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THE GEODESIC HYPOTHESIS AND NON-TOPOLOGICAL
SOLITONS ON PSEUDO-RIEMANNIAN MANIFOLDS

By DaviD M.A. STUART

ABSTRACT. — A class of solitary wave solutions to a seliniear wave equation on a pseudo-Riemannian
manifold is studied. A construction of solutions which concentrate on geodesics is given.
0 2004 Elsevier SAS

RESUME. — On étudie des ondes solitaires pour I'équaties ondes non linéaires sur une variété pseudo-
riemannienne. On construit des solutions avec concentration sur une courbe géodésique.
0 2004 Elsevier SAS

1. Statement of results
1.1. Introduction

The paper discusses a class of solutiora-topological solitonsto the semi-linear wave
equationd,¢ + m?¢ = F(¢) whereg is a complex function ol = R'™" andO,, is the wave
operator onR'*" defined with respect to the pseudo-Riemannian metrin the flat case,
when g is the Minkowski metric, the non-topologicablitons are exact solutions of the form
et f,(|z|) with £, positive; they are stable for certaindepending upon the nonlinearity. The
action of the Lorentz group gives solutions in which these solitons move along straight lines. In
the presence of a non-flat metric it is proved that in the stable case under the regealiﬁg;,
for ¢ small, there exist solutions in which the solitons move along time-like geodesics, up to an
error which is controlled in the energy norm for finite time. This result provides a mathematical
justification of the geodesic hypothesis in geaaleelativity for non-topological solitons with a
given background metric. In a forthcoming article the analysis is extended to include the case in
which the metric evolves according to the Einstein equation.

Non-topological solitons.  To begin, we introduce a class of exact solutions to the semi-linear
wave equation, on flat Minkowski spabé = R'*", for a complex functioms: R' ™" — C,

W) o—Ap+m’p=TF(¢).
In the case wherF factors as

(1.1) F(¢)=8(4)o,  B:R—R, B0)=0
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GEODESICS AND SOLITARY WAVES 313

there is a special class of solitary wave type solutions, caltettopological solitonsof the
form

(1.2) o(t,x) =" fo(x)

where (for appropriate, 3) f., is the unique positive radial solution of

(1-3) _A.fw+(m2_w2)fw:ﬁ(fw)fw-

Existence results for non-topological solitons2lwere developed in [18,2,3]. Uniqueness of

the profile functionf,, has been proved for certain nonlinearities in [13], based on ideas in [5,
15] and others referenced therein. kgr< m? the functionf,, is exponentially decaying and

so the solutions (1.2) are spatially localised. This makes them an appropriate object of study for
a mathematical analysis of the geodesic hypothesis, i.e. the problem of motion for particles in
general relativity, as described in the next paragraph. In the Hamiltonian context solutions of the
type of (1.2), in which the time evolution is along an orbit of the action of the symmetry group,
are known as relative equilibria.

The geodesic hypothesis.  Action of the Lorentz group on (1.2) gives a family of solutions
to (W) representing solitons moving along straight lines- ut; see Section 1.5 for precise
formulae. The main motivation for this paper is to understand what happens to these solutions
when a pseudo-Riemannian metrids introduced ontdM. In this setting the equation (W)
generalises to B

(W) Dg6+m’6=F(9), F()=B(I9])o.

(See (1.11) for the explicit form oﬁg.) Under the rescaling — s—QQ the size of the soliton
scales td)(e), and itis in this limit that a reduced description is possible. The equation becomes:

s 2
(W) D40+ b= (06, F(6)=B(10])o.

2

Corresponding to this scaling of the metric it is natural to introduce scaled Sobolev and Lebesgue
normsH?! andL? by

. 2
(1.4) fult = [ Ju(e)] s

“n 2 _n 2
(1.5) [l :/(52 |Vou(z)]” + e "|u(z)]”) da.
)
The main aim of this paper is to prove the following (stated here somewhat heuristically):

Given a time-like geodesic there existt,. > 0 and initial values(¢(0),9;¢(0)) € H} x L?
such that fore sufficiently small¢, 0,¢) the solution to the corresponding Cauchy problem
for (W’zﬂ) is close in normC([0,t.]; H! x L?) to a non-topological soliton centred dn
The timet, > 0 is independent of ase — 0.

