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ON THE STRUCTURE OF THE CENTRALIZER
OF A BRAID

By JUAN GONZALEZ-MENESES' AND BERT WIEST

ABSTRACT. — The mixed braid groups are the subgroups of Artin braid groups whose elements preserve
a given partition of the base points. We prove that the centralizer of any braid can be expressed in terms of
semidirect and direct products of mixed braid groups. Then we construct a generating set of the centralizer
of any braid om: strands, which has at mo&2™2 elements ifn = 2k, and at most 2t elements if
n =2k + 1. These bounds are shown to be sharp, due to work of N.V. lvanov and of S.J. Lee. Finally, we
describe how one can explicitly compute this generating set.
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RESUME. — Un groupe de tresses mixtes est un sous-groupe d'un groupe de tresses d’Artin dont
les éléments préservent unerfion donnée des points de base. On déime qu’'on peut exprimer le
centralisateur de toute tresse en termes de produits directs et semidirects de groupes de tresses mixtes.
Ensuite, on construit une partie génératrice du centralisateur d'une tresse quelceruirsaCette partie
aau plus®®t) gléments sh = 2k, et au plus™:?) gléments si = 2k + 1. On sait que ces bornes sont
optimales, grace a des travaux de N.V. lvanov et de S.J. Lee. Enfin, on expligue comment on peut calculer
explicitement cette partie génératrice.
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1. Introduction and statement of the results

In 1971, Makanin [26] gave an algorithm for computing a generating set of the centralizer
Z(3) of any given elemeng of the n-string braid groupB,,. His method, however, tends to
yield very large, and highly redundant generatiatssOne hint that much smaller generating sets
could be found came from the experimental results of Gonzalez-Meneses and Franco, which were
obtained with a radically improved version of Makanin’s algorithm, based on new theoretical
work [17]. Also, it has probably been clear to specialists for a long time that Nielsen—Thurston
theory could be used to improve upon Makanin’s results. However, there seems to be no such
result in the literature, and the aim of the present paper is to fill this gap.

Although our main interest was to compute, for any giyea B,,, a small generating set of
Z(0), we succeed in describing this centralizerterms of semidirect and direct products of
mixed braid groupgsee [27,28]). These groups are defined as followsXlet { P;,..., P, } be
the base points of the braids #),. Given a partitior? of X, the mixed braid group» consists
of those braids whose associatedmpetation preserves each cosefrf

The well known classification of mapping classes of a punctured surface into periodic,
reducible and pseudo-Anosov ones, yields an analogous classification for braidsdéucible,

1 Partially supported by MCY, BFM2001-3207 and FEDER.
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730 J. GONZALEZ-MENESES AND B. WIEST

then one can decompose it, in a certain sense, ittbaar braid 3, and somenterior braids
Bpys - - -5 B all of them having less thamstands. The main result of this paper is the following:

THEOREM 1.1.—Let3 € B,,. One has

1. If 3 is pseudo-Anosov , thef(3) ~ Z2.

2. If gis periodic, thenZ(3) is either B,, or isomorphic to a braid group on an annulus.
3. If B is reducible, then there exists a split exact sequence:

L— Z(Bu) x -+ x Z(B)) — Z(8) — Zo(B) — 1,

whereZo(B) is a subgroup on(B), isomorphic either t&? or to a mixed braid group.

.....

Notice thatZ ~ By = Byy; 23}, als0 B,, = Byy1,... »}}, and finally the braid group over an
annulus onk strands is isomorphic t& 1 . x},(k+1}} C Br+1. Hence all these groups can
be seen as mixed braid groups. Then, by resnce on the number of strands we deduce the
following:

COROLLARY 1.2.—For every 3 € B,, the centralizerZ(3) can be expressed in terms of
semidirect and direct products of mixed braid groups.

Using the above structure we shall construct, for any bfaidB,,, a generating set of(3)
having very few elements. More precisely, we obtain:

THEOREM 1.3. - If 8 € B,,, then the centralizeZ () can be generated by at mo%““%l)
elements ifr = 2k, and at mosl"@ elements ify = 2k + 1.

We will present an example, communicated to us by S. J. Lee, showing that the above bound is
sharp. That is, we will define, for every positive integen braid inB,, whose centralizer cannot
be generated by less thiH“;—l) elements ifr = 2k, or less than’“(g—%) elementsifn =2k + 1.

(The first to observe that the number of genemadthe centralizer may grow quadratically with
the number of strands was N.V. Ivanov [22].)

However, the above bound refers to the worst case, and one could be interested in the minimal
number of generators of a particular braid. We shall give a generating set which is in some sense
the smallest “natural” generatirset for the centralizer of a braid. However, we shall also give
an example that illustrates the difficulty of finding the absolutely minimum possible number of
generators.

Let us mention that, for the special case of reducible braids conjugated to a gengrétor
centralizer has already been described in [15]. Moreover, a different special case, namely the
case of braids with only one moving string (and- 1 strictly vertical strings) was treated by
Burde [10], who calculated the intersection of the centralizer of such a braid with the pure braid
group. In fact, from his results one can extract a generating set of the centralizer whose size grows
polynomially with the number of strings. Burde’s article is remarkable for geometric approach.

The plan of the paper is as follows: in Section 2 we set up notation and some standard
machinery, and give the mentioned example by S.J. Lee. In Section 3 weZ&{agdyn the case
whereg is periodic, Section 4 deals with the pseudo-Anosov case, and Section 5 the reducible
one, which is the most involved. In Section 6 we define a generating set which is no larger than
the stated upper bound. In Section 7 we describe a generating set which is as small as possible
while still reflecting the geometric structure of the Nielsen—Thurston decomposition. We also
give an example to show that by algebraic trickery, even smaller sets can be obtained. Finally in
Section 8 we discuss how the generating set that we defined can be found algorithmically.
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STRUCTURE OF THE CENTRALIZER OF A BRAID 731

2. Prerequisites from Nielsen—Thurston theory

We denote byD the closed disk of radiuscentered ab in the complex plane. For anye N,
the disk D, together with any choice of distinct points in its interior, is denotel,,, and the
distinguished points are called thencturesWe shall use different choices for the exact position
of the punctures at different times — they may be lined up on the real axis, or regularly distributed
on a circle of radiud, or again one of them may be in the centre while the remainirg1l
are distributed over the circle of radids In most instances, the position of the punctures is
irrelevant, and we shall leave it unspecified.

We recall that the braid grouB,, is the group of isotopy classes of homeomorphisms fixing
(pointwise) the boundary and permuting the puncturedgf Here the isotopies must fix
pointwise the boundary and the punctures. AlternativBly,could be defined as the group of
isotopy classes of disjoint movements of the punctures, starting and ending with the configuration
of D,,. Yet another definition oB3,, is as the set of isotopy classes of braids witstrings in the
cylinder D x [0, 1], where the start and end points of the strings are exactly the puncture points
in D,, x {0} andD,, x {1}. We shall use all three points of view.

We shall often work with a certain quotient of the groBp, rather than withB,, itself. We
recall that the center aB,, is isomorphic to the integers, and generated by the full tvist
(whereA is Garside’s half twist). Geometrically, the group projection — B,,/(A?) is given
by smashing the boundary curvebf, to a puncture, so that,, / (A2) is naturally a subgroup of
the mapping class group of the sphere with 1 punctures. In order to keep notation manageable,
we shall use the same letters for elements of the braid gBaugnd for theirimage in the quotient
B,,/{A?%). This abuse of notation should not cause confusion.

We say that an elemepte B,, is periodicif the element ofB,, / (A?) represented by is of
finite order. Equivalently3 is periodic if there exists & € N such that inB,, we have thaB* is
equal to some power ak?.

We say an elemertt of B, is reducibleif there exists a nonempty multicur¢g¢in D, (i.e. a
system of disjoint simple closed curvedi,, none of them isotopic to the boundary or enclosing
a single puncture) which is stabilized Byi.e. such thati(C) is isotopic toC'. Note thatd may
permute different components of the multicutWe

The following definition is taken from [8] (see also [21]). To every reducible bfai B,,
one can associate a canonical invariant multicurvecatsonical reduction systemvhich by
definition is the collection of all isotopy classesof simple closed curves which have the
following two properties: firstlye must be stabilized by some power 6f and secondly any
simple closed curve which has non-zero geometric intersection numbercwithst not be
stabilized by any power of. For instance, let us consider the punctured digk where the
6 punctures are arranged uniformly on the circle of radi@gound0. Then the rotation of the
punctures around the circle by an angle%éfis a periodic element aBg (of period3), it is also
reducible (e.g. the three simple closed curves encircling punctuaesi2, 3 and4, and5 and
6 respectively form an invariant multicurve), but its canonical reduction system is empty. This
example, however, is somewhat untypical: if@n-periodicbraid is reducible, then its canonical
reduction system is nonempty (see [21]).

If C'is an invariant multicurve of a reducible braidthen we define theibular braidinduced
by 3 andC to be the braid on fewer strings obtained frghby removing fromD,, all the disks
bounded by outermost curves 6f, and collapsing each outermost curve(fto a puncture
point. It should be stressed that this braid is only defined up to conjugacy.

An alternative way to look at the same definition is the following: let us consider gyam
an isotopy class of disjoint strings inD x [0, 1] with extremal points at the puncture points of
D,, x {0} andD,, x {1}, such that each disk x {t} intersects each string exactly once. Now
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732 J. GONZALEZ-MENESES AND B. WIEST

our picture can be completed by embedded cylinder3 in [0, 1] which are disjoint from each
other and from the strings of the bra&hch of which intersects each diBkx {t¢} in exactly one
circle, and whose boundary components are exactly the outermost cur@eis dp x {0} and

D x {1}. We can interpret the solid cylinders bounded by these cylinders as “fat strings”, and
the resulting braid with some fat strings is exactly the tubular braid defined above.

Theinterior braids induced by andC' are the braids on fewer strings induced bt the
interior of the discs bounded by the outermost curves of hey can be thought of as the braids
‘inside’ the tubes of the tubular braid. Therefore, for every reducible kitaghd every invariant
multicurveC, we can decomposginto one tubular braid and some interior braids — as many as
the number of outermost curvesdh

Finally, we have the notion of pseudo-Anosoglement ofB,,, for which we refer to [14]
or [21]. Roughly speaking? € B,, is pseudo-Anosov if it is represented by a homeomorphism
of D,, which preserves two transverse measured foliation®gr(called the “stable” and the
“unstable” foliation), while scaling the measure of the unstable one by some fagtbich is
greater tharl, and the measure of the stable oneiby

Thurston’s theorem [33,14] states that every irreducible elemei,of either periodic or
pseudo-Anosov.

