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THE TAMAGAWA NUMBER CONJECTURE OF ADJOINT
MOTIVES OF MODULAR FORMS

By FReED DIAMOND, MATTHIAS FLACH AND LI GUO

ABSTRACT. — Let f be a newform of weight > 2, level N with coefficients in a number field,
and A the adjoint motive of the motivé/ associated tgf. We carefully discuss the construction of the
realisations of\/ and A, as well as natural integral structures in these realisations. We then use the method
of Taylor and Wiles to verify the\-part of the Tamagawa number conjecture of Bloch and Katd.fet, 0)
andL(A,1). Here\ is any prime ofK not dividing Nk!, and so that the mod representation associated
to f is absolutely irreducible when restricted to the Galois group @ey/(—1)(“~1)/2¢) where) | £.
The method also establishes modularity of all lifts of the motepresentation which are crystalline of
Hodge-Tate typ€0, k& — 1).
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RESUME. — Soientf une forme nouvelle de poids de conducteufV, a coefficients dans un corps de
nombresK, et A le motif adjoint du motifM associé & . Nous présentons en détail les réalisations des
motifs M et A avec leurs réseaux entiersmals. En utilisant les méthodele Taylor—Wiles nous prouvons
la partie\-primaire de la conjecture de Bloch—Kato pdufA,0) et L(A,1). Ici A est une place d& ne
divisant pasNk! et telle que la représentation modulcassociée &, restreinte au groupe de Galois du
corpsQ(4/(—1)¢=1/2¢) avec) | ¢, estirréductible. Notre méthode démontre aussi la modularité de toutes
les représentations-adiques cristallinesle type de Hodge-Tat@, £k — 1) congrues & la représentation
associée & modulo\.
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0. Introduction

This paper concerns the Tamagawa number conjecture of Bloch and Kato [4] for adjoint
motives of modular forms of weiglit > 2. The conjecture relates the valuéaif the associated
L-function to arithmetic invariants of the motive. We prove that it holds up to powers of certain
“bad primes”. The strategy for achieving this is essentially due to Wiles [88], as completed with
Taylor in [86]. The Taylor—Wiles construction yields a formula relating the size of a certain
module measuring congruences between modular forms to that of a certain Galois cohomology
group. This was carried out in [88] and [86] in the context of modular forms of weighhere
it was used to prove results in the direction of the Fontaine—Mazur conjecture [40]. While it was
no surprise that the method could be generalized to higher weight modular forms and that the
resulting formula would be related to the Bloch—Kato conjecture, there remained many technical
details to verify in order to accomplish this. In gaular, the very formulation of the conjecture
relies on a comparison isomorphism betweendtaglic and de Rham realizations of the motive
provided by theorems of Faltings [31] or Tsuji [87], and verification of the conjecture requires
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664 F. DIAMOND, M. FLACH AND L. GUO

the careful application of such a theorem. We also need to generalize results on congruences
between modular forms to higher weight, and to compute certain local Tamagawa numbers.

0.1. Somehistory

Special values of_-functions have long played an important role in number theory. The
underlying principle is that the values éffunctions at integers reflect arithmetic properties of
the object used to define them. A prime example of this is Dirichlet’s class number formula;
another is the Birch and Swinnerton—Dyer conjecture. The Tamagawa number conjecture of
Bloch and Kato [4], refined by Fontaine, Kato aPelrrin-Riou [55,41,38], is a vast generalization
of these. Roughly speaking, they predict the precise value of the first non-vanishing derivative
of the L-function at zero (hence any integer) for every motive d@eiThis was already done
up to a rational multiple by conjectures of Deligne and Beilinson; the additional precision of the
Bloch—Kato conjecture can be thought of as a generalized class number formula, where ideal
class groups are replaced by grodg$ined using Galois cohomology.

Dirichlet’s class number formula amounts to the conjecture for the Dedekind zeta function for
a number field at = 0 or 1. The conjecture is also known for Dirichlétfunctions (including
the Riemann zeta function) at any integer [62,4,52,8,35]. It is known up to an explicit set of
bad primes for the.-function of a CM elliptic curve at = 1 if the order of vanishing is< 1
[11,69,58]. There are also partial results foffunctions of other modular forms at the central
critical value [45,56,59,64,89] and for values of certain Heék&unctions [49,48,57]. For a
more detailed survey of known results we refer to [35].

Here we consider the adjoirit-function of a modular form of weight > 2 ats =0 and1.

Special values of thé-function associated to the adjoint of a modular form, and more generally,
twists of its symmetric square, have been studied by many mathematicians. A method of Rankin
relates the values to Petersson inner products, and this was used by Ogg [65], Shimura [81],
Sturm [84,85], Coates and Schmidt [10,73] to obtain nonvanishing results and rationality results
along the lines of Deligne’s conjecture. Hida [51] related the precise value to a number measuring
congruences between modular forms. In tlase of forms corresponding to (modular) elliptic
curves, results relating the value to certain Galois cohomology groups (Selmer groups) were
obtained by Coates and Schmidt in the context of lwasawa theory, and by one of the authors,
who in [34] obtained results in the direction of the Bloch—Kato conjecture.

A key point of Wiles’ paper [88] is that for many elliptic curves, modularity could be deduced
from a formula relating congruences and Galois cohomology [88]. This formula could be
regarded as a primitive form of the Bloch—Kato conjecture for the adjoint motive of a modular
form. His attempt to prove it using the Euler system method introduced in [34] was not successful
exceptin the CM case using generalizations of results in [47] and [70]. Wiles, in work completed
with Taylor [86], eventually proved his formula using a new construction which could be viewed
as a kind of “horizontal lIwasawa theory”.

In this paper, we refine the method of [88] and [86], generalize it to higher weight modular
forms and relate the result to the Bloch—Kato conjecture. Ultimately, we prove the conjecture for
the adjoint of an arbitrary newform of weight> 2 up to an explicit finite set of bad primes.

We should stress the importance of making this set as small and explicit as possible; indeed the
refinements in [22,13,5] which completed the proof of the Shimura—Taniyama—Weil conjecture
can be viewed as work in this direction for weight two modular forms. In this paper, we make
use of some of the techniques introduced in [22] and [13], as well as the modification of Taylor—
Wiles construction in [24] and [42]. One should be able to improve our results using current
technology in the weight two case (using [13,13,72]), and in the ordinary case (using [28,82]);
one just has to relate the results in those papers to the Bloch—Kato conjecture. Finally we remark
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that Wiles’ method has been generalized to #téirsg of Hilbert modular forms by Fujiwara [42],
Skinner—Wiles [83] (using Shimura curves) and Dimitrov [29] (using Hilbert modular varieties).
Dimitrov’s work allows to relate the Selmer group with the special value of the adjoint L-function
of the Hilbert modular form but to verify the Bloch—Kato conjecture it remains to relate the
appearing period with a motivic period.

0.2. Theframework

The Bloch—Kato conjecture is formulated in terof$'motivic structures,” a term referring to
the usual collection of cohomological data associated to a motive. This data consists of:

e vector spaced/-, called realizations, for = B, dR and/ for each rational primé, each

with extra structure (involution, filtration or Galois action);

e comparison isomorphisms relating the realizations;

e a weight filtration.

Suppose thaf is a newform of weighk > 2 and levelN. Much of the paper is devoted to the
construction of the motivic structuté, for which we prove the conjecture. This construction is
not new; it is due for the most part to Eichler, Shimura, Deligne, Jannsen, Scholl and Faltings
[79,15,53,75,31]. We review it however in order to collect the facts we need and set things up in
a way suited to the formulation of the Bloch—Kato conjecture. For proofs of results not readily
found in the literature, weitkct the reader to [25].

Let us briefly recall here how the construction works. We start with the modular ctxve
parametrizing elliptic curves with leveV structure. Then one takes the Betti, de Rham and
¢-adic cohomology ofX  with coefficients in a sheaf defined as ttle— 2)nd symmetric
power of the relative cohomology of the universal elliptic curve o¥er. These come with the
additional structure and comparison isomorphisms needed to define a motivic stidgtyrehe
comparison betweeftradic and de Rham cohomology beingwided by a theorem of Faltings
[31]. The structures\/y ; can also be defined as in [75] using Kuga-Sato varieties; this has
the advantage of showing they arise from “motives” and provides the option of applying Tsuji's
comparison theorem [87]. However the construction using “coefficient sheaves” is better suited
to defining and comparing lattices in the realizations which play a key role in the proof.

The structures\/ , also come with an action of the Hecke operators and a perfect pairing.
The Hecke action is used to “cut out” a piesé;, which corresponds to the newforfnand
has rank two over the field generated by the coefficients dhe pairing comes from Poincaré
duality, is related to the Petersson inneoguict and restricts to a perfect pairing 8#;. We
finally take the trace zero endomorphisms\éf to obtain the motivic structurd ; = ad” M;.

The construction also yields integral structuret and.A;, consisting of lattices in the various
realizations and integral comparison isomorphisms outside a set of bad primes.

Our presentation of the Bloch—Kato conjecture is much influenced by its reformulation and
generalization due to Fontaine and Perrin-Rjiél]. Their version assumes the existence of a
category of motives with conjectural properties. Without assuming conjectures however, they
define a categor$P Mg (Q) of premotivic structures whose objects consist of realizations with
additional structure and comparison isomorphisms. The category of mixed motives is supposed
to admit a fully faithful functor to it, and a motivic structure is an object of the essential image.
Their version of the Bloch—Kato conjecture is then stated in termiSxafgroups of motivic
structures, but whenever there is an explicit “motivic” construction of (conjecturally) all the
relevant extensions, the conjecture can be formulated entirely in terms of premoativic structures.
This happens in our case, for all the relevBat’s conjecturally vanish. There will therefore be
no further mention of motives in this paper. We make several other slight modifications to the
framework of [41]:
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e We use premotivic structures with coefficients in a number fi€|das in [38].
e We forget about thé-adic realization and comparison isomorphisms at a finite set of “bad”
primess.
¢ We work with S-integral premotivic structures.
This yields a version of the conjecture which predicts the valug(effy,0) up to anS-unitin K.
The conjecture is independent of the choice of integral structures, but the formalism is convenient
and certain lattices arise naturally in the proof.
We make our sef explicit: Let S¢ be the set of finite primes in K such that either:
e \| NE! or
¢ the two-dimensional residual Galois representatdd »/A\M ¢ 5 iS not absolutely irre-
ducible when restricted t6' =, whereF = Q(+/(—1)“~1/2¢) and\ | £.
Note that sinceS; includes the set of primes dividing/k!, we will only be applying
Faltings’ comparison theorem in the “easy” case of crystalline representations whose associated
Dieudonné module has short filtration length.

0.3. The main theorems

Our main result can be stated as follows.

THEOREM 0.1 (= Theorem 2.15). L et f be a newform of weight > 2 and levelN with
coefficients ink. If X is not in S, then theX-part of the Bloch—Kato conjecture holds fdry
andA(1).

The main tool in the proof is the construction of Taylor and Wiles, which we axiomatize
(Theorem 3.1), and apply to higher weight formosobtain the following generalization of their
class number formula.

THEOREM 0.2 (= Theorem 3.7). —Let f be a newform of weight > 2 and level N with
coefficients inK. Suppose® is a finite set of rational primes containing those dividing
Suppose thah is a prime of K which is not inS; and does not divide any prime . Then
the Ok »-module

Hy(Ga, Apa/Af)
has length (17 ).

Heren?F, defined in Section 1.7.3, is a generalization of the congruence ideal of Hida and
Wiles; it can also be viewed as measuring the failure of the pairing/ero be perfect on\ ;.

Another consequence of Theorem 0.2, is thikofaing result in the direction of Fontaine-
Mazur conjecture [40].

THEOREM 0.3 (= Theorem 3.6). —-Suppose: Gg — GL2(K ) is a continuous geometric
representation whose restriction & is ramified and crystallin@nd its associated Dieudonné
module has filtration length less thah— 1. If its residual representation is modular and
absolutely irreducible restricted t@(+/(—1)(¢~1)/2¢) where\ | £, thenp is modular.
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1. Theadjoint motive of a modular form
1.1. Generalitiesand examples of premotivic structures

1.1.1. Premotivic structures

For a fieldF, F will denote an algebraic closure, a6y- = Gal(F/F). We fix an embedding
Q — Q, for each primep, and an embeddin@ — C. If F is a number field, we lekr denote
the set of embeddings — Q, which we identify with the set of embeddings— C via our
fixed one ofQ in C.

We write G, for G, , I, for the inertia subgroup af,,, andFrob, for the geometric Frobenius
elementinG, /I, = Gr,. We identify I, C G, with their images inGq.

If K is a number field, therbs(K') denotes the set of finite places &f. Suppose that
A € S¢(K) divides? € S¢(Q). Let Bgr = Bar,¢ and Be,ys = Berys ¢ be the rings defined by
Fontaine [37, §2], [41, 1.2.1]. Suppose thais a finite-dimensional vector space ovéx with a
continuous action ofy (i.e., a\-adic representation @f,). ThenDgg (V) = (Bar ®g, V)" is
afiltered finite-dimensional vector space o¥&y, andDe,ys(V') = (Berys ®q, V)% is afiltered
finite-dimensional vector space ovéf, equipped with akK,-linear endomorphisng. The
representatiof” is calledde Rhanif dimg, Dyar (V) = dimg, V, andV is calledcrystallineif
dimpg, Dorys(V) =dimg, V. We recall that ifl” is crystalline, therl” is de Rham.

A \-adic representatiol’ of G is pseudo-geometrigtl, I1.2] if it is unramified outside of
a finite number of places @ and its restriction td@+, is de Rham. The representatibnis said
to havegood reduction ap if its restriction toG), is crystalline (resp. unramified) jf = ¢ (resp.
p# L)

We work with categories of premotivic structures based on notions from [41,38,4].

For a number fieldK', we let PM denote the category of premotivic structures ofger
with coefficients inK. In the notation of [41, 111.2.1], this is the categoBPMg(Q) ® K of
K-modules inSPMg(Q). Thus an objecl/ of PM g consists of the following data:

¢ afinite-dimensionak’-vector spacé/{g with an action ofGg;

e a finite-dimensionak -vector spacé/yr with a finite decreasing filtratioRil’, called the

Hodge filtration;

e for each) € S¢(K), a finite-dimensionak’, vector spacé\/, with a continuous pseudo-

geometric action of7g;

e aC ® K-linearisomorphism

I*:C® Mgr — C® Mg
respecting the action @fr (whereGy acts onC ® Mgy diagonally and acts off ® Mggr
via the first factor);
e foreach) € S¢(K), a K -linear isomorphism
I3 : K\ ®x Mg — M)
respecting the action of/g (where thg action on\/, is via the restrictionGr — Gg
determined by our choice of embeddi@g— C);

e for each) € S¢(K), a Bar,¢ ®q, K -linear isomorphism

I: Bar.t ®0, Kx @k Mar — Bar.¢e ®q, M)
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respecting filtrations and the action@f,, (where/ is the prime which\ divides, K, and
M, are given the degree-0 filtratiok, andMyg are given the trivial7g,-action and the
action on)M,, is determined by our choice of embeddigg— Q,);

e increasing weight filtration$¥? on Mg, Mgr and eachM, respecting all of the above
data, and such th& ® Mg with its Galois action and weight filtration, together with the
Hodge filtration onC ® Mp defined vialg, defines a mixed Hodge structure olRi(see
[41, 111.1]).

If S C Se(K) is aset of primes ofC, we IetPMf{ denote the category defined in exactly the

same way, but wittts (K) replaced by the complement 6f If S C S’, we use’’ to denote the

forgetful functor fromP M3 to PMS, .

The categor;PMf{ is equipped with a tensor product, which we dengie, and an internal
hom, which we denotBomg . There is also a unit object, which we denote simplyibyThese
are defined in the obvious way; for exampl@/ ® x N)g is the K[Gr]-moduleMp ® x N5.
If K C K’, we letSE' denote the set of primes i (K”) lying over those inS, thenK’ @ -

defines a functor frorP M5, to PM3,, .

If M is an object ofPMj3-, then for each prime and each\ ¢ S, we can associate a

representation of the Deligne—Weil group@j (see [16, §8]), which we denote BY D, (M)).
For A not dividing p, the representation is ovésy; for A dividing p, we have that\/, |G, is
potentially semistable [3, Theorem 0.7], so the construction in [41, 1.2.2] yields a representation
overQ," ®q, Kx. We recall thatM, |G,, is crystalline if and only ifit’ D, (M) is unramified
(in the sense that the monodromy operator and the inertia group act trivially), in which case
WD, (My) = Q% &g, Derys(My) with Frob, acting vial ® ¢~'. An objectM of PM7
¢ hasgood reductioratp if WD, (M) is unramified for all\ ¢ S;
e is L-admissibleat p if the Frobenius semisimplifications & D, (M)), for A ¢ S, form
a compatible system ok -rational representations of the Deligne—Weil grougJof (see
[16, 88]);

e is L-admissible everywheiéit is L-admissible ap for all primesp.

If M is L-admissible afp, then the local factor associated WD, (1) is of the form
P(p=%)~! for some polynomialP(u) € K[u] independent of\ not in S. For an embedding
T7:K — Cwe putL,(M,,s) =7P(p~—*) and we regard the collectigfL,, (M, T, s)}rc1, as a
meromorphic function of with values inC!x = K @ C. If S is finite andM is L-admissible
everywhere, then it&-function

L(M,s):=]]Lp(M,s)

is a holomorphick” @ C-valued function in some right half plafie(s) > r (with components
L(M,7,5) =11, Lp(M, T, 5)).

1.1.2. Integral premotivic structures

Before introducing integral premotivic strucas, we recall some of the theory of Fontaine and
Laffaille [39]. We let M F denote the category whose objects are finitely genefatadodules
equipped with

e a decreasing filtration such thEtl* A = 4 andFil® 4 = 0 for somea, b € Z, and for each

i €Z, Fil' Ais adirect summand of;

e Z;-linear mapsp’ : Fil' A — A for i € Z satisfying¢?|pyir1 4 = £ andA =3 Im ¢'.
It follows from [39, 1.8] thatM F is an abelian category. Lé¢!F* denote the full subcategory
of objectsA satisfyingFil* A = A andFil®™* 4 = 0 and having no non-trivial quotient§’ such
thatFil® ™! A’ = 4’, and letMF2 _ denote the full subcategory g#t F¢ consisting of objects

tor
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of finite length. SoMF?. _is the category denotdﬂ{(’f in [39], and it follows from [39, 6.1]

that MF® and MF, . are abelian categories, stable under taking subobjects, quotients, direct
products and extensions vl F.

Fontaine and Laffaille define a contravariant fundty from MF? _to the category of finite
continuousZ,[G,]-modules and they prove it is fully faithful [39, 6.1]. We [&t denote the
functor defined by (A) = Hom(U ¢(A),Q¢/Z,) and we extend it to a fully faithful functor
on MF° by settingV(A) = projlimV(A/¢"A). ThenV defines an equivalence between
MF? and the full subcategory df,[G,]-modules whose objects are isomorphic to quotients
of the form L,/L,, where L, C L, are finitely generated submodules of short crystalline
representations. Here we define a crystalline representdtiorbeshortif the following hold

e Fil’ D= D andFil’ D = 0, whereD = (Beys ®q, V)*;

e if V' is a nonzero quotient df, thenV’ ®q, Q,(¢ — 1) is ramified.

In particular, the essential image fis closed under taking subobjects, quotients and finite
direct sums. Furthermore, one sees from [39, 8.4] that the natural transformations

G
Qe ®z, A— (Bcrys ®z, V(A)) E’
(1) Bcrys Rz, A— Bcrys Rz, V(A) and
Fil®(Berys ®z, A)*=" — Q¢ ®z, V(A)

are isomorphisms.

If K is anumberfield and € S¢ f(K) is a prime ove¥, we letO, = Ok, and letO-MF*
denote the category @,-modules inMF*. We can regard as a functor from0y-MF° to
the category oD, [G/]-modules.

If AandA’ are objects 005-MF° such thatd ®o, A’ defines an object ab\-MF°, then
there is a canonical isomorphism

V(A®o, A)2V(A) ®o, V(A).
Analogous assertions hold féfome, (A, A").
We now define a categorXPMf? of S-integral premotivic structuress follows. We let
Os = Ok, s denote the set af € K with vy(z) > 0 for all A ¢ S. An object M of PMf{
consists of the following data:

¢ afinitely generated i -module Mg with an action ofGg;

e a finitely generated)s-module Mqr with a finite decreasing filtratiodril’, called the

Hodge filtration;

e for each\ € S¢(K), a finitely generated,-module M with continuous action oty

inducing a pseudo-geometric action 81 ®o, Kx;

e for each\ ¢ S, an objectM y-crys Of Ox-MF°;

e anR ® Ok-linear isomorphism

I":CoMgr —-Co Mgz

respecting the action d@fg;
e for each\ in S¢(K'), an isomorphism

I : Mp ®0,. Ox = M,
respecting the action d@fg;
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e foreach\ ¢ S, anO,-linear isomorphism
Ié\R : MdR ®o O)\ = M)\-crys

respecting filtrations;
e for each) ¢ S, anO,-linear isomorphism

IR :V(MA-CWS) — M,

respecting the action @¥q, , wherel is the prime which\ divides;
e increasing weight filtration§/’* on Q ® Mg, Q ® Mgr and each) @ M, respecting all
of the above data and giving rise to a mixed Hodge structure.
With the evident notion of morphism this becomes@sg-linear abelian category. Note also
that there is a natural funct@ © - from P M5, to PM3,, where we sefQ © M), = Q @ M-
for 7 =B, dR and\ for \ ¢ S, with induced additional structure and comparison isomorphisms.
(The comparisod* for Q ® M is defined as the composite

Bar,r ®z, Ox ®0 Mar = Bar.¢ @z, Mr-crys — Bar.e @z, V(Mxr-crys) — Bar,¢ @z, Ma,

where the maps are respectivelyy, the canonical map (1) and, each with scalars extended
to Byr,e.)