Precise statements of the results are given in Sections 1.3, 1.6 and 1.7. In physical terms the
meaning of the phrase “non-topological soliton centred'dis approximately as follows: in a

local co-ordinate system corresponding to the reference frame of an observer movin@ along
with the proper time taken as time-like co-ordinate, the solution looks like (1.2) to highest order
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(see Appendix A.11). A more precise formulation in mathematical terms is given in Section 1.3
using the co-ordinate system adapted to a figiaby space-like hypersurfaces. The difficulty of
the problem arises from the need to ohtestimates on a fixed time intenvl ¢.], uniform in

e, for solutions of the singular equatichhVEizﬂ) with initial data having singular behaviour as
¢ — 0. Under rescaling this becomes a question of obtaining large (finite) time stability estimates
for solutions in the presence of a slowly varying metric.

In general relativity the gravitational field is described by a pseudo-Riemannian meivic on

A study of soliton solutions ir(WEizE) thus corresponds to an investigation of the effect of a
fixed gravitational field on the soliton. Thel#on is strongly localised in space, and may be
thought of as “particle-like”. The expectation ttihe soliton moves along a time-like geodesic,
in the limit in which its size is small compared to scales over which the metric varies, is natural in
view of the principle of equivalence [26,14], and is sometimes known agabéesic hypothesis
Thus the results of this paper give a rigorous validation of this hypothesis for the case of a given
background metric (depending upon space and time).

So farg has been a fixed background metric, corresponding to the notion of an external, or
applied, gravitational field. In the general theory of relativity the metriicomes a dynamical
variable itself and evolves according to the Einstein equation: B

(16) Run(g) ~ 3R(0)g,

v = TMV(¢a2)-

HereR,,.(g) is the Ricci curvature of the metricand its traceR( ¢ ) is the scalar curvature. In
the rightsiaéﬂw is the stress-energy tensor; its predisen need not be given here. The Einstein
equation is to be solved in conjunction with f{¥/together they form a quasilinear system which
is essentially hyperbolic (modulo the usual provisgarding gauge invariance.) In this situation
it is to be expected that the geodesic hypothasisill valid as long as the amplitude of the soliton
is sufficiently small that its effect on the metga@an be treated perturbatively. (This assumption
is in addition to the one already introduced that ffize of the soliton is small compared to other
length scales in the problem.) Analogous results to those proved here for the Einstein-semi-linear
wave system comprising (% and (1.6) will be presented in [21]; see the announcement [24].
A more extended introduction to the problem is given in the announcement[22].

Stability. Relation to other work. Stability of solitary waves in Hamiltonian systems such
as (1.2) has been discussed in [16,17,7,8]. In particular explicit conditionsfonstability in
the radially symmetric case were given in [16,17] for the ¢@de|) = |¢|P~!. The articles [7,
8] present a very general framework for stability analysis of this type of solution in infinite
dimensional Hamiltonian systems. The present article extends techniques introduced in [23] to
treat stability for (1.2) in a modulational fagim, i.e. to compute explicitly how the various
parameters of the soliton evolve. This metlgides somewhat stronger stability results for the
flat space case than those obtained previously, and also generalises to allow a study of soliton-like
solutions in the pseudo-Riemannian case, as carried out in this paper. The principal new feature
in [23] is the use of symplectic structure tmderstand stability criteria at a linear level and to
study modulation theory on a symplectic submanifold rather than just on the group orbit (see
Section 1.5 for a discussion). A similar analysis for the corresponding solutions to the non-linear
Schrddinger equation was given in [28] at the linearised level. The nonlinear wave equation case
has additional complications arising in particular from the fact that the solutions (1.2) are only
stable forw lying in a certain interval (see (1.35)). In the linear analysis this stability criterion
arises from an interaction of the symplectic sture with the spectralralysis as described in
Section 1.5.
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GEODESICS AND SOLITARY WAVES 315

Apart from [20] the most closely related work to this appears to be [4,9] in which the motion
of solitons in the non-linear Schrédinger equation

2
ic0,b + %M —V(2)+ |¢|20p =0

is studied in the semi-classical linait— 0. It is shown that the classical limit, i.e. the Hamiltonian

flow determined by the Hamiltoniall = P?/2 + V (z), governs the soliton motion in this limit.

