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ON THE STRUCTURE OF THE CENTRALIZER
OF A BRAID

BY JUAN GONZÁLEZ-MENESES1 AND BERT WIEST

ABSTRACT. – The mixed braid groups are the subgroups of Artin braid groups whose elements p
a given partition of the base points. We prove that the centralizer of any braid can be expressed in
semidirect and direct products of mixed braid groups. Then we construct a generating set of the ce
of any braid onn strands, which has at mostk(k+1)

2
elements ifn = 2k, and at mostk(k+3)

2
elements if

n = 2k + 1. These bounds are shown to be sharp, due to work of N.V. Ivanov and of S.J. Lee. Fina
describe how one can explicitly compute this generating set.

 2004 Published by Elsevier SAS

RÉSUMÉ. – Un groupe de tresses mixtes est un sous-groupe d’un groupe de tresses d’Art
les éléments préservent une partition donnée des points de base. On démontre qu’on peut exprimer l
centralisateur de toute tresse en termes de produits directs et semidirects de groupes de tress
Ensuite, on construit une partie génératrice du centralisateur d’une tresse quelconque àn brins. Cette partie
a au plusk(k+1)

2
éléments sin = 2k, et au plusk(k+3)

2
éléments sin = 2k +1. On sait que ces bornes so

optimales, grâce à des travaux de N.V. Ivanov et de S.J. Lee. Enfin, on explique comment on peut
explicitement cette partie génératrice.

 2004 Published by Elsevier SAS

1. Introduction and statement of the results

In 1971, Makanin [26] gave an algorithm for computing a generating set of the centr
Z(β) of any given elementβ of the n-string braid groupBn. His method, however, tends
yield very large, and highly redundant generating sets. One hint that much smaller generating s
could be found came from the experimental results of González-Meneses and Franco, whi
obtained with a radically improved version of Makanin’s algorithm, based on new theor
work [17]. Also, it has probably been clear to specialists for a long time that Nielsen–Thu
theory could be used to improve upon Makanin’s results. However, there seems to be n
result in the literature, and the aim of the present paper is to fill this gap.

Although our main interest was to compute, for any givenβ ∈ Bn, a small generating set o
Z(β), we succeed in describing this centralizerin terms of semidirect and direct products
mixed braid groups(see [27,28]). These groups are defined as follows: letX = {P1, . . . , Pn} be
the base points of the braids inBn. Given a partitionP of X , the mixed braid groupBP consists
of those braids whose associated permutation preserves each coset ofP .

The well known classification of mapping classes of a punctured surface into pe
reducible and pseudo-Anosov ones, yields an analogous classification for braids. Ifβ is reducible,

1 Partially supported by MCYT, BFM2001-3207 and FEDER.
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730 J. GONZÁLEZ-MENESES AND B. WIEST

then one can decompose it, in a certain sense, into atubular braid β̂, and someinterior braids
β[1], . . . , β[t], all of them having less thann stands. The main result of this paper is the following:
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THEOREM 1.1. – Letβ ∈Bn. One has:
1. If β is pseudo-Anosov , thenZ(β) � Z2.
2. If β is periodic, thenZ(β) is eitherBn or isomorphic to a braid group on an annulus.
3. If β is reducible, then there exists a split exact sequence:

1 −→Z(β[1])× · · · ×Z(β[t])−→Z(β) −→Z0(β̂)−→ 1,

whereZ0(β̂) is a subgroup ofZ(β̂), isomorphic either toZ2 or to a mixed braid group.

Notice thatZ � B2 = B{{1,2}}, alsoBn = B{{1,...,n}}, and finally the braid group over a
annulus onk strands is isomorphic toB{{1,...,k},{k+1}} ⊂ Bk+1. Hence all these groups ca
be seen as mixed braid groups. Then, by recurrence on the number of strands we deduce
following:

COROLLARY 1.2. –For everyβ ∈ Bn, the centralizerZ(β) can be expressed in terms
semidirect and direct products of mixed braid groups.

Using the above structure we shall construct, for any braidβ ∈ Bn, a generating set ofZ(β)
having very few elements. More precisely, we obtain:

THEOREM 1.3. – If β ∈ Bn, then the centralizerZ(β) can be generated by at mostk(k+1)
2

elements ifn = 2k, and at mostk(k+3)
2 elements ifn = 2k + 1.

We will present an example, communicated to us by S. J. Lee, showing that the above b
sharp. That is, we will define, for every positive integern, a braid inBn whose centralizer canno
be generated by less thank(k+1)

2 elements ifn = 2k, or less thank(k+3)
2 elements ifn = 2k + 1.

(The first to observe that the number of generators of the centralizer may grow quadratically w
the number of strands was N.V. Ivanov [22].)

However, the above bound refers to the worst case, and one could be interested in the
number of generators of a particular braid. We shall give a generating set which is in som
the smallest “natural” generating set for the centralizer of a braid. However, we shall also
an example that illustrates the difficulty of finding the absolutely minimum possible numb
generators.

Let us mention that, for the special case of reducible braids conjugated to a generatoσi, its
centralizer has already been described in [15]. Moreover, a different special case, nam
case of braids with only one moving string (andn − 1 strictly vertical strings) was treated b
Burde [10], who calculated the intersection of the centralizer of such a braid with the pure
group. In fact, from his results one can extract a generating set of the centralizer whose siz
polynomially with the number of strings. Burde’s article is remarkable for geometric appro

The plan of the paper is as follows: in Section 2 we set up notation and some sta
machinery, and give the mentioned example by S.J. Lee. In Section 3 we studyZ(β) in the case
whereβ is periodic, Section 4 deals with the pseudo-Anosov case, and Section 5 the red
one, which is the most involved. In Section 6 we define a generating set which is no larg
the stated upper bound. In Section 7 we describe a generating set which is as small as
while still reflecting the geometric structure of the Nielsen–Thurston decomposition. We
give an example to show that by algebraic trickery, even smaller sets can be obtained. Fi
Section 8 we discuss how the generating set that we defined can be found algorithmically
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STRUCTURE OF THE CENTRALIZER OF A BRAID 731

2. Prerequisites from Nielsen–Thurston theory

We denote byD the closed disk of radius2 centered at0 in the complex plane. For anyn ∈ N,
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the diskD, together with any choice ofn distinct points in its interior, is denotedDn, and the
distinguished points are called thepunctures. We shall use different choices for the exact posit
of the punctures at different times – they may be lined up on the real axis, or regularly distr
on a circle of radius1, or again one of them may be in the centre while the remainingn − 1
are distributed over the circle of radius1. In most instances, the position of the puncture
irrelevant, and we shall leave it unspecified.

We recall that the braid groupBn is the group of isotopy classes of homeomorphisms fix
(pointwise) the boundary and permuting the punctures ofDn. Here the isotopies must fi
pointwise the boundary and the punctures. Alternatively,Bn could be defined as the group
isotopy classes of disjoint movements of the punctures, starting and ending with the config
of Dn. Yet another definition ofBn is as the set of isotopy classes of braids withn strings in the
cylinderD × [0,1], where the start and end points of the strings are exactly the puncture
in Dn × {0} andDn × {1}. We shall use all three points of view.

We shall often work with a certain quotient of the groupBn, rather than withBn itself. We
recall that the center ofBn is isomorphic to the integers, and generated by the full twist∆2

(where∆ is Garside’s half twist). Geometrically, the group projectionBn → Bn/〈∆2〉 is given
by smashing the boundary curve ofDn to a puncture, so thatBn/〈∆2〉 is naturally a subgroup o
the mapping class group of the sphere withn+1 punctures. In order to keep notation managea
we shall use the same letters for elements of the braid groupBn and for their image in the quotien
Bn/〈∆2〉. This abuse of notation should not cause confusion.

We say that an elementβ ∈ Bn is periodic if the element ofBn/〈∆2〉 represented byβ is of
finite order. Equivalently,β is periodic if there exists ak ∈ N such that inBn we have thatβk is
equal to some power of∆2.

We say an elementβ of Bn is reducibleif there exists a nonempty multicurveC in Dn (i.e. a
system of disjoint simple closed curves inDn, none of them isotopic to the boundary or enclos
a single puncture) which is stabilized byβ, i.e. such thatβ(C) is isotopic toC. Note thatβ may
permute different components of the multicurveC.

The following definition is taken from [8] (see also [21]). To every reducible braidβ ∈ Bn

one can associate a canonical invariant multicurve: itscanonical reduction system, which by
definition is the collection of all isotopy classesc of simple closed curves which have t
following two properties: firstly,c must be stabilized by some power ofβ, and secondly an
simple closed curve which has non-zero geometric intersection number withc must not be
stabilized by any power ofβ. For instance, let us consider the punctured diskD6, where the
6 punctures are arranged uniformly on the circle of radius1 around0. Then the rotation of th
punctures around the circle by an angle of2π

3 is a periodic element ofB6 (of period3), it is also
reducible (e.g. the three simple closed curves encircling punctures1 and2, 3 and4, and5 and
6 respectively form an invariant multicurve), but its canonical reduction system is empty
example, however, is somewhat untypical: if anon-periodicbraid is reducible, then its canonic
reduction system is nonempty (see [21]).

If C is an invariant multicurve of a reducible braidβ, then we define thetubular braidinduced
by β andC to be the braid on fewer strings obtained fromβ by removing fromDn all the disks
bounded by outermost curves ofC, and collapsing each outermost curve ofC to a puncture
point. It should be stressed that this braid is only defined up to conjugacy.

An alternative way to look at the same definition is the following: let us consider againβ as
an isotopy class ofn disjoint strings inD × [0,1] with extremal points at the puncture points
Dn × {0} andDn × {1}, such that each diskD × {t} intersects each string exactly once. N

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



732 J. GONZÁLEZ-MENESES AND B. WIEST

our picture can be completed by embedded cylinders inD × [0,1] which are disjoint from each
other and from the strings of the braid, each of which intersects each diskD×{t} in exactly one
circle, and whose boundary components are exactly the outermost curves ofC in D × {0} and
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D × {1}. We can interpret the solid cylinders bounded by these cylinders as “fat strings
the resulting braid with some fat strings is exactly the tubular braid defined above.

The interior braids induced byβ andC are the braids on fewer strings induced byβ at the
interior of the discs bounded by the outermost curves ofC. They can be thought of as the bra
‘inside’ the tubes of the tubular braid. Therefore, for every reducible braidβ, and every invarian
multicurveC, we can decomposeβ into one tubular braid and some interior braids – as man
the number of outermost curves inC.

Finally, we have the notion of apseudo-Anosovelement ofBn, for which we refer to [14]
or [21]. Roughly speaking,β ∈ Bn is pseudo-Anosov if it is represented by a homeomorph
of Dn which preserves two transverse measured foliations onDn (called the “stable” and th
“unstable” foliation), while scaling the measure of the unstable one by some factorλ which is
greater than1, and the measure of the stable one by1

λ .
Thurston’s theorem [33,14] states that every irreducible element ofBn is either periodic or

pseudo-Anosov.
We end this section with the promised example, due to S.J. Lee, that should be help

understanding the relationship between the Nielsen–Thurstondecomposition and the centraliz
subgroup of a braidβ ∈ Bn. This example was also found independently by N.V. Ivanov
H. Hamidi-Tehrani [23].

