Kerϕ is
not cohesive. Indeed, on a connected neighborhood U of 1 ∈ C any analytic homomorphism
E →K|U ⊂F|U of a plain sheaf E must be 0 on U\D, hence on all of U . Therefore J = Imϕ
cannot be cohesive, either, by virtue of the theorem in 5.1.

5.4. Similar constructions lead to two more noteworthy examples.

Example. – There is a cohesive sheaf A over C whose support has interior points; yet it is not
all of C.

We take F = l2, F = OF as in the previous example, but now we define a holomorphic
ψ :C →Hom(F,F ) by

ψ(ζ)(y0, y1, . . .) = (y0, y1 − ζy0, y2 − ζy1, . . .).

The analytic endomorphism ϕ :F → F induced by ψ has kernel 0 this time. As in 5.3, one
shows that the sequence 0 →F ϕ−→ Imϕ → 0 is completely exact. Thus Imϕ ≈F and—by 9.2
below—A= F/ Imϕ are cohesive; and the support of this latter is C\D.

5.5. Example. – There are a plain sheaf F over C and two cohesive subsheaves A, B ⊂ F
such that A∩B is not cohesive.

Again let F = l2, F = OF and consider holomorphic maps ψ1, ψ2 :C → Hom(F,F )

ψ1(ζ)(y0, y1, . . .) = (y0, ζy0, y1, ζy1, y2, ζy2, . . .),

ψ2(ζ)(y0, y1, . . .) = (y0, y1, ζy1, y2, ζy2, y3, . . .),

and the induced analytic endomorphisms ϕ1,ϕ2 of F . The left inverses of ψ1(ζ), ψ2(ζ) given by

y �→ (y0, y2, y4, . . .), resp. y �→ (y0, y1, y3, y5, . . .)

induce analytic left inverses of ϕ1,ϕ2, so that ϕj are in fact analytic isomorphisms on their im-
ages. In particular, A = Imϕ1 and B = Imϕ2 are cohesive. However, A ∩ B coincides with
Kerϕ of the Example in 5.3, and is not cohesive.

6. Resolutions and cohomology

6.1. Now we turn to the following two questions. First, how can cohesive sheaves be
constructed in infinite dimensional spaces, beyond those that are locally isomorphic to plain
sheaves? Second, do higher cohomology groups of cohesive sheaves over pseudoconvex sets
vanish? Eventually we shall answer the second question in the affirmative in rather general
Banach spaces, and will obtain a useful if quite particular answer to the first. In this section
and in the next we shall concern ourselves with a special case of the questions: how to recognize
when a sequence of analytic homomorphisms is a complete resolution; and, once a complete
resolution E• → A → 0 over a pseudoconvex Ω is granted, how to prove Hq(Ω,A) = 0 for
q � 1? Of course, one hopes to exploit Hq(Ω,En) = 0, q � 1, which is known in a large class
of Banach spaces. It turns out that the two issues are related, and are best treated in generality
greater than that of Banach spaces, at least initially.
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6.2. We start with a simple result on the continuity of Čech cohomology groups, versions of
which have been well understood and widely used in complex analysis for a long time.

LEMMA. – Let K be a sheaf of Abelian groups over a topological space Ω, and q � 2 an
integer. For N = 1,2, . . . , let UN ,VN , and WN be families of open subsets of Ω, each finer than
the previous one. Assume the sequences {UN}∞N=1, {VN}∞N=1, and {WN}∞N=1 are increasing,
and the refinement homomorphisms

Hq(UN ,K)→ Hq(VN ,K), Hq−1(VN ,K)→ Hq−1(WN ,K)

are zero. Then, writing U =
⋃∞

1 UN and W =
⋃∞

1 WN , the refinement homomorphism
Hq(U,K) →Hq(W,K) is also zero.

Proof. – We shall write V =
⋃∞

1 VN . Let us introduce the following notation. If S is a
family of open subsets of Ω, (C•(S), δ) denotes the Čech complex of S, with values in K, and
Z•(S) = Ker δ the complex of cocycles. Given a finer family T and a refinement map T → S,
we denote the induced homomorphism C•(S) → C•(T) by f �→ f |T. Among the families
in the Lemma there are various refinement maps: first of all, the inclusions UN → UM → U,
etc. for N � M ; then refinement maps WN → VN → UN , that we choose to commute with the
inclusions; and finally, W → U, the union of the maps WN → UN . We fix these maps and the
induced homomorphisms on the groups of cochains.

To prove the Lemma, let f ∈ Zq(U) represent a cohomology class [f ] ∈ Hq(U,K). By the
assumption, for each N there is a gN ∈ Cq−1(V) such that f |VN = δgN |VN . It follows that
(gN − gN+1)|VN ∈ Zq−1(VN ), hence, again by the assumption, there is an hN ∈ Cq−2(W)
such that (gN − gN+1)|WN = δhN |WN . If we define

kN = gN + δ

N−1∑
1

hn ∈Cq−1(W),

then kN+1|WN = kN |WN , and so there is a k ∈ Cq−1(W) such that k|WN = kN |WN . Since
f |W = δk, the image of [f ] in Hq(W,K) is 0; the cocycle f being arbitrary, the Lemma is
proved.

6.3. Let P be a basis of open sets in a topological space Ω. (In subsequent applications, Ω will
be an open subset of a Banach space and P the family of pseudoconvex subsets of Ω.)

DEFINITION. – We shall say that P is exhaustive if, given any P ∈ P and any open cover U

of P , there is an increasing sequence of PN ∈ P, each covered by finitely many elements of U,
such that

⋃∞
1 PN = P .

6.4. THEOREM. – Let Ω be a topological space, P an exhaustive basis of open sets in Ω, with
each U ∈ P paracompact, and let O ⊂ P be another basis of open sets. Both P and O are
assumed to be closed under finite intersections. Consider an infinite sequence

· · · →A2
α1−−→A1

α0−−→A0 → 0(6.1)

of sheaves of Abelian groups over Ω. Assume
(i) the induced sequence on sections

· · · → Γ(U,A2) → Γ(U,A1) → Γ(U,A0)→ 0(6.2)

is exact for all U ∈O; and
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(ii) Hq(U,Ar) = 0 for q, r � 1, U ∈ P.
Then

(a) (6.2) is exact for all U ∈P; and
(b) Hq(U,A0) = 0 for q � 1, U ∈P.

If (6.2) is exact then clearly so is (6.1). Now given an exact sequence (6.1) and a fixed
U ⊂ Ω, the sole hypothesis Hq(U,Ar) = 0 for all q, r � 1 already implies Hq(U,A0) = 0,
q � 1, provided that either Ar = 0 for some r, or Ω is finite dimensional. In the absence of these
finiteness conditions it is not hard to construct examples where Hq(U,Ar) = 0 for r � 1 but not
for r = 0. Since the resolutions we are working with in this paper are over infinite dimensional Ω,
and typically all Ar �= 0, we are forced to make the stronger assumptions (i) and (ii). The proof
will still rest on a finiteness property, the one in the definition of exhaustivity. When it comes to
applying the Theorem in complex analysis, the hardest is precisely to prove that the family of
pseudoconvex sets is exhaustive.

Proof of (b). – Since for any U ∈P the family P|U = {P ∈P: P ⊂ U} is an exhaustive basis
of open sets in U , it will suffice to verify (b) for U = Ω, under the assumption that Ω itself is
in P. This is what we shall do.