We end this section with the promised example, due to S.J. Lee, that should be helpful for
understanding the relatiship between the Nielsen—-Thurstbecomposition and the centralizer
subgroup of a braids € B,,. This example was also found independently by N.V. lvanov and
H. Hamidi-Tehrani [23].

Example2.1. — Suppose that = 2m, and denote by; the standard generator &f,, in
which theith and the(i + 1)st punctures permute their positidnsa clockwise sense. We define
B=o10505 05, 1.

The canonical reduction system@tonsists ofn circles, theith one enclosing the punctures
27 — 1 and2:. The corresponding tubular braid is the trivial braidi#®)f,, and the interior braids
are, respectivelygy, o7, ..., o* (notice that all of them are non-conjugate, since conjugate
braids have the same exponent sum).

Let D), ..., D¢n) be the disks bounded by the above circles. As we shall see, any braid that
commutes with3 has to send each didR;) to itself (since the interior braids are non-conjugate).
A generating set of the centralizer subgrouga$ given by

(i) foreachi e {1,...,m}, the braidro; 1, whose support is contained I ;),

(i) any generating set for the pure braid grouprarstrings P,,, — all the generators here act
as the identity orD;y U ---U D(,,,), and can be seen as a pure tubular braiehostrings
(tubes), where théh tube starts and ends B;) .

It can be easily shown that, in this cas&(3) ~ Z™ x P,,. The essential observation now is
the following: it can be deduced by the presentation given in [6], that the abelianizatigp of
is isomorphic toz™(m~1)/2 (see also [1]). Hence, the abelianization£(f3) is isomorphic to
Z™ x zmm=1/2 Therefore, at leasi + 1) — m(7+1) generators are needed for the
centralizer of the braid.

The case whem = 2m + 1 is analogous. The braid proposed by S.J. Lee(s=
oy0308 -0 . This time the first strand is not enclosed by any curve of the canonical reduction
system of3, and one has? () ~ Z™ x P,,+1. Hence, in this case the minimal possible number
of generators ign 4 "l — mOmts),

By proving Theorem 1.3, we will show that the above examples are the worst one can find.
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STRUCTURE OF THE CENTRALIZER OF A BRAID 733

3. The periodic case

We have to start by describing the periodic elementB,afin order to state this classification
result, which is classical, we need to define two braids.

If D, is the disk withn punctures arranged regularly on the circle of radiughen the braid
which we shall calb,,) is represented by a counterclockwise movement of all punctures on this
circle by an angl@nﬂ. If no confusion is possible, we shall simply wrifewithout indicating the
number of strands (note that this braid is the Garside element of the Birman—Ko-Lee structure
of B, [7]).

Similarly, if we think of D,, as having one puncture in the centre, andl punctures arranged
circularly around it, then we defing,,) € B, to be the braid given by a circular movement of
then — 1 punctures by an angle 07% while leaving the central puncture fixed. Again, for
simplicity we shall often only writey instead ofy(,).

The result that classifies periodic braids, which is due to Eilenberg [12] and de Kerékjartd [24]
(see [11] for a modern exposition) is:

LEMMA 3.1. - Every periodic braid inB,, is conjugate to a power @, or ().

Thus we only need to consider the centralizer subgroupi%ngfand 7{% for all n,k € Z,
since the centralizers of conjugate elements are isomorphic by an inner automorptism of
This problem has been solved by Bessis, Digne and Michel [4], on the wider context of complex
reflexion groups. We shall explain their result in the particular case of braid groups:

We suppose first that = 551) where, without loss of generality,> 0. Letd = ged(n, k). For

u=1,...,n, we will denoteP, = ¢"*™*/" the punctures oD,,, so3 = §¥ | sendsP, t0 P,
for everyu (the indices are taken modutg. Hence the permutation induced Byhasd orbits
(cycles) of lengthr = %, that we denote by, ...,Cq. See in Fig. 1 an example whene= 12,
k=9, d=3 andr = 4: the braidj(,2) and the three orbits 03?12).

If r > 1 (thatis if d < n), consider the once punctured diB¢ = D\{0}, and ther-sheeted
coveringd = 6,.: D* — D* defined byd(ae’) = ae™” = ae™™/¢, The orbitsCy, . ..,Cy are sent
by 6 to the pointsQ, ..., Qq, whereQ, = ¢?>7*/?, If we consider the half-lind, = {ae™/?,

a €]0,2]} (notice thatL passes betweal; and@;), thenD*\ L is a fundamental region fat
(see Fig. 2).

Now notice that every braid if8;(D*) can be lifted, by)—*, to a braid inB,, in a natural way.
The resulting braid is éy—symmetric braid, that s, it is invariant under a rotation by an angle of
%Td. But then it is also invariant under a rotation of anénlé; in other words, the resulting braid
commutes with3. Hence we have a natural homomorphi#f: B,(D*) — B,, whose image is
contained inZ(3). Then one has

THEOREM 3.2 [4]. — The natural homomorphisét : B;(D*) — Z(&é“n)) is an isomorphism.

d(12)

Fig. 1. The braids € B;2, and the three orbits & (in black, white and grey).
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734 J. GONZALEZ-MENESES AND B. WIEST

Fig. 2. The covering ma@ = 64 associated téf’m).

Fig. 3. Generatorg;(o1) and@; (1) of the centralizers ozim) andwm)

In other words, every element in the centralizefoet 6’2 can be seen (vid) as a braid on a
once punctured disc, that is, a braid on an annulus. Notice that if (that is, if & is a multiple
of n), theng is a power of5?’ | = A? . In this casd is the identity map, and the fundamental
region is the wholdé,,. Hence the centralizer gf is the wholeB,,, as one should expect.

Since we are interested in minimising the set of generators, we observe thatyif (thus
r=1),thenZ(5) = B, is generated by two elements, namely Artisisand Birman—Ko—Lee’s
4. In a similar way, ifl < d < n, then the braid group,(D*) is generated by just two elements,
namelyd,,y = 6*(d.4)) and the braid*(o1) shown in Fig. 3(a). Notice that this case contains
the above one, whet¥ is the identity. Finally, ifd = 1 then B, (D*) is cyclic. Thus we have:

PropPoOsITION 3.3. — If k andn are coprime, ther¥ (& (n)) is generated by a single element,
namelyd,,). If, by contrastgcd(k,n) > 2, thenZ((an)) is generated by two elementg;,) and
the braid6*(o1).

It is clear that the generating set given byposition 3.3 is indeed minimal. Next we study
the centralizer ofs = 'yg“n), still following the work in [4]. This time we calll = gcd(n — 1, k),

andr = (n — 1)/d. If d <n — 1, the above map induces a natural homomorphis# =

07 : B4(D*) — B,,, where this time the central point @ is considered as a puncture. Hence,
the central strand of every braid coming fraBy(D*) is trivial. We observe that the image of
this homomorphism is contained #{3), and in fact one has:

THEOREM 3.4 [4]. — The natural homomorphisfti : B4(D*) — Z(yF Vin )) is an isomorphism.

By contrast, ifd =n — 1, then 8 is a power ofy"~! = A2, sod, = 1, Z(8) = B, and
everything works as above. Hence we have

PROPOSITION 3.5.— If k andn — 1 are coprime thenZ('yfn)) is generated by a single
element, namely,,. If, by contrastgcd(k,n — 1) =d > 2, thenZ (yF Vo) ) is generated by two
elementszy,,) = 6*(6(4)) and the braidd* (o).
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See Fig. 3(b) for an illustration of the bradd(s ). We summarize all the results in this section
as follows:

COROLLARY 3.6.-The centralizer of any periodic braid iB, either equalsB,, or is
isomorphic toB4(D*), for somed < n. In particular, it can be generated by at most two
elements.

We end with a result that will be helpful later:
COROLLARY 3.7.~ If k is not a multiple oz, thenZ (d(,,)) = Z(7(,,, 1)-

Proof. —Both groups are isomorphic #8,(D*), whered = gcd(n, k). An actual isomorphism
can be defined as follows: take any elemers Z(&fn)), isotope it to make itQ’TT’“—symmetric,
and then add a trivial strand based at the central poifit,of O

4. The pseudo-Anosov case

PrRoOPOSITION 4.1. — If 3 € B,, is pseudo-Anosov, then the centralized3f is free abelian
and generated by two elemergeme pseudo-Anosewwhich has the same stable and unstable
projective measured foliation a3 (possibly3 itself), and one periodic braigh (a root of A2,
possiblyA? itself).

We stress that the generating set promibgdProposition 4.1 is obviously minimal. For
proving this result, it is more convenient to think about the quotient grlByp(A?). Since
(A?) is the center of3,,, it is contained in the centralizer of any element. Hence the centralizer
of an element inB,, is just the preimage of the centralizer of its corresponding mapping class in
B, /{A?%). Thus, for the rest of this section, we shall work in this quotiBpy (A2); we shall
prove the following result, from whicRroposition 4.1 will then be deduced:

PROPOSITION 4.2. — If 8 € B,,/{A?) is pseudo-Anosov, then the centralize3dé abelian,
and is generated by some pseudo-Anasavhich has the same stable and unstable projective
measured foliation ag, and possibly one elemenbf finite order.

Proof of Propogion 4.2. —We start by observing that the pseudo-Anosov elenfecannot
commute with any reducible element B,,/(A?), except possibly with periodic ones — thus all
elements ofZ (3) C B,,/(A?) are either pseudo-Anosov or periodic. To see this, let us assume
that the canonical reduction systethof a is non-empty. Then the canonical reduction system
of p~tap is B(C). If it were true that3—'aj3 = a, then we would haved(C) = C, which is
impossible since it is well known that pseudoosov homeomorphisms do not stabilise any
curves or multicurves. (This result is also a special case of Corollary 7.13 of [21].)