Example2.1. – Suppose thatn = 2m, and denote byσi the standard generator ofBn, in
which theith and the(i + 1)st punctures permute their positionsin a clockwise sense. We defin
β = σ1σ

2
3σ

3
5 · · ·σm

2m−1.
The canonical reduction system ofβ consists ofm circles, theith one enclosing the punctur

2i− 1 and2i. The corresponding tubular braid is the trivial braid ofBm, and the interior braid
are, respectively,σ1, σ2

1 , . . . , σm
1 (notice that all of them are non-conjugate, since conju

braids have the same exponent sum).
Let D(1), . . . ,D(m) be the disks bounded by the above circles. As we shall see, any bra

commutes withβ has to send each diskD(i) to itself (since the interior braids are non-conjuga
A generating set of the centralizer subgroup ofβ is given by

(i) for eachi ∈ {1, . . . ,m}, the braidσ2i−1, whose support is contained inD(i),
(ii) any generating set for the pure braid group onm stringsPm – all the generators here a

as the identity onD(1) ∪ · · · ∪D(m), and can be seen as a pure tubular braid onm strings
(tubes), where theith tube starts and ends atD(i).

It can be easily shown that, in this case,Z(β) � Zm × Pm. The essential observation now
the following: it can be deduced by the presentation given in [6], that the abelianizationPm

is isomorphic toZm(m−1)/2 (see also [1]). Hence, the abelianization ofZ(β) is isomorphic to
Zm × Zm(m−1)/2. Therefore, at leastm + m(m−1)

2 = m(m+1)
2 generators are needed for t

centralizer of the braidβ.
The case whenn = 2m + 1 is analogous. The braid proposed by S.J. Lee is:β =

σ2σ
2
4σ3

6 · · ·σm
2m. This time the first strand is not enclosed by any curve of the canonical redu

system ofβ, and one has:Z(β) � Zm ×Pm+1. Hence, in this case the minimal possible num
of generators ism + m(m+1)

2 = m(m+3)
2 .

By proving Theorem 1.3, we will show that the above examples are the worst one can fi
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3. The periodic case

We have to start by describing the periodic elements ofBn. In order to state this classification
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result, which is classical, we need to define two braids.
If Dn is the disk withn punctures arranged regularly on the circle of radius1, then the braid

which we shall callδ(n) is represented by a counterclockwise movement of all punctures o
circle by an angle2π

n . If no confusion is possible, we shall simply writeδ, without indicating the
number of strands (note that this braid is the Garside element of the Birman–Ko–Lee st
of Bn [7]).

Similarly, if we think ofDn as having one puncture in the centre, andn−1 punctures arrange
circularly around it, then we defineγ(n) ∈ Bn to be the braid given by a circular movement
the n − 1 punctures by an angle of2π

n−1 , while leaving the central puncture fixed. Again,
simplicity we shall often only writeγ instead ofγ(n).

The result that classifies periodic braids, which is due to Eilenberg [12] and de Kerékjár
(see [11] for a modern exposition) is:

LEMMA 3.1. – Every periodic braid inBn is conjugate to a power ofδ(n) or γ(n).

Thus we only need to consider the centralizer subgroups ofδk
(n) andγk

(n) for all n,k ∈ Z,
since the centralizers of conjugate elements are isomorphic by an inner automorphismBn.
This problem has been solved by Bessis, Digne and Michel [4], on the wider context of co
reflexion groups. We shall explain their result in the particular case of braid groups:

We suppose first thatβ = δk
(n) where, without loss of generality,k � 0. Letd = gcd(n,k). For

u = 1, . . . , n, we will denotePu = ei2πu/n the punctures ofDn, soβ = δk
(n) sendsPu to Pu+k

for everyu (the indices are taken modulon). Hence the permutation induced byβ hasd orbits
(cycles) of lengthr = n

d , that we denote byC1, . . . ,Cd. See in Fig. 1 an example wheren = 12,
k = 9, d = 3 andr = 4: the braidδ(12) and the three orbits ofδ9

(12).
If r > 1 (that is if d < n), consider the once punctured discD∗ = D\{0}, and ther-sheeted

coveringθ = θr :D∗ → D∗ defined byθ(aeit) = aeitr = aeitn/d. The orbitsC1, . . . ,Cd are sent
by θ to the pointsQ1, . . . ,Qd, whereQu = ei2πu/d. If we consider the half-lineL = {aeiπ/d,
a ∈ ]0,2]} (notice thatL passes betweenQd andQ1), thenD∗\L is a fundamental region forθ
(see Fig. 2).

Now notice that every braid inBd(D∗) can be lifted, byθ−1, to a braid inBn in a natural way
The resulting braid is a2πd

n -symmetric braid, that is, it is invariant under a rotation by an ang
2πd
n . But then it is also invariant under a rotation of angle2πk

n ; in other words, the resulting bra
commutes withβ. Hence we have a natural homomorphism:θ∗ :Bd(D∗) →Bn whose image is
contained inZ(β). Then one has

THEOREM 3.2 [4]. – The natural homomorphismθ∗ :Bd(D∗) →Z(δk
(n)) is an isomorphism

Fig. 1. The braidδ ∈ B12, and the three orbits ofδ9 (in black, white and grey).

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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Fig. 2. The covering mapθ = θ4 associated toδ9
(12).

Fig. 3. Generatorsθ∗
3(σ1) andθ̄∗

3(σ1) of the centralizers ofδ4
(12) andγ4

(13).

In other words, every element in the centralizer ofβ = δk
(n) can be seen (viaθ) as a braid on a

once punctured disc, that is, a braid on an annulus. Notice that ifr = 1 (that is, ifk is a multiple
of n), thenβ is a power ofδn

(n) = ∆2
(n). In this caseθ is the identity map, and the fundamen

region is the wholeDn. Hence the centralizer ofβ is the wholeBn, as one should expect.
Since we are interested in minimising the set of generators, we observe that ifd = n (thus

r = 1), thenZ(β) = Bn is generated by two elements, namely Artin’sσ1 and Birman–Ko–Lee’s
δ. In a similar way, if1 < d < n, then the braid groupBd(D∗) is generated by just two elemen
namelyδ(n) = θ∗(δ(d)) and the braidθ∗(σ1) shown in Fig. 3(a). Notice that this case conta
the above one, whereθ∗ is the identity. Finally, ifd = 1 thenB1(D∗) is cyclic. Thus we have:

PROPOSITION 3.3. – If k andn are coprime, thenZ(δk
(n)) is generated by a single eleme

namelyδ(n). If, by contrast,gcd(k,n) � 2, thenZ(δk
(n)) is generated by two elements:δ(n) and

the braidθ∗(σ1).

It is clear that the generating set given by Proposition 3.3 is indeed minimal. Next we stu
the centralizer ofβ = γk

(n), still following the work in [4]. This time we calld = gcd(n− 1, k),
and r = (n − 1)/d. If d < n − 1, the above mapθ induces a natural homomorphism̄θ∗ =
θ̄∗r :Bd(D∗) → Bn, where this time the central point ofD is considered as a puncture. Hen
the central strand of every braid coming fromBd(D∗) is trivial. We observe that the image
this homomorphism is contained inZ(β), and in fact one has:

THEOREM 3.4 [4]. – The natural homomorphism̄θ∗r :Bd(D∗) →Z(γk
(n)) is an isomorphism

By contrast, ifd = n − 1, thenβ is a power ofγn−1 = ∆2, so θ
∗
r = 1, Z(β) = Bn and

everything works as above. Hence we have

PROPOSITION 3.5. – If k and n − 1 are coprime, thenZ(γk
(n)) is generated by a singl

element, namelyγ(n). If, by contrast,gcd(k,n− 1) = d � 2, thenZ(γk
(n)) is generated by two

elements:γ(n) = θ̄∗(δ(d)) and the braidθ̄∗(σ1).

4e SÉRIE– TOME 37 – 2004 –N◦ 5
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See Fig. 3(b) for an illustration of the braid̄θ∗(σ1). We summarize all the results in this section
as follows:
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COROLLARY 3.6. –The centralizer of any periodic braid inBn either equalsBn or is
isomorphic toBd(D∗), for somed < n. In particular, it can be generated by at most tw
elements.

We end with a result that will be helpful later:

COROLLARY 3.7. – If k is not a multiple ofn, thenZ(δk
(n)) ∼= Z(γk

(n+1)).

Proof. –Both groups are isomorphic toBd(D∗), whered = gcd(n,k). An actual isomorphism
can be defined as follows: take any elementα ∈ Z(δk

(n)), isotope it to make it2πk
n -symmetric,

and then add a trivial strand based at the central point ofDn. �
4. The pseudo-Anosov case

PROPOSITION 4.1. – If β ∈ Bn is pseudo-Anosov, then the centralizer ofBn is free abelian
and generated by two elements: some pseudo-Anosovα which has the same stable and unsta
projective measured foliation asβ (possiblyβ itself), and one periodic braidρ (a root of ∆2,
possibly∆2 itself).

We stress that the generating set promisedby Proposition 4.1 is obviously minimal. Fo
proving this result, it is more convenient to think about the quotient groupBn/〈∆2〉. Since
〈∆2〉 is the center ofBn, it is contained in the centralizer of any element. Hence the centra
of an element inBn is just the preimage of the centralizer of its corresponding mapping cla
Bn/〈∆2〉. Thus, for the rest of this section, we shall work in this quotientBn/〈∆2〉; we shall
prove the following result, from whichProposition 4.1 will then be deduced:

PROPOSITION 4.2. – If β ∈ Bn/〈∆2〉 is pseudo-Anosov, then the centralizer ofβ is abelian,
and is generated by some pseudo-Anosovα which has the same stable and unstable projec
measured foliation asβ, and possibly one elementρ of finite order.

Proof of Proposition 4.2. –We start by observing that the pseudo-Anosov elementβ cannot
commute with any reducible elementa ∈Bn/〈∆2〉, except possibly with periodic ones – thus
elements ofZ(β) ⊂ Bn/〈∆2〉 are either pseudo-Anosov or periodic. To see this, let us as
that the canonical reduction systemC of a is non-empty. Then the canonical reduction sys
of β−1aβ is β(C). If it were true thatβ−1aβ = a, then we would haveβ(C) = C, which is
impossible since it is well known that pseudo-Anosov homeomorphisms do not stabilise a
curves or multicurves. (This result is also a special case of Corollary 7.13 of [21].)

Our next claim is that all pseudo-Anosov elements inZ(β) have the same stable and unsta
projective measured foliations. In order to prove this, we can apply Corollaries 7.15 and
[21]: since the centralizer subgroup ofβ is infinite and irreducible, it follows thatZ(β) contains
an infinite cyclic group as a subgroup of finite index. It follows that ifa is any pseudo-Anoso
element in the centralizer ofβ, then there existk, k′ ∈ N such thatak = βk′

. Since all powers
of a pseudo-Anosov element have the same stable and unstable projective measured fo
follows thata has the same stable and unstable projective measured foliations asβ, and so do al
pseudo-Anosov elements ofZ(β) ⊆ Bn/〈∆2〉.

Next we make an essential observation which only works for braid groups, and do
generalize to mapping class groups of surfaces with no boundary, or with more than two bound
components: all elements ofBn/〈∆2〉, regarded as a subgroup of the mapping class grou
the n + 1 times punctured sphere, fix the puncture which came from collapsing the bou

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



736 J. GONZÁLEZ-MENESES AND B. WIEST

of Dn. Moreover, there are singular leaves of the stable and unstable foliation ofβ emanating
from this puncture, at least one of each (like for every other puncture). In the cyclic ordering
around the puncture, singular leaves of the stable and unstable foliation alternate. If an element
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a of Bn/〈∆2〉 commutes withβ, then the action ofa has to preserve the projective stable a
unstable foliations. Thus in the cyclic ordering around our preferred puncture, the action ofa can
only induce a cyclic (possibly trivial) permutation of the singular leaves (sending stable to s
and unstable to unstable leaves, nevertheless).

