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EQUIVARIANT NORMAL FORM
FOR NONDEGENERATE SINGULAR ORBITS
OF INTEGRABLE HAMILTONIAN SYSTEMS

By EvA MIRANDA ! AND NGUYEN TIEN ZUNG

ABSTRACT. — We consider an integrable Hamiltonian system witkdegrees of freedom whose first
integrals are invariant under the symplectic action of a compact Lie gtbufe prove that the singular
Lagrangian foliation associated to this Hamiltonian system is symplectically equivaler®-ggaivariant
way, to the linearized foliation in a neighborhood of a compact singular nondegenerate orbit. We also show
that the nondegeneracy condition is not equivalent to the nonresonance condition for smooth systems.
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RESUME. — On considere un systeme hamiltonien intégrable degrés de liberté et une action
symplectique d’un groupe de Lie compagtqui laisse invariantes les intégrales premiéres. On prouve
que le feuilletage lagrangien singulier attaché a ce systéeme hamiltonien est symplectiquement équivalent,
de faconG-équivariante, au feuilletage linéarisé dans un voisinage d'une orbite compacte singuliére. On
démontre aussi que la condition de non-dégénérescence n'est pas équivalente a la non-résonance pour les
systemes différentiables.
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1. Introduction

In this paper, we are interested in the geometry of integrable Hamiltonian systems on
symplectic manifolds. When we refer to an integrable Hamiltonian system, we mean that it is
integrable in the sense of Liouville. That is to say, the system is given by a momerif roap
(M, w),

(1.1) F=(F,...,F,):(M*",w) - R"

whose component functions; are functionally independent almost everywhere and Poisson
commuting { F;, F; } = 0 for anys, j). The Hamiltonian system considered will be called smooth
or real analytic if the corresponding moment map is so.Xet Xy be the Hamiltonian vector
field associated to a given functidi, we say that this Hamiltonian vector field is integrable if
there exists a moment map with = H.

In our approach to the study of the integrable Hamiltonian system, the original Hamiltonian
function defining the system will be left aside and our study will be focused on the singular
Lagrangian fibration given by the level sets of the moment map. This moment map generates an
infinitesimal PoissoriR™-action on(M?",w) via the Hamiltonian vector fieldXr,,..., Xr, .

1 Partially supported by the DGICYT project number BFM2003-03458.
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820 E. MIRANDA AND N.T. ZUNG

Denote byO an orbit of thisR™-action. We will assume thad is a closed submanifold (i.e.
compact without boundary) ofA72",w). Then it is well known that is diffeomorphic to a

torus since the vector fields g, , ..., X, are complete o, andO is a quotient of the Abelian
groupR™ by a cocompact subgroup.

The complete integrability of Hamiltonian systems is an old problem. In the XIX century,
Joseph Liouville [13] proved that if a Hamiltonian system hagunctionally independent
integrals in involution then it is integrable by quadratures. To our knowledge, Henri Mineur was
the first who gave a complete description, up to symplectomorphism, of the Hamiltonian system
in a neighborhood of a compact regular orbit of dimensio his papers [16—18], it is proven
that under the previous assumptions, there is a symplectomorphiBom a neighborhood
U(0),w) of O in (M?*™,w) to (D™ x T, > dv; A dp;), where(vy,...,v,) is a coordinate
system on a balD™, and (1 (mod 1),..., u,(mod 1)) is a periodic coordinate system on the
torusT”, such that, F is a map which depends only on the variables .., v,. The functions
q; = ¢*u; onU(O) are called angle variables, and the functigns= ¢*v; are called action
variables.

Although the works of Henri Mineur date back to the thirties, the theorem stated above has
been known in the literature as Arnold-Liouville theorem.

Mineur [16,18] also showed that the action functipnsan be defined via the period integrals:

(12) nia= [ 5

Ii(z)

Hereg is a primitive 1-form of the symplectic form, i.el3 = w, andl’;(x) for each point: near

O is a closed curve which depends smoothlysaand which lies on the Liouville torus containing

x. The homology classes &f, (z),...,T',(z) form a basis of the first homology group of the
Liouville torus. The above important formula for finding action functions will be called Mineur’s
formula. It can be used to find action functions and hence torus actions and normalization not
only near regular level sets of the moment map, but also near singular level sets as well, see
e.g. [26,27]. In particular, in [27] this Mineur's formula was used in the proof of the existence
of a local analytic Birkhoff normalization for any analytic integrable Hamiltonian system near a
singular point.

The above-mentioned action-angle coordinates entail a “uniqueness” for the symplectic
structure and the regular Lagrangian fibration in a neighborhood of a compact orbit. In fact, they
provide a “linear model” in a neighborhood of a regular compact orbit. In the same spirit, the aim
of the present paper is to establish an analog of this classical Liouville—Mineur—Arnold theorem
for the case when the orhil is singular, i.e. is of dimensiom = dim O smaller tham, under a
natural nondegeneracy condition. We will show that the system can be “linearized”ngato
fibration-preserving symplectomorphisms. The fibration in question is the singular Lagrangian
fibration given by the moment map. We also take into account the possible symmetries of the
system. Namely, we will show that in the case there exists a symplectic action of a compact Lie
group in a neighborhood @ preserving the moment map, this linearization can be carried out
in an equivariant way.

2. Preliminaries and statement of the main results
2.1. Nondegenerate or bits

In this paper, the orbi® is assumed to be nondegenerate. The concept of nondegenerate orbit
was introduced by Eliasson. Let us recall what it means (see, e.g., [9], [25]). Apaint>" is
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EQUIVARIANT NORMAL FORM FOR SINGULAR ORBITS 821

called singular for the system if its rank, i.e. the ranloét z, is smaller tham. If rankx =m
thenm is also the dimension of the orbit througtof the local PoissoiR™ action. Ifrankz = 0,
i.e. x is a fixed point, then the quadratic paﬁ‘§2), . ,F7§2) of the component$, ..., F, of
the moment map at are Poisson-commuting and they form an Abelian subalgebraf the
Lie algebra@(2n,R) of homogeneous quadratic functionsf variables under the standard
Poisson bracket. Observe that the algef@n,R) is isomorphic to the symplectic algebra
sp(2n,R). A point = will be called a nondegenerate fixed pointAfis a Cartan subalgebra
of Q(2n,R).

More generally, whemrankz = m > 0, we may assume without loss of generality that
dFy A --- NdF,,(x) # 0, and a local symplectic reduction neawith respect to the local free
R™-action generated by the Hamiltonian vector fieNs, ,..., Xy will give us anm-dimen-
sional family of local integrable Hamiltonian systems with- m degrees of freedom. Under
this reduction: will be mapped to a fixed point in the reduced system, and if this fixed point
is nondegenerate according to the above definition, théncalled a nondegenerate singular
point of rankm and corankn — m). The orbitO will be called nondegenerate if it contains a
nondegenerate singular point. In fact, if a pointiins nondegenerate then every point®fis
nondegenerate because nondegeneracy is a property which is invariant under the local Poisson
R™-action.