If S S, we define a functor’” from P M3 to PM% in the obvious way. We say that! is
S’ -flat if Mﬁﬁ = Mar ®0 s Ok, s is flat overO /. Note that if M is S’-flat, then so is any
subobject ofM. Let K’ be a finite extension oK. We also have a natural functélx, ®e,. -

from PMS, to PMS,, .

We say thatM hasgood reductiorat p, is L-admissibleat p or is L-admissible everywhere
according to whether the same is true @ M. Note that if M is L-admissible ap andp is
not invertible inO, then M necessarily has good reductiorpat

For objectsM and M’ of P M7, we can formM @, M’ in P M5 providedM s -crys @0,

\-crys defines an object aMFS for all A ¢ S. In particular this holds if there exist positive
integersa, a’ such thatFil® Mag = 0, Fil* Mz = 0 anda + o’ < ¢ for all primes ¢ not
invertible in O. If A" and A" are objects ofP M5 such thatV ®o, N is as well, and if
a: M — N ande’ : M’ — N’ are morphisms itP M3, then there is a well-defined morphism
a®d Moo, N — M @0, N'inPMS3. Analogous assertions hold for the formation and
properties otlomp . (M, M’).

Note that if M is an object ofP M3, thenEnd M is a finitely generated x-module. If] is
an Ok -submodule oEnd M, then we define an objedtt[I] of P M3 as the kernel of

(X1, ) M —> M"

wherezxy, ...,z generatel. This is independent of the choice of generators. This applies in
particular wher? is the image inEnd M of an ideal in a commutativé - -algebraR mapping

to End M, or the augmentation ideal it x [G] whereG is a group acting oo\. In the latter
case, we write\“ instead ofM(1].

1.1.3. Basic examples
The objectQ(—1) in PMg is the weight two premotivic structure defined B¥ (G, ).

To give an explicit description, let denote the generator @,(1) = lim - (Q) defined by
(e2/¢"),, via our fixed embeddin@ — C.
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o Let7p = H5(Gm(C),Z) = (27i)~'Z c C with complex conjugation iGr acting by—1,
andletQ(—1)p =Q ® T5.
o Let Tgr = Hig(Gwm/Z), which with its Hodge filtration is isomorphic [—1] (where[n]
denotes a shift by, in the filtration, soFil’ V[n] = Fil'*" V). Write . for the canonical
basis 2 of Tqr = Z[-1] and letQ(—1)ar = Q ® Zar, S0 Fil' Q(—1)qr = Q: and
Fil? Q(—1)qr = 0.
o Let Ty = HY (G, ¢, Z¢) = Homg, (Z(1),Z¢) = Z¢5 whered(e) = 1, and letQ(—1), =
QR 7.
Let 7¢-rys denote the object of1.F, defined byZ, @ Tqr = Zg ¢ with ¢' (1) =¢.
I°:C®z Tqr — C ®z Tp is defined byl ® ¢ — 2mi ® (2mi) .
I :7, @ Tg — Ty is defined byl ® (2mi) =1 — 4.
IR : Tar ®7 Zo — Tp-crys 1S given by — ¢ .
I*: Bar ¢ ® Q[—1] — Bar.¢ ®g, Q(—1), is defined byl ® ¢ — t ® § wheret = log[¢] (see
e.g., [41,1.2.1.3]).
o Forl > 2,7;-c,ys iS an object ofM F° andI’ isinduced by an isomorphisW(Z¢-cys) = 7s.
The above data defines objects M and P/\/l(g} which we denote byQ(—1) and 7.
These could be described equivalently By (P!), or indeedH?(X) for any smooth, proper,
geometrically connected curvé overQ.
The Tate premotivic structuré)(1) is the object ofPMg defined byHomg(Q(—1), Q)
andQ(n) is defined byQ(1)®™ for integern. We haveL(Q(n), s) = (s + n) where( is the
Riemann¢-function. More generally, for any objedt in PM x and integen, M (n) is defined
asM ®g Q(1)®™. For any integern. > 0, 7°-®" defines an object cSPMé whereS is any set
of primes containing those dividing: + 1)!; note also thaf) ® 75" =~ Q(—n)".
For any number field® c Q, let My denote the premotivic structue/ of weight zero
defined by H°(Spec F'), called theDedekind premotivic structuref F. To give an explicit
description, letS denote the set of primes dividing = Disc(F/Q). We let
e Mpp = 7 with the natural action o, andMrp = Q ® Mg = Q7. (Recall that
we identifiedI  with the set of embeddings — C via the chosen embeddi@— C, so
for a:1r — Z ando € Gy, we definera by 7 +— a(c =t o 7));

e Mpar = Or[1/D] with FilOMF,dR = Mpgqar and Fil! Mpar =0, and Mpqgr =
Q®Mpar=F,

e Mpo=Zi Q@ Mpp= Zf with the natural action ofig, andMpr,=Q ® Mp, = Q}F
(sofora:Ip — Zy, 0 € Gy andr: F — Q, we have(oa) (1) = a(c ™ o 7));

o Mp p-crys = Zg @ Mpar = Z¢ @ Op for £ ¢ S, with the same filtration a8 g qr and

with Q/)O = ¢y.

The comparisongj and Iy are identity maps/>° is defined by/*>*(1 ® z)(7) = 7(z) after

identifying C ® Mp p with C'*, and I* is defined similarly. We thus obtain objectslr of

73/\/18 andMp of PMg, andL(MFp, s) is the¢-function of F. If F' is Galois overQ, then there

is a natural action off = Gal(F/Q) on M g, where fora. € Mg g, g € G andr € Ir, we have

gabyT— a(rog).

Let ¢:Z* — K* be a character, regarded also as a charactet’ofand G via the
isomorphism&.* = AX/RZ,Q* = G&b, where the first isomorphism is induced by the natural

inclusionZ* — A* and the second is given by class field theory. (Our convention is that a
uniformizer inQ,; maps tokrob,, in the Galois group of any abelian extensioriptinramified
atp.) If ' is a Galois extension dp such thaty is trivial on the image ot r in Gg, then we can
regardy as a character aff = Gal(F/Q) and define th®irichlet premotivic structurelf,, as

(V® Mp)“ whereV = K with G acting by:. The construction is independent of the choice of
F and embedding of in Q. To describel/,, explicitly, we choose” = Q(e?™/N) C C where
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1 has conductoN. We letr, : F' — Q denote the embedding compatible with our fixg¢d- C,
and we regard) as a Dirichlet character via the canonical isomorph{gmMNZzZ)* = G. Let S
denote the set of primes i lying over those dividingV and define an object1,, of P/\/lf{
by (V ® Mr)¢ whereV = O3 with G acting by:. We then have:
o My B is theOg-submodule o@}{ spanned by the majs defined byrg o g +— ¥ ~1(g),
wherer is the inclusion off in Q;
o My qar istheO = Ok[1/N]-submodule o0k ® Or[1/N] spanned by

bar = »_¥(a) ® >N,

wherea runs over(Z/NZ)* with Fil! My ar=0 andFil° My ar = My dr;
o Myr=0)\Q0, Myp with Gg acting viay;
o for M N, My r-ays = Ox @0, My ar With the same filtration as\ly, qr and ¢° =
v (0).
The comparison isomorphisms are induced from thos@fyf. Similarly, we get the object
M, of PMg by setting My, » = Q ® My, » with comparison isomorphisms induced from
those of M. In particular, we havéd> (1 @ bar) = G4 (1 ® bg) whereG,, is the Gauss sum
>, 2N @ah(a) inCo K.
We have thaQQ ® M, = Mf, My, has good reduction at all primes not dividing the conductor
of ¢ and isL-admissible everywhere, ardd My, s) is the DirichletL-function L(x)~1, s).

1.2. Premotivic structuresfor level N modular forms

In this section we review the construction of premotivic structures associated to the space of
modular forms of weight and levelN. More precisely, if > 2 and N > 3, we construct objects
of PM% whose de Rham realization contains the space of such forms, whergy is the set
of primes dividingN k!.

1.2.1. Level N modular curves

These premotivic structures are obtained from the cohomology of modular curvésahet
N be integers withk > 2 and N > 3. Let T' = Spec Z[1/Nk!], and consider the functor which
associates to @-schemel” the set of isomorphism classes of generalized elliptic curvesiover
with level N structure [18, 1V.6.6]. By [18, I1V.6.7], the functor is represented by a smooth, proper
curve overT'. We denote this curve by, and we lets : E — X denote the universal generalized
elliptic curve with levelN structure. We lefX denote the open subschemedbver whichE is
smooth. ThenX is the complement of a reduced divisor, caltbd cuspidal divisqrwhich we
denote byX>=. We letE =571 X, s = 5| andE> = E x ¢ X>. Using the arguments of [18,
VI1.2.4], one can check thaf is smooth ovefl” and E* is a reduced divisor with strict normal
crossings (in the sense of [46, 1.8] as well as [1, XIII.2.1]).

Let us also recall the standard description of

gan :Ean N Xﬂ-n7

where we usé” to denote the associated complex analytic space. We let
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where for each, Xy , denotes a copy df(V)\ 9, the quotient of the complex upper half-plane
$), by the principal congruence subgrob@V) of SLy(Z). Similarly we let

XN: H XN,t7
te(Z/NZ)*

whereX y , is the compactification ok v, obtained by adjoining the cusps. We er(ﬁ,lg for
the corresponding algebraic curve oger

For eacht € (Z/NZ)*, we define the complex analytic surfaégy, to be a copy of the
guotient

L(N\((9 x ©)/(Z x Z)),

where(m,n) € Z x Z acts on§) x C via (r,z) — (r,z + m7 + n), andy = (* ") e T(N) acts
by sending the class d¢f, z) to that of (v(7), (¢t +d)~'z). We can regard’y = [[ En as a
complex analytic family of elliptic curves ove¥ y with level N-structure defined by the pair of
sectiongr,7/N) and(r,t/N) on X ;. We can then extenfly to a family £ of generalized
elliptic curves with levelN-structure overX y using analytic Tate curves, as in [18, VII.4].
One checks thaEy is algebraic, sdy — Xy is the analytification of a generalized elliptic
curve E%% — X2/, The resulting morphisnX &% — X induces an isomorphisti y — X",
The analytification of the universal generalized elliptic curve with IéVedtructure is therefore
isomorphic toEy — X y with the level N-structure defined above.

1.2.2. Betti realization

To construct the Betti realization, defitfg; as the locally constant she&f s2*Z on X 2", Let
Fh = sym§*2 Fr, where our convention for defining symmetric powers is to take coinvariants
under the symmetric group. We then defikes = H' (X" Fr), and M, p = H} (X Fk).
Identifying X" with X as above, we find tha% is identified with the locally constant sheaf
defined by

D(N)\(§ x Sym* > Z?)

wherel'(N) acts onZ? by left-multiplication. It follows that

(2) H(X™ Fp) = @ H(D(N),Sym" 7).
te(Z/NZ)*

In particular, it follows easily that g has nof-torsion if k = 2 or ¢ does not divideV (k — 2)!.
The actions of complex conjugation ¢ on Mz andM_ g are induced by its action cA*"
andX*". We letMp =Q® Mp andM, p =Q & M, p.

1.2.3. /-adicrealizations

For any finite prime/, we letF, denote theé-adic sheafR's,Z, on X. Let]-'f = symgf Fo,
My =H"(Xg,F}) and M., = H: (X, Ff). ThenGq acts onM, and M., by transport
of structure. We letM, = Q ® M, and M., = Q ® M. ,. A standard construction using
the comparison between classical and étale cohomology [2, XI.4.4, XVII.5.3] yields the
isomorphism&; ® Mp = M, andZ;, ® M. g = M, .

1.2.4. de Rham realization
The construction of the de Rham realization is similar to the one given in [74] except we use
the language of log schemes [54]. We )L (resp.Nx) denote the log structure ofi (resp.

4€ SERIE— TOME 37 — 2004 -N° 5



THE TAMAGAWA NUMBER CONJECTURE OF ADJOINT MOTIVES 675

X) associated td> (resp.X ) [54, 1.5]. By [54, 3.5, 3.12], we have an exact sequence of
coherent locally fre® z-modules

3) 0—>§*w}(/T—>w}§/T—>w};/)—(—>0,

wherew! denotes the sheaf of logarithmic relative differentials defined in [54, 1.7]. The sheaves
wk /7 and wk /x are invertible, and can be idéfied, respectively, with L ,p(X>) and the
sheaf of regular differentials for (denotedv, ¢ in [18, 1.2.1]). DefineFqr as the locally free
shealeg*w;j/X of O ¢-modules onX, Whereth/X is the complexd: Oz — ”}E/X' This has

a decreasing filtration witRil> Fyr = 0, Fil' Fur = E*w};/X, andFil° Fur = Far. We denote

Fil' F4r simply asw. We defineF?; as the filtered sheaf «ﬁ?)g-moduIesSym’(“;X2 Far, and we
Ietfde = ]—"é“R(—XOO).

The (logarithmic) Gauss—Manin connection

V:Far — Far Qo W%/T

induces logarithmic connections offj, and F} ;i satisfying Griffiths transversality. We set
Mar = HY(X,w*(FR)) and M. qr = H (X, w*(F¥ ), Where we writew®(G) for the
complex associated to the moduewith its connection. The filtrations oM gr and M. 4r
are defined by those aR’; and}‘c’de. We let Myr = Q ® Mar and M, aqr = Q ® M, 4r.
Lettingw = E*WE/X' we havegr’ Fyr = w™! by Grothendieck—Serre duality and = w}(/T
by the Kodaira—Spencerisomorphism [18, VI1.4.5.2]. It follows thag w}(/T, and one deduces
that

. HY(X, W2 @wy ), ifi=k-1

gr' Mar = ¢ HY(X,w? k), if i =0;
0, otherwise.

Similarly one finds

_ HO():(,wk*Q@)Q%/T), ifi=k—1;
gr' Mear = ¢ HY(X, w2 F(=X>)), ifi=0;
0, otherwise.

Pulling back to] [, $ and trivializing by(2i)*~!(dz)®(*=2)dr yields an isomorphism

(4) a:CFilF ! Mgg — @ Mk(F(N))
te(Z/NZ)

where M (T'(N)) is the space of modular forms of weightwith respect tol'(N). By the
g-expansion principle [18, VII], the map

@ MmrwW)- D Cld™)

te(Z/NZ)* te(Z/NZ)*

that sendg (1) = g(e2™"/N) to g(¢*/") identifiesFil* ~! Mg as the subset of

@ My(T(N))

te(Z/NZ)*
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whoseg-expansion ato has coefficients ifZ[1/Nk!, x|, which we view as a subring ¢ff, C
via the embedding defined big?**/V),. The same assertions hold witht,r replaced by
M..ar @and My (T'(N)) by S, (I'(N)), the subspace of cusp forms.

To construct of the comparison isomorphisifs, apply GAGA [76] and the Poincaré Lemma
to conclude that the pull-back of®(Fyr) to X?" defines a resolution of ® Fp. Taking
symmetric powers then provides resolution€oef 7% andC ® jiF% wherej : X" — X2 and
taking cohomology yields the desired comparisons. We refer the reader to [25] for more details.

1.2.5. Crystallinerealization

We define the crystalline realization using tleduage of logarithmicrystals as in [31].
Suppose thal” is a smooth, proper scheme orec Z, with a relative divisorD with strict
normal crossings, and I&t =Y — D. For each integes with 0 < a < ¢ — 2, Faltings [31,

§2i)] defines a categor)y/l}‘[%_’a] (Y). Inthe case of =Y = Spec Z,, Faltings’ category can be
identified with the full subcategory 0¥1.F"_ whose objects! satisfyFil**! A = 0. Assuming/
does not divid@ NV, let Fy-..ys denote the inverse systemM]-'[VoJ] (Xz,) defined by reduction
mod ¢" of Far with its filtration, logarithmic Gauss—Manin connection and locally defined

Frobenius maps. Assuming further tilat k& — 1, we Iet}‘f_crys denote the inverse system in
Mf[%,k_g] (Xz,) defined bySym’é;2 Fi-crys. If £ >k, we obtain an object

—rrl k
Mf'CTyS - Hcrys (XZZ ) ]:@'Crys)

of MF" whose underlying filtered module can be identified with® Mur (see [31, §4c))).
Similarly, taking cohomology with compact support (in the sense of [31]) yields an object
M ¢-crys Whose underlying filtered module & ® M. ggr.

The above identifications provide the comparison isomorphigfps The construction of
the comparisond’ relies on Faltings’ comparison theorem betwefeadic and crystalline
cohomology. Faltings [31, Theem 2.6] defines a functdd from M}‘[Voya] (Y) to the category
of finite locally constant étale sheaves By, so thatV = Hom(D(-), Q,/Z,) coincides with
that of [39] forY = SpecZ,. If £{ NE!, then we havé/(Fp-crys) = Fe by [31, Theorem 6.2],
soV(}‘f_CryS) =~ FF by [31, 1Ih], giving V(M -crys) = My and V(M. p-crys) = M. o by [31,
Theorem 5.3].

1.2.6. Weight filtration
There is a natural mapM.» — M- for each realization resggting all of the data and
comparison isomorphisms. Setting

0, ifi<k-—1,
W; M, = im(Mc77—>M7), if k—1<i<2(/€—1);
Mo, if 20k — 1) < i;
0, if i <O0;
WiM.» = ker(M.» — My), fO0<i<k-—1;
Mc,?a if k—1 < )

defines weight filtrations. So we can regavtl and M. as objects OPM%, andM =Q® M
andM,. = Q ® M. as objects oPMS, whereS contains the set of primes dividingk!. The
integerk > 2 will always be fixed in the discussion and suppressed from the notation; when it is
necessary to specifyy, we denote the object$1(N) and M (N)..

We let M; denote the maximal torsion-free quotientfof (i.e., M/ M[r] wherer € Z~ is
chosen to annihilate the torsion it 5 and M|r| denotes the kernel of multiplication byon
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M.) We then letM, denote the premotivic structuig (M. — M) in PM%, pure of weight
k—1.WeletM, =Q ® M,.

1.3. Theaction of GL2(Ay)

In this section we define the adelic action on premotivic structures associated to modular
forms.

1.3.1. Action on modular forms

We first recall the adelic definition of modular curves and forms. Supposé/timan open
compact subgroup dkL.(A¢) whereAs denotes the finite adeles. Ligt,, denote the stabilizer
of i in GL2(R), soU. = R* SO2(R). The analytic modular curv&; of level U is defined as
the quotient

The analytic structure is characterized by requiring thatsfin GL(A¢), then the ma — Xy
defined byy(i) — GL2(Q)g7UUs, v € GL3 (R), is holomorphic.

If ¢:GLy(A) — C is such that(dzuv) = detv (ci + d)"*¢(z) for all § € GLy(Q),
z € GLy(A), ue U andv = (*") € Uy, then we defingy,: ) — C

g ((i)) = (dety) " (ci+d)*¢(gy) fory=(*")eGLI(R).

We say that such a functiop is a modular form of levelU if for all g € GL2(A¢), ¢4 is a
modular form of weight: with respect tqyUg~! N GL3 (Q). We denote this space by, (U),
and similarly define5y, (U), the space of cusp forms of levél

Suppose now thdf andU’ are open compact subgroups@E.(Ar), andg is an element of
GL2(Af) such thay~1U’g C U. Note that right multiplication by induces a holomorphic map
Xy — Xy, and inclusionsV,(U) — M (U’) andS,(U) — Si(U’). We thus obtain an action
of GLy(A¢) on

Ap =1im My, (U) and A} =1im Si (V).
U U

Suppose now thall = Uy for someN > 3, whereUy C GL2(A¢) is the kernel of the
reduction mapGLsy(Z) — GLy(Z/NZ). For each class € (Z/NZ)*, we choose an element
g € GLy(Z) whose image ilGLy(Z/NZ) is (} ,%). We identify Xy with X, via the maps
1 : Xn, — Xy defined by

L(N) - y(i) = GL2(Q) - g¢v - Ul

for v € GL3 (R). We identify M, (U) with @, My (T'(N)) via the isomorphisn defined by
B(¢): = ¢g4,. (Note thaty and g are independent of the choices of the) We thus obtain
isomorphisms

5) B loa:CRFI* ' Mag=My(U) and A =C@LmFil"™' M(N)ag,
N

wherea was defined in (4).