Our next claim is that all pseudo-Anosov elementZii}) have the same stable and unstable
projective measured foliations. In order to prove this, we can apply Corollaries 7.15 and 8.4 of
[21]: since the centralizer subgroup@fis infinite and irreducible, it follows thaf (3) contains
an infinite cyclic group as a subgroup of finite index. It follows that i any pseudo-Anosov
element in the centralizer of, then there exist, ¥’ € N such thatz* = 5*'. Since all powers
of a pseudo-Anosov element have the same stable and unstable projective measured foliation, it
follows thata has the same stable and unstable projective measured foliatiGhaiag so do all
pseudo-Anosov elements &1 3) C B,,/(A?).

Next we make an essential observation which only works for braid groups, and does not
generalize to mapping class groups of augfs with no boundary, or with more than two boundary
components: all elements &, /(A?), regarded as a subgroup of the mapping class group of
then 4+ 1 times punctured sphere, fix the puncture which came from collapsing the boundary
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of D,,. Moreover, there are singular leaves of the stable and unstable foliatiGremfanating

from this puncture, at least one of each (like for every other puncture). In the cyclic ordering
around the puncture, singular leaves of the stable and unstable foliation alternate. If an element
a of B, /(A?%) commutes with3, then the action of. has to preserve the projective stable and
unstable foliations. Thus in the cyclic ordegiaround our preferred puncture, the action oan

only induce a cyclic (possibly trivial) permutation of the singular leaves (sending stable to stable,
and unstable to unstable leaves, nevertheless).

Now we see that an elememtof Z(3) C B,,/(A2) is uniquely determined by just two data:
firstly the stretch factoi by which its action on the unstable measured foliatio ofiultiplies
the measure of that foliation. (This factarequalsl if a is periodic, and belongs to the set
Ry \ {1} if a is pseudo-Anosov.) And secondly by the cyclic permutation of the leaves of
the stable projective foliation emanating from the distinguished puncture of thd times
punctured sphere. Indeed,dfandb share both data, themb—! has stretch factor 1 (so it is
periodic), and preserves the singular leaves. Hence it is the identity i{A2), soa = b.

This implies that the set of periodic elementsA(f3) forms a subgroup o (3) which is
either trivial or isomorphic t&/kZ, wherek is a divisor of the number of singular leaves of the
stable foliation emanating from the preferqgahcture. Any generator of this subgroup can play
the rdle of our desired generateof Z(3) C B,,/(A?).

Now p commutes with any other elementi{3), because their commutator has stretch factor
1 and induces the trivial permutation of the prongs around the preferred singularity.

Now notice that the stretch factor yields a multiplicative map fi6(3) toR*. But it is known
that the set of possible stretch factors for aegivoliation is discrete (see [21]), so the image of
Z () under this map must be a cyclic subgrougiof. Take an element whose stretch factor
A generates this group. Thenis pseudo-Anosov and the stretch factor of any eleme#f(jf)
must be a power of.

We now have thatv and p generateZ (3) € B,,/(A?%), because any element #(3) can be
multiplied by some power aof so as to obtain an element with stretch fadtpire. a power of.

It follows that Z(3) C B,,/(A?) is isomorphic taZ x Z/kZ, with generators and p. This
completes the proof of Proposition 4.20

Proof of Propogion 4.1. —By Proposition 4.27(3) C B,,/(A?) is isomorphictdZ x Z/kZ,
with generatorsx and p. But thenZ(8) C B, is just the preimage of (3) C B,,/(A?%) under
the natural projection. Consider the subgrdppc Z(3) C B,,/(A?). Its preimage is an infinite
cyclic group inB,, that containgA?). We can suppose (up to choosing an approppatéhat
the generator of this cyclic group projectsitoso we call itp as well. Notice thap is a root of
AZ?, sinceA? belongs top). Then we choose an elementi, that projects tav, and we also
call it «. We must prove that if3,, we still haveZ(3) = (a) x (p).

But every element it (3) C B,, can be written as* p! A?™. SinceA? is a power ofp, then
{a, p} is a set of generators df(3). On the other hand, the commutatorcofindp projects to
the trivial mapping class, hence it equald® for somek. But the algebraic number of crossings
of the braidA2* is kn(n — 1), while for the commutator of any two elements this number is zero.
Hencek = 0, soa andp commute. Finally, it is well known thaB,, is torsion-free, s&Z(3) is
isomorphic toZ x Z, as we wanted to show.O

5. The reducible case

It remains to study the centralizer of a non-periodic reducible bfaiRtecall that for every
braid v one hasZ(y~'3y) =y~ 1Z(B)y. Hence, in general we will not stud¥(3), but the
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STRUCTURE OF THE CENTRALIZER OF A BRAID 737

centralizer of a suitable conjugate®fwhich will be easier to describe. Throughout this section
we shall think of the punctures of the digk, as being lined up on the real axis.

5.1. Reducible braids in regular form

As we saw in Section 2, iff is a non-periodic reducible element, then its canonical reduction
system is nonempty. We denote BY(3) the set of outermost curves in the canonical reduction
system of5. It is determined bys up to isotopy fixing the punctures. Since we can study any
conjugate of3, we can suppose th&'(3) is a family of disjoint circles centered at the real axis,
with disjoint interiors, each one emding more than one and less thapunctures.

Notice that there could be puncturesiip, not enclosed by any circle iR’(3). In order to
simplify the notations below, we define the system of cukés) to contain exactly the curves
of R'(3), plus one circle around each such punctureDgf These new circles are called the
degenerate circles d¢(3). We now have that every puncture iy, is enclosed by exactly one
circle in R(3).

Notice thatg preservesR((3), but it could permute the circles. We will suppose that this
permutation hasorbits (or cyclesy, ..., C;. Thatis,C; is a family of circles{C; 1,...,Ci, } C
R(5) such thatg sendsC; i, to C; ,+1 (here the second index is taken modu)®. Then one
hasR(B)=CiU---UC, = {C11,...,C1p } U---U{Cy1,...,CLr, }. If m; is the number of
punctures insid€’; i, for anyk, thenl < m; <n andmqr; + --- +myry = n.

LetB be the tubular braid induced byand R(5). ThenB € B,,, wherem =ry + -+ +rq.
Fori=1,....,tandk=1,...,r;, let 5, ; be the braid induced by in the interior ofC; ;. In
other words 5, ;, is the braid inside the tube qffwhich starts at; ;, and ends at; ;1. We
will call the braidsg; j, theinterior braidsof 3. Notice that the interior braids of each degenerate
circle is just a trivial braid on one string.

In Fig. 4 we can see an example of a reducible brai B, 3, and its corresponding tubular
braid ﬁ € Bg. In this example we have three orbits, and the following data- 3, r, = 2,
rs=1m1=2,me=3,mzg=1,011=0%, Bra=01", Bi3=1, o1 =0102, Bo2 =07 ‘0o,

6371 =1 andB = 0'%0'20'10’%0’4.

It would be desirable fop to have its interior braids as simple as possible, in order to study

its centralizer. We propose the following:

DEerFINITION 5.1. —Let3 € B,, be a non-periodic reducible braid. Thgrwill be said to be
in regular formif (using the notation introduced above) it satisfies the following conditions:
1. The only non-trivial interior braids i are 81 ., 82.r,, - - -, B.r, — We shall denote these
braids byﬁ[l] , ﬁ[g], cey ﬁ[t]
2. Fori,j e {1,...,t},if B, and3; are conjugate, thefi;; = ;).

Cs1

Fig. 4. Example of a reducible braj#| and its corresponding tubular bragd
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Hence, if8 is in regular form, there is at most one noiwial interior braid for each orbit, and
any two interior braids are either equal or non-conjugate. Fortunately, one can conjugate every
non-periodic reducible braid to another one in regular form, as we are going to see.

First, consider the subgrouBr gy C B, consisting of those braids preserviittf3). For
a € Bg(), we can consider the tubular braidinduced bya and R(3). Everya € Bg(g) is
completely determined by and its interior braidsy; ,, fori=1,...tandk=1,...,7;.

Now consider, ing, an orbitC; = {C; 1,...,C;, } and the interior braidg,; 1,...,0;,, €
B, We definex € Bp) as follows:a is trivial, o = 11if j # 4, andoy; . = Bi 1Bi k11 Biyr; -

If we conjugate3 by «, we obtaing’ = a~!Ba, which has the following properties:

- B =p.

= B = Bjx, forj #i.

= By = (k) Bini g = (»31-}11. X '5;;3)(51',1@ o Bir)=1,fork #£r;.

= B, = (aip,) B, in = ﬁi}lﬁi,m (Bis - Biws) = Big - Biyrs-

In other words, if we conjugaté by « we ‘transfuse’ all the interior braids @y to the last tube
Cir., S0f3; ., becomes the only nontrivial interior braid . In Fig. 5 we can see an example
of such a Conjugation, wher#; denotes the produgi; ; - - - 3; ,. We can now do the same for
everyi = 1,...,t. Therefore, since we are interestedjip to conjugacy, we can suppose that
Bir, = 1if k # r; and denotedy; = f3; ., foreveryi=1,... .

Now suppose that soni#; is conjugate to somg;), and leth; ; be a conjugating braid, that
is, h;jlﬁ[i]hi_j = ;- Consider the braidv € Bg(g) such thati = 1, «; =1 for j # i and
a; = h; ; for everyk. As we can see in Fig. 6, if we conjugateby o, thengy; is replaced by

Cin1 Cip Ci3
O

B

Fig. 6. How to replaced;;; by 3y, if they are conjugate.
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zl CZQ C7,3 Cz4
O D>

v
= L

Fig. 7. How to moves; from C; 4 to C; 2, whenr; = 4.

B, Therefore, we can assume thatfof € {1,...,t}, either{, = 3 or Bj; and ;) are not
conjugate, and therefore we can supposehatin regular form.

Notice that we have chosen to pdit) into the tube starting af’; ,,. But we can move it to
any other tube of; if we wish, by a suitable conjugation, and later on we will need to use this.
Hence we define, fore {1,...,t} andk € {1,...,r; — 1}, a braidu = u(i, k) that will ‘move’
the interior braidgy; to the tubeC; ;.. This braid is defined as follows: the tubular brgids
trivial, and the interior braids are all trivial excepf 11 = pti k42 = - - - = i, = G- We can
see in Fig. 7 how this works.