2.2. TheWilliamson type of an orbit

According to [25] we will define the Williamson type of a nondegenerate singular pain®
as a triple of nonnegative intege(s., ks, k), wherek, (resp..ky, ky) is the number of elliptic
(resp., hyperbolic, focus-focus) components of the systemlagt us recall whak., &k, andk s
stand for. Whemrank z = 0, a generic linear combination of the linear parts of the Hamiltonian
vector fieldsXp,,...,Xg, atz hask. pairs of purely imaginary eigenvalues, pairs of real
eigenvalues, anél; quadruples of nonreal nonpurely-imaginary complex eigenvalues (note that
the set of eigenvalues is symmetric with respect to the real axis and the imaginary axis). If
rank 2 # 0, we can perform a symplectic reduction first and the valués of;, andk; coincide
with the values ok, k;, andk at the point corresponding toin the reduced space. In particular,
we havek, + kj, + 2k =n — m. The triple(ke, ky,, k) is also called the Williamson type 6f,
because it does not depend on the choice iof O. Whenk,, = k; = 0, we say that the singular
orbit is of elliptic type.

2.3. Thelinear model

We are going to introduce the linear model associated to the Orfiitrr a given symplectic
action preserving the system. Later, we will see that the invariants associated to the linear model
are the Williamson type of the orbit and a twisting grdupttached to it.

Denote by(pi,...,pm) a linear coordinate system of a small ba™ of dimensionm,
(¢1(mod 1),...,¢n(mod 1)) a standard periodic coordinate system of the tditis and
(1,915 Tn—m,Yn_m) a linear coordinate system of a small balF(»—™) of dimension
2(n —m). Consider the manifold

(21) V=D"xT"x DZ(n,—m)
with the standard symplectic fordn’ dp; A dg; + > dz; A dy;, and the following moment map:
(2.2) (P, h) =1, Pm by hpem) 1V — R
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822 E. MIRANDA AND N.T. ZUNG

where
hi=x4+y? forl<i<ke,

hi =ziy;  forke +1<i <ke +ky,
2.3)

h; = xyit1 — xiy1y; and
hi+1:xiyi+xi+1y1;+1 forZ:kp+kh+2jfl, 1<]</€f

LetT be a group with a symplectic actigfl’) on V', which preserves the moment mgn h).
We will say that the action of onV islinear if it satisfies the following property:

I' acts on the product/ = D™ x T™ x D*"~™) componentwisethe action of' on
D™ s trivial, its action onT™ is by translations(with respect to the coordinate system
(q1,---,qm)), and its action onD*™~™) s linear with respect to the coordinate system
(xlvylv o awnfmaynfm)-

Suppose now that is a finite group with a free symplectic actip(l’) onV, which preserves
the moment map and which is linear. Then we can form the quotient symplectic mawjfbld
with an integrable system on it given by the same moment map as above:

(2.4) (p,h)=(p1,---,Pms Py oo ) V/T = R

The set{p, = z; =y; =0} C V/I' is a compact orbit of Williamson typék., ky, ki) of the
above system. We will call the above system WfI', together with its associated singular
Lagrangian fibration, the linear system (or linear model) of Williamson typek, ki) and
twisting groupI’ (or more precisely, twisting actiop(I")). We will also say that it is a direct
model if T" is trivial, and a twisted model if' is nontrivial.

A symplectic action of a compact grouf on V/I' which preserves the moment map
(P1y- s PmsP1y - hnem) WIll be called linear if it comes from a linear symplectic action
of G on V which commutes with the action df. In our case, leG’ denote the group of
linear symplectic maps which preserve the moment map then this group is abelian and therefore
this last condition is automatically satisfied. In fa£tis isomorphic toT™ x G1 x G2 x G3
being G; the direct product ok, special orthogonal groupSO(2,R), G the direct product
of k;, components of type&sO(1,1,R) and G5 the direct product ok; components of type
R x SO(2,R), respectively.

Now we can formulate our main result, which is the equivariant symplectic linearization
theorem for compact nondegenerate singular orbits of integrable Hamiltonian systems:

THEOREM 2.1. — Under the above notations and assumptions, there exist a finite droap
linear system on the symplectic maniféidI’ given by(2.1)—(2.4) and a smooth Lagrangian-
fibration-preserving symplectomorphisfrfrom a neighborhood of into V/T', which send€)
to the torus{p; = =; = y; = 0}. The smooth symplectomorphigntan be chosen so that via
the system-preserving action of the compact gi@upearO becomes a linear system-preserving
action ofG onV/T. If the moment map' is real analytic and the action a¥ nearO is analytic,
then the symplectomorphiséncan also be chosen to be real analytic. If the system depends
smoothly(resp., analytically on a local paramete(i.e. we have a local family of systeinthen
¢ can also be chosen to depend smooftegp., analytically on that parameter.

Remarks—

(1) Inthe case whe@ is a point and?7 is trivial, the above theorem is due to Vey [22] in the
analytic case, and Eliasson [8,9] in the smooth case. The smooth one-degree-of freedom
case is due to Colin de Verdiére and Vey [3].
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(2) In the case wheo is of elliptic type and? is trivial, the above theorem is due to Dufour
and Molino [7] and Eliasson [9].

(3) The analytic case witt¥ trivial of the above theorem is due to Ito [12].

(4) The case withn = 2,m = 1, O of hyperbolic type and> trivial is due to Colin de
Verdiére and Wi Ngoc San [4], and Curras-Bosch and the first author [6]. The symplectic
unigueness for the linear twisted hyperbolic case is not completely established in [6].
A complete proof for the twisted hyperbolic case wher- 2 andm = 1 was given by
Currds-Bosch in [5]. The general smooth nonelliptic case seems to be new.

(5) A topological classification for nondegenerate singular fibers of the moment map (which
contain nondegenerate singular orbits but are much more complicated in general) was
obtained in [25], together with the existence of partial action-angle coordinate systems.
However, the problem of classification up to symplectomorphisms of singular orbits or
singular fibers was not considered in that paper.

(6) As it was already pointed out by Colin de Verdiere and Mgoc San, the above
theorem has direct applications in the problem of semiclassical quantization of integrable
Hamiltonian systems. Of course, it is also useful for the global study of integrable
Hamiltonian systems and their underlying symplectic manifolds.

(7) As it has been shown by the first author in [19], this theorem has applications in the
analogous contact linearization problem for completely integrable systems on contact
manifolds.