1.3.2. Action on premotivic structures
Forh € GL2(A¢) and integersV, N’ > 3, we call(h, N, N') anadmissible tripléf both i and
N'N=th=1 e My(Z).If (h, N, N’) is an admissible triple, theN | N’ andh~'Ux-h C Un. Let

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE



678 F. DIAMOND, M. FLACH AND L. GUO

E/X (resp.E’/X') denote the universal generalized elliptic curve with lede{respectively
N’) structure. Note that right multiplication b’k ! € M(Z) defines an endomorphism of
E'[N'| = (Z/N’Z)fx,. We defineG to be its image which is a finite flat subgroup®f. Right
multiplication by N~ N’h~! defines an injective map

(Z/NZ)* — (Z/N'Z)* /(Z/N'Z)*(N'h™)

which gives rise to a leveN-structure onE’ /G extending to(E’/G)cont, the contraction of
E'/G whose cuspidal fibers aré-gons [18, IV.1]. By the universal property E_f/;(, this defines
a mapX’ — X such that(E'/G)cons — E x5 X’ as generalized elliptic curves with level
N-structures. Composing with the natural map— (E£’/G)cont, We get a commutative diagram

<

—_—

(6)

><\<—Dj\
R\%m\

S

Suppose thay MQ(Z) N GLy(Af) with g~ 1Upn/g C Uy. One can then factay = rh so
thatr € Z and (h, N, N’) is admissible. Suppose th&tis a set of primes containing those
dividing N'k!. Forff = 0, ¢ and!, we write M, = M(N)f and M = M(N’)f for the objects
of 73/\/18 defined in Section 1.2.6. F@r= B, dR, ¢ and/-crys with ¢ N'k!, we use the top
row of (6) to define compatible maps fraf to the pullback ofF, along the bottom row, take
symmetric products and then take cohomology, yielding morphjaasM; — /\/lfj We then
obtain morphismsg|; : My — M} by defining[g]; = r%=2[h]4, and this is independent of the
factorizationg = rh. Furthermore, iftN” > 3 is an integerg’ € MQ(Z) N GL2(A¢) is such that
g" " 'Unrg' C U} andS contains the set of primes dividing”k!, then[g']; o [g]; = [¢'g]¢ in
PMS/ for =0, c and!, whereS” is the set of primes dividingv”k!. In particular, we obtain
an action ofGLy(Z) /Uy = GLy(Z/NZ) on M;. We note the following:

LEMMA 1.1.—If g € My(Z) N GLa(Ag) andUys C gUng ™t C GLo(Z), then the injective
morphismigl.: M, — (M’)9V~9"" has cokernel killed by det g/~

Suppose now thag € GLa(Ag) with g~ Ux-g C Ux. We can then writgy = rh for some
r € Q sothat(h, N, N’) is admissible and obtain morphisméhM(g which we also denotg];.
These behave naturally under comitios and the resulting action dkL2(A¢) is compatible
with the isomorphisms in (5).

1.4. The premotivic structurefor formsof level N and character ¢

1.4.1. o-constructions

Supposéd/ is any open compact subgroup GL. (Z). Let K be a number field with ring of
integersO . LetV be a finite dimensional vector space ovérand leto: U — Autx (V) be a
continuous representation bf. Define

Sy = {€ € S¢(Q)| £|k! or GL2(Z¢) ¢ kero},
and suppose that C S¢(K) with S c S.

ChooseN > 3 such thatUy C kero and N is divisible only by primes inS, and let
M = M(N)?. SinceUy is normal inU, by Section 1.3.2, we have a group actionlbfon
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M. LetV be anOg-lattice in V' that is stable under the action bf. We then have an object
M@V of PM% defined by(M ® V), = M» ® V where all additional structures on are
trivial. Letting U act diagonally onM & V, we obtain an object

M(o)=Ma V)Y

of PM3- as in Section 1.1.1. We also define objest{o); = (M; ® V)V for § = tf or ¢ and
define
M(o) =im(M(c)e — M(0)is).

We remark thai\ (o), may lie properly inl M, @ V)V and thatM (o) and M (o) may rely on
the choice ofV as above. However using the fact thadif is another choice wittV | N" and M,
denotesM (N')?, then the natural map1. — (M~)Y~ is an isomorphism (by Lemma 1.1), we
conclude thatM (o). and M (o), are independent aV. We also definéV/ (¢); = M(o); @ Q
in PMf{ for =0, c and!; these are also independent/éf

Let U andU’ be two open compact subgroups contained}Ir;b(Z). Leto:U — Autg (V)
ando’: U’ — Autg (V') be two representations with stabl®y-lattices) and)’. Suppose
we are given a € GLy(Ar) N My(Z) and aK-linear homomorphism : V' — V’ such that
7(o(g 7 ug)v) = o’ (u)7(v) forall v € V andu € U] = U’ N gUg~!. Let S be a subset of
S¢(K) containingSX U SE U SK wheresS,, is the set off such thaty, ¢ GL2(Z¢). Choosing
suitableN and N’ and a coset decompositiéil =[], g;U7, the formula

TRV Z[gig]nff ® ' (gi)7(v)

3

defines mapf/’gU];: M(o)y — M(c’)s. The map is independent of the choicesfer ¢ and
I, and fort = () after tensoring withQ,

1.4.2. Premativic structureof level V and character v

Suppose that > 2 and N > 1. Let ¢) be a characteZ* — K* of conductor dividingV.
Let U = Uy(N) denote the set of matricds *) € GLy(Z) with ¢ € NZ. Defineo = o(N, )
by the charactep: Uy(N) — K* sending(‘; Z) to ¢y~ !(an), whereay denotes the image of
a in [], 5 Zy. DefineV = V(N,7) to be the vector spack with an action ofU by o. Let
V =0k C V. Note thatS, = SE. We let M(N, ), denote the premotivic structuret (o) for
§=cor!, andletM (N,¢); = M (o) forg =0, corl.

Recall that the isomorphisr @ Fil*~* M(M)4r = M (Uxs) in (5) respects the action
of GLQ(Z). It follows that for any embeddindC — C, the isomorphism identifie€ ®
Fil* ! M(N,v)qr with My(N,1), the space of classical modular forms of weightlevel
N and characterp. Under this isomorphisnﬁilk’lM(Mw)dR corresponds to the set of
forms whoseg-expansion ato has coefficients inr(Og). ReplacingM (N, ¢) by M(N, ).
or M(N, ), gives the same identifications, but for the space of cusp fohna’, ).

1.5. Duality

We now define duality morphisms arising from pairings on the realizations of the premotivic
structures associated to modular forms.

1.5.1. Duality at level N B
For N > 3, we let H = Hy denote the premotivic structurél?(Xy) = H?*(Xny).
More precisely, we letHg = H*(X*",Z), H; = H*(Xg,Z¢), Har = Hl(Xﬂ}(/T) and
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7_fé-mrys = ngys(XZe’OXze
and comparison isomorphisms makihgan object ofPMSN, and we letH =Q ® H.

Let F = Q(un). The Weil pairing on(Z/NZ)3 = E[N] defines an isomorphism between
(Z/NZ)x andun,x, hence a morphisniX — Spec Or[1/N]. The fibers being geometrically
connected, this induces an isomorphism

erys) for £ ¢ Sy. These come equipped with additional structure

@) Mp(-1)—>H

in PM%N whose realizations are given by Poincaré and Serre dualities. Furthermore, the action

ofue GLQ(Z) onH corresponds to that afet © on Mg, where the action ofi{ arises from
the action onX (see Section 1.3.2) and that®f on My is via the isomorphism of class field
theory (see Section 1.1.3).

Recall from Section 1.2.2 thefz denotes the shedi!s2"Z on X 2", The cup product defines
a morphismFp ® Fp — (2mi)~1Z of locally constant sheaves oxi?", inducing a morphism
Fk ® Fr — (2mi)?~*Z defined on sections by

k—2
(8) T1 Q0 RTp2QY1 X+ QYp_2 Z H:cinU(i).
€Yo i=1

Taking cohomology and composing this with the cup product yields a morphism
( ) )B :MC,B ®Mp _’HB(2 - k) g./\/lF(l — k)B,

which inducesM,. g — Homz(Mp, Mp(1 — k) ). Defining pairings , )ar and( , )¢, one
finds that they respect the comparison isomorphisms and weight filtrations yielding morphisms

9) 5:MC—>Hom(./\/l,./\/lF(1—k)) and 5!:./\/1!—>Hom(./\/l!,./\/lp(1—k))

in PMG if Sy C S.
The pairing( , )ar is compatible with the Petersson inner product

(g B)eqw) = (~20) ! / g(rh(T) (I 7)*~2 dr A d7
T(N)\$H
for g € Sk (T(NV)), h € My(T'(N))

as follows. Forg € C @ Fil* ™! M. qg andh € C ® Fil*~* Myg, write

a@=(gre P S(TWN) and ah)=()e P Mc(TV)).

te(Z/NZ)* te(Z/NZ)*

After extending scalars t@ for the pairing( , )qr, we have

(10) (g9, (I®) ' (Fu ® 1)Iooh)dR = (k —2)!(4m)~! Z (gt hi)r(vy ® JF1
te(Z/NZ)*

wherer; : C ® Mpar = C® F — C is defined bye?™ /N € ;i (C).
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1.5.2. Duality for o-constructions

For the rest of the section, we assutiés an open compact subgroup @i, (Z) satisfying
detU = Z*, and lety: Z* — K* be a continuous character. For a continuous representation
0:U — Autp, V, leté denote the representation definedlbymoe, (V, Ok ). SupposeV > 3
is such that/y C ker o, the conductor ofy divides N and S c S. Restricting the pairings
(, )7 to U-invariants, we get a morphism

(12) SN M (6 ® (1! odet)) — Homo, (M(0), My (1 —k))

which depends on the choice df. Tensoring withQ and normalizing by dividing byU : Uy,
we get an isomorphism

§:M.(6® (" odet)) — Homp (M(0), My(1 — k))
which is independent oW, and we similarly define
(12) 61: M (6 ® (¥~ " odet)) — Hompg (Mi(o), My (1 — k)).

We say that’ is sufficiently smalif U acts freely onGL2(Q)\ GL2(A)/Us. In particular
U is sufficiently small ifU c U;(d) for somed > 4, whereU;(d) denotes the preimage in
GLy(Z) of the subgroup ofiLy(Z/dZ) consisting of matrices of the forr(né *). One then has
a description ofM (o), g in terms of the cohomology of the cun&; with coefficients in a
sheaf depending am. Poincaré duality otX;; then shows that the isomorphignarises from an
injective morphism

M(G® @ "o det)), — Homo,, (M(0)1, My (1 — k))

whose cokerne! satisfie<, =0 for £1 N (k — 2)!. We deduce the following:

LEMMA 1.2. - Suppose thal/ has a sufficiently small open compact normal subgrbiip
such thatdet U' = Z> and({[U : U']. If £ > k — 2 andker o C Uy for someN not divisible by
£, thenoy arises from an isomorphism

./\/l(& @@ to det))!)\ — Homo,, , (./\/l(a)!_), My (1 — k))\)

for every dividing 4.

Suppose now that, ¢/, g, 7 andS are as in Section 1.4, so we have morphisms
[U'gU]rp: M (o) — M(c')y
for § =0, c and!. We then also have morphisms
-1 _ _
[U(]| detgllg) Ul]‘ﬂ@d}(dct(g)),ji Mo’ @ o det))‘j Mo (@ odet))ﬁ

which we denote byU’gU]T,. One finds then tha/'gU]7 . (respectivelyU’gU]T)) is the
adjoint of [U’gU]|, (respectively[U’gU],.i) with respect to the pairing, (respectivelys,).
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1.5.3. Duality for level N, character ¢

We now define duality morphisms for premotigtructures defined in Section 1.4.2. Suppose
now thatN > 1, ¢ has conductor dividingV and S C S. LetU = Uy(N) ando = o (N, )
be the representation o = V(NV, %) as in Section 1.4.2. LeV’ be the one dimensional
representatiorlomg (V, K) ® Ky -1.4¢¢ Of U with natural lattice)’. We denote byo’ =
& ® (=1 o det) the representation ol’. Definew:V — V' by sendingy, to 9y ® 1, where
09 € Hom(V, O) is such thaty(vg) = 1.

Letw denote(]% _OI)N in HpIN GL2(Z,). The operatofUwU],, 4 defines an isomorphism

(13) M(N, )y — M(o")y

in PM% for § = 0, ¢ and !, restricting to an isomorphism on integral structures for
t =c and!. One finds thatlUwU];' = [Uw™'Ul,tgpetw) and [UwU], is adjoint to
N*2[Uw™ Uyt gy (detw)),c @nd coincides withy)(—1o ) N*~2[Uw~'U],,. Composing the
operatofUwU],, with the duality morphisna, we obtain a duality isomorphism

(14) 0: M (N, ) — Hompg (M(N,9)e, My (1 —k)).

Similar assertions hold fok/ (N, 1)), yielding an isomorphisnd,. Since M (N, ) = 0 unless
¥(—14) = (—=1)k=2, we find that the corresponding perfect pairing is alternating.

1.6. Premotivic structure of a newform

We keep the notation of Section 1.4.2. In particular, we assbime 1, ¢ is a K-valued
Dirichlet character of conductor dividing, S is a set of primes containingf and M (IV, )y
and M (N, )y are premotivic structures associated t modular forms of weightvel N and
character). We describe the premotivic strucsrassociated to Hecke eigenforms.

1.6.1. Heckeaction

We now define the action of Hecke operators on the premotivic structures defined in
Section 1.4.2. For each rational primewe have an action of the classical Hecke operagoon
the spacesd/; (NN, ) and Sy (NN, ). Let T denote the polynomial algebra ov@y generated
by the variableg,, for all primesp. The operatord;, commute onMj (N, ) and Si(N, )
making themT-modules witht, acting asT},. Denote their annihilators’ C a, let T' = T/a’
andT = T/a.

ProPOSITION 1.3. —There is a natural action off on M(N,), and of T/ on M (N, ).
and M (N, ) compatible with the isomorphisms

Fil* ' M(N,¢)1ar ©x C= Sp(N,¢),  Fil*' M(N,¢)ar @k C 2 My(N, ),

the natural morphisms
M(N7¢)c—>M(Na1/1)' —>M(N7¢)
and the duality morphisrrﬁ;and 6 of (14).

Proof. -ForS’ = SU S{;}, the double coset operator

o) (59),00(N)] 5,1
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defines endomorphisms o¥(N, )5, M(N,)?" and M(N,)S". It is straightforward to
check the compatibility witt,, on S (N, v) and My (N, ¢) and with the indicated morphisms of
objects ofPMfé. These double coset operators commute, yielding an acti'ﬁmnf]\/[(N, Y)g2
for§ = ¢, and() and? = B, dR and, restricting to an action oM (N, ), » for f = ¢ and!
and? = B and .

If T €a, thenT annihiIatesFilkflM(Nﬂp)!,dR and is compatible withl,, so it also
annihilates

FiI' M(N,¢)1ar = (I°) "' o (id@c) o I°°) (Fil* ™" M (N, 4)1.ar).

From the opposition of filtrations in the Hodge structure, we deduce that the actibroof
M (N, )1 ar and M (N, ), g factors throughT. From the compatibility with/3}, we deduce
the same fol/ (N, 1), 5. The same argument shows that the actioff @ M (N, ), factors
throughT’ for ? = B, dR and . It follows then from the compatibility witf that the action on
M (N, ). » factors througtl” for these realizations.

Suppose now thak is not in S. There is then a unique action @ on M(N,v¥)¢ r-crys
compatible with its action oM (N, ), and the comparison isomorphisi. Forp not divisible
by A, the action of7}, is given by the above double coset operator, hence is compatible with
I3 as well. Since suclf}, generate thé{-algebral’  Q, it follows that the action ofl” on
M (N, ). qar preserves the localization @ (N, v)qr at\ and is compatible withi}, . We thus
obtain the desired action @ on the objectM (N, 1), of P M. Similarly we conclude thaf”’
acts onM (N, 1) andT acts onM (N, ), as desired. O

1.6.2. Premotivic structurefor an eigenform

Now suppose thaf is an eigenform inFilk’lM(N,zﬁ);,dR for the action ofT. So for
T € T we haveT (f) = 04(T)f for someOg-linear homomorphisnT — Ox. We assume
f is normalized so that itg-expansiony_ a,,(f)¢™ at co has leading terny. We then have
ap(f)=04(T,) € Ok forall primesp. Let Iy = ker 0y and My = M (N, ¢):[I;] in the notation
of Section 1.1.2; thug/(; is an object ofPM Y and My = My ®o, K is in PM3.. Then

(15) Fil" "' Mfar = Ok sf

and My is a premotivic structure of rank 2 ovéf. The Go-module My , is irreducible. We
write M ; , for the residual representatiov ; y /AM ; ».

For each embedding: K — C, we obtain a (classical) normalized eigenformyf) =
S 7r(an(f))g™ in Sip(N,4). Conversely, if f is a normalized eigenform by (N, ), its
g-expansion coefficients,,(f) generate a number field; ¢ C, and takingK > K, we
can regardf as an eigenform ifFil* ! M(N,v)1ar and consider the associated premotivic
structuresM ; and M.

We say thaif is a newform of levelV if each (equivalently, some) f) is a classical newform
of level N. If g is a normalized eigenform iﬂﬂ’“_l/\/l(N, ¥)1.ar, then there is a unique
newform f of some levelV, dividing N such thau,(f) = a,(g) for all p not dividing N/N7.

In that case, a straightforward construction using double-coset operators defines an isomorphism
M; = M, in PM?; (see Proposition 1.4 below for the cases we need).

If fis anewform of levelV, then the pairing, on M (N, ), restricts to a perfect alternating

pairing onlMy, i.e., an isomorphism

(16) A2My = My(1—k).
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With our normalization off},, the Eichler—Shimura relation ol (N, ) » due to Deligne [15]
takes the form

(17) Frobi —w(p)ilTp Frob, ‘H[}(p)ilpkfl =0

for all p not dividing N¢, wherey(p) = ¢ (pn) = 1 (p,) L. It follows thatFrob, on M; , has
characteristic polynomial

(18) X2 —(p) tap(/)X +p(p) P

1.6.3. The L-function
Suppose thaf = > a,q" € Si(N, ) is a newform of weighk, conductortN; and character
1¢. Associated tof is the L-function with Euler product factorization:

L(fos)=> ann™ = [ (0 —app + 0 (p)p*2) " [T (1 —app) "

n>1 ptN¢ p|Ny

There is also an irreducibl&L,(A¢)-subrepresentation(f) of A9 with central character
Y¢l |12~ such thatf spans the image of(f)V+(Vs) under the isomorphism

(AR N1) 2= S, (T (Ny)),
where we viewy; as a character oy C A*. (Recall from Section 1.3.1 that

AR =1lim Sy (Un) = imFil* ™' M(N), qr ® C.)
N N

Moreover, we have the decompositid] = EBf 7(f) wheref runs over newforms of weight
of any conductor and character. For egalie have a factorization( f) = @, (f) wherer, (f)
is an irreducible admissible representatiortidf, (Q,) and®’ is a restricted tensor product.
Suppose now thaf is as above withi; C K C C. For every primep of Q and\ ¢ S, the
representatio (M »|Gp)* of the Weil-Deligne group o, is K -rational and corresponds
via local Langlands tar,(f) (where we extend scalars © via 7 and normalize the local
Langlands correspondence as in [9]). Ponot dividing p and p not dividing N, this is the
Eichler—Shimura relation (18); fok dividing p and p dividing N, this is due to Deligne,
Langlands and Carayol [9]; fok|p, p ¢ S, this is due to Scholl [75]. It follows thad/; is
L-admissible everywhefeand that itsL-function is related to that of by the formula

(29) L(M; QK ngl,s) =L(f,s),

where the Euler factors defining the fitktfunction are viewed a€-valued via the inclusion
K c C. More generally, for a newfornfi with coefficients in a number fiel&’, we have

L(My @1 M,1,7,5) = L(1(g). 5)
for each embedding: K — C, so (19) holds as an identity &f ® C-valued functions.

Lin fact, the main theorem of [71] shows that ; = M*S for an object M of PM which is L-admissible
everywhere.
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1.7. Theadjoint premotivic structure

1.7.1. Realizationsof the adjoint premotivic structure
Suppose now that is a newform of weightk, character) and level N, with coefficients in
K. We defined ; = ad” M; to be the kernel of the trace morphism

HOInK(Mf,Mf) — K.

Itis a premotivic structure ilPM3, for S D SK.
For? = B,dR or A\, Af» has an integral structure given by

As2={a€End(Mj?) |tr(a) =0}.