We start by introducing Kr = Kerαr−1 = Imαr ⊂ Ar and K0 = A0, that fit in short exact
sequences

0 →Kr+1 ↪→Ar+1
αr−−→Kr → 0, r � 0.(6.3)

By (i) the associated sequences

0 → Γ(U,Kr+1)→ Γ(U,Ar+1) → Γ(U,Kr)→ 0(6.4)

are also exact for U ∈O.
The heart of the matter is the following: given an increasing sequence of families UN ⊂ O

such that U =
⋃∞

1 UN covers Ω, there is an increasing sequence of families VN ⊂ O, each VN

finer than UN , such that
⋃∞

1 VN also covers Ω, and the refinement homomorphism

Hq(UN ,Kr) → Hq(VN ,Kr) is zero for q � 1.(6.5)

To verify this, choose an increasing sequence of PN ∈ P, each covered by a finite TN ⊂ U,
such that

⋃∞
1 PN = Ω. At the price of introducing empty sets at the start and repeating some of

the PN ’s, we can assume that TN ⊂ UN ∩TN+1, and has � N elements. Consider the covering

VN = {V ∈O: V ⊂ PN ∩ T with some T ∈ TN}

of PN . Thus VN is finer than UN .
(6.4) induces exact sequences

0 C•(UN ,Kr+1) C•(UN ,Ar+1) C•(UN ,Kr) 0

0 C•(VN ,Kr+1) C•(VN ,Ar+1) C•(VN ,Kr) 0.

With vertical arrows determined by a refinement map VN → UN , this diagram is commutative.
The bottom row induces an exact sequence
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· · · →Hq(VN ,Ar+1)→ Hq(VN ,Kr) c−→(6.6)

Hq+1(VN ,Kr+1)→ Hq+1(VN ,Ar+1) → · · ·
Assumption (ii) implies that VN is a Leray covering of PN for the sheaf Ar+1, hence the first
and last groups in (6.6) vanish if q � 1. It follows that the connecting homomorphism c is an
isomorphism.

There are also connecting homomorphisms Hq(UN ,Kr) → Hq+1(UN ,Kr+1), but they need
not be isomorphisms. The various connecting and refinement homomorphisms make up a
commutative diagram

Hq(UN ,Kr) Hq+1(UN ,Kr+1) · · · Hq+N (UN ,Kr+N )

ρ

Hq(VN ,Kr)
≈

Hq+1(VN ,Kr+1)
≈ · · · ≈

Hq+N (VN ,Kr+N ).

Since some refinement map VN → UN factors through TN , the map ρ in the diagram factors
through Hq+N (TN ,Kr+N ). This latter group, however, is zero, because TN has � N elements.
Therefore ρ is the zero map, and (6.5) follows.

Similarly, there is an increasing sequence WN ⊂ O, each WN finer than VN , such that
W =

⋃∞
1 WN covers Ω and the refinement homomorphism

Hq(VN ,Kr) →Hq(WN ,Kr) is zero for q � 1.(6.7)

Now consider an arbitrary cover U ⊂ O of Ω, and let UN = U for N = 1,2, . . . . Construct
VN ,WN ,W as above. In view of 6.2, (6.5) and (6.7) imply Hq(U,Kr) → Hq(W,Kr) is zero
for q � 2, and therefore so is the canonical homomorphism Hq(U,Kr) → Hq(Ω,Kr). Since the
inductive limit of these homomorphisms, as U ranges over coverings ⊂ O, is the identity map of
Hq(Ω,Kr), it follows that Hq(Ω,Kr) = 0 for q � 2.

To take care of q = 1, consider a portion of the exact cohomology sequence associated with
(6.3):

H1(Ω,Ar+1)→ H1(Ω,Kr)→ H2(Ω,Kr+1),

in which the first and third terms vanish by (ii) and by what we have just proved. It follows that
the middle term also vanishes. Since in all this proof Ω can be replaced by any U ∈ P, in fact

Hq(U,Kr) = 0, q � 1, r � 0, U ∈P.(6.8)

In particular (r = 0) Hq(U,A0) = 0 for q � 1, as claimed. �
Proof of (a). – With U ∈ P consider now the beginning of the exact cohomology sequence of

(6.3)

0 → Γ(U,Kr+1)→ Γ(U,Ar+1) → Γ(U,Kr)→ H1(U,Kr+1).(6.9)

In view of (6.8) the last term is 0, so that (6.9) is a short exact sequence, which is just another
way of expressing (a).

7. Resolutions and cohomology in Banach spaces

7.1. Before we can apply the Theorem in 6.4 to complete resolutions over an open subset
Ω of a Banach space, we must find a suitable family P. Assumption (ii) and the conclusion of
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the Theorem suggest that P should consist of all pseudoconvex subsets of Ω. However, it is not
known whether in a general (or even separable) Banach space pseudoconvex subsets form an
exhaustive family, and for this reason we shall restrict ourselves to spaces where exhaustivity is
known. Banach spaces with an unconditional basis (see 1.5) are such; to see this, consider the
following notion. Let X be a Banach space.

DEFINITION. – We say that in an open Ω ⊂ X plurisubharmonic domination is possible if,
given a locally bounded u :Ω → R, there is a continuous plurisubharmonic v :Ω → R such that
v � u.

THEOREM. – (See [18, Theorem 1.1].) If X has an unconditional basis then plurisubharmonic
domination is possible in every pseudoconvex Ω ⊂ X .

Combining [18, Theorem 1.6] with the approximation theorems in [22] or [20] one obtains a
larger class of Banach spaces where plurisubharmonic domination is possible. However, it is not
known whether any restriction at all is needed on X for the theorem to hold.

7.2. LEMMA. – Let X be a Banach space, Ω ⊂ X open, and P the family of pseudoconvex
subsets of Ω. If in each P ∈ P plurisubharmonic domination is possible, then P is exhaus-
tive.

By the Theorem above, the assumption is satisfied if X has an unconditional basis.

Proof. – Let U be an open cover of P ∈ P. To produce the required sequence PN , we can
assume by Lindelöf’s theorem that U = {U1,U2, . . .} is countable. For x ∈ P define u(x) to be
the smallest n such that x ∈ Un. By assumption there is a plurisubharmonic v :P → R such that
u � v; then P is the increasing union of PN = {x ∈ P : v(x) < N} ⊂

⋃N
1 Un, and each PN ∈P.

7.3. Plurisubharmonic domination also has to do with cohomology vanishing:

THEOREM. – Suppose a Banach space X has a Schauder basis, Ω is pseudoconvex, and
L → Ω is a locally trivial holomorphic Banach bundle. If in Ω plurisubharmonic domination
is possible, then Hq(Ω,L) = 0 for q � 1. In particular, if A is a plain sheaf over Ω, then
Hq(Ω,A) = 0.

This is [27, Theorem 1.3c]. Under the stronger assumption that X has an unconditional basis,
the same result was proved earlier in [19].

7.4. COROLLARY. – Suppose a Banach space X has a Schauder basis, Ω is open, and in each
pseudoconvex subset of Ω plurisubharmonic domination is possible. If B• → 0 is a complete
resolution over Ω, then for any plain sheaf E over Ω and pseudoconvex U ⊂Ω

Hq
(
U,Hom(E ,B0)

)
= 0, q � 1.(7.1)

Proof. – Apply 6.4 with P = O consisting of all pseudoconvex subsets of Ω, and Ar =
Hom(E ,Br). The assumptions in 6.4 are satisfied by 7.2 and 7.3, whence (7.1) follows.