Now we see that an elementa of Z(β) ⊆ Bn/〈∆2〉 is uniquely determined by just two dat
firstly the stretch factorλ by which its action on the unstable measured foliation ofβ multiplies
the measure of that foliation. (This factorλ equals1 if a is periodic, and belongs to the s
R+ \ {1} if a is pseudo-Anosov.) And secondly by the cyclic permutation of the leave
the stable projective foliation emanating from the distinguished puncture of then + 1 times
punctured sphere. Indeed, ifa and b share both data, thenab−1 has stretch factor 1 (so it
periodic), and preserves the singular leaves. Hence it is the identity inBn/〈∆2〉, soa = b.

This implies that the set of periodic elements ofZ(β) forms a subgroup ofZ(β) which is
either trivial or isomorphic toZ/kZ, wherek is a divisor of the number of singular leaves of t
stable foliation emanating from the preferredpuncture. Any generator of this subgroup can p
the rôle of our desired generatorρ of Z(β) ⊆ Bn/〈∆2〉.

Now ρ commutes with any other element inZ(β), because their commutator has stretch fa
1 and induces the trivial permutation of the prongs around the preferred singularity.

Now notice that the stretch factor yields a multiplicative map fromZ(β) toR+. But it is known
that the set of possible stretch factors for a given foliation is discrete (see [21]), so the image
Z(β) under this map must be a cyclic subgroup ofR+. Take an elementα whose stretch facto
λ generates this group. Thenα is pseudo-Anosov and the stretch factor of any element inZ(β)
must be a power ofλ.

We now have thatα andρ generateZ(β) ∈ Bn/〈∆2〉, because any element inZ(β) can be
multiplied by some power ofα so as to obtain an element with stretch factor1, i.e. a power ofρ.

It follows thatZ(β) ⊂ Bn/〈∆2〉 is isomorphic toZ × Z/kZ, with generatorsα andρ. This
completes the proof of Proposition 4.2.�

Proof of Proposition 4.1. –By Proposition 4.2,Z(β) ⊂ Bn/〈∆2〉 is isomorphic toZ×Z/kZ,
with generatorsα andρ. But thenZ(β) ⊂ Bn is just the preimage ofZ(β) ⊂ Bn/〈∆2〉 under
the natural projection. Consider the subgroup〈ρ〉 ⊂ Z(β) ⊂ Bn/〈∆2〉. Its preimage is an infinite
cyclic group inBn that contains〈∆2〉. We can suppose (up to choosing an appropriateρ), that
the generator of this cyclic group projects toρ, so we call itρ as well. Notice thatρ is a root of
∆2, since∆2 belongs to〈ρ〉. Then we choose an element inBn that projects toα, and we also
call it α. We must prove that inBn we still haveZ(β) = 〈α〉 × 〈ρ〉.

But every element inZ(β) ⊂ Bn can be written asαkρl∆2m. Since∆2 is a power ofρ, then
{α,ρ} is a set of generators ofZ(β). On the other hand, the commutator ofα andρ projects to
the trivial mapping class, hence it equals∆2k for somek. But the algebraic number of crossin
of the braid∆2k is kn(n−1), while for the commutator of any two elements this number is z
Hencek = 0, soα andρ commute. Finally, it is well known thatBn is torsion-free, soZ(β) is
isomorphic toZ ×Z, as we wanted to show.�

5. The reducible case

It remains to study the centralizer of a non-periodic reducible braidβ. Recall that for every
braid γ one hasZ(γ−1βγ) = γ−1Z(β)γ. Hence, in general we will not studyZ(β), but the
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centralizer of a suitable conjugate ofβ, which will be easier to describe. Throughout this section
we shall think of the punctures of the diskDn as being lined up on the real axis.
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5.1. Reducible braids in regular form

As we saw in Section 2, ifβ is a non-periodic reducible element, then its canonical reduc
system is nonempty. We denote byR′(β) the set of outermost curves in the canonical reduc
system ofβ. It is determined byβ up to isotopy fixing the punctures. Since we can study
conjugate ofβ, we can suppose thatR′(β) is a family of disjoint circles centered at the real ax
with disjoint interiors, each one enclosing more than one and less thann punctures.

Notice that there could be punctures inDn not enclosed by any circle inR′(β). In order to
simplify the notations below, we define the system of curvesR(β) to contain exactly the curve
of R′(β), plus one circle around each such puncture ofDn. These new circles are called t
degenerate circles ofR(β). We now have that every puncture inDn is enclosed by exactly on
circle inR(β).

Notice thatβ preservesR(β), but it could permute the circles. We will suppose that
permutation hast orbits (or cycles)C1, . . . ,Ct. That is,Ci is a family of circles{Ci,1, . . . ,Ci,ri} ⊂
R(β) such thatβ sendsCi,k to Ci,k+1 (here the second index is taken modulori). Then one
hasR(β) = C1 ∪ · · · ∪ Ct = {C1,1, . . . ,C1,r1} ∪ · · · ∪ {Ct,1, . . . ,Ct,rt}. If mi is the number o
punctures insideCi,k, for anyk, then1 � mi < n andm1r1 + · · ·+ mtrt = n.

Let β̂ be the tubular braid induced byβ andR(β). Thenβ̂ ∈ Bm, wherem = r1 + · · ·+ rt.
For i = 1, . . . , t andk = 1, . . . , ri, let βi,k be the braid induced byβ in the interior ofCi,k. In
other words,βi,k is the braid inside the tube of̂β which starts atCi,k and ends atCi,k+1. We
will call the braidsβi,k theinterior braidsof β. Notice that the interior braids of each degene
circle is just a trivial braid on one string.

In Fig. 4 we can see an example of a reducible braidβ ∈ B13, and its corresponding tubul
braid β̂ ∈ B6. In this example we have three orbits, and the following data:r1 = 3, r2 = 2,
r3 = 1; m1 = 2, m2 = 3, m3 = 1, β1,1 = σ2

1 , β1,2 = σ−1
1 , β1,3 = 1, β2,1 = σ1σ2, β2,2 = σ−1

1 σ2,
β3,1 = 1 andβ̂ = σ2

3σ2σ1σ
2
5σ4.

It would be desirable forβ to have its interior braids as simple as possible, in order to s
its centralizer. We propose the following:

DEFINITION 5.1. – Letβ ∈ Bn be a non-periodic reducible braid. Thenβ will be said to be
in regular formif (using the notation introduced above) it satisfies the following conditions:

1. The only non-trivial interior braids inβ areβ1,r1 , β2,r2 , . . . , βt,rt – we shall denote thes
braids byβ[1], β[2], . . . , β[t].

2. Fori, j ∈ {1, . . . , t}, if β[i] andβ[j] are conjugate, thenβ[i] = β[j].

Fig. 4. Example of a reducible braidβ, and its corresponding tubular braid̂β.
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Hence, ifβ is in regular form, there is at most one non-trivial interior braid for each orbit, and
any two interior braids are either equal or non-conjugate. Fortunately, one can conjugate every
non-periodic reducible braidβ to another one in regular form, as we are going to see.

le
or
at

t

First, consider the subgroupBR(β) ⊂ Bn consisting of those braids preservingR(β). For
α ∈ BR(β), we can consider the tubular braid̂α induced byα andR(β). Everyα ∈ BR(β) is
completely determined bŷα and its interior braidsαi,k, for i = 1, . . . t andk = 1, . . . , ri.

Now consider, inβ, an orbitCi = {Ci,1, . . . ,Ci,ri} and the interior braidsβi,1, . . . , βi,ri ∈
Bmi . We defineα ∈ BR(β) as follows:α̂ is trivial, αj,k = 1 if j 
= i, andαi,k = βi,kβi,k+1 · · ·βi,ri .
If we conjugateβ by α, we obtainβ′ = α−1βα, which has the following properties:

– β̂′ = β̂.
– β′

j,k = βj,k, for j 
= i.

– β′
i,k = (αi,k)−1βi,kαi,k+1 = (β−1

i,ri
· · ·β−1

i,k )(βi,k · · ·βi,ri) = 1, for k 
= ri.

– β′
i,ri

= (αi,ri)
−1βi,riαi,1 = β−1

i,ri
βi,ri(βi,1 · · ·βi,ri) = βi,1 · · ·βi,ri .

In other words, if we conjugateβ byα we ‘transfuse’ all the interior braids inCi to the last tube
Ci,ri , soβ′

i,ri
becomes the only nontrivial interior braid inCi. In Fig. 5 we can see an examp

of such a conjugation, whereβ[i] denotes the productβi,1 · · ·βi,ri . We can now do the same f
everyi = 1, . . . , t. Therefore, since we are interested inβ up to conjugacy, we can suppose th
βi,k = 1 if k 
= ri and denoteβ[i] = βi,ri , for everyi = 1, . . . , t.

Now suppose that someβ[i] is conjugate to someβ[j], and lethi,j be a conjugating braid, tha
is, h−1

i,j β[i]hi,j = β[j]. Consider the braidα ∈ BR(β) such thatα̂ = 1, αj,k = 1 for j 
= i and
αi,k = hi,j for everyk. As we can see in Fig. 6, if we conjugateβ by α, thenβ[i] is replaced by

Fig. 5. How to conjugateβ to simplify interior braids.

Fig. 6. How to replaceβ[i] by β[j] if they are conjugate.
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Fig. 7. How to moveβ[i] from Ci,4 to Ci,2, whenri = 4.

β[j]. Therefore, we can assume that fori, j ∈ {1, . . . , t}, eitherβ[i] = β[j] or β[i] andβ[j] are not
conjugate, and therefore we can suppose thatβ is in regular form.

Notice that we have chosen to putβ[i] into the tube starting atCi,ri . But we can move it to
any other tube ofCi if we wish, by a suitable conjugation, and later on we will need to use
Hence we define, fori ∈ {1, . . . , t} andk ∈ {1, . . . , ri − 1}, a braidµ = µ(i, k) that will ‘move’
the interior braidβ[i] to the tubeCi,k. This braid is defined as follows: the tubular braidµ̂ is
trivial, and the interior braids are all trivial exceptµi,k+1 = µi,k+2 = · · · = µi,ri = β[i]. We can
see in Fig. 7 how this works.

5.2. Centralizer of a braid in regular form

We will now study the centralizer ofβ, assuming thatβ is in regular form. Recall that the on
non-trivial interior braids ofβ are denotedβ[1], . . . , β[t], and that̂β is the tubular braid associate
to β andR(β). In this section we will show that there is an exact sequence:

1→ Z(β[1])× · · · ×Z(β[t])
g−→Z(β) p−→ Z0(β̂) → 1,

whereZ0(β̂) is a subgroup ofZ(β̂). Later on we will see that this sequence splits.
For i ∈ {1, . . . , t}, consider the centralizerZ(β[i]) in Bmi . We define a map

gi :Z(β[i]) →BR(β)

as follows: givenγ ∈ Z(β[i]), gi(γ) is the braidα ∈ BR(β) satisfyingα̂ = 1, αj,k = 1 for j 
= i,
andαi,k = γ for k = 1, . . . , ri. We need to show the following:

PROPOSITION 5.2. – The mapgi defined above is an injective homomorphism, and its im
is contained inZ(β).

Proof. –The mapgi is given by the diagonal homomorphismZ(β[i]) →Z(β[i])×· · ·×Z(β[i])
(ri factors), followed by the homomorphism induced by an inclusion ofri copies of anmi-times
punctured disk intori disjoint subdisks (each containingmi punctures) ofDn. By the results of
[29] we can deduce thatgi is indeed an injective homomorphism.