The extra structures on the realizations 4f are obtained by restrictions from those of
End(M ). For example the filtration or; qr is given by

Fil® -Af,dR = {a € Aqr C End(./\/lf_’dR) | a(Fili Mj’,dR) - Fil™t? Mf,dR, Vj}

.Af_]dR, n<l-—k,
{CLEAfydR | a(FilO./\/lfydR) gFﬂOMfydR}, 1-k<n<0,
{a € Ardar | a(/\/lﬁdR) - FilOMf,dR, a(FﬂOMf,dR) =0}, O0<n<k-1,
0, n>k—1.

Note that definingA; »-crys as above does not yield an object,ﬁ)’i]-"0 since the non-trivial
graded pieces are in degree- k, 0 andk — 1 (though one can obtain such an object by suitably
twisting if £ — 1 > 2(k — 1)).

There is a canonical isomorphisint g Ay = K in PM?} which restricts to an isomorphism

(20) deto, .Af_,? = Ok,?
for 7 € {B,dR, A}, whereOx g = O andOg ar = Ok, s. (To see this, note that
00 10 01
(10) A (0—1) A (00)

is independent of the choice of basis usedgjoresent an endomorphism.) We note also that
andHomg (A, K) are canonically isomorphic, the isomorphism being defined by the pairing

(21) a® B tr(aof)

on each realization ofl;.

Suppose that’ is a characteA* — K of conductorD and thatS containsSZ as well. Let
f ® v’ denote the newform (of weight, level dividing N D? and character(x’)?) associated
to the normalized eigenform = Z(n_’D)Zl Y (np)ang™. ThenM;g, is an object ofPM3
and one checks that the double coset operator

[Us(ND?)(} Y PYU(N)]

0 1 1

induces an isomorphisi; @ x My = M,. It follows thatM; @ x My = Mgy, SO
(22) Apoy = Ay
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in PM%. We may therefore assunfehas minimal conductor among its twists when considering
A;. We also note that if we replad€ by K’ > K andS by a subset’ of the primes over those
in S, thenA is replaced by A; @ K')S".

1.7.2. Euler factorsand functional equation
For each prime), we letc, = v,(N) and lets, denote the dimension df/[;”/\ for any A not
dividing p, so '

2, ifptN,
dp=14 1, if p|N anda, #0,

0, if p|N anda,=0.
We setL;"(Ay,s) = Ly(Ap,s) if 6, >0, and L}V (Ay,s) = 1 if 6, = 0. We let¥. = X.(f)
denote the set of primgssuch that, =0 andL,(A¢, s) # 1, and set

an(Af,S):HLEV(Af,S): H LP(Afvs)
P pEXe(f)

We call the primes irE. exceptionafor f.

Recall that ifé,, = 2, then writing

Ly(f,8) = (1= app™* +(p)p" 1 72) " = (1= app™*) 11— Bpp %)Y,

we have
Ly(Af,s)=(1—apB, 'p*) "1 —p~*) (1 —a, ' Bp®) "
If 6, =1, then
(@ —=pt=)7t if my(f) is special;
23) Lo(Ag.s) = { (L—p®)~! if 7,(f) is principal series.

Shimura [80] proved thak(A¢, s) extends to an entire function on the complex plane. Recall
that we regard.(M, s) as taking values i ® C. Each embedding : K — C gives a map
K ® C — C and we writeL(M, 7, s) for the composite withL (M, s). Moreover, the work of
Gelbart and Jacquet [43] and others (see [73]) shows that

A(Af,s)=L(As,s)Tr(s+ )I'c(s +k—1)
_g2-ksp(1-2k-85)/2 1 4 s)l"(%)l"(s -1
satisfies the functional equation
(24) A(Ag,s) =€e(Af, s)A(Ap, 1 = s),

wheree( Ay, s) is as defined by Deligne [16]. Here we have used thaandHom g (A, K) are
isomorphic (using (21)).

1.7.3. Variation of integral structures

We maintain the above notation, but now we fix a primef K not in S§ and letS =
St(K) \ {A}. For each finite set of primés C S, we shall define integral structures &£ and
A% M. We then compare these Hsvaries, showing that under certain hypotheses, the integral
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structure onM; is invariant, but the variation on% M} is controlled by Euler factors of the
adjoint L-function.

Let N*¥ = NHpeZp‘SP. Settinga;, = 0 if n is divisible by a prime inX and a], = a,
otherwise, we have that® = " a/,¢" is an eigenform of leveN> with associated newform
f. The construction of Section 1.6.2 thus yields a premotivic structdre in PM?, contained
in M(N*,4),. The pairingd, defined in Section 1.5.3 restricts to an alternating pairing on
M s, which Proposition 1.4 below shows is non-degenerate, hence induces an isomorphism
NgMy= — My(1 — k). The image ofrA, M = therefore defines an integral structure for
My (1—k), necessarily of the form?/\/lqpﬂ — k) for some fractional idea}? C K.We calln?
the (naive X-finite) congruence?d i -ideal of f. Note thatn? is well-behaved under extension
of scalark: ®p, - if K C K'.

For positive integersn dividing N*/N = Hp62p5p, we let ¢,, denote the morphism
M(N,); — M(N*,%), defined by the operator

— m—1 —
m=! [Ua(N™) (") ) Us(N)] = m = [Ua(N ) (§ ) To(V)],.

We also define the endomorphigim, of M (N, ), by

L4 (bl =1, d)p = _Tp! _¢p2 = w(P)Pkfl-

1 (bmlmg = (bml(bmg If (m17m2) = 1'

We also define
Y= embm: M(N,g) — M(NZ,¢),

and lety! denote its adjoint with respect to the pairings defined in Section 1.5.3.

PROPOSITION 1.4. —
(a) The morphismy restricts to an isomorphism/; — M s in PM® with yar (f) = f*.
(b) We have

Yoy =dnzn, H LY (Ap, 1)t
peEXS

on My, s, is non-degenerate oM ss.
(c) If My is an irreducible (Ok/X)[Ggl-module, theny induces an isomorphism
Mg\ — M7, in PM® and

M= 77% H LY (Ayp, 1)
peEXS

Proof. —Part (a) and the formulain (b) follow from straightforward double-coset computations
similar to those in Chapter 2 of [88] (see also p. 121 of [14]). The non-degeneracy of the
pairing follows from¢ =/, being non-zero om/y; in fact it is invertible onM . If My
is irreducible, then the image o¥1 x must be of the form\" M=  for somen > 0; since
var(f) = f*, we see that = 0. The formulafom% in part (c) then follows from part (b). O

1.8. Refined integral structures

We now modify some of the constructions of thegeding sections in order to obtain perfect
pairings on integral structures and to account for the congruences corresponding to Euler factors
missing fromL™ (A, s). We also prove some technical results needed for Section 3.2.
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We maintain the notation of Section 1.7.3. In particlae S¢(K) \ {\} for some\ ¢ SK.
We assume also that has minimal conductor among its twists. We further assume that the
representation afig on. M, is irreducible; moreover i € A, then we require its restriction to
Go(us) to be absolutely irreducible.

1.8.1. X-level structure

Recall thatX. denotes the set of exceptional primes defined in Section 1.7.2. Since we
assumef has minimal conductor among its twists, we have . if and only if L,(Ay,s) =
(1 +p~#)~!, which is equivalent ta\/ |G, being an absolutely irreducible representation
induced from a character dir where F' is the unramified quadratic extension @f,. In
particular, its conductor exponesyf = v, (N) is even and, = 0. We let

Y1={peX.|p=-1mod\}.

The irreducibility hypotheses allow us to choose an auxiliary prime3 not dividing N/
such thatl,.(As,1)"t € OIXQS by Lemma 3 of [27]. We then define

NE= T e 1 e

pELLUS peXU{r}

We then defind/> = Uy (N7). Note that7> =[], U, where the subgroufs,’ of GLs(Z,) is
determined by whetherc 3. Next we shall define a representatiorldf as a tensor product of
certain representations of tliiI;S for p|N.

If pe¥orpg3,, weletV, = Ok with (¢ 2) € U, acting viai(a) (which is trivial if
¢, = 0). Forp € $1, we letU, = Uy(p) N GLy(Z,) and g, = ( pcf,?m). We then define a
representatio;, of GLy(Z,) by the following lemma:

LEMMA 1.5.— There is a finite extensioA”’ of K, a prime )\’ of O’ = Ok over A and a
finite flat©’-moduleV,, with a continuous action a&Ly(Z,) such that the following hold

@) (V, ®or-mp(7(f))) S 2(%) is one-dimensional for any embeddingk’ — C;

(b) V,/\'V, is an absolutely irreducibl¢O’ /\')[GLz(Z,)]-module

(c) there is a homomorphism 6F [GL2(Z,)]-modules

wp 1V, = Homy, (V,, 0’ (" o det))

such thatw, »/ is an isomorphism
(d) there is a homomorphism &¥ [U,]-modules

. UP
TpiTES

gV =V
90 GL2(Z,)g; " TP 7P p

such thatr, » is surjective.

Proof. —Lete: O — K be the restriction of a character Bf corresponding via class field
theory to one from which\/; |G, is induced. The minimality of the conductor gfamong
twists implies that /(s o Frob,) has conductop®»/20r. We let K’ be a finite extension ok
over which theK -rational representation denotéde) in Section 3 [13] is defined. Then part (a)
follows from compatibility with the local Langlands correspondence and its explicit description
in Section 3 of [44]. Part (b) is contained in Lemma 3.2.1 of [13]. Part (c), after tensoring with
K’, follows from the first paragraph of Section 3.3 of [13]. Rescaling and applying (b) gives
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the desired homomorphism,. Part (d), after tensoring witlt via 7, follows from the fact
that (V, ®or » m,(7(f)))V» is one-dimensional. It therefore holds after tensoring wiith and
rescaling again gives the desired homomorphism.

ReplacingK by a largerK’ (and A by \') if necessary to define the representatidsfor
p € X, we letV; =V orV, according to whethep € %, \ 3. We then letV™ = Q, V),
o> :U* — Aute, (V*) and consider th&-level premotivic structured/ (c*) and M (o*);
for f = c and!. Note that if$; U {r} C &, thenNZ = N*¥, 0* = ¢(N* 4) as in Section 1.7.3.
We now define a perfect pairing aiW (o>), giving rise to a perfect pairing oM (o>); .
Definew = w} = (1\22 Bl)NIE € GLa(A¢). Leto = o,V = V* and define
w:V — Homo, (V, Or(p™to det)) = ® Homo, (VPE, Or(™to det))

as the tensor product of the maps, wherew,, is defined in Lemma 1.5 if € ¥; — X, and by
sending a generatay to the mapug — 1 otherwise. We then have that

w(o(w™  uw)v) = o’ (w)w(v)

forallu € U* andv € V, so the operatdUwU],, is well-defined and induces a morphism
M) =M@ @ "o det)),.

Composing with the isomorphism of (12), we obtain an isomorphism

(25) o : M (o) — Homp (M (o)1, My (1 — k))

arising from a perfect alternating pairing di(c);. Moreover Lemma 1.2 with/’ = U* N\ U, (r)
yields the following:

COROLLARY 1.6.—The pairing&_) of (25) restricts to an isomorphism
M(a’)gy)\ — Hom(’)x,x (M(O’)!_’A,Md,(l — k))\)

1.8.2. Hecke action and localization

We now define an action of Hecke operators onXhkevel premotivic structures. For a finite
set of primesl, we writeT" for the Ok -subalgebra of generated by the variablesfor p ¢ ©.
Let ¥y, denote the finite set of primes¢ X such that, =1 orp € ;. For primesp ¢ Uy, we
write T, for the double coset operator

L L G I i P

As in Section 1.6.1, we obtain an actionB¥= on M (c*), M(c*). and M (c*), factoring
through the quotient offY= by the annihilator OfFilk_lM(crE)dR. Moreover the Hecke
operators are self-adjoint with respect to the pairing of (25).

Recall that we are assuming irreducibility of the representatioG@fon M . One way
we use this hypothesis is to relate cohomology groups with different supports after localizing at
maximal ideals of Hecke algebras. For the rest of the seclicand ¥ denote finite subsets of
S with Uy, ¢ ¥ andm is the maximal ideal of the maximal ide@l” generated by and the
elements,, — a,(f>°{}) for all primesp ¢ .
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We shall need to consider a slightly more general setting than that 8fthé’);, but can then
restrict attention to Betti and-adic realizations. Suppose that = N;*D for some positive
integerD not divisible by any primes i; U {¢} \ £, and thatU is an open compact subgroup
of GLy(A¢) satisfyingU; (N') C U  Up(N'). Settings = o> |U, we define an action &f¥ on
the M (0)y» for 7 € {B,\} and¥ D Uy, by lettingt, act as

T, :pk72 [U((lJ pgl)U} 1
One checks that the action respects the comparison isomorgRisthat M (o ); » is stable for
t € {¢,!}, and that the resulting action coincides with the ones defined abéve-it/*>.

Let > =X UY, U =U NU ando’ = o” |U’. Defineg € GLy(As) with g, as in
Lemma 1.5 fop € ¥, \ ¥ andg, = 1 otherwise. Definer: V> — V' by @,a,, with o, = 7,9,
asinLemmal.5fop € 3, \ ¥ and the identity otherwise. The operaflif gU],.., s then defines
aTY-linear homomorphisnM (). g — M(0")..2.

LEMMA 1.7.—The mapU’gU]q.c 5 is injective.

Proof. —Let d = [ cx,\ 5 p/?, Me = M (N'd), M, = M (N'd?), V = V" and V' =
V=" Writing g~ 'a as a composit¥’ — Ind 1., 971V — g7V, we can writdU’gU]., . as

(Mc,B ® V)U _ (Mc,B ® Indf]]flU,g gflv/)U _ (Mc,B ® gflvl)gflU/g _ (Mi:,B ® V/)U/

where the last map is defined by, p ® g. The first map is injective sincg is irreducible, the
second is an isomorphism by Shapiro’s Lemma, and the last is injective by Lemmacl.1.

Suppose for the moment that we also have U, (r). LettingI" = SLy(Z) N U, we have that
I acts freely orf) and Xy can be identified witf"\ $. We write 7%, for the locally constant sheaf
Sym£~? R's,Z, wheres is the natural projectioiy; — Xy with Eyy = T'\($) x C)/(Z x Z)
defined as in Section L2 The representatioa defines an action of* on V, and we let
F, denote the locally constant sheaf o6y, defined byI'\($ x V). We can then identify
M(0)ep With HN( Xy, FE @ F,) and M (o) with K ®0, H' (Xy,FE @ F,). If o is
the trivial representation of/ on Ok, then the usual action of the Hecke operalyron
H}( Xy, Fk ®Ok) andH' (X, F§ ® Ok ) is compatible with the ones we defined oi(o)..
andM (o).

LEMMA 1.8.—If U C Uy(r) ando is trivial, then the natural map
Hcl(XUa]:§®OK)m —>H1(XU,.7:§®OK)m

is an isomorphism.

We recall the idea of the proof, which is standarte kernel of the map is torsion-free, and the
cokernel has na-torsion sinceV’(k — 2)! ¢ \. After tensoring withK', one has, = p*~! +1
on the kernel and cokernel for all= 1 mod N’. Thus if m is in the support of the kernel or
cokernel, therf), — 2 e m for all p=1 mod N'¢, p ¢ ¥. Arguing as in Proposition 2 of [26],
one obtains a contradiction to the hypothesis thé , is absolutely irreducible.

4€ SERIE— TOME 37 — 2004 -N° 5



THE TAMAGAWA NUMBER CONJECTURE OF ADJOINT MOTIVES 691

Let us now return to the case of arbitray with U, (N') C U C Up(N'). We letU”" =
U’ NU,(r) and consider the commutative diagramiif-modules

M(U)C,B —— M(U/)QB —_— Hcl(XU//,]:g X OK)

| | |

M(U)LB —— M(U/)LB —— HI(XUN’fg ® OK)tf-

The horizontal maps in the top row are injective (the first by Lemma 1.7) and the right most
vertical map is an isomorphism after localizingraby Lemma 1.8. We thus have:

COROLLARY 1.9.— The localization atm of the natural mapM (o). » — M(o) 2 is an
isomorphism fof? € { B, A\}.

Note that the case af= X follows from that of? = B. In fact, M(c);,» is isomorphic as a
T¥-module to the completion aM (o), 5 at . Note also thatM (a); 5 is isomorphic to the

direct sum of its localizatins at the maximal ideals ovarin its support as &'¥-module.
Finally we shall need the following generalization of a lemma of De Shalit in Section 3.2.

LEMMA 1.10.— Suppose thall has/-power index iUy (N') and letA = Uy(N')/U. Then
M(0); is afreeOg z[A]-module.

Proof. —Let U” = U N Uy(r) ando” = o|U”. Note that(Z/rZ)* has order not divisible
by ¢, and thatUy(N")/U" = A x (Z/rZ)* acts onM (0" )¢ xm. It follows that M (o) x m =

M(a”)gf) “is anOx x[A]-module summand ok (0" )¢ x,m @aNdM (o), ,, is anOk A[A]-
module summand oM ("), .. Note also that the rin@ A[A] is local.

Suppose first that = 2, ¢ is trivial andX; C ¥. The argument of Propii®n 1 of [86] shows
that H' (X, FE ® O 2)~ is free overOy A [A], hence so is its summand

M(0") oy EHY(Xun, Fiy @ O\ = H (Xun, Fiy @ Ok A

where the first isomorphism is gotten fraf) and the second from Lemma 1.8. It follows that
its summand\M(o)_, ., is free, hence so i81(o), , , by Corollary 1.9.

Suppose next that > 2, ¢ is non-trivial or¥; ¢ X. DenotingOx \ ®o, Fo DY Forr 1, We
have

M(0")er, (Fi=1,

He (Xur, Fiy © Forn) = { 0 otherwise

(the case = 2 following from the vanishing of%( Xy, F§ @ F,~/))). Note that this holds

in the casel/ = Uy(N') as well, and the Serre—Hochschild spectral sequence with respect to
the coverXy» — Xy, (n1nu, (r) gives H (A, M(c")..») = 0 for all i > 0. By [6, VI.8.10], it
follows thatM(a”)c,» is free, hence so is its summand(o), , , = M(o),. O

c,A\,m"*

1.8.3. lhara’'sLemma
For finite subset® C ¥’ of S = S¢(K) \ {A}, we shall define a morphism

% 1 M(o%) — M(o™),

generalizing the one in Section 1.7.3. We shall prove a result needed in Section 3.2—that this map
is injective with torsion-free cokernel on certain localizations of the integral Betti realization. The
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result stems from a lemma of Ihara which has been generalized in various ways for applications
to congruences between modular forms (see [68,20] and Chapter 2 of [88]).
For positive integers: dividing N='V{r} /NZU{r} we define

Egjm _ mlfk [UE’(l 0 )UE]

b M (™) — M(o™ ),

a,!”

whered anda are as in Lemma 1.7. We then define

s _ bl
= —E 62,m¢m

m

where the sum is over positive divisorsF {7} /N=9{r} andg,, is defined in Section 1.7.3.
Note thatys is TY-linear where? is the union ofl's; and the set of primes dividiny ;> /N7,
One checks also that¥ ¢ X' ¢ &7, themyd =13, 0~ .

We letm denote the maximal ideal &fY= defined as in Section 1.8.2, and similarly definfe
usingX’. Note thatm’ might not lie ovemn, but that they lie over the same maximal ideél of
TY.

The argument in the first part of the proof of the lemma on p. 491 of [88] showsTthat
andT?> have the same image iindx M (o>),. Sincem is in the support ofM (c>); z, it
follows that the localization map1(o>), g m» — M (o)1 p.m IS an isomorphism. Composing
its inverse with the map

M@, mr — M0 ) g — M0 )1 5w
induced byyg/, we obtain a morphism
(26) M(0™)1 B — M(0™ )18
which we denotey,,, = y%jm. Similarly, we have a morphism

(27) A = A8 s M@ am = M(™ )p
LEMMA 1.11. - The Ok s-linear (respectivelyO »-linear) mapy, (respectivelyyy,) is
injective with torsion-free cokernel.

Proof. —First note the lemma is equivalent to the injectivity,gf mod A, and by the formula
VS = V3 m © V5. ms WE can assume’ = ¥ U {p} for somep ¢ ¥. Note that the casg=r is

clear, and that ip divides N;>' /N7*, thenT;, o v = 0 andm’ = (m”, ¢,,). Thus by Corollary 1.9,
it suffices to prove that ip £ r, then

(28) M(UZ)C,Bﬂn///)\—?M(Uz/)QB,mN/)\

is injective.

First we consider the cagg = 0. If p ¢ ¥, then~ is the identity, So we assunpe= ¥, . Using
part (b) of Lemma 1.5, the argument in the proof of Lemma 1.7 carries overxngiding the
injectivity of

(M@ V/AY = (M @V /A,
hence that of (28).
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Having proved the lemma fgr e 3; U {r}, we may assume for the remaining casgs= 1
or2, p#r), that2; U {r} C 3. Settingg = (| ) Vo=V(N,¥)/\, N' = N*, N" = N=p’»
U=Uy(N'), U =Ug(N"), A= M(N")e,p @ Vo and A" = M(N")..p ® Vo, it suffices to
show that the map

(29) EB AY, — (ANY,

defined by([1]., [¢]., ...,[g]ﬁ”) is injective.
Suppose now that, = 1. Then Lemma 1.1 yields an isomorphigat' )V — (A’)‘flU'g in-
duced by[g]. (each module being identified with thé’-invariants in M(N*p?). g ® Vo).