7.5. LEMMA. – Let X,Ω be as in 7.4, and

B• →B0 → 0(7.2)

a sequence of analytic homomorphisms over Ω, with Br plain for r � 1. If each x ∈ Ω has a
neighborhood over which (7.2) is completely exact, then it is completely exact over Ω.
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Proof. – This follows from 6.4 if we let P consist of all pseudoconvex subsets of Ω, O consist
of those U ∈ P over which (7.2) is completely exact, and Ar = Hom(E ,Br), E an arbitrary
plain sheaf. Again, the hypotheses in 6.4 are satisfied by 7.2 and 7.3.

8. Gluing complete resolutions

8.1. In this section, X will denote a Banach space with a Schauder basis and Ω ⊂ X
will be pseudoconvex; we shall assume that plurisubharmonic domination is possible in every
pseudoconvex subset of Ω. We shall prove a few results to the effect that if an analytic sheaf
A over Ω has complete resolutions over certain subsets of Ω, then it has one over all of Ω. The
corresponding result in finite dimensions depends on a lemma of Cartan concerning holomorphic
matrices, which is a way of saying that certain holomorphic vector bundles are trivial. We start
with a similar result in our infinite dimensional setting.

8.2. LEMMA. – Let π :L → Ω × C be a locally trivial holomorphic Banach bundle. If the
restriction L|Ω× {ζ} is trivial for some ζ ∈ C, then it is trivial for all ζ ∈ C.

Proof. – This is an immediate consequence of [27, Theorem 1.3d], since each restriction
L|Ω × {ζ} is topologically trivial. Below we give a short proof when X is assumed to have
an unconditional basis, following the scheme of [9, Chapter 8]. First we show that L admits a
holomorphic connection, i.e., there is a holomorphic subbundle of TL that is complementary
to Kerπ∗, and is compatible with the vector bundle operations. If over an open U ⊂ Ω × C

there is a holomorphic connection H ⊂ TL|U , and θ is an L-valued holomorphic 1-form on U ,
another holomorphic connection Hθ over U can be constructed as follows. For y ∈ U , l ∈ Ly ,
and η ∈ TyU , let θl(η) ∈ TlLy denote the vector corresponding to θ(η) ∈ Ly under the canonical
isomorphism Ly ≈ TlLy . Then define

Hθ
l =

{
λ ∈ TlL: λ− θl(π∗λ) ∈Hl

}
, and Hθ =

⋃
l∈L|U

Hθ
l .

One easily checks that the subbundle Hθ ⊂ TL|U thus obtained is indeed a connection;
conversely, any holomorphic connection H ′ on L|U is obtained from H via a unique
holomorphic 1-form θ; and Hθ1+θ2 = (Hθ1)θ2 .

Since L is locally trivial, Ω × C can be covered by open subsets U over which L admits a
holomorphic connection HU . If U ∩ V �= ∅, there is an L-valued holomorphic 1-form θUV = θ
on U ∩ V such that HV = Hθ

U over U ∩ V . The θUV form a holomorphic cocycle with values
in the bundle of L-valued 1-forms. Since X ⊕C has an unconditional basis, the Theorem in 7.3
(or [19, Theorem 1.1]) applies, and it follows that there are holomorphic L-valued 1-forms θU

on each U such that θU − θV = θUV . This latter means that over U ∩ V the connections HθU

U

and HθV

V coincide, and so define a holomorphic connection H on L.
Given H , we can construct an isomorphism between any two restrictions L|Ω × {ζ},

L|Ω×{ζ ′}. If l ∈ L(x,ζ), lift the line segment joining (x, ζ) with (x, ζ ′) to a curve in L, starting
at l and everywhere tangential to H . Denoting the endpoint of the curve by Φ(l), the map Φ will
be an isomorphism between the two restricted bundles. Therefore if one of them is trivial, so is
the other.

8.3. For purposes of this section we introduce the following terminology. Let U ⊂ X be open,
E a Banach space, and GL(E) ⊂ Hom(E,E) the open subset of invertible homomorphisms.
This is in fact a Banach–Lie group.
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DEFINITION. – A holomorphic map ϕ :U → GL(E) is called connectible if there is a
holomorphic ϕ̃ :U × C → GL(E) such that ϕ̃(x,0) = idE and ϕ̃(x,1) = ϕ(x), x ∈ U . The
map ϕ̃ is called a connecting map of ϕ.

PROPOSITION. – Let A be an analytic sheaf over a pseudoconvex W ⊂ X . Given Banach
spaces E,E′, and completely exact sequences

OE |W α−→A→ 0 and OE′ |W α′−→A→ 0,

denote by π,π′ the projections OE⊕E′ →OE , resp. OE′
; then there is a connectible ε :W →

GL(E ⊕E′) such that α′π′ = απε.

Above we identified ε with the analytic endomorphism of OE⊕E′

W it induces.

Proof. – By the Proposition in 4.1 the homomorphisms α′ and α can be factored

α′ = αψ, α = α′ϕ,

with analytic homomorphisms

ψ :OE′ |W →OE |W, ϕ :OE |W →OE′ |W.

Again, we shall denote the corresponding holomorphic maps W → Hom(E′,E), resp.
Hom(E,E′) by the same symbols ψ,ϕ. Defining ε̃ :W ×C → GL(E ⊕E′) by

ε̃(x, ζ)
(

e
e′

)
=

(
idE ζψ(x)
0 idE′

)(
idE 0

ζϕ(x) idE′

)−1 (
e
e′

)
,

(
e
e′

)
∈ E ⊕E′,

it is straightforward that ε(x) = ε̃(x,1) does it.

8.4. PROPOSITION. – Let V,V ′ ⊂ Ω be open, V ∩ V ′ = W and V ∪ V ′ pseudoconvex. If an
analytic sheaf A over V ∪ V ′ has complete resolutions over V and V ′, then it has one over
V ∪ V ′.

Proof. – Consider the end portion of complete resolutions over V and V ′

OE |V α−→A|V → 0 and OE′ |V ′ α′−→A|V ′ → 0.(8.1)

Apply the previous proposition with the restrictions α|W , α′|W . Putting F = E ⊕E′, there are
a holomorphic ε :W → GL(F ) and a connecting map ε̃ :W ×C → GL(F ) such that

α′π′ = απε over W.(8.2)

Glue the trivial bundles

F × (V ×C)→ V ×C and F × (V ′ ×C)→ V ′ ×C

together with the gluing map ε̃, to obtain a holomorphic Banach bundle L → (V ∪ V ′) × C.
Since ε̃(x,0) = id, L|(V ∪V ′)×{0} is trivial; by 8.2, L is therefore trivial over (V ∪V ′)×{1}
as well. Hence there are holomorphic

δ :V → GL(F ) and δ′ :V ′ → GL(F )
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such that ε = δδ
′−1. Since the analytic homomorphisms

απδ :OF |V →A|V and α′π′δ′ :OF |V ′ →A|V ′

agree over W according to (8.2), they induce an analytic homomorphism ϕ0 :OF |V ∪ V ′ →A.
Call F = F1, and let A1 = Kerϕ0. The sequence 0 →A1 ↪→OF1 ϕ0−−→A→ 0 is completely

exact over V and V ′, because the sequences (8.1) were; and by the Three lemma in 4.5 both
A1|V and A1|V ′ have complete resolutions. We can therefore repeat our construction above,
and obtain sequences of analytic homomorphisms

0 →Ar ↪→OFr
ϕr−1−−−→Ar−1 → 0

over V ∪ V ′, that are completely exact over V and V ′. These short exact sequences can be
consolidated in a sequence

· · · →OF2 ϕ1−−→OF1 ϕ0−−→A→ 0,

itself completely exact over V and V ′. In view of 7.5, it is therefore a complete resolution over
V ∪ V ′.