Much shorter proofs are possible in the nonlinear Schrédinger case: one reason for this appears
to be that the Galilean symmetry allows the estimates to be carried out in a frame in which the
soliton is at rest. This does not seem to work in the present relativistically invariant setting, as
the Lorentz transformations do not preserve theconstant hyperplanes or the Hamiltonian
formulation. Another complicating factor hereagcourse the presence of variable coefficients

in the principal term.

Organisation of the paper. The remainder of the article is arranged as follows: in
Section 1.2 conditions requiteon the background metric are introduced so that an initial
statement of the theorem can be given (Theorem 1.1). Further discussion of the stability
properties of non-topological solitons is given iacions 1.4-1.7 before giving a more general
statement valid for a larger class of nonlinearities in the main theorem (Theorem 1.7) which is
proved in Section 2. In fact the main theorem refers to a rescaled problem in which the soliton is
“blown-up”to have size 00(1); the statement needs to be rescaled to give a result which implies
Theorem 1.1, and this is finally done in Section 3. Some notation is summarised in Section 1.8
while various technical facts, formulaednalculations are given in the appendices.

1.2. Assumptionson themetric

Assume that the space-tiniil, g) is diffeomorphic to0, ¢y] x R™ and admits a foliation into
space-like hypersurfaces which are the level sets of a time function

(1.7) M~[0,t] x 2, Y~R", %, ={t}xT=t"1t),

where~ means “is diffeomorphic to”. It is assumed that there exists a co-ordinate system,
(% =t,2',...,2"), which will be fixed throughout this article, in which the metgicon M
is of the form

(1.8) g dztdz¥ =—p?dt® + g;; dat da’ .
Zpv J

Herep:M — R is called thelapsefunction, whileg;;(¢, x) is the metric induced o, from
g. Latin indices run froml,...,n and label the space-like co-ordinate functiatls..., 2"
while Greek indices run from to n and label space-time co-ordinates. As usual the induced
inner product on the cotangent spacépfis represented by the inverse matix (¢, z) and the
boldface notatiorg = det g;; will be used throughout for the integration density.

It will be assumed that the co-tangent bundles of the sliéeadmit orthonormal frames, i.e.
n mutually orthogonal one-formsA’ (¢, z)}7_, of unit length (a triad); upper case roman letters
1,J,...will be used to label these. Thus for eacks X, there exists an isometry

Alt,z): T2 — R”
(1.9) _ _
Vig; s Al(t,2)V7,
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316 D.M.A. STUART

whereR" is given the standard inner product

N
X Y:ZXIYI = X'y;.
I=1

(Using this inner product there is no need to distinguish between upper and lower indices, so
that when!, J,... appear they may do so as either an upper or a lower index.) It follows that
Y71 AT Al = g;; so thatA can be thought of as a square rooyof
The following hypothesé's will be made: there exist positive numbei$, K1, Ko, ... such

that

(M-1) p?, g are of clasg’® with all derivatives up tasth order bounded by 2.

(M-2) A andA~! are of clasg® with derivatives up tath order bounded by ;.