5.2. Centralizer of a braid in regular form

We will now study the centralizer gf, assuming tha8 is in regular form. Recall that the only
non-trivial interior braids of; are denoted,), .. ., 5, and that3 is the tubular braid associated
to 5 andR(53). In this section we will show it there is an exact sequence:

1— Z(Bpy) x -+ x Z(B) - Z(B) & Zo(P) — 1,

whereZ(3) is a subgroup of(3). Later on we will see that this sequence splits.
Foric {1,...,t}, consider the centralizef(53},)) in B,,,. We define a map

Z(B)) — Brs)

as follows: giveny € Z(53};)), g:(7) is the braide € Bp(g) satisfyinga = 1, a;, = 1for j #1,
ando; p =~ fork=1,...,r;. We need to show the following:

PROPOSITION 5.2. — The mayy; defined above is an injective homomorphism, and its image
is contained inZ ().

Proof. —The mayy; is given by the diagonal homomorphisfii3;;)) — Z(0p;;) x - - - x Z(B;))
(r; factors), followed by the homomorphism induced by an inclusior ebpies of ann;-times
punctured disk inta; disjoint subdisk (each containing:; punctures) ofD,,. By the results of
[29] we can deduce that is indeed an injective homomorphism.

It remains to show that for every € Z(3;)) one has = g;(v) € Z(3). Sincea is trivial,

a/—l\ﬁa =a"1Ba=p.So we just need to show that the interior braideot 5a and3 coincide.

Forj # i, the braidsy; , are trivial for everyk, so(a*lﬁa)j_,k = f;.x. Now, fork # r;, one has
(@™ 'Ba)i ) = aggﬁiﬂkaiykﬂ =~"'1y = 1= ;. Finally, sincey commutes with3;, one has
(@™ 1Ba);,, = a;ﬁiﬁi,mai,l =By = By = Bi,r,- Thereforen™!Ba = 3, so the image of
g; is contained inZ(3). O
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PROPOSITION 5.3. = The magy: Z(0p)) % - - - x Z(By)) — Z(5) defined by (v1,...,v) =
g1(m) - -+ gt(7¢) is an injective homomorphism.

Proof. —-Given v € Z(f3;)), the only nontrivial strands ig;(v) are those inside the tubes
Cii,...,Cir,. Hence ifi # j, v € Z(B;) andé € Z(6;)), theng;(y) andg;(5) commute.
Since everyy; is a homomorphism, this shows thats also a homomorphism. But we know
by the previous proposition that is injective fori =1, ..., t. Using an argument similar to the
proof of Proposition 5.2, one can deduce tha also injective. O

Now we will relate Z(3) and Z(3). Every braid inZ(3) preserves the canonical reduction
system off3 (see [21]), so it must presenvé(3). That is,Z() C Bp(g). Letp: Brg) — Bm
be the homomorphism which sendgo &, the tubular braid induced by and R(3). If we take
a € Z(B) thenB = a~15a, sop(B) = p(a™1Ba) = p(a) " 'p(B)p(a). Hencep(a) commutes
with p(3) = 3. Therefore, if we restrigh to Z(3) we getp: Z(3) — Z(3).

Unfortunately, neithep : Bg(s)y — By, nor its restrictionp: Z(3) — Z(B) are surjective, but
we shall see that the elements in the imagg of either case can be easily characterised by the
permutation they induce. Notice thatinduces a bijectio from R(53) to {P,..., Py}, the
punctures ofD,,,. We denote by the inverse of.

DEFINITION 5.4.—Letp € By, and letr,, be the permutation induced lpyon the punctures
of D,,,. We say thatr, is consistent withk(5) if, for i = 1,...,m, 7(P;) andr(m, (F;)) enclose
the same number of punctures.

PROPOSITION 5.5. — An element) € B, is in the image op: Br(z) — B, if and only ifr,
is consistent withR ().

Proof. —If n is in the image op, leta € Bg(z) with p(a) = 7. Then, foreveryi =1,...,m,
7(P;) andr(m,(P;)) are the top and bottom circles of a tube determined blence they must
enclose the same number of punctures (the number of strands inside the tube).

Conversely, suppose that, is consistent with?(3). Takei € {1,...,m} and suppose that
7(P;) = C; k. Then take theth strand ofy and consider it as a tube, enclosing the trivial braid
onm; strands. Do this for every=1, ..., m. The resulting braidy)(n), is well defined sincer,
is consistent with2(/3), and it belongs td3 (). Moreoverp(v(n)) = n by construction. O

The homomorphisng introduced in this proof will play a prominent réle in what follows: if
n € B, theny(n) is the braid inBr3) whose tubular braid equais and whose interior braids
are all trivial.

All the elements inB,,, that shall be considered from now on will have permutations consistent
with R(3). Hence, by abuse of notation, we will identify . = p(C; ) andC; = p(C;) if it does
not lead to confusion.

We still need to characterise the elements in the image: &f(5) — Z(3). We just know
that their permutations must be consistent witf3), but this is not sufficient. Recall that the
permutation induced by on the components dt(3) hast orbits,C1, . . .C;. The key observation
now is that every element € Z(3) preserves these orbits setwise, though it could permute them.
Therefore, fori = 1,...,t, one hasy(C;) = C; for somej. In the same way, for any € Z(f3)
one hasy(C;) = C; for somey.

LEMMA 5.6.—Leta € Z(B3). If a(C;) =C; for somei, j € {1,...,t}, thengy; = 3.

Proof. —Since «(C;) = C;, the two orbits have the same length, which we shall denpte
thusr =r; =r;. Now §" is a braid that preserves,; ;, andC} j for everyk, and is such that
(B")ir = B and(B"),x = By;)- Now sincea commutes with3, then it also commutes with”.
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Suppose that send<C; ; to C; ;.. Then
B = (8" = (@187 a)jp = (i) " (B )ipain = (@i1) ™ B

Therefore3;) and ;) are conjugate, and singgis in regular form3j; = 3j;, as we wanted to
prove. O

Lemma 5.6 imposes another condition for a braiifB) to be inp(Z(3)):

DEFINITION 5.7.—Letn € Z(3). We say thatr,, is consistent with3 if it is consistent with
R(3) and, furthermore, for every j € {1,...,t} such that)(C;) = C;, one has;; = ;.

DEFINITION 5.8.—Zy(0) is the subgroup ofZ(3) consisting of those elements whose
permutation is consistent with.

Then Lemma 5.6 can be restated as followsy ¥ Z(3) thenp(a) € Zy(5). Moreover, we
can prove the following:

PROPOSITION 5.9. — The homomorphism: Z () — Zy(0) is surjective.

Proof. —Letn € Z,(3). We shall construct a preimage gpiunderp in two steps. Sincer,, is
consistent with3 (thus with R(3)), we can, as a first step, consider the braid) € B,,. We
then haven(v(n)) = n; butvy(n) does not necessarily commute wjthsince the interior braids
of 1(n) 1By (n) could differ from those of3. Actually, since the interior braids af(r) are all
trivial, conjugatingl by «(n) just permutes the interior braids Gf More precisely, the braid
¥(n)~1Bv(n) equals3, except that, for eache {1,...,t}, it may not be the tub€’; ,, which
contains the nontrivial interior braid;;, but some other tube from the famiy. Our aim in the
second step is thus to fill the tubeswfrn) with more suitable interior braids, in order to obtain
a braid that commutes with.

Foreveryi € {1,...,t}, we know that)(n) send<; to someC;. Letk; € {1,...,r;} be such
that+)(n) sendsC; x, to C} ,.,, and consider the braid(i, k;) defined at the end of Section 5.1.
If we conjugates by u(i, k;) we movesy;) from C; ., to C; x, . If we further conjugate by (n),
thenj;) goes toC; .-, . Butn is consistent with3, so3j;) = 3(;. Hence, the interior braids it};
are preserved. We can do this foe 1,. .., ¢, SO we obtain that the braid

(H (i, ki)) »(n)

commutes with3 and its tubular braid ig, so itis inp=!(n) N Z(3). This shows the result.0
We can finally bring together all the results in this section to state the following:

THEOREM 5.10. — Let 3 € B,, be a non-periodic reducible braid in regular form. Then the
sequence

1= Z(By)) x - x Z(By) L Z(B) & Zo(B) — 1
is exact.

Proof. —By Proposition 5.3; is injective, and by Proposition 58is surjective. It just remains
to show thaim(g) = ker(p).

By construction, every element in the imagegohduces a trivial tubular braid, s (g) C
ker(p). Let thena € ker(p), that is,& = 1. Sincea € Z(), we havea~!fa = 3, and since
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Bix =1 for k # r;, we must havex; ! la; py1 =1, SO = i1 for k=1,...,m; — 1.
Hencewa; 1 = a; 2 = - - - = «; , fOr everyi. Moreover, we have

—1 —1
ﬁ["] = ﬁiari = ai,Tiﬁiv"‘iaial = ai71 5[’i]ai,la

S0 1 € Z(B)). Thereforeq = g1 (an,1)g2(a21) -+ ge(ow1) = glon 1,021, .., ou1). Thatis,
ker(p) Cim(g). O

5.3. Finding a section forp

In this subsection we will prove that the exact sequence of Theorem 5.10 splits. We recall
that3 is obtained from3 by collapsing the disks bounded by outermost curves in the canonical
reduction system gf to single punctures. In particular, the canonical reduction syste”}nmist
be empty. Hence? is either periodic or pseudo-Anosov. We will distinguish these two cases, to
define a multiplicative section far, but first we will show an easy particular case. Recall that a
braid is pure if it induces the trivial permutation of its base points.

PROPOSITION 5.11. — If 3 is pure, there is a homomorphism Zy(3) — Z(3) such that
poh=1.

Proof. —We shall prove that in this case, the homomorphisroonstructed in the proof of
Proposition 5.5 is such a section. Lgt ZO(B). Sinces is pure,C; = {C; 1} for all 7. Hence,
if  sendsC; to C; then it sends the tub€; ; (containingfy;) to the tubeC; ; (containing
B = By, sincef is in regular form). Therefore, filling every tube ipwith the trivial braid,
that is, definingh(n) = ¢ (n), yields indeed an element &f(3). O

Next we study the general case, depending whetlisperiodic or pseudo-Anosov.

PROPOSITION 5.12. — If 3 is periodic, there is a homomorphisim ZO(B) — Z(3) such that
poh=1.