8.5. PROPOSITION. – Suppose Ω is the increasing union of pseudoconvex ΩN ⊂ Ω, N ∈ N,
and A is an analytic sheaf over Ω. If A has a complete resolution over each ΩN , then it has one
over Ω too.

Proof. – There are completely exact sequences

OEN |ΩN
αN−−→A|ΩN → 0,

with Banach spaces (EN ,‖ ‖N ). Consider the l∞ sum

F =
{
e = (eN )∞1 : each eN ∈EN and ‖e‖F = sup

N
‖eN‖N < ∞

}
,

and the projections πN :OF →OEN .
For each N apply the Proposition in 8.3 with α = αN , α′ = αN+1|ΩN . The resulting

connectible ε :ΩN → GL(EN ⊕ EN+1) can be extended to a holomorphic εN :ΩN → GL(F ),
by letting εN (x) for x ∈ ΩN act by identity on each En, n �= N,N + 1. Thus we have

αN+1πN+1 = αNπNεN over ΩN .(8.3)

The maps εN are also connectible; let ε̃N be their connecting map.
Next construct a holomorphic Banach bundle L → Ω × C with fiber F , by gluing together

trivial bundles over ΩN ×C with gluing maps

ε̃M−1ε̃M−2 . . . ε̃N : (ΩM ∩ΩN )×C → GL(F ),

M > N . Again L|Ω × {0} is trivial, whence so is L|Ω × {1} by 8.2. Therefore there
are holomorphic δN :ΩN → GL(F ) such that εN = δNδ−1

N+1. Now (8.3) implies the maps
αN+1πN+1δN+1 and αNπNδN agree over ΩN , hence define an analytic homomorphism
ϕ0 :OF →A.
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Write F1 for F and A1 = Kerϕ0 to obtain, as in 8.4, a sequence 0 → A1 ↪→ OF1 →
A → 0, completely exact over each ΩN . By the Three lemma in 4.5, each A1|ΩN has a
complete resolution. As in 8.4, we can repeat our construction to produce sequences of analytic
homomorphisms

0 →Ar ↪→OFr
ϕr−1−−−→Ar−1 → 0,

that are completely exact over each ΩN , and give rise to a sequence

· · · →OF2 ϕ1−−→OF1 ϕ0−−→A→ 0,(8.4)

itself completely exact over each ΩN . By 7.5, we can conclude that (8.4) is in fact a complete
resolution.

8.6. The Proposition in 8.4 is sufficient to construct a complete resolution of a cohesive sheaf
over compact subsets of a pseudoconvex Ω, and this is all Cartan needed in the finite dimensional
case he studied. The more precise result of Leiterer, that a (complete) resolution exists over all
of Ω—still assuming dimΩ < ∞—depends on 8.5 as well. To deal with infinite dimensional Ω
one more ingredient will be needed.

PROPOSITION. – Let A be an analytic sheaf over Ω; let n ∈ N, p̃ ∈ Hom(X,Cn), and
p = p̃|Ω. If D = p(Ω) ⊂ C

n is pseudoconvex and can be covered by open V ⊂ D such that
A|p−1V has a complete resolution, then A itself has a complete resolution.

Proof. – We first show that A|p−1U has a complete resolution if U ⊂ D is relatively compact
and pseudoconvex. Suppose for some U it does not. Let s :Cn → R be R-linear, c < d real
numbers, and

U+ =
{
z ∈ U : s(z) > c

}
, U− =

{
z ∈ U : s(z) < d

}
.

Both U± are pseudoconvex and U+∪U− = U . It follows from 8.4 that A cannot have a complete
resolution over both p−1U±. Denote by U1 one of U± so that A has no complete resolution
over p−1U1. Choosing further linear forms s1, s2, . . . and c1 < d1, c2 < d2, . . . , etc. we obtain a
sequence U ⊃ U1 ⊃ U2 ⊃ · · · with the property that A|p−1Uk has no complete resolution, k ∈ N.
A judicious choice of sk, ck, dk will ensure that diamUk → 0, so that the Uk converge to some
z ∈ D. Hence the assumption implies that A|p−1Uk has a complete resolution for some k, after
all; this contradiction shows that A|p−1U must have a complete resolution.

Once this granted, exhaust D by an increasing sequence of relatively compact pseudoconvex
DN ⊂ D. Since Ω is the increasing union of the pseudoconvex subsets p−1DN , the proposition
follows from 8.5.

9. The main theorem

9.1. THEOREM. – Suppose a Banach space X has a Schauder basis, Ω ⊂ X is pseudoconvex,
and plurisubharmonic domination is possible in each pseudoconvex subset of Ω. If A is a
cohesive sheaf over Ω, then

(a) A admits a complete resolution;
(b) Hq(Ω,A) = 0 for q � 1; and more generally,
(c) Hq(Ω,Hom(E ,A)) = 0 for q � 1 and E a plain sheaf.

This implies Theorem 2 of the Introduction, in view of the Theorem in 7.1.
4e SÉRIE – TOME 40 – 2007 – N◦ 3



ANALYTIC SHEAVES IN BANACH SPACES 475
Proof. – Fix a Schauder basis e1, e2, . . . ∈X , and let πN :X → X be the projection

πN

( ∞∑
1

λnen

)
=

N∑
1

λnen.

As explained in [17, Section 7], it can be arranged that the norm ‖ ‖ in X is such that
all projections πN − πM have norm � 1, and in what follows we shall assume this. We set
B(x,R) = {y ∈ X: ‖x− y‖ < R}.

There is a function u :Ω → R such that for x ∈ Ω the restriction of A to B(x,2e−u(x)) ⊂ Ω
has a complete resolution; in fact, u can be chosen locally bounded. By assumption there is a
continuous plurisubharmonic function v :Ω → (0,∞) such that v � u. Define

DN =
{
z ∈ Ω∩ πNX: ev(z) < 2N + 2

}
,

ΩN =
{
x ∈ π−1

N DN : ‖x− πNx‖ < e−v(πN x)
}
.

According to [19, Proposition 4.3], each ΩN ⊂ Ω is pseudoconvex. Clearly, any z ∈ DN has
a neighborhood V ⊂ DN such that

ΩN ∩ π−1
N V ⊂ B

(
z,2e−v(z)

)
⊂ B

(
z,2e−u(z)

)
;

in particular, A|ΩN ∩π−1
N V has a complete resolution. By the proposition in 8.6 therefore A|ΩN

also has a complete resolution.
To conclude, note that according to [19, Proposition 4.3] Ω′

N =
⋂

n�N Ωn is a locally finite
intersection—hence each Ω′

N is (open and) pseudoconvex—and Ω =
⋃

Ω′
N . Since each A|Ω′

N

also has a complete resolution, 8.5 applies and we obtain (a). Finally, (b) and (c) follow from (a)
by virtue of 7.4.