(M-3) p?" andg = det g;; are> 1/K2" > 0 everywhere?
In terms of the notation defined in Section 1.8 this hypothesis, o2, means thay € Met;
andg € Met?Xz,

Remark— As regards specifying dependencegy@nd A of various functions which will be
introduced the convention will badapted of only specifying explicitly, with dependence oA
then understood. In fact, since the co-ordinate system is fixethought of as a matrix, can be
taken to be the unique positive symmetric square root of the positive symmetric matrix

Time-like geodesicson (M, g) can be identified, via the foliation (1.7), with curves
t— (t,£(t)) € M where the curve — £(t) € X is a solution of the equation

2,K>

d [ yug YU UG | i
GEX — LI RN =0.
(GE) dt< q >+7q Ty

In this equation the velocity i’ = %j and ¢, h are metric coefficients evaluated along the
curve:

o) =p(BED),  asl) = 22 (1,E(1),

i 9q'
his() = g5 (£60), B = S0 (LE(D)-
Sinceu € T¢X the index is lowered witlh:
uj(t) = hi ()t (1),

The notationy(t) is for the Lorentz contraction factdr

() =7 (|u(®)],/a)

(1.10)

wherev(s) = (1 — s2)~1/2.
Thewave equatiofW<) on (M, g ) is

(1.11) @(%@aﬁ) — 0u(pyEST9,0) + pyE(m26 — B(16]) )6 =

1 Although in this articles = 2 it is convenient to introduce explicitly constani§; which control thesth order
derivatives in order to keep track of where differing levelswifoothness are required in diféat parts of the analysis.

2The powers ofK(; are just to ensure scale invariance of (M-1)—(M-3).

3The time dependence gfandh is suppressed here.
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GEODESICS AND SOLITARY WAVES 317
1.3. Theorem regarding geodesic motion on (M,€_2g) (initial statement)

In this section a theorem will be stated which illustrates the type of result which will be
proved later on in more generality in this paper. Consider, for simplicity, the case of pure power
nonlinearity in three spatial dimensiofs = 3). Rescale the metrig — sizg for ¢ small: in this
limit the solution (1.2) is exponentially localised in a region of sizevhich is small compared
to length scales over which the metric varies. Under this scaling equation (1.11) becomes:

(L.1F) a <§&¢> - 0i(pv/B970;0) + 5—121)\/5(””5‘@Zs —B(lel))¢=0.

In the following formulawu(t),v(t),q(t), h(t) are asin (1.10) and; = P,,¢) n(t), Qt = Qu(e),n(t)
whereP, j, is the projection operator in the directiomelative to the inner produét, and@., 1, is

its complement (see Appendix A.2 for explicit formulae). The following formula gives a function
which represents a soliton (1.2) centred on the curves(t):

¢6(t,$) = fw <§”7Pt(x - 5) + Qt(x _5)‘}1)

ot
(1.12) Xexp[é(/%dt'—i—n—%(x—&uﬂ)]
0

wherey =7(|u|/q), thet dependence af, h, ¢, £, v being suppressed. For a givéh function
t— (w,n, &, u) the functiong is alsoC* and at fixed time lies in H!(R™).

Remark— The formula fow is a quite natural generalisation of the exact solution obtained by
Lorentz transformation of the solutieft’® £, () in the flat case (see Sections 1.5 and 2.1). There
exists a local co-ordinate systeii #) in a tube around the curve in whieh (7, 2) ~ ¢t f.,(2)

(see Appendix A.11). This co-ordinate systésrthe proper reference frame of an accelerated
observer moving with the soliton [14, Section 13.6]. The formula is not co-ordinate invariant due
to the presence of, for example, the expressien{. The exponential localisation gf and its
derivatives means that up to a controlled error it would be possible to copfyénto a more
invariant form by systematic use of the exponential mapping. However, this would complicate
notation without changing the essential content of the results, so it seems better to fix a system
of co-ordinates throughout in terms of which thetnic is as in (1.8) and proceed as in (1.12).

It should be emphasized that so far (1.12) is just a definition: it is not known to be a solution
to (1.11%) except in the flat case. The next theorsays essentially that under certain stability
hypotheses it — £(t) is a geodesic and << 1 there does exist a solution td.(1¢) close to
(1.12) in energy norm for a finite timeniform ine.