Proof. —Recall that we are studying up to conjugacy. This implies that we can also study
up to conjugacy since, for evegyc B,,, if we conjugates by ¢ (&) we are conjugatin@ by
&. Moreover, after conjugating by (&), 8 continues to be in regular form (up to renaming the
circles inR(3)). Therefore we can suppose, up to conjugacy, thiata rigid rotation of the disc,
that is, a power 0 ,,,) Or ¥(,,)-

Suppose first that = 55”) for somek. We can suppose thatis not a multiple ofm, since

in that case? would be a power ofA? ., thus it would be pure, and this case has already
been studied in Proposition 5.11. Recall the gsial of periodic braids in Section 3: the base
points @1, ..., Q., Of B will be evenly distributed along a circle of radidsaround0. Let
d = ged(m, k) <m andr =m/d. Then/ sendsR; to Q;,, and there ard orbitsCy,...,Cq
of lengthr. The orbitC; will contain the points),, whereu = ¢ (modd). Since we can choose
which tubes of3 contain the interior braids, we will suppose that these are the tubes starting at
Qm—-d+1,Q@m—d+2,---,Qm, thatis, the lastl points of D,,,.

We will consider now some line segmentsiihwhich separate the point3y,...,Q., into
r sets ofd points. LetL be the line segment joining the origin with the borderiaf passing
between the point§),,_4 andQ,,_4.1, and letL’ be the segment passing betwegp and
Q1. Notice thatL and L’ determine a sector which contains the poitts,_q:1,...,Qm,
corresponding to the tubes of with nontrivial interior braids. Lety: C — C be the rotation
around the origin by an angle &frk./m (the angle induced b), and denotd; = #*(L). Since
ged(m, k) = d, the segmentd, ..., L, divide D into m/d = r sectors, each one of angle
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L=L;{ULyUL3

Fig. 8. The segments, L', and the union of segment for 3 = 6° € Bys.

27 /r and containing the point®;i1, ..., Q:4+q for somei. Take the smallest integer> 0
such thatp¢(L) = L'. Then one had, = L and L. = L. We are interested in the union of
segment = L; UL, U---U L, (see Fig. 8 for an example).

Letthenn € Zo(3). In order to definéx(n), it suffices to define its interior braids. This is done
as follows: recall that, since commutes with3, it can be isotoped to a symmetric braid (with
respect to the rotation), so we take a symmetric representativejof-or every base poir®;
of 3 (corresponding to a circle’; ), consider the strand of starting at(); (theith strand of
n). Then we define the interior bratdn); . = (ﬁ[j])L("=i>, whereL(n,i) € Z is the algebraic
number of times that th&h strand ofy crosse<C. This is well defined by Theorem 3.2 (if you
take two distinct representativespfs a symmetric braid, they are isotopic through symmetric
braids, so the strands never touch the origin and the intersection ndrppey is preserved).

In other words, we defin(n) as follows: we start with trivial interior braids, and we follow
the movement of the strandsmfEach time a strand crosses a segmeit imfthe positive sense,
we multiply its interior braid by3; (wherej is the index of the orbi€; of that strand). And

every time a strand crossé€sin the negative sense, we multiply its interior braidﬁtml.

We have thus defined a map: Zo(3) — Br(s). To show thath is a homomorphism,
it suffices to see that the interior braids 9f are the product of those af and &, for

n,& € Zo(F). Suppose that théth strand ofy goes from@); (corresponding ta”; ;) to Q)
(corresponding toC; /). Hencen sendsC; to C;, and sincen € ZO(B), it follows that
B = Bin- One also has, by definitior,(n¢,i) = L(n,i) + L(,4’). Therefore(nf);. =
(Byj)) 216D = (B)) 21D (B L&) = ,&r v, SOR is @ homomorphism.

We must finally show that, with this definition,(n) € Z(3), for everyn € Zy(3). We will
define first some special braids. For evérye {1,...,d} such that < j andf; = 3}, define
the symmetric braidS, ; = S;; = 6(0;---0j_20j_10_2---0;) (see Fig. 3 in Section 3 to
recall the definition ob, and Fig. 9 here for an example). The bréid commutes with3 (since

it is symmetric), and it permutes the orbitsandC;, preserving the others. Hensg; € Zy ().

Fig. 9. The braidS: 3, for 3 = §° € Bis (assuming thab;; = Sy3))-
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Moreover, its strands do not croésso by definition of, one hasi(.S; ;) = (S, ;) (the interior
braids are trivial).

But h(S;,;) commutes with3, since the only tubes it permutes are those of the ofhitnd
C;; among these tubes, the only two with non-trivial interior braids are exchanged, and their
corresponding interior braids are equay;(= ;). Hence the interior braids ¢f are preserved
by ¥(Si,;) = h(Si;), SOR(Si ;) € Z().

Take then an arbitrary € Zy(j3). We must show thak(n) € Z(3). Suppose thaty sends
Ci to C; for somei, j. Then gy = G5, s0S;,; is defined, and the braigs; ; preserves the
orbit C;. We can continue this way, until we obtain a brais};, ;, - - - S;, ; that commutes with
B and preserves every orldlf, for: =1,...,d. Sinceh(S; ;) € Z(5) for everyi, j, andh is a
homomorphism, in order to show thiatn) € Z(0) it suffices to show that(n.S;, ;, - -+ Siy .j.) €
Z(0). Therefore, we can suppose thgpreserves every orhi;.

Denotex = h(n). We need to show that the interior braidsof! 3« coincide with those ofs.
Sincen preserves all orbits, we will consider just the tube€gfthe other ones being analogous.
Suppose that sends the circl€’; ,, to C . Then it must send’; , to C ,,_,, for everyv (the
indices are taken modulg.

We will identify the pointsQ, ..., @, with their corresponding circle§; ,,. For everyy =
1,...,r, letb, be the strand ofj starting atC' ,,. Sincen is symmetric, we have (b, ) = by41.
Suppose thdt, crosses times the segmerit;, wherei € {0,...,r — 1}. Thenb,1 will crosst
times the segment(L;) = L;;+1. Therefore, ifb, crosses times., and if it crosse$, times L
andl, timesL., thenb,; crosses — I, + [y timesL.

If v # r andv # u, thenb,, neither starts nor ends &4 .. Then it crossed, andLL. the same
number of times. Hencé,, andb,; crossL the same number of times, sayTherefore, if
v #r,u, one has

(O‘_lﬁa)l,vfu = (al,u)_lﬁl,val,vﬂrl = B[I]llﬁfl] =1= Bl,vfu-

If w=wv=r, thend, starts at ends af ,. Hence, as above, it crossés and L. the same
number of times, sé, = b, andb, 1 = b; crossL the same number of times, sayWe then
have(a_lﬁa)l,v—u = (Oé_lﬁa)l,r = (alﬂ‘)_lﬁl,ral,l = ﬁ[z]lﬁ[l]ﬁfl] = ﬁ[l] = ﬁl,r = ﬁl,v—u-
Hence, ifu = r, we have already seen all the possible cases. We will then supposeAhat

If v=r, thend, starts (but does not end) &} .. Hence, it crosses. one more time (in the
positive sense) than it crosskg. Therefore, ifb,, = b, crosseg times., thenb, 1 = b; crosses
it  — 1 times. One has:

(ailﬁa)l,ufu = (ailﬁo‘)l,rfu = (al,r)ilﬁl,ral,l = B[I]lﬁ[l]ﬁfl_]l =1= Bl,rfu = ﬁl,vfu-

Finally, if v = u thenb, ends (but does not start)@j .. In this case, it crossds. one less time
(in the positive sense) than it crosdes Hence, ifb, = b, crosses times., thenb, 1 = b1
crosses if + 1 times. One then has:

(a_lﬁa)l,v—u = (Oé_lﬁa)l,r = (al,u)_lﬁl,ual,u-ﬁ-l = ﬁ[;]llﬁff]_l = ﬁ[l] = 51,7‘ = ﬁl,v—u-

Therefore, in every possible case we h&ue! 3a)1 y—y = B1,0—u, fOr everyv. This means
that the interior braids ofa~! 3a) and of 3 coincide, that isqe = h(n) commutes with3, as we
wanted to show.

This completes the proof of Proposition 5.12 in the q@sedfm), and it only remains to deal

with the case whep = me)- As above, we can suppose tla not a multiple ofm — 1, since
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in that case? would be pure, and this case has alebden treated in Proposition 5.11. Hence,
the only fixed pointin the permutation induced Bys the origin. Therefore, everycommuting
with 3 must fix the origin. This means that, for every Zo(ﬁ) we can fill its central tube with
the trivial braid, and the other tubes in the same way as above (defthiagd counting the
number of times each strand crosgdsThis defines a homomorphisin Zy(3) — Z(3) which

is a section op. The proof is the same as abovex

It remains to study the case whgrs pseudo-Anosov.
PROPOSITION 5.13. — If 3 is pseudo-Anosov, then there is a homomorphism

h:Zo(B) — Z(B)

suchthatpo h = 1.

Proof. —In this case, we know thdf(B) is a free abelian group of rark generated by a
pseudo-Anosov and a periodic braid. HenZg(3) is an abelian group of rank one or two.
Notice thatA?m) € Zy(p), because this braid commutes wijthand becausea: is trivial,

and thus consistent with. HenceZo(B) contains at least one periodic element. On the other
hand, 3 belongs itself toZy(43), sincer is clearly consistent with3. Hence inZy(3) there
are also pseudo-Anosov braids. Since all powers of a periodic braid are periodic, and all powers
of a pseudo-Anosov braid are pseudo-Anosov, it follows fft;;(]é) has in fact rank two. More
precisely,Zo(5) = (n) x {p), wheren is pseudo-Anosov anglis periodic. In particular, we have
B € (n) x {p), and the three braids,  andp are mutually commuting.

Our aim is to define two commuting braid$p) andh(n) in Z(3) which are preimages gf
respectively; underp. The definition ofh(p) is very simple: we take an arbitrary preimagepof
underp — this is possible sincgis surjective by Proposition 5.9. It remains to constriugf).

LEMMA 5.14. —Supposer € Br(g), thatis, the braicy preserves the set of outermost curves
in the canonical reduction system @f Suppose also that, v € Z(&). Suppose that, € Bp(s)
is a braid with trivial tubegi.e. i, = 1) such that)(u) - ¢, € Z(«). Finally, suppose that and
v induce the same permutation. Then we have as welktha)- ¢, € Z(«).

In other words, if two tubular braids commute with if they induce the same permutation,
and if some “filling” of one of them commutes even with then the same filling of the other
will also commute witho.