The rest of the paper is organized as follows: in Section 3 we study the case of a fixed point and
give the corresponding-equivariant result. As a by-product, we prove that the path component
of the identity of the group of symplectomorphisms preserving the system is abelian. In Section 4
we prove the general case. In Appendix A we show that the nondegeneracy condition is not
equivalent to the nonresonance condition for smooth systems.

3. The case of afixed point

In this section we consider the case whigis a point and we prove that the symplectic action
of G can be linearized symplectically in a fibration-preserving way.

This linearization result can be seen as a generalization of Bochner’s linearization theorem
[1] in the case the action of the group preserves additional structures: the symplectic form and
the fibration. An equivariant Darboux theorem for symplectic actions of compact Lie groups in a
neighborhood of a fixed point was proved by Weinstein in [24]. In the case the actions considered
are the initial action and the linear action this equivariant Darboux theorem entails a symplectic
linearization result in a neighbourhood of a fixed point (see for example [2] and [24]).

We will linearize the action of7 using the averaging method of Bochner’s linearization.
This averaging trick will be applied to fibration-preserving symplectomorphisms which will be
presented as timé-maps of Hamiltonian vector fields.

In order to linearize the action of the compact Lie group in a fibration preserving way we
will work with a linear fibration and with the standard symplectic form. The results of Eliasson
[8,9] (for smooth systems) and Vey [22] (for real analytic systems) show that there is a fibration-
preserving symplectomorphism from a neighborhoodah (12", w, F) to a neighborhood of
the origin of the linear systei®*", >"""_, dz; Ady;,h), whereh = (hy, ..., h,) is the quadratic
moment map given by formula (2.3). If the compact symmetry giGup Theorem 2.1 is trivial,
then we are done. Suppose now thais nontrivial. We can (and will) assume that the singular
Lagrangian fibration neap is already linear. We will refer to this Lagrangian fibration7aslt
remains to linearize the action 6f in such a way that the fibration remains the same. It would
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824 E. MIRANDA AND N.T. ZUNG

be interesting to adapt the proof of Eliasson for actions of compact Lie group but unfortunately
some of the steps in his proof do not seem to admit an equivariant version.

Let us fix some notation that we will use throughout the paper. The vectorXigldill stand
for a Hamiltonian vector field with associated Hamiltonian functibnWe denote byy5 the
time-s-map of the vector field{. Let v be a local diffeomorphisny : (R?",0) — (R?",0). In
the sequel, we will denote by") the linear part of) at0. That is to sayy)™") (z) = dov(z).

The groupg stands for the group of local automorphisms preserving the sysfem,

{¢: (R?",0) — (R?",0), such that)*(w) = w, ho¢ = h}, andg, stands for the path-component
of the identity ofG. We denote by the Lie algebra of germs of Hamiltonian vector fields tangent
to the fibrationF.

The subgroup of linear transformations contained is denoted by’. As we have observed
in the introductiong’ is abelian.

The goal of this section is to prove a local linearization result (Proposition 3.6) for a given
smooth action of a compact Lie grogp In order to prove this result we will have to show that
given any local automorphism € G theny(!) 0 ¢)~! can be presented as the timdlow of a
Hamiltonian vector field as it is shown in Corollary 3.4.

As we will see thisis, in fact, a consequence of Theorem 3.2 which shows that the exponential
mappingexp : g — Go determined by the timé-flow of a vector fieldX € g is a surjective group
homomorphism.

Before stating this theorem we need the following sublemma.

SUBLEMMA 3.1.— The Lie algebrag is abelian and for any pair of vector field§, and
X, contained ing the following formula holds

¢§(c1 +XG2 = ngfcl o (725:5)(672 .

Proof. —Let X, and X, be two vector fields ing. Since{G;,G2} = w(Xg,,Xq,) and
Xq, and X, are tangent to the Lagrangian fibratighthen {G,, G2}, = 0 for any regular
fiber L of F. On the other hand, since the set of regular fibers is dens&@ndand X, are
also tangent along the singular fibers, the bra¢két, Go} vanishes everywhere.

This implies in turn thafX¢,, X¢,] = 0 and the Lie algebrg is abelian. Therefore the flows
associated td, and X, commute. As a consequeneg = qﬁfxcl o ¢§<G2 is a one-parameter
subgroup.

A simple computation shows that its infinitesimal generatoXis + X, and this ends the
proof of the sublemma. O

Observe that given a vector fielig in g, its times-flow ¢%  preserves the moment map
h becauseX is tangent taF. It also preserves the symplectic form since it is the flow of a
Hamiltonian vector field. Finally since the vector fiel; vanishes at the origin the mapping
qsg(c fixes the origin. Thereforeps . is contained ing. In fact it is contained ing, since
o, =1d.

V(\;/e denote byxp:g — Gy the exponential mapping defined byp(X¢) := gb}(c for any
X € g. We can now state and prove the first theorem of this section.

THEOREM 3.2. — The exponentiaéxp: g — Gy is a surjective group homomorphism, and
moreover there is an explicit right inverse given by

1
¢>egoH/Xtdteg,
0
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EQUIVARIANT NORMAL FORM FOR SINGULAR ORBITS 825

whereX; € g is defined by

dR,
Xihe) =5

for any C'! path R; contained inG, connecting the identity tg.

Proof. —The formula proved in Sublemma 3.1 with= 1 shows that the exponential is a group
homomorphism. It remains to show that it is surjective.

Let R, be aC'! path inG, such thatR, = Id and R, = ¢ for a givene € Gy.

We define the time-dependent vector figld by the following formula:

dRy
Xi(Ry) = ar
Observe thatX; is tangent to the fibrationF for any ¢ contained in[0,1] because
the diffeomorphismR; preserves the fibratio, Vi. On the other hand sinc&; is a
symplectomorphism for ang, the vector fieldX, is locally Hamiltonian. Since the symplectic
manifold considered is a neighbourhotidof the origin the vector field is indeed Hamiltonian.
Thus, X; is contained in the Lie algebga
Now considery; = f(f X,.dr. This vector field is also contained ¢gn
We will show thatexpY; = R; for any t € [0,1]. Particularizingt = 1, this shows that
exp Y1 = Ry = ¢ and therefore the mapping of the statement is an explicit right inverse of the
exponential mapping and the exponential is surjective.
In order to show the equalityxp Y; = R;,t € [0,1]. We will show that it satisfies the same
nonautonomous differential equation

d(expY?)

Xi(expYy) = dt

and this will implyexp Y; = Ry, t € [0, 1], since the initial conditions are the same.
In fact, we will prove that

doy,

3.1 Xi(¢3) = L

which leads to the desired result wher- 1 since by definitionpy, = expY;.