It remains to show that for everyγ ∈ Z(β[i]) one hasα = gi(γ) ∈ Z(β). Sinceα̂ is trivial,

α̂−1βα = α̂−1β̂α̂ = β̂. So we just need to show that the interior braids ofα−1βα andβ coincide.
For j 
= i, the braidsαj,k are trivial for everyk, so(α−1βα)j,k = βj,k. Now, fork 
= ri, one has
(α−1βα)i,k = α−1

i,kβi,kαi,k+1 = γ−11γ = 1 = βi,k. Finally, sinceγ commutes withβ[i], one has

(α−1βα)i,ri = α−1
i,ri

βi,riαi,1 = γ−1β[i]γ = β[i] = βi,ri . Thereforeα−1βα = β, so the image o
gi is contained inZ(β). �
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PROPOSITION 5.3. – The mapg :Z(β[1])×· · ·×Z(β[t])−→Z(β) defined byg(γ1, . . . , γt) =
g1(γ1) · · ·gt(γt) is an injective homomorphism.
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Proof. –Given γ ∈ Z(β[i]), the only nontrivial strands ingi(γ) are those inside the tube
Ci,1, . . . ,Ci,ri . Hence if i 
= j, γ ∈ Z(β[i]) and δ ∈ Z(β[j]), thengi(γ) and gj(δ) commute.
Since everygi is a homomorphism, this shows thatg is also a homomorphism. But we kno
by the previous proposition thatgi is injective fori = 1, . . . , t. Using an argument similar to th
proof of Proposition 5.2, one can deduce thatg is also injective. �

Now we will relateZ(β) andZ(β̂). Every braid inZ(β) preserves the canonical reducti
system ofβ (see [21]), so it must preserveR(β). That is,Z(β) ⊂ BR(β). Let p :BR(β) → Bm

be the homomorphism which sendsα to α̂, the tubular braid induced byα andR(β). If we take
α ∈ Z(β) thenβ = α−1βα, sop(β) = p(α−1βα) = p(α)−1p(β)p(α). Hencep(α) commutes
with p(β) = β̂. Therefore, if we restrictp to Z(β) we getp :Z(β)→ Z(β̂).

Unfortunately, neitherp :BR(β) → Bm nor its restrictionp :Z(β) → Z(β̂) are surjective, bu
we shall see that the elements in the image ofp in either case can be easily characterised by
permutation they induce. Notice thatp induces a bijectioñp from R(β) to {P1, . . . , Pm}, the
punctures ofDm. We denote byτ the inverse of̃p.

DEFINITION 5.4. – Letη ∈ Bm, and letπη be the permutation induced byη on the puncture
of Dm. We say thatπη is consistent withR(β) if, for i = 1, . . . ,m, τ(Pi) andτ(πη(Pi)) enclose
the same number of punctures.

PROPOSITION 5.5. – An elementη ∈ Bm is in the image ofp :BR(β) →Bm if and only ifπη

is consistent withR(β).

Proof. –If η is in the image ofp, let α ∈ BR(β) with p(α) = η. Then, for everyi = 1, . . . ,m,
τ(Pi) andτ(πη(Pi)) are the top and bottom circles of a tube determined byα. Hence they mus
enclose the same number of punctures (the number of strands inside the tube).

Conversely, suppose thatπη is consistent withR(β). Takei ∈ {1, . . . ,m} and suppose tha
τ(Pi) = Cj,k. Then take theith strand ofη and consider it as a tube, enclosing the trivial br
onmj strands. Do this for everyi = 1, . . . ,m. The resulting braid,ψ(η), is well defined sinceπη

is consistent withR(β), and it belongs toBR(β). Moreover,p(ψ(η)) = η by construction. �
The homomorphismψ introduced in this proof will play a prominent rôle in what follows:

η ∈ Bm, thenψ(η) is the braid inBR(β) whose tubular braid equalsη, and whose interior braid
are all trivial.

All the elements inBm that shall be considered from now on will have permutations consi
with R(β). Hence, by abuse of notation, we will identifyCi,k = p̃(Ci,k) andCi = p̃(Ci) if it does
not lead to confusion.

We still need to characterise the elements in the image ofp :Z(β) → Z(β̂). We just know
that their permutations must be consistent withR(β), but this is not sufficient. Recall that th
permutation induced byβ on the components ofR(β) hast orbits,C1, . . .Ct. The key observatio
now is that every elementα ∈ Z(β) preserves these orbits setwise, though it could permute t
Therefore, fori = 1, . . . , t, one hasα(Ci) = Cj for somej. In the same way, for anyη ∈ Z(β̂)
one hasα(Ci) = Cj for somej.

LEMMA 5.6. – Letα ∈Z(β). If α(Ci) = Cj for somei, j ∈ {1, . . . , t}, thenβ[i] = β[j].

Proof. –Sinceα(Ci) = Cj , the two orbits have the same length, which we shall denor;
thusr = ri = rj . Now βr is a braid that preservesCi,k andCj,k for everyk, and is such tha
(βr)i,k = β[i] and(βr)j,k = β[j]. Now sinceα commutes withβ, then it also commutes withβr .
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Suppose thatα sendsCi,1 to Cj,k. Then

β[j] = (βr)j,k = (α−1βrα)j,k = (αi,1)−1(βr)i,1αi,1 = (αi,1)−1β[i]αi,1.
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Thereforeβ[i] andβ[j] are conjugate, and sinceβ is in regular form,β[i] = β[j], as we wanted to
prove. �

Lemma 5.6 imposes another condition for a braid inZ(β̂) to be inp(Z(β)):

DEFINITION 5.7. – Letη ∈ Z(β̂). We say thatπη is consistent withβ if it is consistent with
R(β) and, furthermore, for everyi, j ∈ {1, . . . , t} such thatη(Ci) = Cj , one hasβ[i] = β[j].

DEFINITION 5.8. –Z0(β̂) is the subgroup ofZ(β̂) consisting of those elements who
permutation is consistent withβ.

Then Lemma 5.6 can be restated as follows: Ifα ∈ Z(β) thenp(α) ∈ Z0(β̂). Moreover, we
can prove the following:

PROPOSITION 5.9. – The homomorphismp :Z(β)−→Z0(β̂) is surjective.

Proof. –Let η ∈ Z0(β̂). We shall construct a preimage ofη underp in two steps. Sinceπη is
consistent withβ (thus withR(β)), we can, as a first step, consider the braidψ(η) ∈ Bn. We
then havep(ψ(η)) = η; butψ(η) does not necessarily commute withβ, since the interior braid
of ψ(η)−1βψ(η) could differ from those ofβ. Actually, since the interior braids ofψ(η) are all
trivial, conjugatingβ by ψ(η) just permutes the interior braids ofβ. More precisely, the brai
ψ(η)−1βψ(η) equalsβ, except that, for eachi ∈ {1, . . . , t}, it may not be the tubeCi,ri which
contains the nontrivial interior braidβ[i], but some other tube from the familyCi. Our aim in the
second step is thus to fill the tubes ofψ(η) with more suitable interior braids, in order to obta
a braid that commutes withβ.

For everyi ∈ {1, . . . , t}, we know thatψ(η) sendsCi to someCj . Let ki ∈ {1, . . . , ri} be such
thatψ(η) sendsCi,ki to Cj,rj , and consider the braidµ(i, ki) defined at the end of Section 5.
If we conjugateβ by µ(i, ki) we moveβ[i] from Ci,ri to Ci,ki . If we further conjugate byψ(η),
thenβ[i] goes toCj,rj . But η is consistent withβ, soβ[i] = β[j]. Hence, the interior braids inCj

are preserved. We can do this fori = 1, . . . , t, so we obtain that the braid(
t∏

i=1

µ(i, ki)

)
ψ(η)

commutes withβ and its tubular braid isη, so it is inp−1(η)∩Z(β). This shows the result.�
We can finally bring together all the results in this section to state the following:

THEOREM 5.10. – Let β ∈ Bn be a non-periodic reducible braid in regular form. Then t
sequence

1 →Z(β[1])× · · · ×Z(β[t])
g−→ Z(β) p−→Z0(β̂)→ 1

is exact.

Proof. –By Proposition 5.3g is injective, and by Proposition 5.9p is surjective. It just remain
to show thatim(g) = ker(p).

By construction, every element in the image ofg induces a trivial tubular braid, soim(g) ⊂
ker(p). Let thenα ∈ ker(p), that is,α̂ = 1. Sinceα ∈ Z(β), we haveα−1βα = β, and since
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βi,k = 1 for k 
= ri, we must haveα−1
i,k 1αi,k+1 = 1, so αi,k = αi,k+1 for k = 1, . . . , ri − 1.

Henceαi,1 = αi,2 = · · ·= αi,ri for everyi. Moreover, we have
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β[i] = βi,ri = α−1
i,ri

βi,riαi,1 = α−1
i,1 β[i]αi,1,

soαi,1 ∈ Z(β[i]). Therefore,α = g1(α1,1)g2(α2,1) · · ·gt(αt,1) = g(α1,1, α2,1, . . . , αt,1). That is,
ker(p)⊂ im(g). �
5.3. Finding a section forp

In this subsection we will prove that the exact sequence of Theorem 5.10 splits. We
that β̂ is obtained fromβ by collapsing the disks bounded by outermost curves in the cano
reduction system ofβ to single punctures. In particular, the canonical reduction system ofβ̂ must
be empty. Hence,̂β is either periodic or pseudo-Anosov. We will distinguish these two case
define a multiplicative section forp, but first we will show an easy particular case. Recall th
braid is pure if it induces the trivial permutation of its base points.

PROPOSITION 5.11. – If β̂ is pure, there is a homomorphismh :Z0(β̂) → Z(β) such that
p ◦ h = 1.

Proof. –We shall prove that in this case, the homomorphismψ constructed in the proof o
Proposition 5.5 is such a section. Letη ∈ Z0(β̂). Sinceβ̂ is pure,Ci = {Ci,1} for all i. Hence,
if η sendsCi to Cj then it sends the tubeCi,1 (containingβ[i]) to the tubeCj,1 (containing
β[j] = β[i], sinceβ is in regular form). Therefore, filling every tube inη with the trivial braid,
that is, definingh(η) = ψ(η), yields indeed an element ofZ(β). �

Next we study the general case, depending whetherβ̂ is periodic or pseudo-Anosov.

PROPOSITION 5.12. – If β̂ is periodic, there is a homomorphismh :Z0(β̂)→ Z(β) such that
p ◦ h = 1.

Proof. –Recall that we are studyingβ up to conjugacy. This implies that we can also stud̂β
up to conjugacy since, for everyξ ∈ Bm, if we conjugateβ by ψ(ξ) we are conjugatinĝβ by
ξ. Moreover, after conjugating byψ(ξ), β continues to be in regular form (up to renaming
circles inR(β)). Therefore we can suppose, up to conjugacy, thatβ̂ is a rigid rotation of the disc
that is, a power ofδ(m) or γ(m).

Suppose first that̂β = δk
(m) for somek. We can suppose thatk is not a multiple ofm, since

in that caseβ̂ would be a power of∆2
(m), thus it would be pure, and this case has alre

been studied in Proposition 5.11. Recall the analysis of periodic braids in Section 3: the ba
points Q1, . . . ,Qm of β̂ will be evenly distributed along a circle of radius1 around0. Let
d = gcd(m,k) < m andr = m/d. Thenβ̂ sendsQi to Qi+k, and there ared orbitsC1, . . . ,Cd

of lengthr. The orbitCi will contain the pointsQu whereu ≡ i (modd). Since we can choos
which tubes ofβ contain the interior braids, we will suppose that these are the tubes star
Qm−d+1,Qm−d+2, . . . ,Qm, that is, the lastd points ofDm.