Proof of Lemma 5.14. €onjugatinga: by ¢(v) - ¢, € Z(a) yields a certain braidv'; we
have to check that’ = «. Firstly, we have an equality of tubular braid$ = &, because,
the tubular braid of)(v) - ¢,, commutes with&. Moreover, sinceu and v induce the same
permutations, we have fér= 1, ..., m that theith tube ofa’ contains the same braid as tik
tube of (¢ (1) - 1)~ - (Y(w) - 1) Since(u) - ¢, commutes withy, this is in turn the same
as theith tube ofa. In summaryq ande’ have the same tubular braids, and corresponding tubes
contain the same interior braids, which implies that o/. O

Next we have to think in detail about the orbit structurefbofLet us choose arbitrarily a
punctureP of the diskD.,,, (on which/3 acts), and IeO(B, p) be the orbit of that puncture under
the action of the subgroufl) x (p) of Zy(3). LetO(j3, p,n) be the orbit ofP under the action
of the group(p) x (n) (note that this group is also isomorphicZd, and containg).

We are going to suppose without loss of generality m@ﬁ, p, 1) containsall punctures of
D,,,, and we shall specify how the tubesipEorresponding to this orbit shall be filled — indeed,
if there are other orbits, then these can be treated in same way, independently.
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Special caselet us start by considering the simpler special case(ﬂ{ﬁ psn) = O(B, 0),
i.e. that the action ofy preserves thég, p)-orbit. In this case we have

LEMMA 5.15.— There exist integerd and [ such thatn and gk . pt induce the same
permutations oD (3, p).

Proof of Lemma 5.15. ©ne can choosg and! such that3* p!(P) = 5(P), simply because
n(P) is in the orbit of P under the action off and p. Now if P’ is another point in the orbit,
then P’ = 3%p*(P) for somex, \ € Z. Since 3, p, andn are mutually commuting, we get

BRpl(P') = 3R pL (37 pN(P)) = B p* (% p! (P)) = B p N (n(P)) = (3" p*(P)) =n(P'). O

We already know a nice preimage 6f - o' underp: the braid3* - h(p)! belongs toZ(5),
because botfi andh(p) do. This braid can be reexpressed#s” p!) - ., where: is some braid in
Brg) with i = 1. (That is, we define to consist of the interior braids of the tubes®t- h(p)).

Now we define our filling ofy by h(n) :=¢(n) - .. By Lemma 5.14 we have that indeed
¥(n) - € Z(B). Inorder to see that(n) - « lies also in the centralizer éf(p) one can use a very
similar argument. Explicitly, bothy and3* ! lie in the centralizer of, and they induce the same
permutation of the punctures. Moreovet3*p!) - . = 3*h(p)! € Z(h(p)). By Lemma 5.14 we
conclude again that(n) - . € Z(h(p)), also.

General caseln the case wherg does not preserv@(ﬁ, p), the strategy is to work not with
0 itself but with a certain conjugate @f. The details are as follows. We have a finite number of
disjoint (3, p)-orbits inO(3, p, ), and since; commutes with3 andp, the action of; permutes
these orbits cyclically:

O, p) 2525 n(O(f, p)) A - 2L 2 (O(B, p) = O(F, p).

Let us denote?,, p, andn? the braids which are obtained frof p andn® by retaining only the
strands corresponding @(B,p), and forgetting the strands corresponding to all o(hﬁeyo)-
orbits. Similarly, let3, be the corresponding restriction 6f Our first aim is to fill the tubes of
ps« andn? so as to obtain commuting braidsif{ 5. ). This can be done as in the “special case”:
for p. we choose any filling iz (5,), and forn? there exists a braid. with trivial tubes such
thaty(n?) - .. commutes withs, and the filling ofp..

We have succeeded in finding a filling of certain tubes)afbut not yet ofy itself. Also,
we have so far only filled the tubes pfwhich correspond t@(é,p), but not yet those in the
n-translates of this orbit. We first notice that thection sendg-orbits to 5-orbits, and that in
eachg-orbit there is exactly one tube whose preimagg irontains a nontrivial braid (the same
for all 3-orbits), and all other tubes are filled with a trivial braid. Thus, up to cyclically changing
the numbering of the orbits of each tubefwe may assume that theaction sends each tube
of 3in O(B, p) to a tube ofj in n(O(S, p)) which is filled with the nontrivial braid if and only
if the tube ofO(B, p) is. Similarly, fori = 1,...,s — 1 we may assume that sends each-tube
in O(3, p) to af-tube iny’ (O(f, p)) which has the same filling if.

Now we can use the same property as a construction recipésgra tube ofp in ni(O(B, p))
(wherei =1,...,s) is filled in the same way as its preimage unglerwith this definition,z(p)
commutes with3. Finally we are ready to defing(n): we take the braid)(n), but modify the
braids in the tubes that terminate at positions correspondinlg[/fbp) by multiplying them on
the right by.... In other words, the braitl(n) is obtained from, as follows: we fill those tubes
of n which connect points i’ (O(3, p)) to points iny' ™1 (O(3, p)) (withi =0,..., s — 2) with
the trivial braid, and we fill the tubes that startjiir* (O(3, p)) and terminate irO (5, p) with
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the interior braids of... By construction, this braiél(n) commutes with bot8 andh(p). This
concludes the proadf Proposition 5.13. O

COROLLARY 5.16. —Suppose that is a non-periodic reducible braid in regular form. Then
the exact sequence

1— Z(Bp)) x -+~ x Z(Bry) L Z(8) £ Zo(B) — 1

splits. Thatis,Z(3) = (Z(Bp)) % -+ X Z(By)) X Zo(B).

Proof. —Since 3 cannot be reducible, the result & direct consequence of Proposi-
tions 5.11,5.12 and 5.13.0

5.4. Structure of Zy(3)

The proof of Theorem 1.1 is now completed by the following result.

PROPOSITION 5.17. — Suppose that is a non-periodic reducible braid, and that its tubular
braid 3 hasm strands. Ther¥,(3) is isomorphic either t&? or to a mixed braid group o
strands, wheré < m.

Proof. —As usual, there are three subcases, depending whethérivial, periodic or pseudo-
Anosov. Recall that we are assuming thés in regular form.

Suppose first that = 1. In this case Z(3) = B,,. HenceZy(3) contains any braid whose
permutation is consistent wit¥. Denote byP the following partition of {P,..., P} =
{C1,1,...,Cn1}: we say thatP; and P; belong to the same coset Bfif and only if 3;) = ;1.

By definition, a braid’s permutation is consistent withf and only if it preserve$. Therefore,
Zo(3) = Bp, and we are done. (In this case, we have m.)

If 3is pseudo-Anosov, it is shown in proposition 5.13 tﬁa(é) ~ 72, so this case is already
known.

Finally, suppose that is periodic. If it is a power of\2, then its centralizer is the whol8,,,,
and its corresponding permutation is trivial, so this case is equivalent to the first one.

If 3 is periodic but not a power of\2, then we know by Theorems 3.2 and 3.4 that
Z(3) ~ By(D,), for somed > 1, whereD* is the once punctured disk. But every base point
Q; in D* corresponds to an orht of 3 (see Fig. 2 in Section 3), so we can define the following
partition P’ of {Q1,...,Qq}: Q; and@Q; belong to the same coset if and onlydf; = ;1.
This partition lifts byd—! to a partition of{ P, ..., P, }, in such a way that any braid i, (D..)
preserve®’ if and only if its corresponding permutationZ‘(B) is consistent withg. Therefore,
Zo(3) ~ Bp/(D*). Now it suffices to consider the central puncturg®f as another base point,
Qa+1, and to notice thaBp/(D*) = Bp, whereP = P’ U {{Qq+1}}. To summarize, in this

case we havey () = Bp,(D*) = Bp, and the partitior? hask = d + 1 cosets. Sincd must
be a proper divisor ofn, we get thak = d + 1 < m, and the result follows. O

In particular,Zo(B) is isomorphic either t&? or to a mixed braid group. Theorem 1.1 is thus
proven.
6. An upper bound for the number of generators

Once decomposed((3), if 3 is reducible, as a semi-direct product{@f(3;,)) x - - - x Z(8y))

and Zy(5) C Z(5), we will define a small set of generators ai(5). We will proceed by
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induction on the number of strings, but we need to define first a generating %I(ﬁ))r. We do
it as follows:

PROPOSITION 6.1. — Let 3 € B,, be a non-periodic reducible braid, and Ié’te B,, be its
corresponding tubular braid. The#,(3) can be generated by at mo@@ elements.

Proof. —If m =2 thenZ,(3) is cyclic, so let us assume that > 3. We know by Section 5.4
thatZO(B) is either isomorphic t&? or to a mixed braid group. The caZ? satisfies our result,
so we will assume thaft’o(/@) is isomorphic to a mixed braid group @rstrings.

Mixed braid groups have been studied in [27], where a presentation in terms of generators and
relations is given. Since we are mainly interested in the generators, we will extract from those
in [27] a small generating set: L&t be a partition of the sdftl, . .., k}, havingd cosets of length
m; (fori=1,...,d). A generating set foBp is given by the following:

1. Fori=1,...,d, agenerating set faB,,, (if m; > 1).

2. A generating set for the pure braid grabp
It is clear that the first kind of generators corresponds to the movements of the points inside a
coset, while the second one corresponds to the movement of the points of a coset with respect
to those of the others. For instancekif= 6 andP = {{1},{2,3},{4,5,6}}, then one possible
generating set would be:

1

{02} U{o4, 05} U{0? 0109020, Loy, 02},

In order to minimise these generators we recall Bais cyclic and, ifm > 2, thenB,,, can be
generated by two elements. Hence, if we dengte m; — 1 if m; < 3 ande; = 2 otherwise,
thene; is a minimal number of generators fét,,,. On the other hand, a minimal number of

generators foP; is @. Therefore, the minimal number of generators s is:

d d
= () 220 ¢ (S0 o 2020

=1 =1
d(d—1) d(d —3) k(k—3) k(k—1)
k—d+ 5 k+ 5 S k+ 5 5
Notice that if P = {{1},{2},...,{k}} (sod = k), thengp = @ and this is the worst
possibility by the above formula.