9.2. LEMMA. – Suppose a Banach space X has a Schauder basis, Ω ⊂ X is open, and
plurisubharmonic domination is possible in each pseudoconvex subset of Ω. Let A be an analytic
sheaf over Ω and B ⊂ A a cohesive subsheaf. If one of A and A/B is cohesive, then so is the
other.

Proof. – The way subsheaves and quotient sheaves were endowed with an analytic structure in
3.4 implies that for any plain sheaf E over Ω

0 →Hom(E ,B)→Hom(E ,A)→Hom(E ,A/B)→ 0

is exact. If U ⊂ Ω is pseudoconvex, we obtain an exact sequence

0→ Γ
(
U,Hom(E ,B)

)
→ Γ

(
U,Hom(E ,A)

)
→ Γ

(
U,Hom(E ,A/B)

)
→ H1

(
U,Hom(E ,B)

)
= 0

in view of 9.1. Hence 0 →B →A→A/B → 0 is completely exact and the claim follows from
the Theorem in 5.1.

10. Sheaves associated with submanifolds

10.1. Consider Banach spaces X and F , a complemented subspace Y ⊂ X , k ∈ N, and the
sheaf J ⊂OF = OF

X of germs vanishing on Y to order k. Thus over X \ Y the sheaves J and
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OF coincide. There is a complex of analytic homomorphisms

· · · →H2
ϕ1−−→H1

ϕ0−−→H0 = J → 0,(10.1)

that generalizes Koszul’s complex (to which it reduces when codim Y < ∞ and k = 1), defined
as follows. Fix a closed complement Z ⊂ X of Y , and let Er denote the Banach space of
alternating r-linear forms Z ⊕ Z ⊕ · · · ⊕ Z → F , E0 = F . In the natural identification of the
tangent spaces TxX with X , the subspaces Tx(Z + x) ⊂ TxX correspond to Z . Hence sections
of OEr over U ⊂ X can be identified with holomorphic relative r-forms e on U , with values
in F ; relative meaning that e can be evaluated only on r-tuples ξj ∈ TxX,j = 1, . . . , r, that are
tangent to Z +x. We let Hr ⊂OEr denote the sheaf of such holomorphic relative r-forms, which
in addition vanish on Y to order k − r if r < k. Thus Hr = OEr when r � k, and H0 = J .

Furthermore, consider the flow gt on X given by

gt(y + z) = y + (exp t)z, y ∈ Y, z ∈ Z, t ∈ R.

Its infinitesimal generator ξ = dgt/dt|t=0 is a vector field on X , tangential to the subspaces
Z + x. In the identification of Ty+zX with X , the vector ξ(y + z) corresponds to z ∈ Z ⊂ X .
Contraction with ξ defines an analytic homomorphism OEr+1 � e �→ ιξe ∈ OEr . We set ϕr =
ιξ|Hr+1 to construct the complex (10.1).

10.2. LEMMA. – Let V ⊂ Y , W ⊂ Z be open and convex. If U = V × W ⊂ X then the
induced complex Γ(U,H•)→ 0 is exact.

Proof. – Since the flow gt preserves each submanifold Z + x, it induces a pullback operation
g∗t on the sheaf OEr of relative r-forms, and one can define a Lie derivative

Lξ = dg∗t /dt|t=0 :OEr →OEr .

There are also relative exterior derivatives d :OEr →OEr+1 . Both Lξ and d are homomorphisms
of sheaves of Abelian groups and map the complex H• → 0 into itself. Note that E. Cartan’s
identity

Lξ = ιξd + dιξ(10.2)

holds (since it holds on finite dimensional gt-invariant subspaces of each Z + x).
To prove the lemma we have to distinguish between two cases. If 0 /∈W , by the Banach–Hahn

theorem there is a p ∈Hom(Z,C) such that p(z) �= 0 for z ∈W . We extend p to X , constant on
subspaces Y +x. Using the identification Tx(Z +x) ≈ Z , p induces a 1-form on each Tx(Z +x),
hence a holomorphic relative 1-form ω on X . Clearly ιξω = p. Suppose h ∈ Γ(U,Hr+1) is in
the kernel of ϕr∗; thus ιξh = 0. Setting f = ω ∧ h/p ∈ Γ(U,Hr+2), we compute

iξf = (iξω)∧ h/p = h,

so that h ∈ Imϕr+1∗, as needed.
On the other hand, if 0 ∈W then gtU ⊂ U for t � 0. Using (10.2) we write for h ∈Kerϕr∗

h =

0∫
−∞

d

dt
(g∗t h)dt =

0∫
−∞

(Lξg
∗
t h)dt = iξ

0∫
−∞

(g∗t dh)dt,
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with the improper integrals converging exponentially fast. It follows that

f =

0∫
−∞

(g∗t dh)dt ∈ Γ(U,Hr+2),

and h = ϕr+1∗f ∈ Imϕr+1∗, which proves the claim.

10.3. THEOREM. – Suppose X is a Banach space that has a Schauder basis, Ω ⊂ X is open,
and plurisubharmonic domination is possible in each pseudoconvex subset of Ω. If F is another
Banach space, M ⊂ Ω a direct submanifold (see 1.3), and k ∈ N, then the sheaf J ⊂OF = OF

Ω

of germs vanishing on M to order k is cohesive.

Proof. – We prove the theorem by induction on k, so we assume it is true when k is replaced
by any j, 1 � j < k. Since cohesion is a local property, and invariant under biholomorphisms,
we can assume that Ω is pseudoconvex and M = Y ∩ Ω, where Y ⊂ X is a subspace with
complement Z . We shall show that the sequence (10.1), restricted to Ω, is completely exact. To
this end we apply 6.4, with P the collection of pseudoconvex subsets of Ω, O the collection
of V × W ⊂ Ω, where V ⊂ Y , W ⊂ Z are open and convex, and A• = H•|Ω. According to
7.2, P is exhaustive, and assumption (i) of 6.4 has just been verified. Since by the inductive
hypothesis Ar is cohesive for r � 1, assumption (ii) is also satisfied in view of 9.1. Therefore 6.4
gives that Γ(U,H•)→ 0 is exact for U ∈P.

More generally, if E is an arbitrary Banach space, the complex Hom(OE ,H•) → 0 is
isomorphic to a complex of type (10.1), but constructed with Hom(E,F ) replacing F . Hence by
what has already been proved, Γ(U,Hom(OE ,H•)) → 0 is exact for all U ∈P, i.e., (10.1) itself
is completely exact over Ω.

Now we conclude by 9.1 and 4.4. By the former, and by the inductive hypothesis, Hr for r � 1
have complete resolutions over Ω. By the latter, this implies H0|Ω = J also has a complete
resolution, in particular it is cohesive.

10.4. COROLLARY. – Let X,F,Ω and M be as in 10.3. If, in addition, Ω is pseudoconvex,
then any holomorphic function M → F is the restriction of a holomorphic function Ω → F .