Furthermore one finds thafl]. (respectively,[g].) maps AY isomorphically (A’)gflUg
(respectively(A’)Y). Therefore it suffices to prove these have trivial intersection. Suppose then
thatz ® v € A’ with v # 0 is invariant undel/ andg—'Ug. Since thep-part of the conductor
of ¢ is p°», we may choose € 1 + p°»~'Z, so thaty(a) # 1. One checks that = ({ 2) is in
the subgroup ofiL,(Z) generated by/ andg—'Ug. Thereforer @ v = h(z ® v) = = @ ¢(a)v
implies thatz = 0.

Finally consider the cask, = 2. Let A” = M(N'p)..g @ Vo andU" = Uy (N'p). SinceU is
generated by/” andg—'U"g, the argument in the casg = 1 applied toU” instead ofU now
yields an exact sequence

(30) AU N (A//)U” % (A/I)U” N (AI)U'

where the maps are given léy_[%’]) and([1]., [¢]c)- We combine this with Lemma 3.2 of [20],
whose proof shows that the map

Hy(X1(N'), F5/A)? — Hy(X1(N',p), F/N)

induced by([1], [¢]) is injective, whereX; (N’, p) is the modular curve associatedfp(N') N
Uov(p). Lemma 1.8 then gives the injectivity of

Hg (Xl( ) ]:B//\)m// Hcl(Xl(vap)a}—g//\)m/n

whence the injectivity of[1]., [g].) : (AV)2., — (A”)U,,. Combining this with the exactness of
the localization atn” of (30) we deduce the injectivity of (29).0

1.8.4. Comparison of integral structures
We now generalize Proposition 1.4 to the seftof the refined integral structures~deﬁned
in Section 1.8.1. Deflne\/lj L= M(c®), [IE] WhereIE is the preimage of ;su(-y in TV>.

(Recall that f>“{"} is the eigenform of levelN> deﬁned in Section 1.7.3 and, was
defined in Sectlon 1.6.2.) Using strong multiplicity one and Lemma 1.5(a), one sees that
dimg Fil*~ Mf1 ar = 1 and therefore thaf/;; 4r has rank two overy, wherer,1 =

K ®oy /\/lj 1- Note that if¥; U {r} C 3, then/\/lj 1= Mys.

If 3 C ¥, then the restriction ofs " (defined in Section 1.8.3) defines a morph'LMﬁj1 —
M. (This follows fromT¥-linearity with & as in Section 1.8.3 and the fact thiats = 0 for
pINT'/NT.) Note that the maximal ideal = defined in Section 1.8.2 is simply ¥, A), so
the natural map\/l?J,B — M(0®)1 p.m is injective. It therefore follows from Lemma 1.11 that
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~&' is injective oanzl, hence induces an isomorphishiz; = M7 . Moreover it restricts to
|som0rph|smst 17— /\/lj 1» for 7=2XanddR.

Now let~, denote the transpose ¢F with respect to the pairings” and4> defined in
Section 1.8.1. Usin@-linearity again, we see that;, mapstZ,/1 to Mfl. Recall that if¥; U
{r} € ¥, then the pairing orz*h/[f_’1 = M is alternating and non-degenerate (Proposition 1.4).
It follows that the same is true for arbitraly and that for any C 3/, the restriction ofys, is
an isomorphism. We thus obtain an isomorphism

N M7y — My(1—k).

We letn¥ | be theidealirOx  suchthang,  M¥, , mapsisomorphically tg; ; M., (1 — k).
Note that ifs3; U {r} C %, thenny, =n7,.
We now state the generadition of Proposmon 1.4.

PROPOSITION 1.12. — Suppose thal: C ¥’ are finite subsets of = Sg(K) \ {A}.

(a) The morphismys’ restricts to an isomorphism/F, — M7, in PM® with M3 , &
MF , for 7=\ anddR.

(b) We have

ooy =B87s [[ Lo(As, 1)
pEX

on M7, for some non-zerg}y, in Ok 5. Moreover3y s, = ey FEINE\E=0
(cf. Proposmonl 4).
(c) The pamng&E is non-degenerate ang-integral oanEJ, and

77?,1 C 77]@,1 H Ly(Ay, 1)_1
peEX

Proof. —Part (a) and the first part of (c) have already been shown, and the formula in (c)
follows from the one in (b). Part (b) reduces to the ca5e- X U {p} for somep ¢ X. If p =1,
the result is clear sincé,.(Ay,1) € Ok ¢. If p ¢ X1 U {r}, the computation is the same as in

Proposition 1.4. Finally, fop € 3, we factorys = [U> gU%], =2 o 71 Where
1 =[U1U%]1: M (0¥ ) — M(co); and ~y = [Uz,gU]aJ :M(o) — M(UEI)!,
whereU = Uy(N{p) and o = o*|U. Defining a pairing onM (o), exactly as forM (o),
using the samev andw, we find thatyiy; = p + 1 andv4ye = 3 for some Ok [U]-linear
endomorphism3 of V*, necessarily a scalar by Lemma 3.2.1 of [13]. The desired formula
follows with 37y, = pB. O
2. TheBloch—Kato conjecturefor Ay and A (1)
In this section we shall deduce the Bloch—Kato conjecture from the main result, Theorem 3.7,
of Section 3 below. More precisely, we prove thgart of the Bloch—Kato conjecture [4] fot

andB; := A;(1), wheref is a newform of weighk > 2, conductorN > 1, with coefficients in
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the number field<, and\ is a prime of K’ not contained in the set

(31)S M| NE!, orthe(Og /\)[Gr]-moduleM; , is not absolutely irreducible,
1)S; =
whereF = Q(/(—1)“=1/2¢) and | ¢

By (22) we can assume th#thas minimal conductor among its twists and we shall do so in this
section. Our formulation of the conjecture follows Fontaine and Perrin-Riou [41], generalized to
motives with coefficients ifK. For a more systematic discussion of the Bloch—Kato conjecture
for motives with coefficients we refer to [7]. K¢ is the scalar extension of a premotivic structure
with coefficients in a subfield’ C K then Theorem 4.1 and Lemma 11b) of [7] show that
the conjecture oveK implies the one overk’ (in the context of Deligne’s conjecture this
was already noted in [17, Rem 2.10]). So we need not be concerned with finding the smallest
coefficient field forAy.

2.1. Galoiscohomology

For any fieldF” and continuouss m-module M we write H*(F, M) for H: . (Gr,M). Let
V be a continuous finite-dimensional representatiof @foverQ,, unramified at all but finitely
many primes, and |éf’ C V' be aGg-stableZ,-lattice. We selV := V/T'. For each place of
Q, Bloch and Kato (see [4] or [41]) define a subspatgQ,, V) C H'(Q,, V) by

H&r(@pvv) p;ﬁé,oo,
H{ (Qy, V) :=X ker(HY(Q,, V) = HY(Qp, Berys @ V)) p=1,
0 p =00,

where
H&r(QP’ M) = Hl(]va MIP) = ker(Hl(QPa M) - Hl(IPa M))
for anyG,-moduleM . They then define groups
I{fl (va W) = Hn(I{fl (va V) - Hl(@pv W))

and aSelmer group
1 o Qpa
H}(Q, M) := ker @Hl G )
yo3)

where M is eitherV or W and the sum is over all placesof Q. Forp ¢ {¢,c0}, note that
H}(Q,, W) is the maximal divisible subgroup &f.,(Q,, W) and that the two groups coincide
if Wl is divisible, e.g. wherl¥ is unramified. For any finite seét of prime numbersot
containing? we define a larger Selmer group

HY(Qp,,W)  H(Q¢, W)
D H&r(@p,m@ﬂé(@z,w))

HL(Q, W) :=ker (Hl(@,W) -

pEXU{L,00}

without local conditions ap € 3 U {oo} and slightly relaxed local conditions at primgs
whereH.,(Q,, W) is not divisible. The grougi; (Q, W) appears in the Bloch—Kato conjecture
whereadL (Q, W) can be analyzed using the Taylor-Wiles method in our situation.
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LEMMA 2.1.— PutT? = Homg, (T, Z(1)), VP =TP ®z, Q. and WP =V /TP, and
denote byM* the Pontryagin dual of a locally compact abelian grolip. Set

H(} (vaTD) = L_IH%(@ZNVD)

where.: HY(Q,, TP) — H'(Q,, V) is the natural map. I is nonempty and contains all
primes where?} (Q,, W) # H}.(Q,, W), and if moreove7°(Q, VL) = H}(Q,VP) =0 then
there is an exact sequence

0— Hi (QW) = HyQ W)~ P H(Q,T7) - H(QWP) —0

peEXU{c0}

Proof. —By [32, Proposition 1.4] there is a long exact sequence

1 1 P HI(Q;DaW) PP 1 D
0— H} (QW)— H (GS,W)H%'W—MEQ(Q,T )

2(Gs, W) — @ H*(Q,, W) — H(Q,TP)" -0
peS
whereGy is the Galois group of the maximal extensior@ptinramified outsidé := {¢,c0} UX
andH} (Q,TP)=."'H}(Q,VP). By our assumption
HY(Q,VP)=H; (Q,V7)=

the natural (boundary) mafi®(Q, W) — H}(Q,TP) is an isomorphism. The map”-* is
Pontryagin dual to the restriction map

HO(Q’WD) Hf (Q TD @Hf @vaD)

peS

Clearly, pP is injective asH®(Q, WP) injects into H(Q,, WP) = H}(Q,,TP);o, for any
pe S\ {oo} # (. This argument also shows that* restricted to

HIQ’W ~ *
v @ Faw @ mer”)
pESU{oo} £ VP PESU{co}

is still surjective since the dual map is still injective. On the other hand we pavelL) =
HL(Q, W) which yields the lemma. O

Suppose now thak’, is a finite extension of), with ring of integers?D, and uniformizer.
Fori=1,2, let V; be representations @¢fy over K, which are pseudo-geometric and short as
defined in Sections 1.1.1 and 1.1.2 respectively. Supposéd.thiata Gg-stableO,-lattice in V;
and set

V =Homg, (V4, Va), T =Homo, (L1, La), W =V/T.
Forn > 1, put
Wp={zeW|\z=0}2T/\"T
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and note that we have a natural isomorphism
H'(F,Wy) =Extg, janigp)(L1/A" L1, A" La/ L)

sinceL /A" L, is free overO, /A" (hereF = Q or F' = Q,). SinceV; is short theG,-modules
L;/A\"L; are in the essential image of the functor

V:MF? . — O,[Gy] — Mod

of Section 1.1.2. Let
Hi (Qe, W) € H' (Qe, W)
be the subset of extensions®@4, / \"[G(]-modules
(32) O—>)\7nL2/L2—>5—>L1//\nL1—>O
so that€ is in the essential image df. Using the stability of this essential image under
direct sums, subobjects and quotients, one checksﬂﬁa@g,Wn) is a O,-submodule, and

that H} (Qg, W,,) is the preimage off} (Q., W,,+1) under the natural map/!(Q., W,,) —
H' (Qe, Wi y1).

PrROPOSITION 2.2. — The groupr1 (Qg¢, W) is divisible of O -corank
d=dimg, H°(Qq, V) + dimg, V — dimg, Fil® Depys (V).
Moreover, the natural isomorphism

li H(Qp, W) = H' (Q, W)

induces isomorphisms
@Hér(vaWn)gH&r(vaW)v h‘H}H%(Qg,Wn)gHE(Qz,W).

Proof. —The divisibility of H}(Q,, W) follows from its definition, as does the fact that its
corank coincides withdimg, H} (Q., V) = d (see [4] for this last identity). The statement
concerningH !, follows from the fact that continuous group cohomology commutes with direct
limits. For H} we first note that

by He (Qe, W) C Hi (Qe, W)
wherew,, : H(Qq, W,,) — H'(Qg, W) is the natural map. Indeed, on the level of extensions the

map ¢,, is given by pushout via\=" Ly /Ly — V5 / Lo, pullback viaLy; — Li/A"Lq, and the
isomorphismi  (Qg, W) = ExtgA[Gd (L1, Va/Ls). Similarly, the map

7 HY(Qy, V) — HY (Qg, W)

is given by pushout vi&,; — V»/ L, and pullback vial; — V3. So forE € Hfl(Qg, V) all finite
subguotients of the locally compact continud@ig|G,]-moduler(E) are in the essential image
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of V. Hence, if€ is as in (32) and,,(£) = 7(E) for E € H} (Qy, V) then& lies in the essential
image ofV.
So we obtain an inclusion of torsion groups

Hi (Qe, W) & lime, ' He (Qe, W) C lim Hf (Q, W)

which is an isomorphism if and only if the induced inclusion on dh®rsion submodules is an
isomorphism (ag7{ (Q,, W) is divisible). There is an exact sequence

(33) 0— H(Qe, W)/ — Hg (Qe, Wr) — (lim Hg (Qe, Wi)) [N — 0,

and we need to prove that the right hand term has: O, /A-dimensiond. Pick objectsD;
of MFY so thatV(D;) = L,;. ThenD := Homp, (D1,D2) is also an object ofMF and
D @0, Kx = Deays(V) (see Eq. (1) in Section 1.1.2). P@; = D;/A, D = D/X so that
V(D;) = L;/\L; andV(D) = W;. For all j € Z we have

(34) dimp, Fil/ Depys(V) = dime, Fil! D = dim,, Fil’ D.

Denote byx-MF the category ok-modules inMF. Then

(35) dim,, H (Qp, W) = dim,, Ext-- v #(D1, D2)
and
(36) dim,, H°(Qg, W)/ =dim, H°(Qg, W1) — dimg, H(Q,, V)

= dim,, Homy- 7 (D1, D2) — dimg, H(Qq, V).
There is an exact sequence
(37) O — HOmK-Mf(@l ) @2) — HOIn,{_’Fil('Dl, @2) = Fﬂo @
0 _ _ —
'=¢" Hom, (D1, D) = D — Extl_ v 7 (D1, Da) — 0

(see diagram (61) below for a similar computation) and the combination of (33)—(38) then shows
that indeed

dimy, (lim Hg (Q¢, Wp,)) [\ =d. O

COROLLARY 2.3.— Suppose thal is a two- -dimensionalzp-representation over the finite
field x of characteristic/ > 2 so thatL|Ge =~ V(D’) for some objectD’ of k-MF® with
dim, Fil' D’ = 1. Letad’ L C ad,. L := Hom, (L, L) be the endomorphisms of trace zero. Then

dim,, H (Qg,ad’ L) =1 + dim, H°(Qy,ad’ L).

Proof. —From (38) applied t®; = D, = D’ we have

dim,, H} (Qq,ad, L) =2-2 — 3 + dim,, H°(Qy, ad, L)

and (38) applied td®; = D, = x[0] (the unit object ofs-MF) shows thatlim,, Hf (Qq, k) =
dim,, H°(Qy, x). Sincel > 2 we havead,, L = k @ ado L which gives the lemma. O
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Finally we record the following fact in this subsection.
LEMMA 2.4.-The setSy defined in(31)is finite.

Proof. —Suppose thak does not divideVk! and M ; , is reducible. Its semisimplification is
of the formv @ 2 wherewy; andi), are characters dfal(Q(une¢)/Q). The representation
is necessarily ordinary dt(see [30]), so one of the characters is unramified atd the other
has restrictiory}"“ on I, wherey,: Gg — Aut(u) is the cyclotomic character. It follows that
ap, =p** + 1 mod A for all p=1mod N. If this holds for infinitely many), then we get
a, = p*~1 + 1 for all suchp, violating the Ramanujan conjecture (a theorem of Deligne [15]).
Having established irreducibility of1; , for all but finitely many), the proof is then finished
by the following lemma. O

LEMMA 2.5.-Suppose thak does not divideV (2k — 1)(2k — 3)k!. If M, is irreducible,
then its restriction ta7 ¢ is absolutely irreducible.

Proof. —Consider the restriction of4 , to I,. By results of Deligne and Fontaine (see [30]),

this restriction has semisimplification of the fom;\*’c @®1or w}*k &) zﬂf(l*k) (after extending

scalars if necessary), whete is a fundamental character of level 2, according to whether or not
a¢ IS a unit mod\.

Suppose that ; , is irreducible but its restriction t6' is not absolutely irreducible. Then
(after extending scalarsx)?lf,k is induced from a character @&f, and its restriction td, is
induced from a character of its subgroup of index 2. It follows that the ratio of the characters
into which this restriction decomposes is quadratic. Sinchas order? — 1, this forces either
(£ —1)]2(k—1)or (¢ +1)]2(k — 1) and we arrive at a contradiction

2.2. Order of vanishing

Suppose thaf/ is an L-admissible object oPMf and letM” = Homg (M, K(1)). We
recall the conjectured order of vanishinglof)M, s) ats = 0 [41, 1l. 4.2.2].

CONJECTURE 2.6. — Letr: K — C be an embedding andlany finite prime of. Then
ordg—o L(M,7,s) = dimg, Hf (Q, M) —dimg, H*(Q, MP).

THEOREM 2.7. — Conjecture2.6holds for bothM/ = Ay andM = By if AisnotinS;. More
precisely, we haverd,—o L(A¢, T, s) = ords=o L(B¢,7,s) =0 and

H(Q,Af ) = Hf (Q, Ay \) = Hf (Q,By,z) 2 H(Q, By) 20
ifA¢S;.

Proof. -Lemma 2.12 below shows that

L(Ap, 7, 1)=L"(As,7,1) ] Lo(4f.71)
pGEC(f)

is a nonzero multiple of the Petersson inner producf ofith itself and hence it follows that
L(By,7,0) = L(Ay,T,1) # 0 for eachr. It follows from the functional equation (24) that

(k= De(Af)

(39) L(Ag,m0) = =8

L(Af,1,1)#0
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for eachr as well. The absolute irreducibility di/¢ 5 for eachA implies that
EndKA[G@] (]\/ff)\) = K)\,

so H°(Q,Af,) = 0, and since My, is not isomorphic toM; (1), we also have
H°(Q, By,») = 0. It follows then from [41, 11.2.2.2] (see also [32, Corollary 1.5]) that

dimg, Hf (Q, Ay ) =dimg, Hf (Q, By.))

for all A and hence that Theorem 2.7 is implied by the vanishingpfQ, A¢,»). Theorem 3.7
shows that

HE(Q, Apx/ady, Mya) C Hi(Q, Apx/ ady, My x)

is finite for A in S;. Since the kernel of

Hi (Q, Apx) — Hg (Q, Apa/ado, M)
is finitely generated oveD, we deducd?; (Q, Ay,y) = 0 and Theorem 2.7 follows. O
2.3. Deligne'speriod

We now recall the formulationin [41] of Delignet®njecture [17] for the ‘fanscendental part”
of L(M,0) for M = Ay or By. The authors there actually discuss the more general conjecture
of Beilinson concerning the leading coefficiglit(M, 0) for premotivic structures arising from
motives, but their formulation relies on the conjectural existence of a category of mixed motives
with certain properties. We restrict our attention to thdge such asA; and By, for which
L(M,0) # 0 and which are critical in the sense of Deligne. In that case Beilinson’s conjecture
reduces (conjecturally) to Deligne’s, which can be stated without reference to the category of
mixed motives.

Under these hypotheses, thimdamental lindor M is the K -line defined by

Af(]\/f) = HomK(detK Mg,detK t]u)

where T indicates the subspace fixed W, and ¢y, = Myr/ Fil° Mag. Furthermore the
composite

ooy —1
R M — (CoMp)" "L Re Megp >Rt

is anR ® K-linear isomorphism. Its determinant oVRr® K defines a basis faR @ Ag(M)
called the Deligne period, denotet (M).

CONJECTURE 2.8. — There exists a basig M) for A¢(M) such that
L(M,0)(1®b(M)) =c*(M).

There are various rationality results fér(A¢,0) and L(By,0) in the literature (see for
example [73, Theorem 2.3]) although the precise relationship with Conjecture 2\8 fotA ;
or By is not always clear. In this section weaall the proof of Conjecture 2.8 fa = A; and
By and give convenient natural descriptions#A ;) andb(By).

4€ SERIE— TOME 37 — 2004 -N° 5



THE TAMAGAWA NUMBER CONJECTURE OF ADJOINT MOTIVES 701

We begin by observing tha{;{B andt 4, are one-dimensional ovéf. Furthermore, complex
conjugation

Foo:Myp— My p
has trace zero and commutes with,, so it is a basis foA;{B. Note also that the natural map
Ay ar — Hompg (Fil" ™' My ar, My ar/ Fil* ' M} qR)
factors through an isomorphism
(39) ta, — Homp (Fil" ' My qr, My ar/ Fil* ' My ar).
The fundamental liné\¢ (A ) can therefore be identified with
Hom (Fil* ' My ar ® Q- Foo, My ar/ Fil" ™! M; aR).