Finally we recall from Proposition 5.17 that< m, so thatgp <

m(m—1) )

5 O

The first generating set’ of Z () that we will present is the following: i} is periodic or
pseudo-Anosov, we have already defined in Sections 3 and 4 a minimal generating §6},0f
having one or two elements. So suppose tha reducible. Then, by induction on the number
of strings, and by propdtfon 6.1, we can suppose that we have defidgd. .., G, and Gy,
generating sets fof (511), . .., Z(6y) andZO(B) respectively (if some;; has one string, then
G; =0). Then we defin€’ = g1 (G1) U--- U g:(G+) U h(Gp), which is clearly a generating set
for Z(6).

Proof of Theorem 1.3. Benotep(n) the upper bound proposed in Theorem 1.3, that is,
p(n) = @ if n=2k or p(n) = w if n =2k + 1. We will show that the generating
setGG’ defined above has at mgst) elements. The case= 2 is trivial, so we can suppose that
n > 2 and that the result is true for any smaller number of strings. We can also assurfieghat

non-periodic and reducible.
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The strategy now is to successively replgdey different braids, in such a way that during each
replacement step the number of generators of itérakrer, as given by the above construction,
increases.

The first modification of3 will be to replace the tubular braid by the trivial braid. At the
same time, we shall modify the interior braids, with the aim of rendering them pairwise non-
conjugate. More precisely, we notice that, for any braigith at least two strings, the number
of generators ofZ(a) and Z(A%ra) is the same, whileA*« and A%¢« are conjugate if and
only if p = q. Thus after multiplying each interior brajgl; by a suitable power of twistAfmi),
we can assume that all the interior braids with at least two strings are pairwise non-conjugate, so
thatt = m. As seen in the proof of Proposition 6.1, thissfireplacement has increased (or left
unchanged) the number of generator&:gf according to our construction.

Suppose, without loss of generality, that; = my = --- = mg = 1, that m; = 2s; for
i=d+1,...,d+u,andthatn; =2s;+1,fori=d+u+1,...,d+u+v,whered+u+v=m.
Henceu is the number of interior braids with an even number of strings,asthe number
of interior braids with an odd (but greater than one) number of stringé>If2, then we shall
make further modifications to the braitj with the aim of loweringl. More precisely, ifd < 2,
then we can decreageby multiplying 5 by % for somep, wherep is chosen in such a way that
no other interior braid off equalss?. This replacement increasesy one, and decreasédy
two. Thus the number of generatorgify decreases by one @@= 2) or increases (ifl > 2). But
we would have a new interior braid?, yielding one new generator. Hence, the total number of
elements ifG’| will not decrease. In other words, without decreasing the number of elements of
|G’| we can replacg by a braid withd < 1.

Denotea = sqy1 + -+ + Sd4u, b = Sd4ur1 + -+ + 8 @and S = a + b. Then one has
n =d+ 25 + v. By induction on the number of strings, we have the following bound on the
number of elements i6:

! . m(m_l)
< Ny NPT )
1< Y pmo +
1=d+1
d+u m
i(si +1 i(si+3
-y %+ 3 %+(W;)
i—d+1 i=dtut1
i+ 1
=Y (7 X s (%)
i—d+1 i=dtut1

I
7N\
®
o+
[u—
SN—
+
S
+
7N
2 3
N—

i=d+1

wheres; > 1fori=d+1,...,m.
Given two positive integers andy, one has:

(5 () (1)

S+1 m
(), o))
d+1<i<i<m

Now we distinguish two cases. df= 0, thenm = u + v andn = 25 + v. Also,

This yields:
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mﬂ<<sgl)—< 3 &@)+b+<g)
1<i<jsm

() () e (5) 25

If v=0 one hash =0, s0.5 = a and || < £ = 2t byt alson = 2k = 24, SO
p(n) = 4% and we are done.

If v=1thenn =25 + 1, hencek = S andp(n) = 252 But in this case

S(S+1) . _S(S+1 S(5+3
@< SN SEED g SEED

If v>2,sincen=2S+vonehask > S+ 1. Then

SE+D L SEFD gy (S+2)2(S+1) S k(k;l) el

G’ <
|G"| ) )

Therefore, the result is true df= 0. Suppose now that= 1. In this casen =« + v + 1 and
n =25+ v+ 1. Then one has:

mﬂg(sgl)—( S &%>+b+<?>
2<i<j<m

(%31 (") e (3)

Zw-i-b—l—m—l:w—kb—ku—i—v
1
< 7S(S2+ )+S+v: 7S(S2+ 3) + .

If v=0thenb=0andk =S5, so|G’| < M =p(n).

If v=1thenn=2S5+2andk=S+1.Then

<5628, BEDERD )

If v=2thenn=25+3andk=S+1.Then

S(S+3 S2+35+4 (S+1)(S+4
(5+3) , ,_S*+35+4 _(S+1)(S+4)

!
< = .
o'l 22 - . p(n)

Finally, if v > 3 thenn =25+ v +1sok > S+ v/2. Hence

(S+v/2)(S+v/2+1) S+ @+1)S+u(v+2)/4
2 2

SIS +3
+S/2+v/2>%

p(n) >

S(S+3)

WV

+v > |G
Therefore, in every cadé&’| < p(n), and Theorem 1.3 is proved O

Recall that, in Example 2.1, we defined baiof any number of strands whose centralizer
could not be generated by less th&mn) elements. Therefore, the bound given by Theorem 1.3
is the best possible one.
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7. Small generating sets

We saw in the previous section an upper bound for the number of generators of the centralizer
of a braid3, in terms of its number of strings. But one could obtain a better bound if more
information about3 is given. In this section we will define a new generatingGdor Z(5),
which is in most cases smaller than the &tdefined before. It is also the smallest possible
“natural” generating set, in the senthat each generator belongs to one ofithel factors in
the semidirect product decomposition in Therorl.1(c). Thus in a philosophical senégis the
“right” generating set, even though it is not in general the smallest possible one, as we shall see
at the end of this section.

If G is periodic or pseudo-Anosov, we already know a minimal generating set, with at most
two elements. We also know a minimal generating set for any mixed braid group (see the proof
of Proposition 6.1). Hence we can defi¥eby induction on the number of strands, wheis a
reducible, non-periodic braid. We can also suppose/fhatin regular form. We recall that the
interior braids are denoteg);;, ..., 8y, and the tubular braid.

DEFINITION 7.1.—We will say thati,j € {1,...,t} are permutableif there exists some

n € Zy(B) such that)(C;) =C;.

Remark that permutability is an equivalence relation, and the definiticfy @f) says that ifi
and;j are permutable thefi; = 5.

Let then{iy,...,i,} C {1,...,t} be coset representatives for permutability. &t be a
minimal set of generators fdf (3};,)), andG, be a minimal set of generators & (). Then
we defineG = g;, (G;,)U---Ug;,.(G;,.) UR(G ). Notice thatG C G/, and they coincide if and

only if there is no pair of permutable indices.
PROPOSITION 7.2. -G is a generating set of (3).

Proof. —From the exact sequence of Theorem 5.10 it follows thaf, ifs a set of generators
for Z(53};)), then a set of generators f@i(3) is G’ = g1(G1) U---U g:(Gt) U h(Go). Hence, we
just need to show that jfe {1,...,¢}\{é1,. .., }, then every element ig; (G,) can be written
as a product of elements (.

Take then;j as above. There must be somg permutable withj, so §;;; = 3};,) and

there is some) € Z,(3) such thatn(C;,) = C;. Notice thatG; is a set of generators for
Z(By)) = Z(By,)), so everyy € G; can be written as a product of elementsGf, . Hence
the braida = h(n)~1g;, (v)h(n) can be written as a product of elementsinMoreover, one

—

hasa = h(n) 1h(n) =1, and the only nontrivial interior braids im are those corresponding to
C;. Since the interior braids(n);, ; for everyl are just powers ofy;,; = 3};, andy commutes
with 3, it follows that for everyi, o ; = . Thereforen = g;(), so every element ip;(G)
can be written as a product of element€inthusG is a generating set faf (8). O

The generating set we have just defined is, unfortunately, not always the smallest possible one:

Example7.3. — Consider the five string brai@ = o30409030102020304010203 — the
canonical reduction system of this braid has teorrd circles, one containing punctures number
1, 2 and3, the other punctures numbéand5; the tubular braid is just a full twist of the two fat
strings:B = 0. Moreover, the interior braids of eadlite are trivial. According to Theorem 1.1,
the centralizer of this braid is

Z(ﬁ)g(33 XBQ)X]PBQ'.%(B?,XZ)X]Z
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and the generating set constructed in this section has four elements: tig fond one for each
factorZ. We now claim that this generating set is not as small as possible.

Indeed,B; x Z can be generated by only two elements (and tA(8) can be generated
by three elements). To see this, recall that 3k&tring braid group is isomorphic to the group
of the (2,3)-torus knot. ThusBs has a presentatiofy, z | y3272 = 1) (with y = 5102 and
z = 0109201). Moreover, the factoZ is generated by,. Now the two generator§y, o4) and
(z,04) generateBs x Z, becausél, o) can be written agy, 04)3(z, 04) 2.

8. Some algorithmic aspects

The aim of this section is to present the essential ingredients for an algorithm which, for any
given braid, finds a generating set of its centralizer subgroup that matches the description of the
previous sections. Since, for any braiénd anyk < Z, the centralizer subgroups gfand3A2*
coincide, we can always assume tjias positive.

We start by mentioning that algorithms that perform the Nielsen—Thurston classification,
and give the invariant folitations in the pseudaesov case (in the form of train tracks), are
available — notably, there are Bestvina—Haendel's [5] and of Los’ [25] algorithms; and computer
implementations are available on the web [9,20].