Observe that the formula we want to prove is equivalent to the fact that the vectorXield
tangent to the curvey, o (¢>§,t)*1 at any pointp. Therefore, we can write formula (3.1) as

d s s \—
Xi= du ju=o (%f”“(%ft) )

After differentiation with respect te the formula we want to prove becomes:

dd

3.2) Xt = E%\uzo (‘ﬁfftﬂ (¢§Q)_1)

We will first compute
d S s \—
% (¢Yt+u (¢Yt) 1) .
According to Sublemma 3.1 the Lie algely& abelian and we may write

(¢§It+u (Qsift ) _1) = ¢§/t+u*Yt :
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826 E. MIRANDA AND N.T. ZUNG

Observe that;, — Y, = [ " X, dr.
On the one hand using the definition of flow

t+u
d, o N d
35 (O 007 = 0 ey ) = / X, dr

on the other hand, since

t+u
X, dr —uX
(3.3) lim J; T 0,

u—0 u

we can writeff" X, dr =uX; + o(u), uniformly int.
Therefore,

d, s \_
(3.4) s <¢§G+u (0%,) 1) =uX; +o(u).
Finally differentiating inu and particularizing: = 0 we obtain

d d

@ %lu:o((b‘;/ﬁ-u (¢§/t)71)|u:0 = Xt-

This proves formula (3.2) and this ends the proof of the theorem.

Remark— Observe that this exponential mapping is not always injective. Since a vector field
X € gis aHamiltonian vector field tangent £, its Hamiltonian function is a first integral of the
system given b. ThereforeX = X, ... »,) when restricted to each connected component of
the regular set df. Bearing this in mind, it is easy to see that the exponential is injective if there
are only hyperbolic components (Williamson ty@en,0)). If there are elliptic or focus-focus
components any vector field of typé = Xo k1, , k € Z (with h; standing for an elliptic function
or for a functionh; in a focus-focus paih;, h;11) is contained in the kernel of the exponential.

In fact, the kernel is generated by these vector fields. In particular, this guaranteesptlst
always locally injective.

The theorem above has direct applications to the linearization problem posed at the beginning
of this section but it also tells us th&g is abelian.

COROLLARY 3.3. — The groupg, is abelian.

Proof. —According to Theorem 3.2, the exponential mapping is a surjective morphism of
groups and according to Sublemma 3.1 the Lie alggbim abelian. This implies thaf, is
abelian.

Remarks—

(1) One could also check th&, is abelian using the following: Observe that it is enough
to check that any two diffeomorphism and ¢2 in Gy commute on an open dense
set. We consider the dense getdetermined by the regular points of the fibration.
Now consider the submanifolds, . s.) = {(z1,91,-..,Tn,Yn), i = dsys, Vi} with
0; € {—1,+1}. It is a Lagrangian submanifold. In the case there are no hyperbolic
components, taking; = 1 and d;; = —1 for the focus-focus pairé; and h;,;, the
submanifoldL s, ... 5, is transversal to the regular Lagrangian fibration induced by
on 2. So we may apply a result of Weinstein [23] which ensures that the foliation is
symplectomorphic in a neighborhood bfto the foliation by fibers irll™* (L) endowed
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with the Liouville symplectic structure. In this way we may assume that the symplectic
formisw =), dp; A dg; being¢; coordinates orl. The fibration is then determined
by F = (¢1,...,¢,). Now any diffeomorphism lying irG can be written in the form
d)((hv <5 qnsP1y - 7pn) = (qla ce ey Qn,D1 + al(q)a coesDn T+ an(q)) for certain smooth
functionsc;. Clearly any two diffeomorphisms of this form commute and therefore this
proves thag, is abelian. In the case there are hyperbolic components sinead ¢,
leave each orthant invariant. In each orthant we may consider an appropriate chijice of
for hyperbolic functionsy; such thatls, . s,y is a transversal Lagrangian submanifold
to the fibration restricted to this orthant. And we may repeat the argument aboye for
restricted to each orthant to conclude tGatis abelian.
As observed by Weinstein in [23], the study of local symplectomorphism preserving the
foliation by fibers inT*(L) has relevance in the study of lagrangian-foliated symplectic
manifolds.

(2) Althoughg is also abelian for analytical systems, it is not always abelian if we consider
smooth systems as the following example shows:
Considem =1 andh = xy. Lety be the smooth function:

efl/(ry)i x>0,
Y(r,y) = {261/(9011)2, <0

and let¢ be the timet-map of X,;. Then ¢ does not commute with the involution

Another interesting consequence of Theorem 3.2 is the following result about the local
automorphisms of the linear integrable systégi™, >, dz; A dy;,h).

COROLLARY 3.4.— Suppose that): (R?",0) — (R?",0) is a local symplectic diffeomor-

phism ofR?" which preserves the quadratic moment nhkeg (h1,...,h,). Then,

(1) The linear party(!) is also a system-preserving symplectomorphism.

(2) There is a vector field contained such that its time-map isy(") o ¢y~ 1. Moreover,
for each vector fieldX fulfilling this condition there is a unique local smooth function
¥ : (R?",0) — R vanishing at0 which is a first integral for the linear system given hy
and such thatX = Xy. If ¢ is real analytic thenV is also real analytic.

Proof. —We are going to construct a path connectingp /() contained in
G ={¢:(R*",0) — (R*",0), such thap*(w) =w, hop=h}.

Given a map) € G, we consider

Yog
Szli(x): t ( )7 t€(0’2]1
w(l)(l‘), t_Ov

beingg; the homothetyy; (z1,...,x,) =t(x1,...,z,).
Observe that in cas¢ is smooth, this mapping‘;” is smooth and depends smoothlyonn
casey is real analytic, the correspondilﬁj’ is also real analytic and depends analyticallyton
First let us check that o Stw = h whent # 0. We do it component-wise.
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828 E. MIRANDA AND N.T. ZUNG
Letz = (z1,...,2,), then

Yog _(hjotpog)(x) hjogi(w)
hjo (T)(x) 2 T

:hj(x)v

where in the first and the last equalities we have used the fact that each compgomérhe
moment maph is a quadratic polynomial whereas the condition ¢ = h yields the second
equality.

Now we check thatS} )* (w) = w whent # 0. Sincew = 3 d; A dy;, theng; (w) = t2w. But
sincey preservess then

(5 @)= (52 ) w=o

whent # 0.
So far we have checked the conditiains S} = h and (S})*(w) = w whent # 0 but since
S¢ depends smoothly ohwe also have thah o Sg’ =h and(ng)*(w) = w. So, in particular,
we obtain thaﬁgp =) preserves the moment map and the symplectic structure and therefore
1) is also contained i. This proves the first statement of the corollary.
In order to prove the second statement we only need to showthat ¢y~ is contained in
Go. Then, we can apply Theorem 3.2 to conclude.
Consider

Ry =W os )

with ¢ € [0, 1], this path connects the identity td") o ¢y~ and is contained ig.