THEOREM 1.1 (Geodesic motion ofM, e~2g)). — Assume: = 3 and thatg is a metric on
M satisfying the conditionéM-1)—(M-3) in Section1.2 for s = 0,1,2 and let H}, L? be the
scaled spaces defined(ih.4)—(1.5) Lett — ¢(O)(¢) € X be a time-like geodesic as described in
Sectionl.2 and assume thak(|¢|) = |¢|P~! with2 < p <1+ 4/n=7/3. For w(0) € I, where
I is the non-empty interval defined(b.35) there exist

(i) positive numbers, > 0,t, € (0,tg],e. >0,
(i) aC! function(w,n,&,u) € CH([0,t.];R? x TY),

(iii) and initial data(¢°(0), ¢(0)) € H! x L2,
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318 D.M.A. STUART

such that for all0 <t <t, and0 < e < &4,

de(0)
u(t) — zt

(1.13) e 2|w(t) —w(0)| +e72[n(t) —n(0)| + & e(t) — €O (@) +27!

< Cx.

The corresponding solution {d.11°) satisfies, for alD < ¢t < t. and0 < € < &,, the estimate
(1.14) 1628, 2) = 65 (1,2) | s +el| 4 (6 (1,2) = 651, )) |2 < ue

with ¢f as in(1.12) The theorem is also valid in arbitrary space dimension for the large class
of nonlinearities3 described in Sectioh.7.

Proof. —This is proved in Section 3 in a somewhat generalised form.

Remarks— (i) The norm in (1.14) is stronger than the energy ndi x L? sincen = 3.
Observe that the time interval is fixed fox ¢ < ¢, while the solutions are singular, hence the
difficulty of the problem. Alternatively under the rescaling in Section 1.6 the result is turned into
a type of (generalised) stabilitheorem (with modulation) for solitons on large time intervals
[0,t./c], acted on by a slowly varying metrig(ct,cx). Indeed it will be more convenient to
carry out the proofs for the rescaled problem introduced in Section 1.6; this implies Theorem 1.1
in a straightforward way (see Section 3).

(i) The condition thatv(0) € I is crucial, and ensures that the solution (1.2) at frequerioy
is stable with respect to the equation (W) on flat Minkowski space. The upper boyrehsuires
the intervall is non-empty, while the lower bound gnis imposed for regularity reasons. The
proof depends on a modulational approach to wstdeding the stability condition which was
developed in [23] and is summarised in Section 1.5.

(i) Also it is worth emphasizing that the behaviour described in the theorem is stable with
respect to perturbation of the initial data in the sense that the theorem is valid for initial data lying
in a sufficiently small ball (with respect to the noy x L?): see Theorem 1.7,

1.4. First order formulation

Thewave equation. In first order formulation (W) takes the form

99 _ L¢
(NLW2) gt Ve
8_15 =00 — ]9\/§(m2(ZS - ﬁ(|¢|)¢)’
where
b 0
(1.15) Brg® =5 (p\/ggw%‘é).

Geodesicsin termsof the cotangent spacevariables. Itis also useful to write the geodesic
equation in first order form: introduce a conjugate momentum varakl€’/Y, whereT; Y is

the cotangent space ®at ¢, defined by?

(1.16) m;=m;(u,h)= Wuj (whereu; = hjju” andh = —¢* dt? + hyj dz* da?).

4 The functiony was defined just before (1.11).
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GEODESICS AND SOLITARY WAVES 319

In terms ofr the geodesic equatiqECQL) can be written as a first order system:
d¢’ qht*
= =21,
dt iyl
il
dﬂ'k qh]k
— =—4/1+4|7 %q_,k B L —
dt 21+’
Under the assumptions (M-1)—(M-3) for = 0,1,2 the right side of (1.17) is Lipschitz

for 7 bounded which makes these variables more convenient for comparison purposes (see
Section 2.6).

(1.17)

1.5. Exact solutions on flat space and review of stability theory

The main objective of this section is to review the approach to stability theory given in [23].
First it is necessary to give explicit formulae for the full set of solutions in flat space which
are obtained by applying the Poincaré group to (1.2); the final answer is (1.25). Although the
formulae are complicated they are simply obtained by first changing variables so the metric is of
the form (1.18) and then applying Lorentz transformations.