We shall describeb(A;) by specifying the image of the canonical bagis® F., for
FilF ! My ar ® K - Foo where we viewf as an element of; 4 by (15). Recall that we
defined in (16) a perfect alternating pairing

<','>2Mf ®KMJ¢—>M¢(1 —/{),
and this induces an isomorphism
My ar/ Fil* ' My ar — Homp (Fil* ™! My ar, My (1 — k)ar).

We shall eventually definig A ;) by specifying the elemerdyf, b(Af)(f @ F)) of My (1 — k)dr.
We can make a similar analysis of the fundamental 3¢5/ ). One finds thaB}fB andtp,

are two-dimensional ovel . Note thatB; ;; can be identified with1; ;, © Q(1) 5 and that the
natural map

A p— HomK(MffB,ijB) & HomK(ijB,MffB)

defined by restrictions is an isomorphism. We therefore have an isomorphism
detK B;rB — K(2)B

which is canonical up to sign. To fix the choice of sign, we agea ! as a basis fodet x Arp
wherea : M;fB — M, g is any K -linear isomorphism. Next note that the natural map

By.ar — Hompy (My.ar, M (1)ar) — Hompg (Fil* ' My qr, My (1)ar)
factors through an isomorphism
tp, — Hompy (Fil" ' My ar, My(1)ar).
Using the isomorphism
detr My ar — Fil* ™' My ar @k (My.ar/ Fil" ' My ar)
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(with choice of sign again indicated by the ordering), we find thetx ¢z, is naturally
isomorphic to

(40) Hom (Fil* ' My ar, Mf.ar/ Fil* ™t M} 4r) © Q(2)ar.
We can therefore identifh¢ (B/) with

(41) Hom g (Fﬂk_l Mj',dR [ Q(2)B, (Mj',dR/ Fﬂk_l Mf,dR) X Q(Q)dR),
and we arrive at a canonical isomorphism
Ae(Ap) © Af(Q(2)) @ A;B = A¢(By).
Fixing the basig",, of AT ; and the basig of A¢(Q(2)) which sendg$2ri)? to . ~2, this defines
an isomorphism of{-lines
(42) tW:Af(Af)—)Af(Bf)

so thattw (¢)(z @ y) = ¢(z ® Fro) ® S(y).
LEMMA 2.9.—We have

(R o tw)(c* (A7) = —5 5" (By).

Proof. —Let I37 : C® My qr = C ® My p be the comparison isomorphism fbf ;. Via the
natural isomorphisn€ @ Endx (My)? = Endcgr (C @ My-) where? = B or ? =dR, I3
induces the comparison isomorphigmi for bothEnd (M) andAf: I°°(¢) = 1590 ¢o (159)71L.
A similar formula holds for™ (Ay).

Suppose now that is aR K -basis ofR @ Fil* ! M 4r and writeI$%(x) = y+ + y~ with
y* €C® M; . Then

A (@ ® Foo) = (I39) 11 @ Foo) IS () = (I59) "L (y* — ) mod R @ Fil* ™! M 4r.

On the other hand we have(y™) = Ay~ for some\ € (C ® K)* and thereforex ! (y~) =
A~1y*. Hence

(1) @)(@) A (1) Mo ) (@) = (I57) " aly ) A U5) e ()
=(I37) " AR I T
= S W ) AT )

1

=AW =)

and in the description (41) & ® A¢(By) the element™ (By) is given by
" (By)(z ® (2mi)*) @ > = (2ﬁi)2%(lﬁ)fl(y+ —y~) modR ® Fil* ! My 4r
=-21%cT(Af)(z ® Fy).
In view of the definition oftw in (42) this gives the lemma. O

Recall thaf. (f) is the set of primeg such thatl}Y (A, s) = 1 but L, (Ag,s) = (1+p~%) 1.
We write bgg, for the basis ofM,, qr defined in Section 1.1.3, and pieke {0,1} so that
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n = k mod 2. Note that by Proposition 5.5 of [17], we haveM; @ My-1)/e(M,-1) € K*.
The same proposition together with (20) givéd ) € K*.
THEOREM 2.10. — Letb(Ay) € A¢(Ay) be defined by the formula

PF((k = 2))2e(My ® My-1)
2e(My-1)e(Ay)

(F:b(AP)(f @ F)) = [T a+ph)-(areF),

pEX(f)

andb(By) € A¢(By) by the formula

(43) b(By) = (1—k)e(Ar) tw(b(Ay)).

ThenL(A;,0)(1®b(Af)) =ct(Ay) andL(By,0)(1 @ b(By)) = ¢t (By).
Proof. —If we show

im0k — 1))k — 2)le(My ® My—1)L™ (Ay, 1)

(b k—1
4m2e(My-1) (bar @ 77)

(frie"(Ap(f @ Fx)) =

in C ® My (1 — k)ar., then the statement concernibigl ;) is an immediate consequence of the
functional equation (38). The identify(By,0)(1 ® b(By)) = ¢t (By) then follows by applying
(R ® tw) to the identityL(A,0)(1 ® b(Ay)) = ¢t (Ay) and using (38) and Lemma 2.9.

As in Section 1.4.2 put/ = Uy(N), leto: U — K * be the representatioff ) — ¢~ (ax)
and setM(N,¢) = M(o) = M(N')(o) for some N’ > 3 so thatUn C U. Put w =
(~ ) € GLy(Af) and denote byV = [UwU],,: M(N')(0) — M(N')(6 @ (4" o det)) the
isomorphism in (13). Note thatzwg,l € U so that we can work withv instead ofwy. For any
one-dimensionak -representation of U whose kernel containgy we shall viewM (N')(o)
as a sublPM g-structure of K ® M (N’). With I°° denoting the comparison isomorphism for
both My andK @ M (N') we have

(44) (f,e (A (f @ Fo)) = (£, (I™) 1@ Fo)I® f)
=[U:Un] 7 (f, (1) A @ Fo ) I®W ) o,

where this last pairing is the one defined in (12).

We proceed with the computation &F f € Fil* ' M(N')(6 ® (¢~ ! o det)); 4r. Note that
the field Ky generated by the Fourier coefficients of the newfgria either totally real or a CM
field and hence has a weléfined automorphisminduced by complex conjugation. It is known
that the Fourier expansioff (z) = Y-, a?e?™*" is a newform of conductal and character
¥~1 [63, 4.6.15(2)], hence represents an elemetidt * M (N)(5)1.4r.

Let P, P, be the canonicalV’-torsion sections on the moduli schend& of level N’
introduced in Section 1.2.1, denote kly= (P, P,) € I'(X,Ox) their Weil pairing and
consider the resulting morphis& — Spec(Or) whereF = Q(¢). This induces isomorphisms
Mr=H°X)and

U
(45) My = (H*(X) @ Kyp-10det)
where in the definition ofM, in Section 1.1.3 we have to replaed™" by ¢. Then

My @k M(N')(6): has a natural map intdZ (N')(6 @ (=1 o det)), via the isomorphism
(45) followed by cup product oiX.
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LEMMA 2.11.-We have

ik_nE(Mf ® Mw—l)
NE(Mw—l)

(46) Wf=14(=1) bar U f*

wherebgr is the basis of\/,, 4r defined in Sectiofh.1.3

Proof. —We fix an embedding : K — C and compute the images of both sidesSi{Ux-)
(we shall suppress in the notation and view all elements &f as complex numbers via).
Let ¢ € (Sk(Un') ®c C,)Y denote the element correspondingftander the isomorphism (5).
Recall that the isomorphism

B:S(Un)= @ Sk(T(V))

te(Z/N'Z)

was defined before (5) by
BF)e (7(5)) == (det 7)™ j(v,9)* F(ge7)

for v € GLy(R)T, j((‘ig),z) =cz+d and g, = ((1Jt91) mod N’. We have ¢(zu) =
o~ (u)p(z) for all w € U and B(¢):(z) = f(z) for all t € (Z/N'Z)* sinceg: € U and

o(gy)=1.
Recall the analytic descriptioX ., = ]_[te(Z/N,Z)XXN,,t of X and of P, P, from

Section 1.2.1. One checks thdt, ;). (1, %)) = e~ >*/N". Hence

b=y, v@a™NeCaF,
ac(Z/NZ)*

when viewed as an element 8, (Xn-) =[], C is given by

t— Z 1/}(a)6727riat/N — 1/)(—t)71 Z 1/}( ) 2mia/N
a€(Z/NZ)* a€(Z/NZ)*
= (=) Gy = (=) T e(My-1,7).
If now ¢* € Si.(Un-) corresponds tg” thens(¢”).(z) = f*(z) is again independent efand
the right hand side of (46) is given by

kE(Mf ®M¢—1,T)

2
47 3
(47) - e

b(t)T

The perfect pairingM; ® x My — My (1 — k) and the identity of Hecke eigenvalues
[63, (4.6.17)] induce an isomorphisM; = My @k My-1(k — 1) = Myo(k — 1) so that the
functional equation foA (M ® M1, 7,s) can be written

(48) A(Mf & wal,T, S) = E(Mf ®M¢71,T)N75A(pr & Mw,T,k - S).

Recall that the definitiorig|,v)(z) = det(y)*/2j (v, z)~F ('y(z)) for v € GLy(R)* defines a
right action ofGL, (R)* on functiongy: $) — C. PutWy = (  *'). By [63, Theorem 4.3.6] we
have

A(My® My-1,7,8) = A(f,8) = "N~ FF2A(f |, Wi, k — 5)
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which together with (48) yields
fPr=e(My@ My, 7) LiENF2f[ W

Hence (47) becomes
(49) ts (=D)ENF2 1 ()7L 1 W
Turning to the left hand side of (46) we have

(Wo)(z) :=¢(zw) and ¢(wh) = (WoWy'h) = d(Wy'h)

whereh € GLy(R)* and Wy € GL2(Q) is the matrix with imagev (resp.Wy) in GLa(Af)
(resp.GL2(R)). Fory € GL2(R)* we have
det(h) ™" j(h, )" ¢(vh) = det(y) det(yh) ™' (v, h(i)) i (vh, ) $(vh)
= det()j(7,h(3) " f (vh(3))
=det()" 2 (flwy) (h(D)).
Combining these equations we find th#i) corresponds to
tdet(h)5(h,3) (W) (g:h) = det(h) "5 (h,i)* p(ww ™" gywh)
= det(h) "1 (h i) o} (w™ gyw)p(wh)
=det(h) " j(h,i) o™ (w ™  gw)p(Wy ' h)
=0t (w ™ gw) det(Wy ) 2 (W) ((0)).
Sincef|, W32 = (—1)* f this last expression equals

(50) o Hw ™ grw) (1) NFPT (W) (R(4)).

Forg: = (,,:) mod N, we havew ! gyw = (t: *) mod N ando ™ (w™ gw) = ¢(t ") =
¥(t)~1. So (49) and (50) agree which finishes the proof of the lemnma.
The definition (11) of the pairing os-constructions shows th&t, o U y)n = (z,y) @k «

wherea € My, and(z, y) is the K -linear extension of th@(1 — k)-valued pairing oM (N')L
in (9). Combining this with Lemma 2.11 the last term in (44) equals

(51) U Un )7 S ()TN ® Foo) I ) @k aar

iNC® K(1—r)4r @k My ar Where
ik_ne(Mf & wal)
NG(wal)
ik—ne(M & My, -1
— p(=1) (M @ My-1)
NE(Mw—l)
(with I*° also denoting the comparison isomorphism fdy,). For any premotivic structure

we have(Fy @ Fso)I® = I*°(Fx ® 1) and we havgFoo ® 1)(f*) = fP since fP € K ®
M(N")gr C C® K ® M(N')qr. Hence

aar = V(—1) (I°°) "1 (1 ® Fao ) I®bar

Y(—=1)"'bar

(1) M1 @ Fo ) I® fP = (I°) Y (Foo @ 1)1 f7.
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Under the natural isomorphisti® K @ M (N')p =2 (C® M (N')p)'x the action ofF,, @ 1 ® 1
on the left hand side gets transformed into the action sen@dipgto 7 — (F - ® 1)(x7) where
F, is complex conjugation acting @i in the factor indexed by. Hence ther-component of
(51) equals

[U:Un ™ 7 (f), (1) (Foo r @ DITT(f7)) ®c T(car)

=[U:Un/]" (k= 2)!(4m)* o (N (7(f), T(F) ponry T(Qar) ® e
whereg is Euler’s function and we have used (10). Therefore (51) equals
(52) [U:Uno) (k= 2)1(4m)* o(N')(f, frene - car @ 571
[(N):T(N’
= D L) )k = 214m) 1 (£, Py o - @ 65
[U:Un/]

in C® My(1 — k)ar Where [[';(N) : T(N")] is the degree of the covering(N')\$ —
1 (N)\$. Since the mapdet: U — (Z/N'Z)* andSLy(Z) — SL2(Z/N'Z) are surjective one
finds

P(N

P(N
(53)

P(N

P(N

whered(N) =11if N >2andd(N)=2if N <2 (note that—1 € I';(N) iff N <2 whereas
—1¢ I'(N’)). Combining this with Lemma 2.12 below we find that (52) equals

(k=2)!(dm)* 1 (k= DW(N)NG(N)L™ (Ay, 1) i*"e(My @ My-1)

: b ®@
P(N)I(N) 4kqh+1 Ne(My-1)
iR (k —2)1(k — 1)IL™ (Af, 1)e(My @ My-1) o1
= . . “bar ® ¢ .
4m2e(My-1)

This finishes the proof of Theorem 2.100

LEMMA 2.12.-If f is a newform of conductolN, weightk and with coefficients in the
number fieldk', we have

k—1)16(N)N(N)L™ (A, 7,1
() py oy = L )4ki(k+1) SRt
for any embedding : K — C and§ (V) as in(53).

Proof. —We fix 7 and write f for 7(f) to ease notation. By Theorem 5.1 of [51] (essentially a
reformulation of a theorem of Rankin and Shimura), we have

- AR (F, fr, (v
L(k, f,9) = (k—1)!6(N)NN,o(N/N,,)

WhereL(Sa f’ ’Jj) = Hp LP(S7 f7 1&)’
Ly(s, f,0) " = (1= d(p)agp™®) (1 — b (p)apBpp™*) (1 —(p)Bop~*)
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anda,, 3, are defined as in Section 1.7.2 fof N anda,, + 5, = a,, o, 8, = 0 for p| N. Denote
by M,, the exact power gf dividing an integerl/. To show the lemma it suffices to show that

7 ¢(NP/N1/J7P) _ v ¢(Np)
(54) Lp(k,f,w)m =1L, (AfaTal)Tp

for all primesp. If pt N, this is immediate from Section 1.7.2. ¥, = p and Ny, = 1,
we havea? = ¢ (p)p*~2 by [63, Theorem 4.6.17(2)] and, (f) is special so that (54) holds
true by (23). The only other case in whiel) # 0 is whenN, = N,;, , [63, Theorem 4.6.17].
In this casey(p) = 0 and henceL,(k, f,1) = 1 whereasr,(f) is principal series so that
Ly (Ap,m,1) = (1 — p~ 1)~ = N,/¢(N,) by (23). Finally, if N, > 1 and a, = 0, then
Ly(k, f,4) = L}Y(Ay,7,1) =1, N, /Ny, > 1 and both sides in (54) equal —p~'). O

Remark— In the following, we shall not need the full precision of Theorem 2.10 but only the
fact thati* =" ((k — 2)!)2e(M; @ My-1)/2e(My-1)e(Ay) is a unitinO = Ok [(Nk!)~1]. This
in turn is a consequence of Lemma 2.13 below.

LEMMA 2.13.— Let M be an object ofPM which is L-admissible everywhere and let
7:K — C be an embedding. ThetiM, ) = ¢(M, 7,0) is a unit inZ[c(M)~!] whereZ is the
ring of algebraic integers.

Proof. —By definitione(M, 7) = [, e(Dpst (MA|Gy) @k, 7 C, 4y, dy,) is @ product over all
placesp of Q where the additive characters, and the Haar measurefs:;, are chosen as in
[17, 5.3] and7’: K, — C is any extension of. The assumption that/ is L-admissible at
p implies that the isomorphism class &, (M\|G,) Qk, -~ C is independent of’. The
definition ofe in [16, (8.12)] and [16, Theorem 6.5 (a),(b)] show that

e(Dpst(M)JGp) @Ky C,p, d:vp) = T/E(Dpst(MﬂGp),wp, dxp) et (KA(,upoo)).

Replacingr’ by v7’, v € Aut(C/K(u,-)), and using theL-admissibility again, we deduce
from this formula thate(Dys (Mr|Gp) @K, 7 C,00p,dxy) € K(pp~). The remark after
[16, (8.12.4)] shows thatcan be directly expressed in terms of thadic representatioi/,, for
At p. Namely

e(Dpst(MﬂGp), Up, dxp) = eo((JV[,\|Wp)SS, Up, dxp) det(—Frob |Mip)_1

where ¢y is introduced in [16, 85] andM,|WW,)*® is the semisimplification of\/, as a
representation of¥,. Now for any X { p the W,-representationV/, is the restriction of a
continuousG,-representation, hence carriedig,-stable O, -lattice. This implies, on the one
hand, thatdet(—Frob|Mip) € O and on the other hand, via [16, Theorem 6.5(c)], that
eo((Mx|Wp)*° 1y, dxp) € Ox[ppe=] ™. Noting that with our choice of,, dz,, the epsilon factor
equals 1 (resp. a power dffor p1 c¢(M) (resp.p = co) the lemma follows. O

2.4. Bloch—Kato conjecture

We now recall the formulation of the-part of the Bloch—Kato conjecture. We assume that
is a premotivic structure iIPM i such thatV/ is critical, L(M, 0) # 0 and Conjecture 2.8 holds.
We assume thak is a prime of K’ such that
(55) H(Q, My) = Hy (Q, M) = Hy (Q, M) = H*(Q, M) = 0.
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This is conjectured to hold for al under our hypotheses av and it implies Conjecture 2.6. If
M = Ay or Ay(1) andX ¢ Sy then (55) holds by Theorem 2.7.

Fontaine and Perrin-Riou [41, 11.4] define & -lattice d¢ »(M) in K @k A¢(M). They
assumeK = Q, denote their latticeAs(T") (where S is a finite set of primes and’ is a
Galois-stable lattice in\/,) and then prove it is independent of the choiceSoandT". One
checks that the definition and independence argument carry over to arbifrdry taking
determinants relative t@, and K, instead ofZ, and Q,. The arguments of [41, I.5] carry
over as well, giving another description &f (/) for which we need more notation. Choose
a Galois stable lattica1, C M, and a free rank on@,-modulew C Ky Q@ detg tpr. We let
(M) = deto, /\/lir regarded as a lattice i\ ® i det i Mg via the comparison isomorphism
IB. We let M = Homp, (M, 0, (1)) € MP. The Tate—Shafarevich group oft

_ H{QMy/M,)
HI(Ma) = Hfl(Qi M) @ (Kx/O\)

is always finite and can be identified wittH}(Q,M,\/M,) under our hypothesis
H}(Q,M,) = 0. The same holds forM?. Furthermore, by the main result of [33] (also
[41, 11.5.4.2]),II(M,) andII(M¥L) have the same length. In fact, there is@xr-linear iso-
morphism

(56) (M) = Homg, (ILI(M), Q¢ /Zy).
Finally, the Tamagawa ideal g¥1, relative tow is defined as

Tam),(M,) = Tamy (M) - Tamd, (M) - | | Tam) (M),
p#L

where the factors are defined as in .4.1 (and 11.5.3.3) of [41]. Recaleﬁ(MA) =1if M,
is unramified ap # ¢ and that

Tam?_ (M,) = Fitto, H' (R, My) = Oy
if £is odd. The argument of [41, 1.4.2.2] shows that i ¢, then
Tamd(M) = Fitto, H' (I, M)or"
from which it is not hard to deduce that
(57) Tam) (M) = Tam)(MZ).
Viewing Homop, (6(M,),w) as a lattice i, @ x A¢(M), we have by [41, Theorem 11.5.3.6]

_ Fitto,H%(Q, M\/M,) - Fitto,H(Q, MP /M)
B Fitto, III(MP) - Tam? (M)

(58) ¢ A (M) Homo, (0(M,),w).

The A-part of the Bloch—Kato conjectucan then be formulated as follows:

CONJECTURE 2.14. — Let M in PM be critical, b(M) as in Conjecture2.8, \ a place of
K such tha(55) holds ands » (M) as in(58). Then

Sga(M) = (1®b(M))Os.
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THEOREM 2.15. - Let f be a newform andS; the set of places defined {81). Then
Conjecture2.14holds for bothM = Ay and M = A (1) and any\ ¢ Sy.