Then the formula of Theorem 3.2 applied to this path provides a vectorXielhose time-
1-map isy(M) 0 1)~ and there exists a unique Hamiltonian functidrvanishing a0 such that
Xy = X. Since the vector fieldXy is tangent to the foliation thef®, h,} = 0,4, in other
words, ¥ is a first integral of the system.O

In the case the action off depends on parameters we have a parametric version of
Corollary 3.4.

COROLLARY 3.5.— Let D, stand for a disk centered 4t in the parameterp;,...,ppy,.
We denote by = (p1,...,pm). Assume thaty, : (R*",0) — (R?",0) is a local symplectic
diffeomorphism ofR?” which preserves the quadratic moment miapand which depends
smoothly on the parametegs Then there is a local smooth functign, : (R?",0) — R vanishing
at 0 depending smoothly gm which is a first integral for the linear system givenlbyand such
that ;Z;é” o ¢! is the timel map of the Hamiltonian vector field'y, of ¥y,. If ¢, is real
analytic and depends analytically on the parameters tirgnis also real analytic and depends
analytically on the parameters.

Proof. —We will apply again Theorem 3.2. We consider the path

My =15" 0 (g, )

whereg,(p) = (tp1,...,tpm). This path is smooth (resp. analytickifis smooth (resp. analytic)
and depends analytically @grand is contained ig,. Because of Theorem 3.2 we can associate a
Hamiltonian vector field{y , to this path such that its time-map coincides With[)él) o(¢p)t.

By construction, this functiolr, is smooth (or real analytic) i, is smooth (or real analytic)
and depends smoothly or analytically on the parametefg floes so. O
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After this digression, we will prove our local linearization result. By abuse of language, we will
denote the local (a priori nonlinear) action of our compact gréum (R**,>""_, dz; A dy;, h)
by p. For each element < G, denote byXy (,) the Hamiltonian vector field constructed via the
formula explicited in Theorem 3.2 applied to the pathexplicited in Corollary 3.4. The time-
map of this vector field ig(g)™ o p(g)~! wherep(g)") denotes the linear part @f(g). It is
clear that this defines a smooth functiiy).

Consider the averaging of the family of vector fields, ;) over G with respect to the
normalized Haar measudy on G. That is to say

(3.5) / Xyg)(z)dp, xR,

This vector field is Hamiltonian with Hamiltonian functiofy, ¥(g) du.. Denote by®¢ the
time-1 map of this vector fieldX .

PROPOSITION 3.6. — @ is a local symplectic coordinate transformation B which
preserves the systef®?",>"""_ | dz; A dy;,h) and under which the action ¢f becomes linear.

Proof. —Since @ is the timed map of vector field contained ig, ¢ is a symplectomor-
phism preserving the fibration. Therefore it defines a local symplectic variable transformation.
Let us check that this transformation linearizes the actiofi.of

From the definition ofb; and formula (3.5),

Dale) = ok, (@ / pe, @)

But since,gz%(w) =p(g)® o p(g)~" we have

O (x) = /p(g)(” o p(g) ™" (z) dps.

G

We proceed as in the proof of Bochner’s linearization theorem [1]

(p(h)M 0 @G o p(h) ™) (z) = p(h)) o /(p(g)(” op(9)~ ") (p(h) () dpe.

G

Using the linearity ofp(2)(") and the fact thap stands for an action, the expression above can
be written as

/ (p(h) 0 p(9)) Y o (p(h) 0 p(g)) " () dp.

G

Finally this expression equais; due to the left invariance property of averaging and we have
provendq o p(h) = p(h)M) o & as we wanted. O

Remark— A fortiori, one can show that any analytic action of a compact Lie gréupn
(R?", %" | dz; Ady;, h) must be linear (so no need to linearize). Only in the smooth nonelliptic
case the action aff may be nonlinear. And even in the smooth casé; i connected then its
action is also automatically linear.
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In the case the action @ depends on parameters, this proposition and Corollary 3.4 lead to
its parametric version.

PrRoOPOSITION 3.7. — In the case the actiop, depends smoothlgresp. analytically on
parameters there exists a local symplectic coordinate transformatio®?f ®,, which
preserves the system and which satisfies

®p 0 pp(h) = po(h)) o By

The proposition above will be a key point in the proof of the linearization in a neighborhood
of the orbit.

Remark—In this section we have addressed a linearization problem with a foliation
determined by a moment mdp= (h4, ..., h,) corresponding to a nondegenerate singularity.
Thanks to the smooth linearization result of Eliasson this moment map has very specific
component functions; of elliptic, hyperbolic and focus-focus type.

However, some of the results in this section do no use this particularity and remain valid in
a more general context. For instance Sublemma 3.1 and Theorem 3.2 hold for a completely
integrable system which defines a generically Lagrangian foliation and has the origin as singular
point.

Corollaries 3.4 and 3.5 also remain valid if we also assume that the component furigtions
are homogeneous because the patlalso preserveh under this condition. In particular, the
final linearization results Propositions 3.6 and 3.7 also hold for foliations whose moment map
has homogeneous component functions.

4. Thegeneral case

Suppose now thatim O = m > 0. For the moment, we will forget about the groGp and try
to linearize the system in a nonequivariant way first.
First let us recall the following theorem proved by the second author in [25]:

THEOREM 4.1. —Let (U(N),F) be a nondegenerate singularity of Williamson type, &y,
k) of an integrable Hamiltonian system with degrees of freedom. Then there is a natural
Hamiltonian action of a toru§'™—*»—*s which preserves the moment map of the integrable
Hamiltonian system. This action is unique, up to automorphisitof»—*s and it is free almost
everywhere it/ (N).

In this theoren/ () stands for a neighborhood of a le&f. If we consider an orbit instead
of a leaf of rankm and Williamson typek., ks, k) we obtain a locally free system-preserving
torus T™-action in a neighborhood of the orkil. In fact, this action can be found by using
either Mineur’s formula (1.2) or alternatively the flat affine structure on the (local) regular orbits
nearO of the PoissorR™-action, and the existence oi nonvanishing cycles on these orbits.
Let us denote by(pi,...,p,) anm-tuple of action functions nea® which generates such a
locally-free T -action, and denote by, ..., X,, them corresponding periodic (of pericd
Hamiltonian vector fields.