We will consider now some line segments inD which separate the pointsQ1, . . . ,Qm into
r sets ofd points. LetL be the line segment joining the origin with the border ofD, passing
between the pointsQm−d andQm−d+1, and letL′ be the segment passing betweenQm and
Q1. Notice thatL and L′ determine a sector which contains the pointsQm−d+1, . . . ,Qm,
corresponding to the tubes ofβ with nontrivial interior braids. Letφ :C → C be the rotation
around the origin by an angle of2πk/m (the angle induced bŷβ), and denoteLi = φi(L). Since
gcd(m,k) = d, the segmentsL0, . . . ,Lr−1 divide D into m/d = r sectors, each one of ang
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Fig. 8. The segmentsL, L′, and the union of segmentsL, for β̂ = δ6 ∈ B15.

2π/r and containing the pointsQid+1, . . . ,Qid+d for somei. Take the smallest integere > 0
such thatφe(L) = L′. Then one hasL0 = L andLe = L′. We are interested in the union
segmentsL = L1 ∪L2 ∪ · · · ∪Le (see Fig. 8 for an example).

Let thenη ∈ Z0(β̂). In order to defineh(η), it suffices to define its interior braids. This is do
as follows: recall that, sinceη commutes withβ̂, it can be isotoped to a symmetric braid (w
respect to the rotationφ), so we take a symmetric representative ofη. For every base pointQi

of β̂ (corresponding to a circleCj,u), consider the strand ofη starting atQi (the ith strand of
η). Then we define the interior braidh(η)j,u = (β[j])L(η,i), whereL(η, i) ∈ Z is the algebraic
number of times that theith strand ofη crossesL. This is well defined by Theorem 3.2 (if yo
take two distinct representatives ofη as a symmetric braid, they are isotopic through symme
braids, so the strands never touch the origin and the intersection numberL(η, i) is preserved).

In other words, we defineh(η) as follows: we start with trivial interior braids, and we follo
the movement of the strands ofη. Each time a strand crosses a segment ofL in the positive sense
we multiply its interior braid byβ[j] (wherej is the index of the orbitCj of that strand). And
every time a strand crossesL in the negative sense, we multiply its interior braid byβ−1

[j] .

We have thus defined a maph :Z0(β̂) → BR(β). To show thath is a homomorphism
it suffices to see that the interior braids ofηξ are the product of those ofη and ξ, for
η, ξ ∈ Z0(β̂). Suppose that theith strand ofη goes fromQi (corresponding toCj,u) to Qi′

(corresponding toCj′,u′ ). Henceη sendsCj to Cj′ , and sinceη ∈ Z0(β̂), it follows that
β[j] = β[j′]. One also has, by definition,L(ηξ, i) = L(η, i) + L(ξ, i′). Therefore(ηξ)j,u =
(β[j])L(ηξ,i) = (β[j])L(η,i)(β[j])L(ξ,i′) = ηj,uξj′,u′ , soh is a homomorphism.

We must finally show that, with this definition,h(η) ∈ Z(β), for everyη ∈ Z0(β̂). We will
define first some special braids. For everyi, j ∈ {1, . . . , d} such thati < j andβ[i] = β[j], define
the symmetric braidSi,j = Sj,i = θ∗r (σi · · ·σj−2σj−1σj−2 · · ·σi) (see Fig. 3 in Section 3 t
recall the definition ofθ∗r , and Fig. 9 here for an example). The braidSi,j commutes witĥβ (since
it is symmetric), and it permutes the orbitsCi andCj , preserving the others. HenceSi,j ∈Z0(β̂).

Fig. 9. The braidS1,3, for β̂ = δ6 ∈ B15 (assuming thatβ[1] = β[3]).
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Moreover, its strands do not crossL, so by definition ofh one hash(Si,j) = ψ(Si,j) (the interior
braids are trivial).

But h(Si,j) commutes withβ, since the only tubes it permutes are those of the orbitsCi and
their

s.

l

Cj ; among these tubes, the only two with non-trivial interior braids are exchanged, and
corresponding interior braids are equal (β[i] = β[j]). Hence the interior braids ofβ are preserved
by ψ(Si,j) = h(Si,j), soh(Si,j) ∈ Z(β).

Take then an arbitraryη ∈ Z0(β̂). We must show thath(η) ∈ Z(β). Suppose thatη sends
Ci to Cj for somei, j. Thenβ[i] = β[j], so Si,j is defined, and the braidηSi,j preserves the
orbit Ci. We can continue this way, until we obtain a braidηSi1,j1 · · ·Sik,jk

that commutes with
β̂ and preserves every orbitCi, for i = 1, . . . , d. Sinceh(Si,j) ∈ Z(β) for everyi, j, andh is a
homomorphism, in order to show thath(η) ∈ Z(β) it suffices to show thath(ηSi1,j1 · · ·Sik,jk

) ∈
Z(β). Therefore, we can suppose thatη preserves every orbitCi.

Denoteα = h(η). We need to show that the interior braids ofα−1βα coincide with those ofβ.
Sinceη preserves all orbits, we will consider just the tubes ofC1, the other ones being analogou
Suppose thatα sends the circleC1,u to C1,r . Then it must sendC1,v to C1,v−u for everyv (the
indices are taken modulor).

We will identify the pointsQ1, . . . ,Qm with their corresponding circlesCi,v . For everyv =
1, . . . , r, let bv be the strand ofη starting atC1,v . Sinceη is symmetric, we haveφ(bv) = bv+1.
Suppose thatbv crossest times the segmentLi, wherei ∈ {0, . . . , r− 1}. Thenbv+1 will crosst
times the segmentφ(Li) = Li+1. Therefore, ifbv crossesl timesL, and if it crossesl0 timesL0

andle timesLe, thenbv+1 crossesl− le + l0 timesL.
If v 
= r andv 
= u, thenbv neither starts nor ends atC1,r . Then it crossesL0 andLe the same

number of times. Hence,bv and bv+1 crossL the same number of times, sayl. Therefore, if
v 
= r, u, one has

(α−1βα)1,v−u = (α1,v)−1β1,vα1,v+1 = β−l
[1]1βl

[1] = 1 = β1,v−u.

If u = v = r, thenbv starts at ends atC1,r . Hence, as above, it crossesL0 andLe the same
number of times, sobv = br andbv+1 = b1 crossL the same number of times, sayl. We then
have(α−1βα)1,v−u = (α−1βα)1,r = (α1,r)−1β1,rα1,1 = β−l

[1]β[1]β
l
[1] = β[1] = β1,r = β1,v−u.

Hence, ifu = r, we have already seen all the possible cases. We will then suppose thatu 
= r.
If v = r, thenbv starts (but does not end) atC1,r . Hence, it crossesLe one more time (in the

positive sense) than it crossesL0. Therefore, ifbv = br crossesl timesL, thenbv+1 = b1 crosses
it l − 1 times. One has:

(α−1βα)1,v−u = (α−1βα)1,r−u = (α1,r)−1β1,rα1,1 = β−l
[1]β[1]β

l−1
[1] = 1 = β1,r−u = β1,v−u.

Finally, if v = u thenbv ends (but does not start) atC1,r . In this case, it crossesLe one less time
(in the positive sense) than it crossesL0. Hence, ifbv = bu crossesl timesL, thenbv+1 = bu+1

crosses itl + 1 times. One then has:

(α−1βα)1,v−u = (α−1βα)1,r = (α1,u)−1β1,uα1,u+1 = β−l
[1]1βl+1

[1] = β[1] = β1,r = β1,v−u.

Therefore, in every possible case we have(α−1βα)1,v−u = β1,v−u, for everyv. This means
that the interior braids of(α−1βα) and ofβ coincide, that is,α = h(η) commutes withβ, as we
wanted to show.

This completes the proof of Proposition 5.12 in the caseβ̂ = δk
(m), and it only remains to dea

with the case when̂β = γk
(m). As above, we can suppose thatk is not a multiple ofm− 1, since
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in that casêβ would be pure, and this case has already been treated in Proposition 5.11. Hence,
the only fixed point in the permutation induced byβ̂ is the origin. Therefore, everyη commuting
with β̂ must fix the origin. This means that, for everyη ∈Z0(β̂), we can fill its central tube with
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the trivial braid, and the other tubes in the same way as above (definingL, and counting the
number of times each strand crossesL). This defines a homomorphismh :Z0(β̂) →Z(β) which
is a section ofp. The proof is the same as above.�

It remains to study the case whenβ̂ is pseudo-Anosov.

PROPOSITION 5.13. – If β̂ is pseudo-Anosov, then there is a homomorphism

h :Z0(β̂) →Z(β)

such thatp ◦ h = 1.

Proof. –In this case, we know thatZ(β̂) is a free abelian group of rank2, generated by
pseudo-Anosov and a periodic braid. Hence,Z0(β̂) is an abelian group of rank one or tw
Notice that∆2

(m) ∈ Z0(β̂), because this braid commutes witĥβ and becauseπ∆2 is trivial,

and thus consistent withβ. HenceZ0(β̂) contains at least one periodic element. On the o
hand,β̂ belongs itself toZ0(β̂), sinceπβ̂ is clearly consistent withβ. Hence inZ0(β̂) there
are also pseudo-Anosov braids. Since all powers of a periodic braid are periodic, and all
of a pseudo-Anosov braid are pseudo-Anosov, it follows thatZ0(β̂) has in fact rank two. More
precisely,Z0(β̂) = 〈η〉× 〈ρ〉, whereη is pseudo-Anosov andρ is periodic. In particular, we hav
β̂ ∈ 〈η〉 × 〈ρ〉, and the three braidŝβ, η andρ are mutually commuting.

Our aim is to define two commuting braidsh(ρ) andh(η) in Z(β) which are preimages ofρ
respectivelyη underp. The definition ofh(ρ) is very simple: we take an arbitrary preimage oρ
underp – this is possible sincep is surjective by Proposition 5.9. It remains to constructh(η).

LEMMA 5.14. – Supposeα ∈ BR(β), that is, the braidα preserves the set of outermost curv
in the canonical reduction system ofβ. Suppose also thatµ, ν ∈Z(α̂). Suppose thatιµ ∈ BR(β)

is a braid with trivial tubes(i.e. ι̂µ = 1) such thatψ(µ) · ιµ ∈ Z(α). Finally, suppose thatµ and
ν induce the same permutation. Then we have as well thatψ(ν) · ιµ ∈Z(α).

In other words, if two tubular braids commute witĥα, if they induce the same permutatio
and if some “filling” of one of them commutes even withα, then the same filling of the othe
will also commute withα.

Proof of Lemma 5.14. –Conjugatingα by ψ(ν) · ιµ ∈ Z(α) yields a certain braidα′; we
have to check thatα′ = α. Firstly, we have an equality of tubular braidsα̂′ = α̂, becauseν,
the tubular braid ofψ(ν) · ιµ, commutes withα̂. Moreover, sinceµ and ν induce the sam
permutations, we have fori = 1, . . . ,m that theith tube ofα′ contains the same braid as theith
tube of(ψ(µ) · ιµ)−1 ·α · (ψ(µ) · ιµ). Sinceψ(µ) · ιµ commutes withα, this is in turn the sam
as theith tube ofα. In summary,α andα′ have the same tubular braids, and corresponding t
contain the same interior braids, which implies thatα = α′. �

Next we have to think in detail about the orbit structure ofβ̂. Let us choose arbitrarily
punctureP of the diskDm (on whichβ̂ acts), and letO(β̂, ρ) be the orbit of that puncture und
the action of the subgroup〈β̂〉 × 〈ρ〉 of Z0(β̂). Let O(β̂, ρ, η) be the orbit ofP under the action
of the group〈ρ〉 × 〈η〉 (note that this group is also isomorphic toZ2, and containŝβ).