We recall briefly the idea of the two automaticwsttures on braid groups that are relevant
for us: for the first one, given by Garside [18] and Thurston [34] (and refined by El-Rifai and
Morton [13]), we think ofD,, has having the punctures lined up on the real line in the diBk
For the second one, given by Birman, Ko, and Lee [7], we thinBgfs having the: punctures
regularly spaced on the circle of radilusApart from that, the structures are exactly analogue. In
the Garside—Thurston structure, there is a canonical way to gatea product of divisors af,
namely by pushing each crossing between twmggiinto a factor as far to the left as possible.
This normal form is called théft greedy normal formFor instance, in this normal form all
factors which arequalto A (not just divisors of it) are grouped together at the very left of the
product decomposition. Analogously, Birman—Ko—Lee write each braid as a product of divisors
of 0 in a left-greedy way. If5 is a positive braid, then itsuper summit ses the subset of all
elementsy of its conjugacy class which satisfy the following conditions:

(i) «is positive,
(ii) the writing of « in left greedy normal form has as few factors as possible among all
elements satisfying (i),
(i) the writing of « in left greedy normal form has as many factors on the left as possible
equal toA (or §), among all elements satisfying (i) and (ii).
Two positive elements of3,, are conjugate if and only if their super summit sets coincide.
Given 8 € B,, there is an algorithm, given in [16] (which is an improvement of the algorithm
in [13]), to compute its super summit set. It is as follows: first we repeadlle 5 (i.e. move
the first factor different fromA, respectivelys, to the end and calculate the left greedy form
of the resulting braid), untithis process runs into a loop. At this point we are guaranteed to
have achieved condition (ii) above. Then we repeatddlyycle(i.e. move the last factor to the
front and calculate the left greedy form of thesulting braid) until we run into a loop. Then
all elements of this loop belong to the super summit set. Afterwards, all other elements of the
super summit set can be found recursively by conjugating already known elements by (suitable)
divisors of A (respectively), and retaining the result if it belongs to the super summit set.

This algorithm for computing the super summit set is necessary for our purposes. Now suppose
we are given a braid € B,, and we want to compute its centralizer. First we need to determine
if 3 is periodic, reducible or pseudo-Anosov, and then we can use the results in this paper.
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Remark8.1. — Very recently, V. Gebhardt [19] presented a better algorithm for the conjugacy
problem in braid groups. He defined thitra summit setwhich is in general much smaller than
the super summit set described here.

8.1. Periodic elements

Deciding whether a given elemefof B,, is periodic is very easy: one calculates the- 1)st
and thenth power of3. Theng is periodic if and only if one of the two results is a powerdf.

If 3n~' = A?* for somek € N, then 3 is conjugate tmkn) (as can be easily seen from
Lemma 3.1), and a conjugating element can be found expﬁicitly using either of the two standard
algorithms. Similarly, if 3» = A%*, then 3 is conjugate tod’zn), and either algorithm yields
an explicit conjugating element. In either case, one can find explicitly a generating set of the
centralizer subgroup with only two elements, using Propositions 3.3 or 3.5.

8.2. Finding reducing curves of reducible elements

After establishing that an elemefitof B,, is not periodic, we need to check whether it is
reducible, and if it is, we want to find explicitly an invariant multicurve. This is, in fact, a standard
part of Bestvina—Haendel’s [5] and of Los’ [25] algorithms.

We want to point out one particularly elegant alternative, which is due to Benardete, Gutierrez
and Nitecki [3] (see also [2]). We think dP,, as having the: punctures lined up horizontally,
and we look at Garside—Thurston’s left greedy normal form. The key observation from [3] is the
following: suppose tha€’ is an invariant multicurve of a brai@, and that the normal form
of gis B =p1--- Bk, Wherepy, ..., B, € B, are divisors ofA. Moreover, suppose that all
components of” areround (i.e. actual geometric circles il,,). Then we have not only that
B1---Bn(C) = C, but also that all components of all the multicury®s - - 3;(C) are round for
i=1,...,k.

As remarked in [3] this implies as a corollaryathinvariant multicurves are visible as round
curves in the super summit set@fand in particular the reducibility of a braid is easily detectable
from the super summit set. To prove the corollary we note thhas a conjugate in which all
components of the curve systerhare round; moreovefj and its conjugate have the same super
summit set. Now cycling and decycling this conjugate does not change the fact that there is a
roundinvariant curve system, by the key observation above. At the end of the cycling/decycling
procedure we have found elements of the super summit set which contain the desired round
invariant curves.

Now it is shown in [3] how to determine if a given braid preserves a system of disjoint round
curves. And there is a finite number of these systems. Moreover, since for each element of the
super summit set we know how it can be conjugated to olgtawme can find explicitly all curves
that belong to a reduction system fér We can then easily determine, by its definition, which
of these curves belong to the canonical reduction system. dfhat is, we can compute the
canonical reduction system gGf

By the results in this papef/(3) is then a semi-direct product of two groups that can be
computed by induction on the number of strings. Hence, it only remains to study the case when
0 is pseudo-Anosov.

8.3. Pseudo-Anosov elements: commutation witb(“n)

Suppose that our braid fails the tests of periodicity and reducibility, hence it is known to
be pseudo-Anosov. We need to check if it commutes with the periodic braid other than powers
of AZ.
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We shall think ofD,, as having its: punctures uniformly distributed over the circle of radiys
and we consider Birman—Ko-Lee’s left-greedy normal form. We want to decide algorithmically
whether is conjugate to a braid. with the property thatx commutes withé’“n for some
positive integetk < n. If it is, we want to know the conjugating braid explicitly. The following
result yields such an algorithm.

PROPOSITION 8.2. — Suppose that a pseudo-Anosov braidas a conjugate which commutes
with 5kn for some integek. Then there exists an elemenbf the super summit set gfwhich
has the property that, and in fact every factor of the left greedy normal formngftommutes
with 6% ..

(n)

Proof. —Let ¢’ be a conjugate of which commutes Withﬁk If B/ =p1-...- 0. isthe left-

greedy normal form of’, then each factas, is a divisor of§ ) which is 22k _symmetric. This
follows from the fact that the very definition of the left-greedy normal form is completely rotation
symmetric. More precisely, the fact that two consecutive fagigss, ; determine a left-greedy
normal form is not modified by rotating them. Hence, the pro@@@’@ﬁ{&é@n)) e (6(*735;6?")) is

in left-greedy normal form. Since this product equ%p‘%ﬁ’ n) = (', whose left-greedy normal

formisf; - - - 3}, we obtain that? 15 Ony =B, fori=1,.
Using the same argument |nduct|vely, we see that the cycllng and decycling procedure only
ever creates braids in left greedgrmal form in which all factors ar%n— symmetric. O

Now we notice that it is very easy to decide if a given divisovdin the Birman—Ko-Lee
context) is invariant under a given rotation. Hence one can determine if a braid commutes with
an (explicitly computable) conjugate G)ffn) by looking at the elements of its super summit set.

8.4. Pseudo-Anosov elements: commutation Withé“n)

Now we want to determine if a given pseudo-Anosov braid commutes with a conjugfi{‘tg,of
for a given positive integet < n — 1. This is only possible if there is some index {1,...,n}
such that3 preserved’;, as can be easily seen by looking at the corresponding permutations.

Call P, ={{P.},{P1,...,Pi—1,Piy1,..., Py }}, a partition of{ Py, ..., P, }. Thens should
belong to Bp,. There is a natural may; : Bp, — B, _1 which consists of forgetting théh
string. Notice that, if a braide commutes withy’C ) (whereP1 is considered to be the central

point of D ,,)) then f1 (a) commutes withf, (y

Hence we have a necessary condition that musti)e satisfi@gréfserves a puncture, then
we conjugate it to some that preserve®;, and we test whether a conjugatefefa) commutes
with 5@171) for somek < n — 1. If this does not happen, for=1, ..., n, then no conjugate of
commutes withy(, ).

This necessary condition is of course not suffiti A sufficient and testable condition is
now given by the following result Recall that, by Corollary 3.7, there is an isomorphism
x = (6*)~10* from Z(ééC 1) to Z( }), given by adding a trivial string at the centre/of, ;.

Notice that, if¢ € Z(an)), theny (f1 (g‘)) ¢. Then one has:

PROPOSITION 8.3. —Suppose thatv € B,, preservesP;, and & = f1(«) commutes with
55 Then the following two statements are equivalent.
(|) « is conjugate to an elemeqtof B,, which commutes Wlth( ) and the conjugating
homeomorphism preservés.
(i) «is conjugate toy(a).
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Proof. —The implication (ii)=- (i) is immediate, by choosing:= x(&).
For the implication (i} (ii), we suppose that (i) holds, that is, there is an elemenBp, such

thatn~—tan = ¢, where( € Z(yfn)). We can applyf; to all these elements, denoting= f1(n)

and¢ = f1(¢). This yields(77) ‘a7 = ¢, wherea, € ACHEEE
If we show thatj € Z((anq))’ then we can apply to all factors, obtaining

hencex(a) is conjugate t@ which is conjugate ter, and the result follows.
Let us then show thaj commutes withifn_l). Notice that{ is a pseudo-Anosov braid that

commutes withyfn). Hence it preserves a projective foliatidfy, which is invariant under a
rotation by an angle o%. But in this case’ also preserveg, with the same stretch factor,

hence itis also pseudo-Anosov. Sineés conjugated t@, then it is pseudo-Anosov as well, and
we call 75 its corresponding projective foliation (which is also invariant under the same rotation,
since& commutes Withifnfl)). Since(7) ~'af = ¢, we have thafj sendsZ; to F.

Now consider the braidl = ﬁ‘ldfnil)ﬁ. It ~is conjugate todé“nil), and hence periodic.
Moreover, it preserve$, so it commutes witl{. But the periodic elements in the centralizer
of ¢ form a cyclic group containin@fn_l), and 551—1) is the only element having exponent
sum(n — 2)k. Sinced has exactly the same exponent sum, it follows maidfn_l). Hencen
commutes withj,,_1, and the result follows. O

An algorithm for testing whether a brajtlis conjugate to a braid which commutes wi
is now easy to construct: for each of th@unctures test whether the puncture is fixedshand
whether forgetting this puncture yéd a braid which is conjugate to a braidthat commutes
with 5@1)- (We know how to do this, by the results of the previous subsection). For each puncture
that does satisfy this property, test whetléf) (which is obtained frond by adding a “trivial”
string in the centre), is conjugate & If, for one of the punctures, this is the case, then the
answer is “yes”, otherwise “no”.

8.5. Pseudo-Anosov elements: finding roots

It remains to describe a last step for computing a generating se {6y, when 3 is
pseudo-Anosov. We assume that we have already computed the sulygradperiodic braids
commuting with3. Then we can multiply3 by a suitable power of, to obtain a braid that
preserves the singular leaves of the projective foliations correspondihdrioen we know that
Z(B) = {a) x {p), wherea is the smallest possible root bf

The last problem, therefore, is to determine whether a given pseudo-Anosov asdikth
root, for givenk, and to compute that root. This problem has been solved in [32] (generalised
to all Garside groups in [31]). Moreover, since the number of possible valuessdinite (we
are assuming thadt is positive), we have an algorithm for computing thus a generating set
for Z(6).
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