Proof. – Let J ⊂ OF denote the sheaf of germs vanishing on M and S the sheaf over Ω
associated with the presheaf

U �→ {f :M ∩U → F is holomorphic}, resp. {0},

depending on whether M ∩ U �= ∅ or = ∅. Restriction to M defines an epimorphism of
O-modules OF →S that fits in an exact sequence 0 →J ↪→OF r−→ S → 0. By the associated
exact sequence in cohomology

· · · → Γ
(
Ω,OF

) r∗−→ Γ(Ω,S)→ H1(Ω,J ) = 0,

cf. 9.1 and 10.3, r∗ is surjective, which is equivalent to the claim.

10.5. It has been known for quite a while that the above corollary fails in some Banach spaces.
Indeed, according to Dineen, see [5] and also [10], in the nonseparable space X = l∞ there is a
discrete sequence S on which all holomorphic functions X → C are bounded. Obviously, then,
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S is a direct submanifold of X , any function S → C is holomorphic, but no unbounded S → C

can be continued to a holomorphic function on X .
Thus, both 9.1 and 10.3 cannot generalize to l∞. It would be of some interest to know which of

the two fails in l∞. Is it that cohesive sheaves—perhaps even plain sheaves—may have nonzero
higher cohomology groups; or only that ideal sheaves of direct submanifolds are not necessarily
cohesive?

However, it would be of even greater importance to clarify to what subsets M ⊂ Ω other than
direct submanifolds will 10.3 generalize (if all other assumptions are kept). In the Appendix, we
show it does not generalize to arbitrary analytic subsets.

11. Subvarieties

11.1. Cohesive sheaves can be introduced on any topological space, once we specify an
(enriched) category of sheaves and homomorphisms to play the role of plain sheaves and
homomorphisms. Whether cohesive sheaves have useful properties of course depends on what
properties the “plain” category specified has. In this section we shall study this generalization of
cohesion in a context that is closely related to the one considered heretofore: for sheaves over
subvarieties in Banach spaces. To define subvarieties, consider a Banach space X and an open
Ω ⊂X .

DEFINITION. – An ideal structure on Ω is the choice of an O-submodule J E ⊂OE , for each
Banach space E, such that for every x ∈Ω and ϕ ∈OHom(E,F )

x the induced homomorphism ϕ∗
maps J E

x in J F
x . The ideal structure is cohesive if each J E is cohesive.

11.2. If E,F,G are Banach spaces, there is a homomorphism

OHom(E,F ) ⊗O OHom(F,G) →OHom(E,G)(11.1)

sending ϕ⊗ψ to ψϕ. For any ideal structure we have

PROPOSITION. – (a) If either ϕ ∈ J Hom(E,F ) or ψ ∈ J Hom(F,G) then (11.1) sends ϕ⊗ψ in
J Hom(E,G).

(b) Under the obvious isomorphism OE ⊕OF →OE⊕F the image of J E ⊕J F is J F⊕G.

Proof. – (a) Any ϕ ∈ OHom(E,F )
x induces, by composition, a germ ϕ̃ of a plain homomor-

phism OHom(F,G) →OHom(E,G) at x. According to the definition therefore

ψϕ = ϕ̃ψ ∈ J Hom(E,G)
x , if ψ ∈ J Hom(F,G)

x .

The case when ϕ ∈ J Hom(E,F ) and ψ ∈OHom(F,G) is proved similarly.
(b) Applying the condition in the definition with constant germs ϕ,ψ,ϕ′,ψ′ that induce the

canonical embeddings

ϕ∗ :OE
x →OE⊕F

x , ψ∗ :OF
x →OE⊕F

x ,

resp. projections

ϕ′
∗ :OE⊕F

x →OE
x , ψ′

∗ :OE⊕F
x →OF

x ,

the claim follows.
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In the categorical language touched upon in 3.2, an ideal structure is an enriched subfunctor
of the embedding functor P → O.

11.3. PROPOSITION. – (a) For any ideal structure on Ω and pair of Banach spaces E,F �= (0),
we have suppOE/J E = suppOF /J F .

(b) If the ideal structure is cohesive then suppOC/J C ⊂ Ω is closed.

Proof. – (a) Suppose x ∈ Ω is not in suppOE/J E . Any germ f ∈ OF
x is of form ϕ∗e with

some ϕ ∈ OHom(E,F )
x and constant germ e ∈ OE

x = J E
x , whence f ∈ ϕ∗J E

x ⊂ J F
x , and so

x /∈ suppOF /J F . Reversing the roles of E and F , the claim follows.
(b) If · · · → OE |U ϕ−→ J C|U → 0 is a complete resolution over an open U ⊂ Ω, with ϕ

induced by a holomorphic f :U → E∗, then U ∩ suppOC/J C = {x ∈ U : f(x) = 0} is closed
in U , whence the claim.

11.4. DEFINITION. – By a (complex analytic) subvariety S of Ω we mean a closed subset
|S| ⊂ Ω and the specification, for each Banach space E, of a sheaf OE

S over |S|, so that with
some cohesive ideal structure E �→ J E

|S|= suppOC/J C and OE
S =

(
OE/J E

)
| |S|.

From OΩ the sheaf OS = OC

S inherits the structure of a sheaf of rings, and all other
sheaves OE

S are modules over it. The subvariety S uniquely determines the sheaves J E , since
OE

x /J E
x = (OE

S )x when x ∈ |S| and J E
x =OE

x otherwise.
If Ω′ ⊂ Ω is open, we denote by S ∩ Ω′ the subvariety of Ω′ defined by the ideal structure

J E |Ω′.
We fix a subvariety S of Ω and the corresponding ideal structure J E .

11.5. The sheaves OE
S will be called plain sheaves over S. If U ⊂ Ω is open, any

section of OHom(E,F )
S over U ∩ |S| extends by zero to a section of OHom(E,F )/J Hom(E,F )

over U , and it follows from 11.2 that it induces a homomorphism OE/J E → OF /J F

over U , hence a homomorphism OE
S → OF

S over U ∩ |S|. Such homomorphisms will be
called plain homomorphisms. Germs of plain homomorphisms form a sheaf of OS-modules

Homplain(OE
S ,OF

S )⊂HomO(OE
S ,OF

S ); this sheaf is an epimorphic image of OHom(E,F )
S .

11.6. DEFINITION. – An analytic structure on a sheaf A of OS-modules is the choice, for
each Banach space E, of a submodule Hom(OE

S ,A)⊂HomOS
(OE

S ,A) such that
(i) if ϕ is the germ of a plain homomorphism OE

S →OF
S at x then

ϕ∗ Hom
(
OF

S ,A
)
x
⊂Hom

(
OE

S ,A
)
x
;

(ii) Hom(OS ,A) = HomOS
(OS ,A).

A sheaf of OS-modules over |S|, endowed with an analytic structure, will be called an analytic
sheaf over S. A homomorphism A → B of analytic sheaves is analytic if the induced maps
send each Hom(OE

S ,A) in Hom(OE
S ,B). We endow the plain sheaves OF

S with the analytic
structure Hom(OE

S ,OF
S ) = Homplain(OE

S ,OF
S ). Thus, for an analytic sheaf A over S the sheaf

Hom(OE
S ,A) consists of germs of analytic homomorphisms.