We are going to suppose without loss of generality thatO(β̂, ρ, η) containsall punctures of
Dm, and we shall specify how the tubes ofη corresponding to this orbit shall be filled – indee
if there are other orbits, then these can be treated in same way, independently.
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Special case: Let us start by considering the simpler special case thatO(β̂, ρ, η) = O(β̂, ρ),
i.e. that the action ofη preserves the(β̂, ρ)-orbit. In this case we have
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LEMMA 5.15. – There exist integersk and l such thatη and β̂k · ρl induce the sam
permutations onO(β̂, ρ).

Proof of Lemma 5.15. –One can choosek andl such thatβ̂kρl(P ) = η(P ), simply because
η(P ) is in the orbit ofP under the action of̂β andρ. Now if P ′ is another point in the orbi
then P ′ = β̂κρλ(P ) for someκ,λ ∈ Z. Since β̂, ρ, and η are mutually commuting, we ge
β̂kρl(P ′) = β̂kρl(β̂κρλ(P )) = β̂κρλ(β̂kρl(P )) = β̂κρλ(η(P )) = η(β̂κρλ(P )) = η(P ′). �

We already know a nice preimage ofβ̂k · ρl underp: the braidβk · h(ρ)l belongs toZ(β),
because bothβ andh(ρ) do. This braid can be reexpressed asψ(β̂kρl) ·ι, whereι is some braid in
BR(β) with ι̂ = 1. (That is, we defineι to consist of the interior braids of the tubes ofβk ·h(ρ)l).

Now we define our filling ofη by h(η) := ψ(η) · ι. By Lemma 5.14 we have that inde
ψ(η) · ι ∈ Z(β). In order to see thatψ(η) · ι lies also in the centralizer ofh(ρ) one can use a ver
similar argument. Explicitly, bothη andβ̂kρl lie in the centralizer ofρ, and they induce the sam
permutation of the punctures. Moreover,ψ(β̂kρl) · ι = βkh(ρ)l ∈ Z(h(ρ)). By Lemma 5.14 we
conclude again thatψ(η) · ι∈ Z(h(ρ)), also.

General case: In the case whereη does not preserveO(β̂, ρ), the strategy is to work not wit
β itself but with a certain conjugate ofβ. The details are as follows. We have a finite numbe
disjoint(β̂, ρ)-orbits inO(β̂, ρ, η), and sinceη commutes witĥβ andρ, the action ofη permutes
these orbits cyclically:

O(β̂, ρ) η-action−−−−−→ η(O(β̂, ρ)) η-action−−−−−→ · · · η-action−−−−−→ ηs(O(β̂, ρ)) = O(β̂, ρ).

Let us denotêβ∗, ρ∗ andηs
∗ the braids which are obtained from̂β, ρ andηs by retaining only the

strands corresponding toO(β̂, ρ), and forgetting the strands corresponding to all other(β̂, ρ)-
orbits. Similarly, letβ∗ be the corresponding restriction ofβ. Our first aim is to fill the tubes o
ρ∗ andηs

∗ so as to obtain commuting braids inZ(β∗). This can be done as in the “special cas
for ρ∗ we choose any filling inZ(β∗), and forηs

∗ there exists a braidι∗ with trivial tubes such
thatψ(ηs

∗) · ι∗ commutes withβ∗ and the filling ofρ∗.
We have succeeded in finding a filling of certain tubes ofηs, but not yet ofη itself. Also,

we have so far only filled the tubes ofρ which correspond toO(β̂, ρ), but not yet those in th
η-translates of this orbit. We first notice that theη-action sendŝβ-orbits toβ̂-orbits, and that in
eachβ̂-orbit there is exactly one tube whose preimage inβ contains a nontrivial braid (the sam
for all β̂-orbits), and all other tubes are filled with a trivial braid. Thus, up to cyclically chan
the numbering of the orbits of each tube ofβ̂, we may assume that theη-action sends each tub
of β̂ in O(β̂, ρ) to a tube ofβ̂ in η(O(β̂, ρ)) which is filled with the nontrivial braid if and onl
if the tube ofO(β̂, ρ) is. Similarly, fori = 1, . . . , s− 1 we may assume thatηi sends eacĥβ-tube
in O(β̂, ρ) to a β̂-tube inηi(O(β̂, ρ)) which has the same filling inβ.

Now we can use the same property as a construction recipe forh(ρ): a tube ofρ in ηi(O(β̂, ρ))
(wherei = 1, . . . , s) is filled in the same way as its preimage underηi. With this definition,h(ρ)
commutes withβ. Finally we are ready to defineh(η): we take the braidψ(η), but modify the
braids in the tubes that terminate at positions corresponding toO(β̂, ρ) by multiplying them on
the right byι∗. In other words, the braidh(η) is obtained fromη as follows: we fill those tube
of η which connect points inηi(O(β̂, ρ)) to points inηi+1(O(β̂, ρ)) (with i = 0, . . . , s− 2) with
the trivial braid, and we fill the tubes that start inηs−1(O(β̂, ρ)) and terminate inO(β̂, ρ) with
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the interior braids ofι∗. By construction, this braidh(η) commutes with bothβ andh(ρ). This
concludes the proofof Proposition 5.13. �
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COROLLARY 5.16. –Suppose thatβ is a non-periodic reducible braid in regular form. The
the exact sequence

1 −→Z(β[1])× · · · ×Z(β[t])
g−→ Z(β) p−→Z0(β̂)−→ 1

splits. That is,Z(β) ∼= (Z(β[1])× · · · ×Z(β[t])) � Z0(β̂).

Proof. –Since β̂ cannot be reducible, the result isa direct consequence of Propo
tions 5.11, 5.12 and 5.13.�
5.4. Structure ofZ0(β̂)

The proof of Theorem 1.1 is now completed by the following result.

PROPOSITION 5.17. – Suppose thatβ is a non-periodic reducible braid, and that its tubul
braid β̂ hasm strands. ThenZ0(β̂) is isomorphic either toZ2 or to a mixed braid group onk
strands, wherek � m.

Proof. –As usual, there are three subcases, depending whetherβ̂ is trivial, periodic or pseudo
Anosov. Recall that we are assuming thatβ is in regular form.

Suppose first that̂β = 1. In this case,Z(β̂) = Bm. HenceZ0(β̂) contains any braid whos
permutation is consistent withβ. Denote byP the following partition of{P1, . . . , Pm} =
{C1,1, . . . ,Cm,1}: we say thatPi andPj belong to the same coset ofP if and only if β[i] = β[j].
By definition, a braid’s permutation is consistent withβ if and only if it preservesP . Therefore,
Z0(β̂) = BP , and we are done. (In this case, we havek = m.)

If β̂ is pseudo-Anosov, it is shown in proposition 5.13 thatZ0(β̂) � Z2, so this case is alread
known.

Finally, suppose that̂β is periodic. If it is a power of∆2, then its centralizer is the wholeBm,
and its corresponding permutation is trivial, so this case is equivalent to the first one.

If β̂ is periodic but not a power of∆2, then we know by Theorems 3.2 and 3.4 t
Z(β̂) � Bd(D∗), for somed � 1, whereD∗ is the once punctured disk. But every base p
Qi in D∗ corresponds to an orbitCi of β̂ (see Fig. 2 in Section 3), so we can define the follow
partitionP ′ of {Q1, . . . ,Qd}: Qi andQj belong to the same coset if and only ifβ[i] = β[j].
This partition lifts byθ−1 to a partition of{P1, . . . , Pm}, in such a way that any braid inBd(D∗)
preservesP ′ if and only if its corresponding permutation inZ(β̂) is consistent withβ. Therefore,
Z0(β̂) � BP′(D∗). Now it suffices to consider the central puncture ofD∗ as another base poin
Qd+1, and to notice thatBP′(D∗) ∼= BP , whereP = P ′ ∪ {{Qd+1}}. To summarize, in this
case we haveZ0(β̂) ∼= BP′(D∗) ∼= BP , and the partitionP hask = d + 1 cosets. Sinced must
be a proper divisor ofm, we get thatk = d + 1 < m, and the result follows. �

In particular,Z0(β̂) is isomorphic either toZ2 or to a mixed braid group. Theorem 1.1 is th
proven.

6. An upper bound for the number of generators

Once decomposedZ(β), if β is reducible, as a semi-direct product of(Z(β[1])×· · ·×Z(β[t]))
and Z0(β̂) ⊂ Z(β̂), we will define a small set of generators forZ(β). We will proceed by
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induction on the number of strings, but we need to define first a generating set forZ0(β̂). We do
it as follows:
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PROPOSITION 6.1. – Let β ∈ Bn be a non-periodic reducible braid, and let̂β ∈ Bm be its
corresponding tubular braid. ThenZ0(β̂) can be generated by at mostm(m−1)

2 elements.

Proof. –If m = 2 thenZ0(β̂) is cyclic, so let us assume thatm � 3. We know by Section 5.4
thatZ0(β̂) is either isomorphic toZ2 or to a mixed braid group. The caseZ2 satisfies our result
so we will assume thatZ0(β̂) is isomorphic to a mixed braid group onk strings.

Mixed braid groups have been studied in [27], where a presentation in terms of generat
relations is given. Since we are mainly interested in the generators, we will extract from
in [27] a small generating set: LetP be a partition of the set{1, . . . , k}, havingd cosets of length
mi (for i = 1, . . . , d). A generating set forBP is given by the following:

1. Fori = 1, . . . , d, a generating set forBmi (if mi > 1).
2. A generating set for the pure braid groupPd.

It is clear that the first kind of generators corresponds to the movements of the points in
coset, while the second one corresponds to the movement of the points of a coset with
to those of the others. For instance, ifk = 6 andP = {{1},{2,3},{4,5,6}}, then one possibl
generating set would be:

{σ2} ∪ {σ4, σ5} ∪ {σ2
1 , σ1σ2σ

2
3σ−1

2 σ−1
1 , σ2

3}.

In order to minimise these generators we recall thatB2 is cyclic and, ifm > 2, thenBm can be
generated by two elements. Hence, if we denoteei = mi − 1 if mi < 3 andei = 2 otherwise,
thenei is a minimal number of generators forBmi . On the other hand, a minimal number
generators forPd is d(d−1)

2 . Therefore, the minimal number of generators forBP is:

gP =

(
d∑

i=1

ei

)
+

d(d− 1)
2

�
(

d∑
i=1

(mi − 1)

)
+

d(d− 1)
2

= k − d +
d(d− 1)

2
= k +

d(d− 3)
2

� k +
k(k − 3)

2
=

k(k − 1)
2

.

Notice that ifP = {{1},{2}, . . . ,{k}} (so d = k), then gP = k(k−1)
2 , and this is the wors

possibility by the above formula.
Finally we recall from Proposition 5.17 thatk � m, so thatgP � m(m−1)

2 . �
The first generating setG′ of Z(β) that we will present is the following: ifβ is periodic or

pseudo-Anosov, we have already defined in Sections 3 and 4 a minimal generating set oZ(β),
having one or two elements. So suppose thatβ is reducible. Then, by induction on the numb
of strings, and by proposition 6.1, we can suppose that we have definedG1, . . . ,Gt and G0,
generating sets forZ(β[1]), . . . ,Z(β[t]) andZ0(β̂) respectively (if someβ[i] has one string, the
Gi = ∅). Then we defineG′ = g1(G1)∪ · · · ∪ gt(Gt) ∪ h(G0), which is clearly a generating s
for Z(β).