Proof. —SupposeM, b(M) and A are as in Conjecture 2.14 arftlis a set of places of
containing?, oo and those wherd/, is ramified. Assume := S \ {¢, 00} is nonempty and
Ly(M,0)~" #0forall p e 3. Puth™(M) =[5, Lp(M,0)b(M). By [41, Proof of 1.4.2.2] we
have forp € %,

Fitto, Hf (Qp, M) = Lp(M,0)~" Tam) (M)
since L,(M,0)~! # 0. The exact sequence of Lemma 2.1 appliedito= M/ M¥% then
implies that Conjecture 2.14 is equivalent to
Fitto, H°(Q, MP /MP)
Fitto, HE(Q, MP/MP) Tam ,(M.,)

(59) Homop, (0(M,),w) = (1@ b”(M))O,

where HL(Q, MP /M¥) was defined in Section 2.1. We shall first prove Theorem 2.15 for
M = By = Af(1) in which case the conditiofi,,(M,0)~! # 0 for the reformulation (59) of
Conjecture 2.14 is satisfied.
Recall thatA; \ = ady,, My, and putBy\ = Ay \(1). Using the identification (39) of
ta, =detxta, welet
wa =0\ ®p Homp (Fﬂk_l ./\/lfydR, Mf,dR/ Filk—1 ./\/lfydR)
= Homo, (Filkil M¢ar @0 Ox, Mf.ar @0 Oy/ Filk—1 Mpar @0 Oy)
= HOHlOA (Fllk_l Mf,)\'cry& Mj',)\-crys/ Fﬂk_l Mf,)\'crys)-

Similarly, identifyingdet r t 5, with detx ta, ® Q(2)ar We definewp aswa ® L2,
Fix a primeX ¢ S; and letX be the set of primes dividingy if N > 1 or putX = {p} for
some prime\ {p if N = 1. The isomorphismy: M; — MJ? of Proposition 1.4 satisfies

V=y"o [ Ly (Bf.0)!
pEX

by Proposition 1.4 wherep = Hépzl(—ap)]_[épﬁw(p)p’“—l € O (it is well known that
a2 = (p)p*~t oraZ =(p)p*~? if 6, =1[63, 4.6.17]). Moreovery induces an isomorphism

By =Hompg (Mg, Ms(1)) — Bf := Homg (M7, M7 (1))
and an isomorphism: A¢(By) — Af(B?) so that
v(b) (z ® (271)?) @ 1? = varb(vn () @ (2m0)?) @ ¢
for b € A¢(By) andx € M. For suchh andz we have

(z,7(b)(z® (27m')2) ® L2>Z = <’Yd_}% (), var 7 (0) (z @ (2m0)%) @ 52>

= (Yar (@), van () (z @ (2mi)*) @ )¢ [ [ Ly (By,007"
peEX

(60) = (vir (2),b(vqgr () ® (271)?) ® *)¢ H Ly (By,0)~".
peEX
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Recall thatil* ' M7 = O - f = O - y(f) by Propositions 1.4 wher®@ = Nes, K NOx.
Note that ift’ is anO,-basis for

Homo, (0(8% ). ws)
=~ Homo, (Fil* 7' MF 4g ®0 0(By,2), (MF ar/ Fil* ' MF 4g) ®0 Ox @ 72),
then
Ox V(¥ ® (2m1)?) ® 2 = (MF qr/ Fil* " M7 4r) ®0 Oy

and hence

Ox - (fZ,0 (f5 ® (270)%) ®12)” = OxnF My (1 = k)ar
wheren? was defined before Proposition 1.4. On the other hand by (60), Theorem 2.10 and the
remark after the proof of Theorem 2.10, we haveXat Sy,

Ox - (F2 0% (By) (F7 @ (2mi)) @ %)

=Ox- (£.b%(By)(f ® (2mi)?) @ ) [] Lo¥(By,0) 7

pEX
=05 (£.0(Bp)(f@ @2ri)?) @) [[ Lo(By.0)
PEXC(f)
= OA(bdR & Lkil) = OA./\/L/,(I — k)dR-

Eq. (59) forM = By therefore reduces to

Fitto, H(Q, Bf,/Bf))
Fitto, F15(0. B, /57, Tunf.., (57,

77?2(9»

Using Proposition 2.16 below, the fact that; = BJ’? and the vanishing of the group
HO(Q, Ay x/Ag.») for X € Sy, this identity reduces to

Fitto, Hé (Q, Aﬁ)\/Af,)\) = Okn?

which is Theorem 3.7.

By (56), (57) and Proposition 2.16, the factor in fronfdm(6(M ), w) in (58) is the same
for M = Ay andM = B;. The isomorphisnmw defined in (42) map8omo, (6(Af x),wa) to
Homop, (0(By,2),wr), hencele x(Ay) to d¢ A (By). Theorem 2.15 foll = A therefore follows
from Theorem 2.15 fod! = By, together with Theorem 2.10 and the fact that- k)e(Ay) is
aunitinO,. O

PROPOSITION 2.16. —We haveélamy , , (Ay\) = Tamy,, (Byx) = Ox for A ¢ Sj.

Proof. —With the notation in Section 1.1.1, we further denoteMbl/ the additive category of
filtered p-modules as defined in [36, 1.2.1], by, -MF the category of<,-modules inMF and
by K\-MF“ the full subcategory of(,-MF with filtration restrictions as in Section 1.1.1. Scalar
extension- ®z, Q, induces an exact functd,-MF — K ,-MF where the notion of exactness
in MF is defined in [36, 1.2.3].

Now assume thaD,,D, are torsion free objects dD\-MF* for somea and putD; =
D; ®z, Q. SetD = Homp, (D1,D2) andD = Homg, (D1, D2) which are objects oM F and
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MF respectively. We also have = D ®7, Q.. An elementary computation shows that the first
two rows in the following commutative diagram are exact

1— ™
0 — Homo, -m# (D1, D2) Fil° D D EXt%DA-MF(D17,D2) —0
sol sll
1-¢
0 — Homy MF(D1, D2) Fil° D D u Exty Mp(P1, D2) ——0
eol v . ell
0 10 1-¢ © 1
00— H'(Q,V) ——=Fil” D(V) D(V) Hf((@g, V) ——0
o

0 ——— H(Q, V) D(V) D(V) &ty ———— H;(Q,,V) ———>0

(61)

wherer is defined as follows. Fay € D, define an extensiof, of D; by D in O-MF with
underlyingO,-moduleD; & D, filtration

Fil' &, := Fil' Dy @ Fil' Dy
and Frobenius mapg : Fil' £, — &,

(62) &' (x,y) = (¢'(x) + nd' (1), ' ().

The same definitions fof € D lead to an extension itk y-MF. Thenn(n) is the class of the
Yoneda extensioi,, in Ext' (we shall identifyExt® with the group of Yoneda extensions
throughout).

To explain the remaining part of diagram (61), we first recall the notion of admissibility from
[36, 3.6.4]. Afilteredp-moduleD’ in MF is called admissible if the natural ma&, s ®q, D’ =
Berys ®q, V(D') is an isomorphism wherE (D’) is theG,-representation

V(D') =Fil°(D' @ Bepys)?®¢=1.

The functorD’ — V(D’) is fully faithful and exact on the category of admissible filtered
¢-modules, and induces an equivalence of this category with the catéyary;.(G,) of
crystalline K, [G/]-representations (see [36, 3.6.5]).If = D’ ®z, Q; for some objectD’
of MF°, then D’ is admissible by [39, Theorem 8.4], and for suth we have a natural
isomorphismV (D) = V(D') ®z, Q; by (1). If D' =D’ @z, Q, for some objecD’ of MF*
then we can extend the definition ¥fby V(D') = V(D’'[—a])(a) (Tate twist) and we deduce
again thatD’ is admissible. In particula#); and D, are admissible, and the is admissible
by [36, Proposition 3.4.3]. Putting := V(D) andV; := V(D;) we have an isomorphism of
G -representation®’ = Homg, (V4,V2) by [36, 3.6].

Coming back to diagram (61), the majs just the natural map induced by

D 5 Berys @, D = Berys ©g, V = H*(Qz, Berys ®g, V) =: D(V)
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ande is the boundary map in Galois cohomology induced from the short exact sequence of
Gg,-modules

(63) 0= V(D) = Fil®(Berys ®g, D) ' ~23% Berys ®g, D — 0

as in the proof of [4, Lemma4.5(b)]. It is clear th&t,-MF* is closed under extensions inside
K -MF, hence we obtain a chain of isomorphisms

0" :Extl \p(D1,D2) — Exty e (D1, D2)
Y Bxthep, (a0 (ViaV2) & Bxth, () (K Homge, (V2. V2)) — H} (@, V)
fori =0,1. HereA! sends a Yoneda extension
0—=Vo—=V3—=V1 =0
to the pull back taK, - 1y, € Homg, (V1, V1) of the induced extension
0 — Homg, (V1,V2) — Homg, (V1,V3) — Homg, (V1, V1) — 0.

The maps (defined by applying’ to a Yoneda extension) are isomorphisms becauissfully
faithful and exact.

The three lower rows in (61) with the indicated maps form a commutative diagram, and all
these rows are exact (see [4, Lemma 4.5(b)] for the two lower rows). We shall verify the identity
0'm = eu, all the others being straightforward. Consider the commutative diagram

1-¢p®¢

0 Vs Fil°(Berys ®g, D2) Berys ®q, D2

T -

0> Vo ——= Fil’(Borys ®q, (D2 ® D1))*~" —=Fil’(Bays @q, D1)?~' —0
(64)

where all unnamed arrows are natural projection or inclusion maps, the top row is (63pwith
replaced byD,, and the action of on D, ® D, is given by (62). Foi) € D, the extensiom.(v))

is the pullback of (63) undek (1 ® ¥) C Berys ®g, D. To compute(Al)~tec(v)) apply the
exact functoompg, (V1, —) to diagram (64). Via the isomorphisms

Homy, (Vi, Barys ®q, D2) = Homp,, .0k, (Berys @, V1, Berys ®q, D2)
= Hochrys(@KA (Bcrys ®Qe Dla Bcrys ®Qe DQ)
= Bcrys ®Qg HOHlKA (Dl ) D2)a
Homp, (Vi, Fil’(Berys ®q, D2)) 2 Fil’(Berys ®g, Homg, (D1, Da)),
the first row becomes isomorphic to (63) and the image of
1y, € Homg, (V4,V4) = Homg, (V1, Fil’(Berys ®g, D1)?7?)
iN Beyys ®g, D is 1 ® 1. Hence(Al)~teu(1)) is represented by the lower row in (64). But from
the definition ofr it is immediate that the lower row in (64) is the imagemf)) under the

functorV. This gives the identitg'm = e..

4€ SERIE— TOME 37 — 2004 -N° 5



THE TAMAGAWA NUMBER CONJECTURE OF ADJOINT MOTIVES 713

PutT; =V(D;) fori = 1,2 andT = Home, (T}, T») with its naturalG,-action. Then, since
Ty is torsion free H 1 (Qy, T') naturally identifies with the set of equivalence classes of extensions
of O, [G¢]-modules

(65) 0—Ty—T5— T, —0.
Since the functofy is exact on®,-MF?, and sinceD,-MF* is closed under extensions in
Ox-MZF, we obtain maps

0" : Exti, - pr (D1, D2) & Extiy, -pqza (D1, D2) — Exti, (g, (Th, T2) = H'(Qy, T)

analogous to the mags. The faithfulness oV implies that®° is injective and fullness o¥/
implies thato? is surjective and tha®' is injective. The image o®* lies in the subgroup

H}(Qe,T) = {[T5] € H'(Q¢, T)|[V3] := [T5 ®z, Qe] € Hj(Qe, V) }

sinceV(D3) ®z, Q¢ = V(D3 ®z, Q) is a crystalline representation. Conversely, if (65) lies
in H}(@g,T), the G,-module T3 is a submodule of a crystalline representatignso that
D(V3) lies in Kx-MF® and henceTs lies in the essential image of the Fontaine—Laffaille
functorV, T5 = V(Ds), say. SinceV is full the extension (65) is the image of a sequence
0 — Dy — D3 — D1 — 0in O\-MF* and sinceV is fully faithful and exact, this sequence
is exact, hence represents an elemem;dﬁ%_Mf(Dl,Dg). We conclude that

(66) ©' : Exty, - pr (D1, D2) = Hp(Qy, T)

is an isomorphism. It is clear théte’ = €0 whereé' : H(Qy, T) — H*(Qg, V') are the natural
maps. The last row in (61) induces an isomorphism
detg, H(Q,V) ®k, detl Hf(Qe,V) = detg, D @k, dety. D®k, dety: ty
~ —1
= detKA ty

and the Tamagawa ideal is defined in [41, 1.4.1.1] so that
(67) deto, H°(Q¢, T) ®o, deto, Hp(Qp, T) = Tamy ,(T)w ™.

Using the fact tha? is an isomorphism together with (66) and (61) one computes that the
left hand side in (67) equaldet,,! D/Fil’D so thatTamg ,(T') = O, if w is a basis of
deto, D/ Fil’ D.

These arguments apply 1, = Dy = M ¢ x-crys Which is an object o)\ -MFYif A ¢ 5y,
more specifically it { N and?¢ > k. We havel} =T, = My, andT = Ay & Ox. Our choice
of w4 then ensures thatamgyw (Ag ) = Ox. For By = A¢(1) we can use the same argument
as long as bottD; = M s-crys @aNd Dy = M y-orys[1] are objects of),-MF!. This is the
case if¢ > k+1orif { =Fk+1and Mg  x-arys has no nonzero quotiemt in Ox-MF with
Fil* "' A=A,

LEMMA 2.17.-If a = 0 mod A, thenM s y-c.ys has no nonzero quotient in O-MF with
Fil* 1 A= A.

Proof. —By [75] we know that the characteristic polynomial®bn
M= M peerys 18X% = 7 (OaeX + 471 (00,
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hencep has characteristic polynomial? on M := M ®¢ (O /). Since
(68) M= (M) + "L (FIIFT M)

and dimg, /x Fil*"' M = 1, the map¢ is nonzero, hence conjugate (cg Since ¢ =
(k=1¢+=1 = 0 on Fil* ' M and because of (68), we haiiél* ' M = ker(¢) = ¢(M). Itis
now easy to see thatt is a simple object ir0O,-MF: Any proper subobjectv ¢ M is ¢-
stable, hence conta|nedknr(¢) Fil*~! M and we havé&il*~! N = N. But again by (68) we
find ¢*~1(Fil*~* M) ¢ ker(¢) = ¢(M) so thatN = Fil* "' N = 0. If A is a nonzero quotient
of M then A4 is a nonzero quotient ol hence equal tovt and we findFil*~! A # A and
Fil" 'A#£A. O

It remains to prove Proposition 2.16 fd; , in the ordinary casey # 0 mod A (and
¢ =k +1). We use the fact thaB; = A%(1) and appeal to the following conjecture, a
slight generalization (fron%, to O,) of conjectureCrp (V) of [67] (we also use a similar
generalization of [67, Proposition C.2.6]).

Let V be a crystalline representation@f over K, andT C V aG,-stableO,-lattice. Letw
(resp.w*) be a lattice of

detg, D(V)/Fil’ D(V) (resp.detg, D(V*(1))/Fil’ D(V*(1)))
so than we obtain a lattice ® w*~! of detx, D(V) via the exact sequence
(69) 0— (D(V*(1))/Fil° D(V*(1)))" — D(V) — D(V)/Fil’ D(V) — 0.

Let n(T,w,w*) € Bays ®g, Ky be such thatdeto, T = n(T,w,w*)w ® w*~1 under the

comparison isomorphisnBe,ys ®q, detx, V = Bays ®q, detx, D(V). One shows that
n(T,w,w*) € Q)" ®q, K [67, Lemme C.2.8] and that in fag(T,w,w*) € 1 ® K, up to an

elementin(Z}" @z, Ox)*.

CONJECTURE 2.18. — For j € Z, put h; (V) = umKA Fil D(V)/Fi’ ' D(V), and put
I*(j)=(j —1)if > 0andT*(j) = (=1)((—j)) "t if  <0. Then

O, M H i) p(T,w, w*).
Tam (T (1 ;
Remark— One can show that upon taking the norm fréfy to Q, all quantities in this
formula transform into the corrpsending quantities obtained by viewing as a representation
over(Qy rather thank',. Since the norm maf’y /O — Q//Z, is injective it suffices to prove
the conjecture foi(, = Qy.

We make Conjecture 2.18 more explicit for= Ay . In this case we havi; (V) =1 for

= —1,0,1 andh;(V) = 0 otherwise so thaf [, T*(—j) ") = —1. For A ¢ Sj, equation
(20) shows that the isomorphisB.,ys ®q, detKA V = Beys ®q, detg, D(V) is induced by
the functorV for the unit object inPMf@ hence senddetop, Ay t0 detp, Ardar ®0 Ox.
The computation of 5, in (40) works withM qr replaced byM; qr ®o Oy and the pairing
(21) on A gives a perfect pairingAs ar ®o Ox) @ (Af.ar ®o Ox) — Ox. Hence we find
thatws ® wgl is a basis ofleto, Af.ar ®o O, via the exact sequence (69). We conclude that
n(Ay x,wa,wp) =1 and that Conjecture 2.18 reduces to the assertion

O, TamS_VWA (Afpx) = Oy Tamg_’wB (Af)\(l)).

4€ SERIE— TOME 37 — 2004 -N° 5



THE TAMAGAWA NUMBER CONJECTURE OF ADJOINT MOTIVES 715

Moreover, we know from the first part of the proof that the left hand side eddgli A ¢ S;.
Now Conjecture 2.18 is shown in [66] faK, = Q, and V an ordinary representation of
Gg, (combine Proposition 4.2.5, Theorem 3.5fac. cit.) under the assumption of another
conjecture Rec(V) which has meanignbeen proved in [12]. Ordinarity ofi; , is implied
by ordinarity of M » which in turn is implied bya, # 0 mod A. This finishes the proof of
Proposition 2.16. O

3. The Taylor—Wiles construction

Our method for computing the Selmer group4f , is based on that of Wiles [88] and his
work with Taylor [86]. We first give an axiomatic formulation of the method of [88] and [86],
made possible by the simplifications due to Faltings ([86], appendix), Lenstra [60], Fujiwara [42]
and one of the authors [24]. This formulation makes no reference to deformation rings and group
rings that appear in other axiomatizations of the method. We then verify these axioms in the
context of modular forms of higher weight.

3.1. An axiomatic formulation

In this section, we fix a prime. of a number fieldK” and letk = Ok /X. We let¢ denote
the rational prime im\ and F' the quadratic subfield d®(u,). We also fix a continuous, odd,
irreducible representation

po:Gg — Aut,. (1))

whereV} is two-dimensional ovek. We define the Serre weightof pg as in [78], but using
geometric normalizations. (Thus is the integer associated in [78] to the representation on
Hom, (Vp, x).) We impose the following three conditions on the representatipmege consider:
e po has minimal conductor among its twists.
e The restriction ofp to G is absolutely irreducible.
e The Serre weight of pg satisfie® <k </ —1.
The last condition is equivalent & |1, being equivalent ovet to a representation of the form
° 1/)[}”“ D wf(l_k) where)y, is a fundamental character of level two,
. or(; \i-+), peu ramifié ifk = 2.
We lety: Gg — O denote the Teichmiller lift of; " (det p, *); thusy is unramified at and
has order prime td, andy~' x; " is a lift of det po. We lets denoteyy =1y, .
We consider continuous geometfiadic representations

p:Go— Autg,(V,)

where V, is two-dimensional over a finite extensidi, of K, contained inKy, p has
determinant and reduction isomorphic tp, over k. We let O, denote the ring of integers
of K,. We say such a representatipiis anallowable lift of p, if its restriction toG, is short
and crystalline. For a primg+# £, we sayp is minimally ramifiedat p if the following hold:

o If #po(Ip) # ¢, thenp(lp) = po(Ip).

o If #po(I,) = ¢, thendimg, V,” = 1. )

Suppose we are given a skt of allowable lifts. We assume th& ,-isomorphism classes of
the elements oV are distinct. For eacp, we letX, denote the set of primes at whighis not
minimally ramified. For each set of primes

YCYo:={plp#{}
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we let /> denote the set of in A such thats, C ¥ and writeV* for the direct sum ovei/™
of V, = K ®k, V,. We assume that'> is finite if  is finite.