11.7. If A is any sheaf of OS-modules, let Â denote its extension to Ω by zero outside |S|.
This extension clearly has the structure of an O-module that satisfies J CÂ = 0. It follows that
any ψ ∈HomO(O, Â) sends J C to 0, hence factors through the projection O→O/J C.
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PROPOSITION. – (a) If A is an analytic sheaf over S, then Â has a unique analytic structure
with the property that for x ∈ |S| a germ ψ ∈HomO(OE , Â)x is analytic if and only if it is the
composition of the projection OE

x → (OE
S )x with a ϕ ∈Hom(OE

S ,A)x.
(b) If Â is endowed with this analytic structure and U ⊂ |S|, then any analytic homomorphism

ψ :OE |U → Â|U is the composition of the projection OE |U →OE
S |U with a unique analytic

homomorphism ϕ :OE
S |U →A|U .

Proof. – (a) Uniqueness is obvious since Â|Ω\|S| = 0. The proof of existence consists of
verifying that the collection of germs ψ obtained in the way described above satisfies (i) and (ii)
in 3.1, which is straightforward.

(b) Since the projection OE
x → (OE

S )x is surjective, ϕ in (a) is uniquely determined by ψ,
from which the claim follows.

In what follows, we shall always endow canonical extensions of analytic sheaves over S
with the analytic structure described in the above proposition. If ϕ :A → B is an analytic
homomorphism of analytic sheaves over S, then its extension ϕ̂ : Â→ B̂ is also analytic.

11.8. DEFINITION. – A sequence A• of analytic sheaves and homomorphisms over S is
completely exact if, with each pseudoconvex Û ⊂ Ω, each plain sheaf E over S, and U = |S|∩ Û ,
the induced sequence Γ(U,Hom(E ,A•)) is exact.

The following is immediate from 11.7:

PROPOSITION. – If A β−→ B γ−→ C is a completely exact sequence over S, then its extension

Â β̂−→ B̂ γ̂−→ Ĉ is completely exact over Ω.

DEFINITION. – Let A be an analytic sheaf over S.
(a) A complete resolution of A is a completely exact sequence

· · · → F2 →F1 →A→ 0

of analytic homomorphisms, with each Fn plain.
(b) A is cohesive if every x ∈ |S| has a neighborhood over which A admits a complete

resolution.

11.9. In the next two theorems we assume Ω is pseudoconvex.

THEOREM 1. – If · · · → A2 → A1 → A0 → 0 is a completely exact sequence of analytic
homomorphisms over S and An has a complete resolution for n � 1, then so does A0.

THEOREM 2. – If 0 → A → B → C → 0 is a completely exact sequence of analytic
homomorphisms over S, and two among A, B, and C have a complete resolution, then so does
the third.

The proofs are the same as in 4.4 and 4.5.

11.10. THEOREM. – Suppose a Banach space X has a Schauder basis, Ω ⊂ X is open, and
plurisubharmonic domination is possible in each pseudoconvex subset of Ω. If A is a cohesive
sheaf over a subvariety S of Ω, then its canonical extension Â to Ω is also cohesive.

Proof. – Cohesion being a local property, we can assume that Ω is pseudoconvex and A has a
complete resolution F• →A→ 0. Canonical extension gives rise to a completely exact sequence
F̂• → Â → 0. Since the extension of OF

S is OF /J F , each F̂n is cohesive by 9.2, and has a
complete resolution by 9.1. Therefore Â is cohesive by 4.4.
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11.11. THEOREM. – Suppose a Banach space X has a Schauder basis, Ω ⊂ X is pseudocon-
vex, and plurisubharmonic domination is possible in each pseudoconvex subset of Ω. If A is a
cohesive sheaf over a subvariety S of Ω, then

(a) A has a complete resolution; and
(b) Hq(|S|,A) = 0 for q � 1.

Proof. – (a) By 11.10 the extension Â is cohesive, so that 9.1 implies there is a completely
exact sequence OF ψ−→ Â→ 0. By the Proposition in 11.7 the restriction ψ

∣∣|S| is the composition
of the projection OF

∣∣|S| →OF
S with an analytic homomorphism ϕ :OF

S →A. We claim that the
sequence

OF
S

ϕ−→A→ 0(11.2)

is completely exact.
Indeed, let Û ⊂ Ω be pseudoconvex, U = Û ∩ |S|, and E a Banach space. Any α ∈

Γ(U,Hom(OE
S ,A)) extends to an α̂ ∈ Γ(Û ,Hom(OE/J E , Â)), which, composed with the

projection OE → OE/J E gives a β ∈ Γ(Û ,Hom(OE , Â)), again by 11.7. Since OF ψ−→
Â→ 0 was completely exact, β = ψ∗γ with some γ ∈ Γ(Û ,Hom(OE ,OF )). As γ maps J E |Û
in J F |Û , it descends to a section of Hom(OE/J E ,OF /J F ) over Û , whose restriction to U ,

δ ∈ Γ
(
U,Hom

(
OE

S ,OF
S

))
,

satisfies ϕ∗δ = α. This proves (11.2) is completely exact, as claimed.
Next, Theorem 2 in 11.9 implies that Kerϕ in the completely exact sequence

0 → Kerϕ→OF
S

ϕ−→A→ 0

is cohesive. Repeating the above construction with Kerϕ instead of A we obtain a completely

exact sequence 0 → Kerϕ′ →OF ′

S
ϕ′
−→ Kerϕ → 0, with Kerϕ′ cohesive, and so on. Consoli-

dating the short sequences obtained in this way, we construct a complete resolution

· · · →OF ′

S →OF
S →A→ 0.

(b) The extension Â being cohesive, by 9.1

Hq
(
|S|,A

)
≈ Hq(Ω, Â) = 0 for q � 1.

12. Three applications

12.1. As explained in 5.2, cohesive sheaves pulled back by biholomorphisms stay cohesive.
For this reason one can define cohesive (and plain and analytic) sheaves over an arbitrary
rectifiable complex Banach manifold.

Now consider a Banach space X that has a Schauder basis and an open Ω ⊂ X . A direct
submanifold M ⊂ Ω determines an ideal structure, with J E ⊂ OE = OE

Ω consisting of germs
that vanish on M . If plurisubharmonic domination is possible in pseudoconvex subsets of Ω, then
by 10.3 this structure is cohesive, and so it defines a subvariety S with support |S| = M . On M
we have two notions of plain sheaves: the sheaves OE

M of E valued holomorphic germs on M ,
and the sheaves OE

S = (OE/J E)|M discussed in Section 11. Similarly, there are two notions
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of plain homomorphisms. However, restricting germs in OE to M induces an isomorphism
OE

S ≈OE
M , which isomorphism intertwines plain homomorphisms OE

S →OF
S and OE

M →OF
M .

It follows that any sheaf of OS-modules has a canonical structure of an OM -module, and vice
versa; any analytic sheaf over S has a canonical structure of an analytic sheaf over M , and vice
versa; analytic homomorphisms will be the same, whether the analytic sheaves are considered
over S or M ; and finally, whether a sheaf is cohesive does not depend on whether it is considered
over S or over M .

12.2. The following theorem is therefore a special case of 11.11:

THEOREM. – Suppose a Banach space X has a Schauder basis, Ω ⊂ X is pseudoconvex, and
plurisubharmonic domination is possible in each pseudoconvex subset of Ω. If M ⊂ Ω is a direct
submanifold and A is a cohesive sheaf over M , then

(a) A has a complete resolution;
(b) Hq(M,A) = 0 for q � 1.