Proof of Theorem 1.3. –Denotep(n) the upper bound proposed in Theorem 1.3, tha
p(n) = k(k+1)

2 if n = 2k or p(n) = k(k+3)
2 if n = 2k + 1. We will show that the generatin

setG′ defined above has at mostp(n) elements. The casen = 2 is trivial, so we can suppose th
n > 2 and that the result is true for any smaller number of strings. We can also assume thβ is
non-periodic and reducible.
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The strategy now is to successively replaceβ by different braids, in such a way that during each
replacement step the number of generators of its centralizer, as given by the above construction,
increases.
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The first modification ofβ will be to replace the tubular braid̂β by the trivial braid. At the
same time, we shall modify the interior braids, with the aim of rendering them pairwise
conjugate. More precisely, we notice that, for any braidα with at least two strings, the numb
of generators ofZ(α) andZ(∆2pα) is the same, while∆2pα and∆2qα are conjugate if and
only if p = q. Thus after multiplying each interior braidβ[i] by a suitable power of twists∆2

(mi)
,

we can assume that all the interior braids with at least two strings are pairwise non-conjug
that t = m. As seen in the proof of Proposition 6.1, this first replacement has increased (or
unchanged) the number of generators ofG0, according to our construction.

Suppose, without loss of generality, thatm1 = m2 = · · · = md = 1, that mi = 2si for
i = d+1, . . . , d+u, and thatmi = 2si +1, for i = d+u+1, . . . , d+u+v, whered+u+v = m.
Henceu is the number of interior braids with an even number of strings, andv is the number
of interior braids with an odd (but greater than one) number of strings. Ifd � 2, then we shal
make further modifications to the braidβ, with the aim of loweringd. More precisely, ifd � 2,
then we can decreased by multiplyingβ by σp

1 for somep, wherep is chosen in such a way th
no other interior braid ofβ equalsσp

1 . This replacement increasesu by one, and decreasesd by
two. Thus the number of generators inG0 decreases by one (ifd = 2) or increases (ifd > 2). But
we would have a new interior braid,σp

1 , yielding one new generator. Hence, the total numbe
elements in|G′| will not decrease. In other words, without decreasing the number of eleme
|G′| we can replaceβ by a braid withd � 1.

Denotea = sd+1 + · · · + sd+u, b = sd+u+1 + · · · + sm and S = a + b. Then one ha
n = d + 2S + v. By induction on the number of strings, we have the following bound on
number of elements inG′:

|G′|�
m∑

i=d+1

p(mi) +
m(m− 1)

2

=
d+u∑

i=d+1

si(si + 1)
2

+
m∑

i=d+u+1

si(si + 3)
2

+
(

m
2

)

=
m∑

i=d+1

(
si + 1

2

)
+

m∑
i=d+u+1

si +
(

m
2

)

=
m∑

i=d+1

(
si + 1

2

)
+ b +

(
m
2

)

wheresi � 1 for i = d + 1, . . . ,m.
Given two positive integersx andy, one has:(

x + 1
2

)
+

(
y + 1

2

)
=

(
x + y + 1

2

)
− xy.

This yields:

|G′|�
(

S + 1
2

)
−

( ∑
d+1�i<j�m

sisj

)
+ b +

(
m
2

)
.

Now we distinguish two cases. Ifd = 0, thenm = u + v andn = 2S + v. Also,

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



750 J. GONZÁLEZ-MENESES AND B. WIEST

|G′|�
(

S + 1
2

)
−

( ∑
1�i<j�m

sisj

)
+ b +

(
m
2

)
( ) ( ) ( )

zer
1.3
� S + 1
2 − m

2 + b + m
2 =

S(S + 1)
2

+ b.

If v = 0 one hasb = 0, so S = a and |G′| � S(S+1)
2 = a(a+1)

2 ; but alson = 2k = 2a, so

p(n) = a(a+1)
2 and we are done.

If v = 1 thenn = 2S + 1, hencek = S andp(n) = S(S+3)
2 . But in this case

|G′|� S(S + 1)
2

+ b � S(S + 1)
2

+ S =
S(S + 3)

2
= p(n).

If v � 2, sincen = 2S + v one hask � S + 1. Then

|G′| � S(S + 1)
2

+ b <
S(S + 1)

2
+ (S + 1) =

(S + 2)(S + 1)
2

� k(k + 1)
2

� p(n).

Therefore, the result is true ifd = 0. Suppose now thatd = 1. In this casem = u + v + 1 and
n = 2S + v + 1. Then one has:

|G′|�
(

S + 1
2

)
−

( ∑
2�i<j�m

sisj

)
+ b +

(
m
2

)

�
(

S + 1
2

)
−

(
m− 1

2

)
+ b +

(
m
2

)
=

S(S + 1)
2

+ b + m− 1 =
S(S + 1)

2
+ b + u + v

� S(S + 1)
2

+ S + v =
S(S + 3)

2
+ v.

If v = 0 thenb = 0 andk = S, so|G′|� S(S+3)
2 = p(n).

If v = 1 thenn = 2S + 2 andk = S + 1. Then

|G′|� S(S + 3)
2

+ 1 =
(S + 1)(S + 2)

2
= p(n).

If v = 2 thenn = 2S + 3 andk = S + 1. Then

|G′| � S(S + 3)
2

+ 2 =
S2 + 3S + 4

2
<

(S + 1)(S + 4)
2

= p(n).

Finally, if v � 3 thenn = 2S + v + 1 sok � S + v/2. Hence

p(n) � (S + v/2)(S + v/2 + 1)
2

=
S2 + (v + 1)S + v(v + 2)/4

2

� S(S + 3)
2

+ S/2 + v/2 >
S(S + 3)

2
+ v � |G′|.

Therefore, in every case|G′|� p(n), and Theorem 1.3 is proved.�
Recall that, in Example 2.1, we defined braids of any number of strands whose centrali

could not be generated by less thanp(n) elements. Therefore, the bound given by Theorem
is the best possible one.
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7. Small generating sets

We saw in the previous section an upper bound for the number of generators of the centralizer
ore
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t

1,
of a braidβ, in terms of its number of strings. But one could obtain a better bound if m
information aboutβ is given. In this section we will define a new generating setG for Z(β),
which is in most cases smaller than the setG′ defined before. It is also the smallest poss
“natural” generating set, in the sense that each generator belongs to one of thet + 1 factors in
the semidirect product decomposition in Theorem 1.1(c). Thus in a philosophical sense,G is the
“right” generating set, even though it is not in general the smallest possible one, as we s
at the end of this section.

If β is periodic or pseudo-Anosov, we already know a minimal generating set, with at
two elements. We also know a minimal generating set for any mixed braid group (see the
of Proposition 6.1). Hence we can defineG by induction on the number of strands, whenβ is a
reducible, non-periodic braid. We can also suppose thatβ is in regular form. We recall that th
interior braids are denotedβ[1], . . . , β[t], and the tubular braid̂β.

DEFINITION 7.1. – We will say thati, j ∈ {1, . . . , t} are permutableif there exists some
η ∈ Z0(β̂) such thatη(Ci) = Cj .

Remark that permutability is an equivalence relation, and the definition ofZ0(β̂) says that ifi
andj are permutable thenβ[i] = β[j].

Let then{i1, . . . , ir} ⊂ {1, . . . , t} be coset representatives for permutability. LetGik
be a

minimal set of generators forZ(β[ik]), andG0 be a minimal set of generators forZ0(β̂). Then
we defineG = gi1(Gi1 )∪ · · · ∪ gir (Gir )∪ h(GH). Notice thatG ⊂G′, and they coincide if an
only if there is no pair of permutable indices.

PROPOSITION 7.2. –G is a generating set ofZ(β).

Proof. –From the exact sequence of Theorem 5.10 it follows that, ifGi is a set of generator
for Z(β[i]), then a set of generators forZ(β) is G′ = g1(G1)∪ · · · ∪ gt(Gt)∪ h(G0). Hence, we
just need to show that ifj ∈ {1, . . . , t}\{i1, . . . , ir}, then every element ingj(Gj) can be written
as a product of elements inG.

Take thenj as above. There must be someik permutable withj, so β[j] = β[ik] and

there is someη ∈ Z0(β̂) such thatη(Cik
) = Cj . Notice thatGj is a set of generators fo

Z(β[j]) = Z(β[ik]), so everyγ ∈ Gj can be written as a product of elements inGik
. Hence

the braidα = h(η)−1gik
(γ)h(η) can be written as a product of elements inG. Moreover, one

hasα̂ = ĥ(η)
−1

1ĥ(η) = 1, and the only nontrivial interior braids inα are those corresponding
Cj . Since the interior braidsh(η)ik,l for everyl are just powers ofβ[ik] = β[j], andγ commutes
with β[j], it follows that for everyl, αj,l = γ. Thereforeα = gj(γ), so every element ingj(Gj)
can be written as a product of elements inG, thusG is a generating set forZ(β). �

The generating set we have just defined is, unfortunately, not always the smallest possi

Example7.3. – Consider the five string braidβ = σ3σ4σ2σ3σ1σ2σ2σ3σ4σ1σ2σ3 – the
canonical reduction system of this braid has two round circles, one containing punctures num
1, 2 and3, the other punctures number4 and5; the tubular braid is just a full twist of the two fa
strings:β̂ = σ2

1 . Moreover, the interior braids of each tube are trivial. According to Theorem 1.
the centralizer of this braid is

Z(β) ∼= (B3 ×B2) � PB2
∼= (B3 ×Z) � Z
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and the generating set constructed in this section has four elements: two forB3, and one for each
factorZ. We now claim that this generating set is not as small as possible.

Indeed,B3 × Z can be generated by only two elements (and thusZ(β) can be generated
up

or any
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by three elements). To see this, recall that the3-string braid group is isomorphic to the gro
of the (2,3)-torus knot. ThusB3 has a presentation〈y, z | y3z−2 = 1〉 (with y = σ1σ2 and
z = σ1σ2σ1). Moreover, the factorZ is generated byσ4. Now the two generators(y, σ4) and
(z, σ4) generateB3 ×Z, because(1, σ4) can be written as(y, σ4)3(z, σ4)−2.

8. Some algorithmic aspects

The aim of this section is to present the essential ingredients for an algorithm which, f
given braid, finds a generating set of its centralizer subgroup that matches the descriptio
previous sections. Since, for any braidβ and anyk ∈ Z, the centralizer subgroups ofβ andβ∆2k

coincide, we can always assume thatβ is positive.
We start by mentioning that algorithms that perform the Nielsen–Thurston classific

and give the invariant folitations in the pseudo-Anosov case (in the form of train tracks), a
available – notably, there are Bestvina–Haendel’s [5] and of Los’ [25] algorithms; and com
implementations are available on the web [9,20].