Existence. Consider the case of a flat space-tiMan which the function®, g defining the
metric g takeconstantvaluesg, i, thus defining a flat metric

(1.18) h=—q*dt* + hy; da’ da?

with, in the notation defined in Section 1.8 Met® for someK > 0. Time-like curves inM
may be parametrised byand writtent — (¢,£(¢)) with £ € ¥ = R™; the space-time velocity
is then the four-vectofl, u = %) with u € T, X satisfying|u|, < ¢. In the flat case the action
of the Poincaré group on (1.2) gives rise t¢2a + 2) dimensional family of solutions centred
along straight lines: the first two parameters are the frequerayd a phase fact@rwhile the
remaining2n parameters are the centfec ¥ and the velocityu = % € T¢¥. Thus define the
parameter space

(1.19) O ={\=(w,0,¢u) eR* x TX: |w| <mand|ul, < q}.
Let A = (w,6,&,u) € CH(R; OH) and introduce as in (1.9) an isomorphisn
B!l.Vi— BlV'
betweenT, >, h) andR"™ with the standard inner product, so that
(1.20) hB]B] =d"".
(In this caseB! is independent oft,z) of course.) The convention introduced in the remark
following (M-3) will be extended here so that for quantities dependinghoB only the

dependence oh will be explicitly designated.
Now define

(1.21) v=~(|uln/q),
(1.22) Z'(t,x) = Z"(x;\(t),h) whereZ’ (z; )\, h) = B} (vPun(z — &) + Qun(z — g))i,
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(1.23) O(t,z) =0O(x;A(t),h) where®(z;\,h)=60— %Z(:z:; A b)) - (Bu).

Remark— The functionz, A, h ) — Z (resp.®) is smooth tdR™ (resp.R) for A in anyMet ™
(see Section 1.8) amic O 2 € R™. The way to understand these formulae is to consider the
caset = ut andf = wqt/~: in this case they are essentially the Lorentz transformations of
andwt (apart from a linear transformation due to the non-standard form of the metric (1.18)).
With this said the next lemma, which follows from a straightforward calculation using formulae
in Appendix A.3, is not unexpected.

LEMMA 1.2.— Assume there is given

(i) aconstant coefficient metric= —q¢? dt? + h;; da® da’,
(ii) afunctionf,, which verifieg1.3),
(iii) afunction\ = (w,8,&,u) € C1(R; O ) which satisfies

d
dt y

Then the pair of functions
o(t,x) = ¢ps(z;A(t),h) whereps(z;\h)= f.,(Z)e'®,

(1.25) Y(t,x) = s(x;A(t),h) where

_wh
q

bs(aih) = (iwv\/ﬂfw(z) (Bu)- vsz<Z>)ei@

with v, Z, © as in(1.21)—(1.23)is a solution of(NLWX).

The space of soliton solutions is defined to be:
(1.26) S=(bs(:A L) ws(5A k) € H x L?

for A € O, Hypotheses on the smoothness of the nfaph) — (és(; A\, k), ¥s(-;\ k)
appropriate for this article are given in (R) in Section 1.7.

Itis also useful to rewrite (1.24) in terms of the momentum variab¥ehich takes values in
the cotangent space (see Section 1.4). S¢for) € T and at time let the momentum variable
be given by
(1.27) m=m(u,h(t)) €T¢E  (withh=g(t,£(1)))

where the functionr (u, h ) was defined in (1.16). Now introduge
(1.28) N =LA h)=Ly(N) = (w,0,,7(u,h)) €R* x T*.
(1.24) is equivalent to the following equation fat:

ax wq hi* 7,0,

1.29 —Vivh) = (o, , 0
(1.29) ar = Vo) <¢1+|w|,% ¢1+|w|z)

5The transformation;, :R? x TY — R? x T*X taking\ — L () is clearly closely related to the Legendre

transformatioril’> — T* 3.
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GEODESICS AND SOLITARY WAVES 321

(whereg; is the standard co-ordinate basis #@.) ThusA* provides an alternative system of
co-ordinates for describing the solitons. The inverse of the MapA* = L, () will be written

(1.30) A=L7Y (N h) = LN ().