12.3. THEOREM. – Let X,Ω, and M be as above, and ν = (TΩ|M)/TM the normal bundle.
Any neighborhood of M contains a pseudoconvex neighborhood O ⊂ Ω

(a) which holomorphically retracts on M ; and
(b) there is a biholomorphism between O and a neighborhood of M ⊂ ν (M embedded as

the zero section in ν), that is the identity on M .

This generalizes the Docquier–Grauert theorem, a special case of a theorem of Siu (see [6,34]),
[19, Theorem 1.4], and [26, Theorem 6.2]. In the former two, dimX < ∞; in the latter two,
M was assumed either biholomorphic to an open subset of a Banach space, or a complete
intersection.

Proof. – The key is the vanishing H1(M,Hom(ν,TM)) = 0, which follows from 12.2 if one
takes A to be the sheaf of holomorphic sections of the locally trivial holomorphic Banach bundle
Hom(ν,TM). This, combined with the exact sequence of holomorphic Banach bundles

0 → Hom(ν,TM) →Hom(ν,TΩ|M) → Hom(ν, ν) → 0

provides a subbundle ν′ ⊂ TΩ|M , complementary to TM , as in [6,19]. From here O and its
biholomorphic embedding in ν are constructed as in [19], to which we refer the reader for details.

12.4. THEOREM. – Let X and Ω be as in 12.2, and A ⊂ Ω. If the sheaf J ⊂ O of germs
vanishing on A is cohesive, then

(a) A is the zero set of some Banach valued holomorphic function f :Ω → F ;
(b) any neighborhood of A contains a pseudoconvex neighborhood.

Proof. – From 9.1 we obtain a Banach space E and a completely exact sequence OE ϕ−→
J → 0. If ϕ is induced by a holomorphic f :Ω→ E∗, then the zero set of f will be A, as claimed;
and part (b) now follows from [26, Theorem 1.2]. (Technically, this latter theorem assumes
an unconditional basis in X , yet its short proof only uses the possibility of plurisubharmonic
domination in Ω.)

13. Appendix

13.1. If Ω is an open subset of a finite dimensional Banach space X and S ⊂ Ω is an analytic
subset, then the sheaf J ⊂OΩ of germs vanishing on S, the ideal sheaf of S, is coherent. Here
we shall address the corresponding problem in infinite dimensional X . Let Ω ⊂ X be open.
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A subset S ⊂ Ω is called analytic if Ω can be covered by open sets U ⊂ X , and for each U there
are a Banach space E and a holomorphic function f :U →E such that

S ∩U =
{
x ∈ U : f(x) = 0

}
,

see [7,8,31]. Analytic sets can be pathological: for example, Pestov in [30] shows that any
separable complete metric space can be homeomorphically embedded in l2 as an analytic subset.
A weaker result was proved earlier by Douady in [8]. The notion of an analytic set is clearly too
generous, and in complex geometry one should restrict to a smaller class of sets. We propose that
the correct class will consist of those sets S ⊂ Ω whose ideal sheaf is cohesive. We shall show
below that this is a genuine restriction: even in spaces with unconditional bases there are analytic
subsets whose ideal sheaf is not cohesive.

13.2. Let X denote one of the spaces lp,1 � p < ∞, or c0, and consider the following
embedding α of the closed unit disc Δ⊂ C into X

α(ζ) =
(
ζn!/n2

)∞
n=1

∈X, ζ ∈Δ.

The image α(Δ) ⊂ X is analytic, since it is the zero set of the holomorphic map

X � (xn) �→
((

n2xn − xn!
1

)
/nn!

)
∈X.

Let J ⊂OX = O denote the sheaf of germs vanishing on α(Δ).

THEOREM. – For no Banach space F and analytic homomorphism OF →J is the restriction
OF

0 →J0 surjective.

Therefore J is not cohesive because it cannot be included in an exact sequence of analytic
homomorphisms OF →J → 0, cf. 9.1. To prepare the proof, consider the following continuous
action of the circle S1 = R/2πZ on X

gtx =
(
ein!txn

)
, t ∈ S1, x = (xn) ∈X.(13.1)

We write B(R) = {x ∈ X: ‖x‖ < R}, R > 0. If E is a Banach space, any holomorphic function
h :B(R) → E has a Fourier series

h∼
∞∑

k=0

hk, hk =
1
2π

2π∫
0

e−iktg∗t hdt.(13.2)

The Fourier components hk are holomorphic on B(R) and satisfy g∗t hk = eikthk . If

h(x1, . . . , xm,0,0, . . .) =
∑

j1,...,jm�0

aj1...jmxj1
1 · · ·xjm

m ,

then

hk(x1, . . . , xm,0,0, . . .) =
∑

∑
μ!jμ=k

aj1...jmxj1
1 · · ·xjm

m .

The last expression is a polynomial, independent of the variables xμ with μ! > k. It follows
that hk(x1, x2, . . .) itself is a polynomial, depending only on the variables xμ with μ! � k. It
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also follows that h(x) =
∑

k hk(x) if the sequence x ∈ B(R) has only finitely many nonzero
terms.

Proof of the Theorem. – Consider an analytic homomorphism OF → J induced by a
holomorphic ϕ :X → F ∗ that vanishes on α(Δ). Let ϕ be the germ at 0 of ϕ and u ∈ J0 be
the germ at 0 of

u(x) =
∞∑

n=1

(
n−4xn!

1 − n−2xn

)
, x ∈B(1).

We shall show that there is no f ∈OF
0 solving ϕf = u.

Suppose there were. The Fourier components of ϕ, f ,u would then satisfy

n!∑
k=0

ϕk(x)fn!−k(x) = un!(x), n ∈ N.(13.3)

Since α(Δ) is gt invariant, all ϕk vanish on α(Δ). We substitute

x = α(n)(ζ) =
(

ζ,
ζ2!

22
,
ζ3!

32
, . . . ,

ζ(n−1)!

(n− 1)2
,0,0, . . .

)
.

As ϕk(x) depends only on x1, . . . , xn−1 if k < n!, we have ϕk(α(n)(ζ)) = ϕk(α(ζ)) = 0. By
(13.2) f0 is the constant f(0). Therefore we obtain from (13.3)

ϕn!

(
α(n)(ζ)

)
f(0) = un!

(
α(n)(ζ)

)
.

Both sides are germs of polynomials at 0 ∈ C. If they agree, the corresponding polynomials agree
on all of C. In particular, since un!(x) = n−4xn!

1 − n−2xn,

ϕn!

(
α(n)

(
n5/n!

))
f(0) = n.(13.4)

By the dominated convergence theorem, limn α(n)(n5/n!) = (1/m2)m. Thus the set
{α(n)(n5/n!): n ∈ N} has compact closure, and so does its gt orbit. If K is the closure of the
orbit, then from (13.2) ∥∥ϕn!

(
α(n)(n5/n!)

)∥∥
F∗ � max

K
‖ϕ‖F∗ ,

hence, by (13.4), ‖f(0)‖F maxK ‖ϕ‖F∗ � n. This, however, cannot hold for all n, which proves
that the equation ϕf = u has no solution f .

13.3. More regular examples of analytic sets can exhibit the same phenomenon. Consider the
following C∞ embedding

β :Δ � ζ �→
(
ζn!/(n!)logn

)
∈X.

The image β(Δ) is an analytic subset of X ; but a variant of the above reasoning shows that its
ideal sheaf is not cohesive, either.
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