A trellis for NV is an©0,Gg-submoduld. of V¥ such that for each finite s& c X, theOx-
moduleL” := L N V* is finitely generated and the map, ®», L* — V= is an isomorphism.
One checks that ib in AV is such that, = K, thenL, := L NV, satisfiesk, ®o, L, = V,.
(To see this, for eachr # p € N*, chooseg, such thattr p(g,) # tro(g,). Then the map
V> —11,., V> defined by(g2 — trp(g,)gs — det p(g,)), has kernelV,. It follows that its

restriction to a magl.” — [],_, L* has kemel,, and therefore thak'y ©o, L, — V,,.) For
suchp, we let

AP = (ad(l)(A ‘/;)/(ad?/))\ LP)

One checks that i is minimally ramified afp, thenAff is divisible.
A system of perfect pairings for L is anO,[Ggl-isomorphism

©”: L” — Homo, (L™, Ox(¢"'x; "))

for each finiteX C X,. Since thef/p are i[reducible, non-isomorphic and have determinante
see that for eachin N'=, ¢* induces ak , Gg-isomorphism

which we denote b;pf. MoreoverifK, = K, thengo,§ arises from an injection

/\%’)ALP — OA((S)

We say that a prime is horizontalif the following hold

e ¢=1mod/;

e po is unramified at;

¢ po(Frob,) has distinct eigenvalues.
If @ is afinite set of horizontal primes, we 1&t, denote the maximal quotient pf . (Z/qZ)*
of ¢-power order. For each € (), we choose an eigenvalug, € & of pg(Frob,) and lety, o
denote the unramified charact@y, — £* sendingFrob, to a,. Suppose thaf is a character
Ag — K. We say thap € N© is a¢-lift of py if for eachq € Q, we have

Vo = K (1) © KA(8/1g,p)
asK,G4-modules for some lifti, , : Gy — K3 Of 14,0 With 4|1, corresponding via local class
field theory to§| Ay,

THEOREM 3.1.— Let A/ be a set of allowable lifts o, (with distinct K-isomorphism
classes and finiteV> for each finiteX c %), L a trellis for A" and ¢ a system of perfect
pairings for L. Suppose that

o NV £0;

e if ¥ c XV is a finite set of primes ande A, then

oy =08 [ Lp(adk, V,, 1)
peEXS

for somes)’ in O,;
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e if  is afinite set of horizontal primes, then
(i) Y € O, isindependentgf € N7,
(i) #NC <H#N . #Aq, and
(i) there is a-lift of po in N9 for each¢: Ag — K.
Then every allowable lift gf, is isomorphic overs, to somep in AV Furthermore ifK, = K,
then the lengths of

Hy(Q,4,) and Ox(6)/¢;, (Ao, Ly)
coincide for any finite subsét of 3, containingX,,.

Proof. —One checks that to prove the theorem, we can replageoy any finite extension
and so assume that contains the eigenvalues of the elements of the image) oNote also
that the hypotheses ensure the existence of an elemgnof A?. We may assume also that
K\ =K, and we write sSimplWi,in, Limin andAy,, forV, ., L, . andA, . .

We first recall the results we need from the defation theory of Galois representations. See
[19,61] and Appendix A of [13] for more details. We Iétdenote the category of complete
local NoetheriarO-algebras. Recall that ift is an object ofC with maximal idealm, then an
A-deformationof V4 is an isomorphism class of freé-modules)M endowed with continuous
AGg-actionpys: Gg — Aut 4 M such thatM /mM is (A/m)Gg-isomorphic to(A/m) ®,, V%.

For a primep # ¢, we say that aml-deformation ofly is minimally ramifiedatp if the following
hold:

o If #po(Ip) # ¢, thenpar (1) = po(Ip).

o If #po(I,) =¢, thenM /M!» is free of rank one oved.

Suppose thaXl is a finite subset oE,. We say that\/ is of typeX: if the following hold:

e the AGg-module)M is minimally ramified outside;

e the AGg-modulen? M is isomorphic tod ®o, Ox(d);

e there exists an objectly of C with maximal idealm, and finite residue field so that
M >~ A ®a, My and for everyn > 0, the Z,G,-module M, /m{ M, is an object of the
categoryMFy. .

Consider the functor of which associates td the set ofA-deformations ofy, of type X.

By the results of Mazur and Ramakrishna, this functor is representable by an objeét \ofe
denote this objecR™ and letM > denote the universal deformation. We recall also Rétis
topologically generated ové?, by the element$§ for g in Gg, Wheret§ denotes the trace of
the endomorphism of the freeR*-moduleM*. In particular,R* has residue field.

If £, C %9, thenM> is an R¥:-deformation ofl}, of type ¥, and hence gives rise to a
natural surjectiol?®>2 — R>1,

Suppose now that is in N andX, C . ThenO, is an object ofC and there is ar®,,-
deformationM of py of type ¥ so thatV, is K ,Gg-isomorphic toK, ®o, M. We thus obtain a
continuous?,-algebra homomorphism

GPE:REHKP

so thatK, ® g= M* is isomorphic toV/,. The map§§ for varyingX D X, are compatible with

the natural surjection®™2 — R>* defined above. Note also thathif, = K, thenA = O, and
9,? defines a surjectioR™ — O,. In that case we have a natural isomorphism

(70) Homo, (p5/(p5)% Kx/Ox) = H5(Q, Ay)

2 Following [19] and of [13], we note that it is not necessary to assdrhas residue field: or to use strict equivalence
classes of deformations.
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of O\-modules wher$§ is the kernel 019,?. (We omit the proof, which is now standard; see for
example Proposition 1.2 of [88] or Section 2 of [14], and use Proposition 2.2 above to identify
the local condition orf.) In particular this is the case for= p,,;, and any finite> C .

We regard/’> as a module foRR* via

(71) R¥ — H K,
pENZ=

defined by the map8}. Note that ifg is in Gg, thent? acts onl’* via the endomorphism

tr(p(g)) =g+6(9)g~"

which is given by an element @, Gy. It follows that L* is stable under the action é* and
that¢™ is R*-linear. If©; C X, then regardind.>* as ankR>2-module via the natural surjection
to R*, we see that the inclusiob™ — L*2 is R*2-linear, as is its adjoint with respect {6
andp™2.

We define the finite fla0»-algebral™ to be the image o in Ende, L*. The mapg}’
induce an isomorphism of finit& , -algebras

[_()\ Ko, TE—> H f_()\
pEN>

such that§ = (trp(g)) ,enr= for g in Gg. (The injectivity follows from that of
K\®0, T* = K\ ®0, Endo, L”,

and the surjectivity from the distinctness of W@.) In particular?* is reduced and

(72) ranke, L” =2-#N* =2 rankp, T*.

Suppose that is an element V> such thatk’, = K. Write P’ for the image op>’ in T
andI) for the annihilator ofP)’ in T*. Note thatP)’ (resp.,I)’) is the set of elements iifi>
whose image iff [ K has trivial component ai (resp., at eacp’ # p).

Now consider th& ,-module

QY =L"/(L”[P)] + L*[I))]).
We definenpZ as the annihilator of the finite torsiaf,-module

Ox(8) /95 (Ao, Lp)-

We shall writep;;,; ., 3, andn,, forp> . Q> andp? .

LEMMA 3.2.— TheOx-moduleQ? is isomorphic ta O, /7).

Proof. —Note that the kernel of the projectidn” — V,, coincides with that of the surjective
composite

L> 5 Homp, (L*,0,(6)) — Homo, (L,, Ox(6)),
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where the first map is> and the second is the natural surjection. Denoting this kernel by
L., we havel, C L*[P”] and L, C L*[I)’]. Furthermore both inclusions are equalities since

they become so after tensoring wikhy, and*/L, andLZ/Lﬁ are torsion-free. Therefore the
(’)A—moduleﬂf is isomorphic to the cokernel of the map

L,— L*/L; = Homo, (L,,Ox(5))
induced byy™, which in turn is isomorphic to
Homo)\ (Lp, 0)\(5)) Ko, Ok/ng

(in fact, canonically so as aflyGg-module). O

Suppose now thap is a finite set of horizontal primes. For eaglk ), we have chosen an
eigenvaluey, of po(Frob,). Asin Lemma 2.44 of [14],

M@= R®(ud) @& R9(6/ug)

as anR?G,-module for some liftu9 : G, — (R9)* of pg0. (Recall that the character, o
was defined before the statement of the theorem ard igalued since we enlargeld,.) The
restriction ofuff to the inertia groud,, factors through

Iq— qu —Ag

where the first map is gotten from local class field theory and the second is the natural projection.
We thus obtain a homomorphisfx,, — (RQ)* for eachq € Q. We can thus regar®® as an
Ox]Ag]-algebra, and so regai? as anO,[Ag]-module. Note that every € M@ is a ¢-lift
for a uniquet =¢,: Ag — K, and themA acts onV,, via&,.

Now let P9 denote the augmentation ideal @¥\[Ag], i.e., the kernel of the map
O\[Ag] — O, defined byg — 1 for g in Ag. Let I¢ denote the annihilator 3% in O [Ag],
i.e., the principal ideal generated by, = deAQ g. Now consider th&,-module
Q9 =L9/(LO[P?] + L9[I9)).

LEMMA 3.3.— L9 is free overO,[Ag], and L9 /PR LC is isomorphic ovek® to LP.

Proof. —Note thatK,[Ag] = [ K, via g — (£(g))¢, the product being over all characters

¢:Aq — K. Hypothesis (c) of the theorem ensures that this algebra acts faithfully‘gn
and hence that),[Ag] acts faithfully on L?. Furthermore, ifp is in N9, thenp is in
N if and only if Ag acts trivially onV,, so we haveL?[P?] = LY. It follows also that
#AQL? Cta, L9 C L. ThusL9[I9] = (L)1, so Q@ is isomorphic to the cokernel of the
endomorphismyg of L obtained by composing the inclusidd — L< with its adjoint with
respect tap? andy?. Our hypotheses on the pairings (including (a)) ensure that

v =#808% [] a7 (atfron, 0" (Froby) — (¢ +1)°) € #AqR?.
9€Q

ThereforeQ® has length at least that @ /#Aq L?. SinceP?/(PQ)2 = 0, ® A, we get
lengthg, 0@ > dlengthy, PQ/(pr)2

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE



720 F. DIAMOND, M. FLACH AND L. GUO
whered is the®,-rank of L?. On the other hand, hypothesis (b) gives
rankp, L9 =2 #NQ <2-#Aq - #N? = dranko, Ox[Ag)].

Theorem 2.4 of [24] therefore implies thaf? is free overO[Ag] of rank d. It follows that
LR/PRLR is free of rankd over 0. Since the adjoint of.? — L% is surjective with kernel
containingP? L, it follows that L? /PRLL = [P, 0O

The following is proved exactly as in Chapter 3 of [88] (see Theorem 2.49 of [14]), except that
we use Corollary 2.3 above instead of Proposition 1.9 of [88] (or Proposition 2.27 of [14]).

LEMMA 3.4. - There exists an integer> 0 and sets of horizontal prime3,, for eachn > 1
such that the following hotd

i #Qn =T,

e ¢=1mod /™ foreachg € Q.,;

e R%" is generated by elements as afd-algebra.

We are now ready to prove tha? is a complete intersection over whidlf is free of
rank two. We letr and@Q = Q,, for n > 1 be as in Lemma 3.4. Setting = [[S1,..., S]],
B =k[[X1,...,X;]], R=K ®0 R’ and H = k @0 L?, we shall defineB-modulesH,, and
mapse,, : A — B, ¢, : B — R andm, : H, — H satisfying the hypotheses of Theorem 1.3 of
[24]. We first choose surjective-algebra homomorphismé — x[Ag, ] and B — R,, where
R, =k ®0 R9. Note that the kernel ol — x[Ag, ] is contained im,” C m;. Definey,, as
the composité3 — R,, — R and definep,, : A — B so the diagram

|

K[AQn] — R,

commutes. We considek,, = x ®» L9 as aB-module viaB — R, and defineH,, as
L, /m" L, andm, as the map induced b9~ — LP. ThenH,, is free overA/m’, andm,
inducesH,,/m4H, — H. We can therefore apply Theorem 1.3 of [24] to conclude fhas
a complete intersection over whidl is a free module. Sinc#? is finite and flat ove®,, it
follows that R? — T is an isomorphism since it is so after tensoring withMoreover these
rings are complete intersections over whichis a free module of rank.

We now apply the implication (¢} (b) of Theorem 2.4 of [24] to th&?’-module L and
prime idealp? . . We thus obtain the formula

min*

2. length(?x H@ (Q’ Amin) =2 length(?)\ pglin/(pglin) length(?)\ len =2 UX (77911111)

where the first equality follows from (70) and the last from Lemma 3.2.
Suppose now tha¥ is a finite subset ofy. Applying (70) and Lemma 3.2 again, together
with the inequality

1ength0AH§(@,Amin) lengthOAH@ (Q, Amin) Zw\ adK mlm,1))
peEX

obtained from the exact sequence of Lemma 2.1, we find that
2. length(’))\ prain/(prain)2 =2 1ength0>\ H;] (@7 Amin) < 2- U(nrzr:lin) - 1ength0>\ len
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We can then apply the implication (&) (c) of Theorem 2.4 of [24] to conclud@™ is a complete
intersection over whicli.* is a free module of ran.

The second assertion of Theorem 3.1 follows from another application of Theorem 2.4 of [24],
(70) and Lemma 3.2. To deduce the first asa of Theorem 3.1, note that the map

K\®o0, R” — H K
pENZE

induced by (71) is an isomorphism. Every allowable liftf arises, up tak y-isomorphism,
from aK-linear mapK ), ®0, R* for someX. It therefore arises fron‘zZ forsomepin A. O

3.2. Consequences

Let us now return to the setting of Theorem 2.15, namely thag a newform of weight
k > 2, character) and conductoV with coefficients in a number fiel&’, and )\ is a prime of
K not in the setS; defined in (31). We let denote the rational prime in; let K = Ox /A
and My \ = k ®o, , My where My , is defined in Section 1.6.2. We then consider the
representation

po:Gog — Aut,{./\;lf_).

Enlarging K and replacingf by a twist if necessary, we can assume tkatontains the
eigenvalues of all elements pf(Gg) andpy has minimal conductor among its twists. We shall
now construct a set of lifts gfy from modular forms satisfying the hypotheses of Theorem 3.1.

Suppose thag is a newform of the same weightand characteg, but any conductoN, not
divisible by/. We suppose thathas coefficients in a subfield, of K, generated ovek by the
coefficients ofg. The inclusion ofK, in K determines a prlma. of K, over/ and identifies
K., with a finite extension oy in K. The representation

pq:Gog— AutKg))\g M‘L)‘g
is an allowable lift ofpy if and only if
(73) ap(g) = ap(f) mod A,

for all but finitely manyp. We let A/ denote the set o, such that (73) holds. Note that the
pg € N are inequivalent for distingf.

From the work of Ribet and others, one knows th4t is non-empty. (See the discussions
following Theorem 1 of [27] and Corollary 1.2 of [21].) Chooggi, € N’ and enlargeX if
necessary so that Lemma 1.5 holds foe f.in and all primesp € ¥;. For each finite subset
¥ of 3o = S¢(Q) \ {¢}, we consider th&, [Gg]-module M (a*), , defined in Section 1.8.1,
and endowed with an action df¥> in Section 1.8.2. Lem® denote the maximal ideal of
T¥= defined there, i.e., the kernel of the mal> — « defined byt, — a,(f>- ")) mod A
forp ¢ Us. We letL> = M(0>), ) m=.

If @ is a finite set of horizontal primes feg, then we letD = quQ g and defineUlQ as the
kernel of the homomorphism

Us(NYDg) — [ (Z/42) — Aq
q€Q
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where the first map send(sﬁ 2) to (aq), and the second is the natural projection. We let
o denote the restriction of? to UZ. Then the®,[Gg]-module M(c%), , is endowed
with an action of T%? and we Ietm? denote the kernel of the map¥e — « defined by

tp, — ap(féfh}l) mod A forp ¢ ¥yUQ andt, — a, for g € Q, wheren, is a chosen eigenvalue of
po(Frobg,). We letLY = M(a?)!_’%m?. Recall that for each € N9, there is a unique character
& Ag — f(; such thap is a¢,,-lift of py. We also usg, to denote the corresponding character
of G factoring throughGal(Q(up,, )/Q) = (Z/DqZ)* — Aq.

LEMMA 3.5.—There is aK,[Gg]-linear isomorphism
K R0, LSy
for each finite subset of Xy, and

W Ky @o, LTS €D Vo(&,h)
PENG

for each finite sef) of horizontal primes fopy.

Proof. —Let T> denote the image @) ®o,. TV* in Endp, M (>);.5. Identifying K\ @0,
T?. = with the product ofl;’ over minimal primes contained im>T>, we see thak y ® o, L™
is isomorphic to the direct sum @1 (c>), 5 , for suchp.

Suppose thag is a newform with coefficients ik, andp, € N'* (whereK C K, C K, as
in the definition of \). The X-level structuresr™> defined in Section 1.8.1 are then the same
for f™i* andg (in fact, if p ¢ ¥ thenc,(fumin) = cp(g) andd,(fmin) = 0,(g), if p € T then
¢p(fmin) + 0p(fmin) = ¢p(9) + 6,(9), and if p € ¥1 \ T then the representatios, defined in
Lemma 1.5 forf™» works forg as well). We thus have

My, C Ky, @K, M(0™)i

giving rise a homomorphisfi® — K, 5, defined byT}, — a,,(g={"}) for p ¢ Wy Letting p>’
denote its kernel, we hayg’ C m>T>. Moreoverp; = p;; if and only if g andg’ are conjugate
underGg, .

Next we check that every such minimalc m>T* arises this way.rldeed every minimal
prime p of T is the kernel of a homomorphisf’= — K, arising from an eigenform of
level N¥“{"}, Moreover the newforny associated té satisfies(V, ®o,. . m,(g))S-2%) 0
forallpe £, \ %, r: K — C (whereN*"{"} and V) are defined usingmin). If p € m™T*,
then (73) holds, s@, is an allowable lift ofpy. In particular, we have that, is unramified at
r, 80 ¢-(g) = 0. Combining the inequality;,(9) < ¢,(fmin) for p ¢ ¥ with the condition on
7p(g) for p € ¥4\ 3, we conclude thag, is minimally ramified outsid&. Finally, the condition
that T, € m™ for p € X U {r} implies thata,(h) € A, for suchp, from which we deduce that
ap(h) = 0 and therefore thdi = g= 1"}

We have now shown that the set of minimat: m>T*> is precisely the set of2’ whereg runs
overG g, -orbits of newforms; such that, € N*. For suchp, we have thaﬂ‘f is reduced, so
that K\ ®o, M(0®)15[p] = M(c%)1 2. Extending scalars t&, gives

K QK M(UZ)!)\J’ = @ Ky Oy, Mgz,l.)\gv
{alpF=p}
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and summing ovey gives the desired isomorphism.

The construction ozfi2 is similar, so we omit the details and note the only significant difference
in the proof. Starting with a newformp such thatp, is a &-lift of py in N9, we consider
the newform associated p® &. This in turn gives an eigenforryl? of level N*Dgr? with
a,(g2) = 0 and a,(¢%) reducing toa, for all ¢ € Q. Working with a Hecke algebra¥
defined analogously 6> above, one checks that the minimal prime&8fcontained inm¥T%
correspond to thé& k., -orbits of the eigenformg?. O

Recall that in Section 1.8.3 we defined &1 [Gg]-linear homomorphisrﬁyg L — LY
for 3 C ¥’ and proved in Lemma 1.11 that it is injective with torsion-free cokernel as an
O,-module. Recall also thdts =45, o4y if ¥ C X' C ¥, so we can considel := lim L*

over all finiteX C X, with respect to the inclusion%’ for X C 3. Note that the isomorphisms
/* in Lemma 3.5 can be chosen so that t§e are compatible with the inclusioris™ c V>
Taking their direct limit, we get an isomorphism

L:KA(X)OALO%@VP
pEN

so that,(L) is a trellis with.(L)* = /*(L*) and with a system of perfect pairings provided by
Corollary 1.6.

We now verify the remaining hypotheses of Binem 3.1. The second bullet and part (a) of the
third follow from Proposition 1.12(b). To esthkéh parts (b) and (c), we appeal to Lemma 1.10
with ¥ = ¥; U Q. Combined with Lemma 3.5, this implies thé® . \-« Vp(gp‘l)‘ is a free
Kx[Ag]-module withA, acting on eact, (¢, ') via £2. We conclude that the number &f
lifts of po in N'? is independent of, giving (b) and (c).

THEOREM 3.6. — Supposep:Gg — Autg, V' is a continuous geometric representation
whose restriction ta&, is ramified, crystalline and short. |5y is modular and its restriction
to G is absolutely irreducible, wherE' is the quadratic subfield d(u.), thenp is modular.

Proof. —Note that we may enlarg&’, in order to prove the theorem. We can then apply
Theorem 3.1 to the sV just constructed for the twisty ®,. 1’ of minimal conductor, where
Y’ is unramified at. Writing ~ for Teichmdiller liftings, we conclude that k., ¥’ is modular,
where) is a character of-power order such tha{t}_’%/ﬂ det p has order not divisible by. O

THEOREM 3.7.— Let f be a newform of weight > 2 and level N with coefficients in the
number fieldK . Suppose thak is a prime of K not in the setSy defined in(31), and letO,
be the ring of integers id(,. Suppose thak is a finite set of primes not containirgsuch that
My » is minimally ramified outsid&. Then theD,-module

Hsy(Q, Afa/Af)

has lengthv, (1) wheren} was defined before Propositidn4.

Proof. —Enlarging KX and applying Theorem 3.1 to the skt just constructed for the twist
po R« ¥’ of minimal conductor, we conclude that the theorem holds for a twigt bence forf
itself. O
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