We recall briefly the idea of the two automatic structures on braid groups that are relev
for us: for the first one, given by Garside [18] and Thurston [34] (and refined by El-Rifa
Morton [13]), we think ofDn has having then punctures lined up on the real line in the diskD.
For the second one, given by Birman, Ko, and Lee [7], we think ofBn as having then punctures
regularly spaced on the circle of radius1. Apart from that, the structures are exactly analogue
the Garside–Thurston structure, there is a canonical way to writeβ as a product of divisors of∆,
namely by pushing each crossing between two strings into a factor as far to the left as possib
This normal form is called theleft greedy normal form. For instance, in this normal form a
factors which areequalto ∆ (not just divisors of it) are grouped together at the very left of
product decomposition. Analogously, Birman–Ko–Lee write each braid as a product of d
of δ in a left-greedy way. Ifβ is a positive braid, then itssuper summit setis the subset of al
elementsα of its conjugacy class which satisfy the following conditions:

(i) α is positive,
(ii) the writing of α in left greedy normal form has as few factors as possible amon

elements satisfying (i),
(iii) the writing of α in left greedy normal form has as many factors on the left as pos

equal to∆ (or δ), among all elements satisfying (i) and (ii).
Two positive elements ofBn are conjugate if and only if their super summit sets coinc
Givenβ ∈ Bn there is an algorithm, given in [16] (which is an improvement of the algori
in [13]), to compute its super summit set. It is as follows: first we repeatedlycycleβ (i.e. move
the first factor different from∆, respectivelyδ, to the end and calculate the left greedy fo
of the resulting braid), untilthis process runs into a loop. At this point we are guarantee
have achieved condition (ii) above. Then we repeatedlydecycle(i.e. move the last factor to th
front and calculate the left greedy form of theresulting braid) until we run into a loop. The
all elements of this loop belong to the super summit set. Afterwards, all other elements
super summit set can be found recursively by conjugating already known elements by (su
divisors of∆ (respectivelyδ), and retaining the result if it belongs to the super summit set.

This algorithm for computing the super summit set is necessary for our purposes. Now s
we are given a braidβ ∈ Bn and we want to compute its centralizer. First we need to deter
if β is periodic, reducible or pseudo-Anosov, and then we can use the results in this pape
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Remark8.1. – Very recently, V. Gebhardt [19] presented a better algorithm for the conjugacy
problem in braid groups. He defined theultra summit set, which is in general much smaller than
the super summit set described here.
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8.1. Periodic elements

Deciding whether a given elementβ of Bn is periodic is very easy: one calculates the(n−1)st
and thenth power ofβ. Thenβ is periodic if and only if one of the two results is a power of∆2.

If βn−1 = ∆2k for somek ∈ N, thenβ is conjugate toγk
(n) (as can be easily seen fro

Lemma 3.1), and a conjugating element can be found explicitly using either of the two sta
algorithms. Similarly, ifβn = ∆2k, thenβ is conjugate toδk

(n), and either algorithm yield
an explicit conjugating element. In either case, one can find explicitly a generating set
centralizer subgroup with only two elements, using Propositions 3.3 or 3.5.

8.2. Finding reducing curves of reducible elements

After establishing that an elementβ of Bn is not periodic, we need to check whether it
reducible, and if it is, we want to find explicitly an invariant multicurve. This is, in fact, a stan
part of Bestvina–Haendel’s [5] and of Los’ [25] algorithms.

We want to point out one particularly elegant alternative, which is due to Benardete, Gu
and Nitecki [3] (see also [2]). We think ofDn as having then punctures lined up horizontall
and we look at Garside–Thurston’s left greedy normal form. The key observation from [3]
following: suppose thatC is an invariant multicurve of a braidβ, and that the normal form
of β is β = β1 · · ·βk, whereβ1, . . . , βk ∈ Bn are divisors of∆. Moreover, suppose that a
components ofC are round (i.e. actual geometric circles inDn). Then we have not only tha
β1 · · ·βn(C) = C, but also that all components of all the multicurvesβ1 · · ·βi(C) are round for
i = 1, . . . , k.

As remarked in [3] this implies as a corollary that invariant multicurves are visible as rou
curves in the super summit set ofβ, and in particular the reducibility of a braid is easily detecta
from the super summit set. To prove the corollary we note thatβ has a conjugate in which a
components of the curve systemC are round; moreover,β and its conjugate have the same su
summit set. Now cycling and decycling this conjugate does not change the fact that the
round invariant curve system, by the key observation above. At the end of the cycling/dec
procedure we have found elements of the super summit set which contain the desired
invariant curves.

Now it is shown in [3] how to determine if a given braid preserves a system of disjoint r
curves. And there is a finite number of these systems. Moreover, since for each elemen
super summit set we know how it can be conjugated to obtainβ, we can find explicitly all curve
that belong to a reduction system forβ. We can then easily determine, by its definition, wh
of these curves belong to the canonical reduction system ofβ. That is, we can compute th
canonical reduction system ofβ.

By the results in this paper,Z(β) is then a semi-direct product of two groups that can
computed by induction on the number of strings. Hence, it only remains to study the case
β is pseudo-Anosov.

8.3. Pseudo-Anosov elements: commutation withδk
(n)

Suppose that our braidβ fails the tests of periodicity and reducibility, hence it is known
be pseudo-Anosov. We need to check if it commutes with the periodic braid other than p
of ∆2.
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We shall think ofDn as having itsn punctures uniformly distributed over the circle of radius1,
and we consider Birman–Ko–Lee’s left-greedy normal form. We want to decide algorithmically
whetherβ is conjugate to a braidα with the property thatα commutes withδk

(n) for some
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positive integerk < n. If it is, we want to know the conjugating braid explicitly. The followin
result yields such an algorithm.

PROPOSITION 8.2. – Suppose that a pseudo-Anosov braidβ has a conjugate which commut
with δk

(n) for some integerk. Then there exists an elementα of the super summit set ofβ which
has the property thatα, and in fact every factor of the left greedy normal form ofα, commutes
with δk

(n).

Proof. –Let β′ be a conjugate ofβ which commutes withδk
(n). If β′ = β′

1 · . . . · β′
r is the left-

greedy normal form ofβ′, then each factorβ′
i is a divisor ofδ(n) which is 2πk

n -symmetric. This
follows from the fact that the very definition of the left-greedy normal form is completely rota
symmetric. More precisely, the fact that two consecutive factorsβ′

iβ
′
i+1 determine a left-greed

normal form is not modified by rotating them. Hence, the product(δ−k
(n)β

′
1δ

k
(n)) · · · (δ

−k
(n)β

′
rδ

k
(n)) is

in left-greedy normal form. Since this product equalsδ−k
(n)β

′δk
(n) = β′, whose left-greedy norma

form isβ′
1 · · ·β′

k, we obtain thatδ−1
(n)β

′
iδ(n) = β′

i, for i = 1, . . . , r.
Using the same argument inductively, we see that the cycling and decycling procedu

ever creates braids in left greedynormal form in which all factors are2πk
n -symmetric. �

Now we notice that it is very easy to decide if a given divisor ofδ (in the Birman–Ko–Lee
context) is invariant under a given rotation. Hence one can determine if a braid commute
an (explicitly computable) conjugate ofδk

(n) by looking at the elements of its super summit s

8.4. Pseudo-Anosov elements: commutation withγk
(n)

Now we want to determine if a given pseudo-Anosov braid commutes with a conjugate oγk
(n),

for a given positive integerk < n− 1. This is only possible if there is some indexi ∈ {1, . . . , n}
such thatβ preservesPi, as can be easily seen by looking at the corresponding permutatio

Call Pi = {{Pi},{P1, . . . , Pi−1, Pi+1, . . . , Pn}}, a partition of{P1, . . . , Pn}. Thenβ should
belong toBPi . There is a natural mapfi :BPi → Bn−1 which consists of forgetting theith
string. Notice that, if a braidα commutes withγk

(n) (whereP1 is considered to be the centr

point ofD(n)) thenf1(α) commutes withf1(γk
(n)) = δk

(n−1).
Hence we have a necessary condition that must be satisfied. Ifβ preserves a puncturePi, then

we conjugate it to someα that preservesP1, and we test whether a conjugate off1(α) commutes
with δk

(n−1) for somek < n− 1. If this does not happen, fori = 1, . . . , n, then no conjugate ofβ

commutes withγk
(n).

This necessary condition is of course not sufficient. A sufficient and testable condition
now given by the following result. Recall that, by Corollary 3.7, there is an isomorp
χ = (θ̄∗)−1θ∗ from Z(δk

(n−1)) to Z(γk
(n)), given by adding a trivial string at the centre ofDn−1.

Notice that, ifζ ∈Z(γk
(n)), thenχ(f1(ζ)) = ζ. Then one has:

PROPOSITION 8.3. –Suppose thatα ∈ Bn preservesP1, and α̃ = f1(α) commutes with
δk
(n−1). Then the following two statements are equivalent.

(i) α is conjugate to an elementζ of Bn which commutes withγk
(n), and the conjugating

homeomorphism preservesP1.
(ii) α is conjugate toχ(α̃).
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Proof. –The implication (ii)⇒ (i) is immediate, by choosingζ := χ(α̃).
For the implication (i)⇒(ii), we suppose that (i) holds, that is, there is an elementη ∈ BP1 such

thatη−1αη = ζ, whereζ ∈ Z(γk
(n)). We can applyf1 to all these elements, denotingη̃ = f1(η)

at
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andζ̃ = f1(ζ). This yields(η̃)−1α̃η̃ = ζ̃, whereα̃, ζ̃ ∈ Z(δk
(n−1)).

If we show that̃η ∈Z(δk
(n−1)), then we can applyχ to all factors, obtaining

χ(η̃)−1χ(α̃)χ(η̃) = χ(ζ̃) = ζ,

henceχ(α̃) is conjugate toζ which is conjugate toα, and the result follows.
Let us then show that̃η commutes withδk

(n−1). Notice thatζ is a pseudo-Anosov braid th

commutes withγk
(n). Hence it preserves a projective foliationFζ , which is invariant under a

rotation by an angle of2πk
n−1 . But in this casẽζ also preservesFζ , with the same stretch facto

hence it is also pseudo-Anosov. Sinceα̃ is conjugated tõζ, then it is pseudo-Anosov as well, a
we callFα̃ its corresponding projective foliation (which is also invariant under the same rot
sinceα̃ commutes withδk

(n−1)). Since(η̃)−1α̃η̃ = ζ̃, we have that̃η sendsFα̃ to Fζ .

Now consider the braidd = η̃−1δk
(n−1)η̃. It is conjugate toδk

(n−1), and hence periodic

Moreover, it preservesFζ , so it commutes with̃ζ . But the periodic elements in the centraliz
of ζ̃ form a cyclic group containingδk

(n−1), andδk
(n−1) is the only element having expone

sum(n − 2)k. Sinced has exactly the same exponent sum, it follows thatd = δk
(n−1). Henceη̃

commutes withδ(n−1), and the result follows. �
An algorithm for testing whether a braidβ is conjugate to a braid which commutes withγk

(n)

is now easy to construct: for each of then punctures test whether the puncture is fixed byβ, and
whether forgetting this puncture yields a braid which is conjugate to a braid̃α that commutes
with δk

(n). (We know how to do this, by the results of the previous subsection). For each pu
that does satisfy this property, test whetherχ(α̃) (which is obtained from̃α by adding a “trivial”
string in the centre), is conjugate toβ. If, for one of the punctures, this is the case, then
answer is “yes”, otherwise “no”.

8.5. Pseudo-Anosov elements: finding roots

It remains to describe a last step for computing a generating set forZ(β), when β is
pseudo-Anosov. We assume that we have already computed the subgroup〈ρ〉 of periodic braids
commuting withβ. Then we can multiplyβ by a suitable power ofρ, to obtain a braidb that
preserves the singular leaves of the projective foliations corresponding toβ. Then we know tha
Z(β) = 〈α〉 × 〈ρ〉, whereα is the smallest possible root ofb.

The last problem, therefore, is to determine whether a given pseudo-Anosov braidb has akth
root, for givenk, and to compute that root. This problem has been solved in [32] (gener
to all Garside groups in [31]). Moreover, since the number of possible values ofk is finite (we
are assuming thatb is positive), we have an algorithm for computingα, thus a generating se
for Z(β).
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