Of course,O is an orbit of the abovd™-action. Denote by" the isotropy gI’OL/Ip\_Qf the

action of T on O. SoT is a finite abelian group. There is a normal finite covedh@) of
a tubular neighborhoott (O) of O such that thel"*-action onl{(O) can be pulled back to a

e

free T™-action onl/(O). The symplectic formw, the moment maf and its corresponding

—

singular Lagrangian fibration, and the action functigps . ., p,, can be pulled back &x(O).
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We will use ™ to denote the pull-back: for example, the pull-back(dis denoted b)@, and

the pull-back ofp; is denoted byp;. The free action of” on Z/T(\O/) commutes with the free
T™-action. By cancelling out the translations (symplectomorphisms given b§'thaction are

called translations), we get another actiod'ain/(O) which fixesO. We will denote this latter
action byp’'. B _ B

Take a pointz € O, a local diskP of dimension(2n — m) which intersects) transversally
atr aﬂciyvhich is preserved k. Denote bygy, ..., ¢, the uniquely defined functions modulo
1 on(O) which vanish onP and such thaﬁ(vi(qi) =1, E(qj) =0if ¢ # j. Then each local
disk {p1 = const,...,p,, = const} N P nearZ has an induced symplectic structure, induced
singular Lagrangian fibration of an integrable Hamiltonian system with a nondegenerate fixed
point, which is invariant under the actigr of I". Applying the result of the previous section,
i.e. Theorem 2.1 in the case with a fixed pomt compact symmetry gioind parameters
P1,- .., Pm, We can define local functions;, 71, . .., Zn—m, Yn—m ON P, such that they form a
local symplectlc coordinate system on each Iocal disk= const, ..., p,, = const} N P, with
respect to which the induced Lagrangian fibration is linear and the agtiohI is linear. We
extendzy, 71, . . ., Tn—m, Yn_m 0 functions ori/(O) by making them invariant under the action

of T™. Define the following symplectic form ai(O):
(4.1) Or =Y dp; NdG + Y di; Adj;.

Consider the difference betweénandws:

LEMMA 4.2. — There exist functiong; in a neighborhood 0® in m which are invariant
under theT"™-action, and such that

(4.2) W —@=Y_dp; Ndg; .

Proof. —By definition of w1, the vector fieIdZ is also theNHamiItonian vector field of
p; with respect tow;. Thus we haveX; (w; — @) = 0 and X;.d(w; — @) = 0. In other
words, w; — @ is a basic2-form with respect to the fibration given by the orbits of the
T™-action, i.e. it can be viewed as2aform on the(2n — m)-dimensional space of variables
(Pls-- s PrmsT1s U1y - - - Tnem» Un—m). Moreover, by construction, the restrictionof on each
subspacegp; = const,...,p, = const} coincides with the restriction ab on that subspace.
Thus we can write

GL-@=) dpi NG,

where eachy; is an 1-form in variablesp, . .., P, Z1, U1, - - - Tnom, Un—m). We have that
>dp; A da; = dwy — diw = 0, which implies that the restriction of; on each subspace
{p1 = const,...,p,, = const} is closed (hence exact), so we can writeas

& =dB; +_ c; dp;

where3; andc;; are functions of variable@, . . . , Do, T1, U1, - - - s T Yn—m)- THUS

G —=Y (a;— G dp Adp; + Y dp; Adf;.

1<j
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Sinced(wi — w) =0, the 2-form}_,_.(ci; — ¢;i) dp; A dp; is closed (hence exact), and the
functionsc;; — c;; are independent of the variableg , 71, - - - , Zn—m, Yn—m)- ThUS We can write

> (€ — i) dpi A dp; d(Zdﬁiw)
1<j
wherey; are functions of variable@y, .. ., p,,). Now putg; = 51 +7;. O
Consider they; given by the lemma and define
(4.3) @i = 4i — gi-
Then with respect to the coordinate syst@in ¢;, <5, y; ), the symplectic fornd has the standard

form, the singular Lagrangian fibration is linear, and the free actidnisfalso linear.

Remark— There is another proof of Theorem 2.1 in the general case with tdviathich
does not use Lemma 4.2. It goes as follows. Assume that we have constructed the system of
coordinates
ﬁlv (jla 517 gla T 7§ma (jmin—ma gn—m

as before. LeDg be the symplectic distribution
0 0
Dp={(—,X1,...,—, X0
R <8§1 y <21, ) aﬁyn ) >
and letDg be the distribution symplectically orthogonal®y;. Thus, we can write
W=wpg + ws.

It is easy to check thabg is an involutive distribution. Denote hy/¢ the integral manifold of
Dg through the poinp then@wg|p = wNp |p We can apply Theorem 2.1 to eagff to obtain a

new system of coordinatés, 71, . .., Zn—m, Un—m iN @ neighborhood of the origin such that

Gs =Y _dZ; Adj.

Finally, in the system of coordinat®s, §1, 1,41, - - - s P> GmZn—m, Yn—m, the symplectic form
w has the standard form, the singular Lagrangian fibration is linear, and the free actids of
also linear.

Thus we have shown that the original singular Lagrangian fibration @darsymplectically
equivalent to a linear model (directlifis trivial and twisted ifl" is nontrivial).

As was mentioned in the introduction, the group of all linear automorphisms (i.e. linear
moment map preserving symplectomorphisms) of the linear direct model of Williamson type
(ke, kn, ky) is isomorphic to the following Abelian group:

T™ x Tk x (R x Z/2Z)* x (R x T1)*s

In particular,I" is necessarily a subgroup ¢£,/27)". (It comes from involutions of hyperbolic
components, and it does not mix the components.)
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Remark— In [15] and [14] Marle establishes a model for a Hamiltonian action of a compact
Lie group in a neighborhood of an orbit. This result was obtained independently by Guillemin and
Sternberg in [10]. In our construction a Hamiltonian action ofraxdimensional torus preserving
the fibration determined by the moment map comes into the scene. In fact the linearization
result we have just proved can be understood as a generalization of Guillemin—Sternberg—Marle
theorem in the case the group consider€il'fs It gives a linear model for a Hamiltonian action
of a torus preserving an additional structure: a singular Lagrangian fibration.

In order to prove Theorem 2.1 it remains to consider the case when the compact symmetry
groupd is nontrivial.

In the case there exists an action of a nontrivial gréupn VV/T" we have an induced action of
G onV. The following theorem shows that this action can be linearized.

THEOREM 4.3. — LetG be a compact Lie group preserving the system

<Dm « T™ x D2(n7m)’ dez Adg; + Z dx; A\ dy;, F)

=1 i=1

then there exist® a diffeomorphism defined in a tubular neighborhood of the ofbit T™
which preserves the system

<Dm « T™ x D2(n7m)’ dez Adg; + Z dx; A\ dy;, F)

i=1 =1
and under which the action @f becomes linear.

Proof. —After shrinking the original neighborhood if necessary, we may assume without loss
of generality that we are considering-ainvariant neighborhood af. First of all, let us express
in local coordinates how the action looks like. We denote ltlye action ofGG. For convenience,
we use the simplifying notatiop= (p1,...,pm) and(z,y) = (1,Y1, - - s Tn—m,Yn—m)- SiNCE
o)

G preserves the system, in particularpreservesp and sendsa% to 5o After all these

considerations, for eadhe G the diffeomorphisnp(h) can be written as

p(h)(p7q17 cee >Qm7337y) = (p7q1 +g{l(paxay)7 s dm +g£¢z(paxay)7ah($7y7p))
where the functiong? anda” are constrained by more conditions given by the preservation
of the system. Before considering these constraints, it will be most convenient to simplify the
expression ofy” first. This will be done using the local linearization theorem with parameters

(Proposition 3.7).
In order to do that, we restrict our attention to the induced mapping,

p(h)(p,x,y) = (p, " (p,x,y))
and we consider the family of diffeomorphismg:),, : D2~ — D2(n—m) defined as follows

p(h)p(z,y) = o (p,2,y).
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We may look aip = (p1,...,pn) as parameters. For eaglthe mapping(h),(z,y) induces
an action ofG on the diskD?(™~™) which preserves the induced system

<D2(7l‘m)7 > dz; Ady;, h) .

i=1

Observe that the preservation of the induced system implies, in particular, that the action fixes
the origin.
According to Proposition 3.7 we can linearize the acfi¢h), in such a way that it is taken to

the parametric-free linear acti(mh)gl). We can extend trivially the diffeomorphisth, in the
disk provided by Proposition 3.7 to a diffeomorphidmin the whole neighborhood considered,
simply by declaring,¥(p,q1,-..,qm, %, y) = (P, q1,-- - qm, ®p(z,y)). This diffeomorphism
does not preserve (in general) the symplectic struatytet w; = ¥*(w), we can apply Lem-
ma 4.2 tow andw,. Consider they; given by Lemma 4.2 and define

(4.4) 4 =qi — Gi-

Then after this change of coordinatesis taken tav. For the sake of simplicity we will keep on
using the notatiory; for the new coordinates. After this linearization in the y)-direction the
initial expression op(h) looks like

V(a,y)).

p(h’)(pa q17' . '7Qmaxay) = (p7 (I1 +g{7‘(p7$7y)7 . '7QT7L +gf;n(p?'r?y)7ﬁ(h)g
Since the action preserves the symplectic foyaf”", dp; A dg; + > " dz; A dy; we
conclude that the functiong' do not depend ofw, y) and so far just depend on the parameters
(p1,---,Pm)- In other words,

p(R) (D, 41, Gy, y) = (Dya1 + G2 (D), - + 97 (0), B (,1).

Observe that if we prove that these functigrfsdo not depend omp then we will be done
because then the induced action™n will be performed by translations. And, in all, the action
will be linear.

ConsiderH = {p(h),h € G}, we are going to prove that this group is abelian.

We have to check that(h) o p(he) = p(h2) o p(h1).

We compute

p(hl) O,O(hg)(p, q1y--- 7Qm7xay)

= (poai + 912 (D) + 9 (D), + 922 (D) + g (9), (1) 0 B(R2) M (2,1));
On the other hand

p(h’Q) O,O(f“)(p, q1,--- >Qm7377y)
(

(@1 + 91 (D) + 922 (D), -, @ + g2 (D) + 622 (), P(ha) " 0 B(h1){V (2, 9)).

Clearly, the firs2m components coincide. As for ti¥n — m) last components, we can use
the fact thatg’, the group of linear transformations preserving the fibration and the symplectic
form is abelian, as we pointed out in the introduction.

So far we know that the grouft is abelian. It is also compact, therefore it is a direct product
of a torusT” with finite groups of typeZ/nZ. We are going to check that for eapfh) € H
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the functionsy do not depend op. It is enough to check it fop(h) in one of the components
Z/nZ andT". So we distinguish two cases
e p(h) belongs toZ/nZ. Then p(h)" = Id; this condition yields,ng?(p) = 27m;(p),
m;(p) € Z for all 1 < i < m. Sincem;(p) is a continuous function taking values it
is a constant functiom;. Thus,g”(p) = %Tm andg” does not depend gn
e p(h) belongs tdl'". We can consider a sequengg.,,) lying on the torus which belong to
a finite groupZ/k,Z and which converge tp(h). For each of these poinigh,,) we can
apply the same reasoning as before to obgéir(p) = 27,:%
Now for eachn, the diffeomorphismp(h,,) does not Elepend op; we may write this

condition as
Ip(hn
Phn) _o 1<i<m.
Op;
Now since the action is smooth we can take limits in this expression to obtain that
op(h
o) o 1<i<m,
Op;

and finallyg” (p) does not depend gn
And this ends the proof of the theoremo

This linearizes the action @ on V. After considering the quotient with the actionbthis
theorem yields Theorem 2.1.
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Appendix A. Nonresonance ver sus nondegener acy

As pointed out by Ito [11,12] (see also [27]), in the real analytic case, the nondegeneracy
condition explained in the introduction of this paper is essentially equivalent to the nonresonance
condition. However, in the smooth case, this is no longer true: smooth integrable systems which
are nonresonant at a singular point can be very degenerate at that point at the same time. In
particular, we have:

PROPOSITION A.L1. — Let~q,...,v, be anyn-tuple of positive numbers which are linearly
independent over,, n > m + 2, m > 0. Then, there is a smooth integrable Hamiltonian function
H in a neighborhood of théelliptic invariant) torus TJ* = T™ x {0} x {0} in the standard
symplectic spacéT™ x R™ x R2("=™) wo =" dp; Adq; + Y., 1 dx; A dy;), such
that H = L3577 yipi + Y041 % (@2 + y2) + higher order terms aflf’, and such thatt
does not admit &' -differentiable local Birkhoff normalization nedt" (i.e. the corresponding
Lagrangian fibration cannot be linearizgdMoreover, this integrable Hamiltonian functiafd

can be chosen so that it does not admit a nontrivial sympl&étisymmetry neaf".
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In the above proposition, by integrability ¢f we mean the existence of a smooth moment
map (F, ..., F,) from a neighborhood off* = T™ x {0} x {0} in T™ x R™ x R2(n=m)
to R”, with Fy = H, such tha{ F;, F;} = 0, anddFy A --- A dF,, # 0 almost everywhere. By
“higher order terms” inff we mean terms which are at least quadratic in varighlesr cubic in
variable;, x;,y;. According to Sard’s theorem (about the set of singular values) and Liouville’s
theorem, almost all common level sets of such a moment map are Liouville tori. The condition
that~vy,...,7, are independent ovéf means thafl™ x {0} x {0} is a nonresonant invariant
elliptic torus of the Hamiltoniari . Recall that if there is a differentiable Birkhoff normal form,
then (since we are in the elliptic case), the system also admits a HamiltBhiapmmetry near
the elliptic singular orbit. Thus, if the system does not admit a nontr&/isdymmetry neai?,
then of course it cannot admit a differentiable Birkhoff normal form.

The proof of Proposition A.1 is inspired by what happens to generic perturbations of
integrable systems: resonant tori that break up and give way to smaller-dimensional invariant
tori, homoclinic orbits, diffusion, etc. Usually this breaking up of resonant tori leads to a chaotic
behavior of the system, see, e.g., [21]. In order to prove Proposition A.1, we will construct an
integrable perturbatiorof the quadratic Hamiltonias > | vips + >0 vi(a? + y?) +
higher order terms &E7* in such a way that there are also invariant tori arbitrarily clos&fo
that break up.

First let us consider the case with= 0 (i.e. a fixed point). Our construction @f in this case
consists of two steps.

Stepl. Creation of resonant regions.

Choose a smooth functio®(Iy,...,1I,) of n variablesI,..., I, with the following
properties:

a) Q(0) =0, and the linear part af at0 is > v; I;.

b) There is a series of disjoint small open bdlls in R = {(I1,...,I,) € R", I; >0,

..., I, > 0}, which tend ta0 (in Hausdorff topology) ag — oo, such that we have

Q(I177In):277k]1 V(Ih""I”)GUk’

wherey¥ are rational numbers such tHaty, . 7% = ;.
Of course, such a function exists, and it can be chosen to be arbitrarily clgseyfd; in
C*°-topology. Now put

Then for this integrable Hamiltonian functidi, , there are open regiong c R?" arbitrarily
close to0 in R?" which are filled by resonant tori in which the Hamiltonian flow Hf, is
periodic. These regiong;, are preimages of the open séis chosen above under the moment
map(ly,...,Ip).

Step2. Creation of hyperbolic singularities.

We will modify H; inside each open subskgt by a C'°°-small function which is flat on the
boundary ofV}, in such a way that after the modification our Hamiltonian function remains
integrable insidé/;, but admits an hyperbolic singularity there. Sirfée has periodic flow i/
for eachk, we can create a common model and then put it to éacifter necessary rescalings.
The model can be done forzadimensional system depending on- 1 parameters, and then
take a direct product of it witff”—1. In the 2-dimensional case, it is obvious how to change
a regular function onD! x S* into a function with a hyperbolic singularity by @>°-small
perturbation. After the above modifications, we obtain a new smooth Hamiltonian furd€tion
which is C°°-close toH;, which coincides withH; outside the union o¥},, and which is still
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smoothly integrable (though smooth first integrals oy will necessarily be very degenerate
at0). Note that, by construction, the quadratic parfbfat0is > 1 | vi(z? + y?).

Since H» has hyperbolic singularities arbitrarily neér it cannot admit a differentiable
Birkhoff normal form in a neighborhood df, for simple topological reasons concerning the
associated Liouville foliation. It is also easy to see tHatcannot admit a$' symmetry nea#:
if there is a symplecti§!-action in a neighborhood df which preservesis,, then this action
must also preserve the hyperbolic periodic orbit¢iefin the resonant regionis,. This, in turn,
implies that there is a natural numh&t such thatN~* € Z, Vk, i, which is impossible by our
construction.

Let us now consider the case > 1. For simplicity, we will assume that. = 1. (The case
m > 1 is absolutely similar.) We will repeat the above two steps to create hyperbolic singularities,
but with n replaced byn — 1 (recall that by hypothesis > m + 2 son — 1 > 2). The regions
Vi now lie in R?*~2, andH, = )", v:l; + - - -. By choosing our open set§,, we can assume
that there is a functiod = F' (23 + 43, ...,22 + y2) onR?"~2, which is flat at0, and such that

F= %(mi +y2) inV;.
Denote byy the timed map of the Hamiltonian vector field - of F on R?"~2. Observe that
@ is a symplectomorphism formally equivalent to the identity maf, @&nd that in each region
Vi the mapy generates a nontrivid /kZ symmetry (i.e. thé-times iteration ofp in V}, is the
identity, and the lower iterations are not). Now we can constHictn such a way that in each
regionV} it is also invariant under thg&/kZ symmetry generated by. Then, sinceH, = H;
outside of the set®},, and{H;, F'} = 0 by construction, the map preservedi, everywhere in
R2n72_

We now construct our symplectic manifold using suspension. More precisely, consider the
free component-wise symplectic actionobnR? x R2"~2, where the action oZ onR?"~?2 is
generated byp, and its action oriR? (with coordinates(p,q) and symplectic formip A dq)
is generated by the shiftp,q) — (p,¢ + 1). Then the suspension a@f is the quotient of
R? x R?"—2 py thisZ-action. Denote this quotient by and denote the projection y Let V,
be m(R? x V). Observe that the functiol, is p-invariant and both functiong/, andp, are
invariant by the shift; thereforéls = 2-p 4+ H, can be projected td/. We denote byH 5 the
projection of H3. SinceH3 is mtegrable omR? x R?"~2 and the action defining the suspension
is symplectic, the functioril ; defines an integrable Hamiltonian system/ah We denote by
L;, an orbit of X+; through an hyperbolic singularity df, in the regionV;, and denote by,
the orbit ofX— through the originD. Observe that, by construction, the orbitsand L, are

circles. Let us see that there is no symple6fieaction preservingd; in a neighborhood of..
Assume there existed one, then the orbits(ef would also be preserved by this action. Given
an action of a Lie group : G x M — M, we use the standard notatiéh. for the isotropy group
at the pointz. We are going to use the Slice theorem to reach a contradiction.

According to the slice theorem [20] for proper group actions there would exist a slice for the
action throughr € L. Takez = O, we denote byS the slice through the origin. From now on,
we are going to consider a neighborhood.afvariant by thisS*-action. Then, there existskg
such that for allk > kg, the orbitL; is fully contained in this neighborhood. Sinéeis a slice,
the orbitLy, is transverse t&' at eactp € S and if S N L, is not empty then it consists of a finite
number of points. Further, by constructiofi,N L; consists exactly ok points {p1,...,px}
for k > ky. Those points lie in an orbit for the action, therefore for eagchve can consider
an elementy; € S! such thatg(g;,p;) = p1 and all theg; obtained in this way are different.
Following [20], if S is a slice thoughe then forp € S andg € G the conditiong(g,p) € S
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implies g € G,.. Therefore all the elementg are contained irB}, the isotropy group at the
origin. By constructionk tends to infinity as we are approaching the origin, 8ds a compact
group containing an infinity of elements, theref&e= S. This yields a contradiction because
then the orbit through the origin would be reduced to a point. Therefore there exists no symplectic
S'-action preserving{ ;.

This ends the proof of the propositiono
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