Lagrange multipliers and the augmented Hamiltonian. Let A be a constant coefficient
metric as in (1.18). It is useful to note, at the formal level, that, v's) is a critical point of

31 H6.w) = [ | TP+ (VoR +mllof - (o) VR gas,

R

whereG(7) = [/ 2s8(s) ds, subject to the constraints thit ) be fixed, where

(1.32) Hi(¢,w)_/<1/), §i>d:c (momentum)
(1.33) Q6.0)= [(iv.0)ds  (charge).

These are the conserved quantities deriving from translation and pKaséngariance on
account of Noether’s theorem. In this settirfigandwq/ emerge as the corresponding Lagrange
multipliers and thus the paikbs, ¥s) is a critical point of the enlarged functional

(1.34) F(¢, 1 \) = H(é, ) + u'TLi (¢, 05) + %qcz(qﬁ,w).

This quantity is called thaugmented HamiltoniarThe Hessian of" at (¢s (-, A), ¥s (-, A)) is
an important quantity in the stability analysis and much studied in the Hamiltonian literature (see

e.g. [12]).

Stability. The stability of the solutions just described depends in a crucial way. @efine
thestability intervalto be:

)
(1.35) I= {w: w, = %(—wnfwn?p) > o}.

It follows from a simple scaling argument (see [16]) that whefi¢|) = |¢|P~!, with
l<p<l+32,

1 2
(1.36) T=dw — <2 <1
1+E—’]’L m2

while I is empty ifp lies outside this range. The condition in (1.35)—(1.36) first appeared in [16]
and has been shown to be essentially equivalent to stability in the spherically symmetric case; see
also [7,8,19] for general stdity theorems for solitary waves. In [23] a modulational approach

to stability of (1.2) was developed which gives explicit information on the time evolution of the
parameters, and is hence useful in situations which are dynamically non-trivial as is the case in
this paper. In the context of a flat space-time the following stability theorem was proved:

THEOREM 1.3[23]. — Consider the Cauchy problem feNLW2) with flat metric as in(1.18)
B(|8]) = |¢[P~1, and initial values(¢(0, -),%(0,-)) € H! x L2, Define

(1.37) 0% ={\=(w,0,¢,u) € Ok andw € T}.
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Then for all\g € Ogtan there existg. = e.(\g) > 0 such that if

e=0(0,-) = ds (s A0, 1) || jpa + [|£20, ) = b (5 M0, B)|] 2 < €4 (No)
then there exish € C*(R; O ), (¢,4)) € C(R; H' x L?) and¢; > 0 such that

(138) ilelﬂlg(u¢(t’ ) - QSS(';/\(t)vh)HHl + Hw(tv ) _wS(';)‘(t)aﬁ)HL2) <cre.

The curvet — A(t) is the solution of an explicitly determined system of ordinary differential
equations and there existg > 0 such that

(1.39) |0:A — VoA h)| + |w(t) — w(0)| + |ut) — u(0)] < eze.

Even in the flat case this theorem generalises previous results in that stability is proved
without the assumption of radial symmetry andaafor solitons moving at arbitrary velocities
u. The main point, however, is to get explicit information on the curve A(¢) since it is the
corresponding set of ODE’s derived in Section 2.2 of this paper which implies geodesic motion.

Since the techniques used in this paper are a generalisation of those in [23] to the pseudo-
Riemannian case it is worth saying a few words about the proof of Theorem 1.3. The main
point is to use the symplectic structure to explain at a linear level the origin of the stability
condition (1.35). This corresponds to a “sympification” of the usual approach, in that the
2n + 2 parametergw, 6, £, u) which make up)\ are allowed to modulate rather than just the
translation and phase variablgs ¢) as in the standard approach. The set of soliton soluttbns
turns out to be a locaymplecticsubmanifold in the stable case fact which is crucial to the
argument.

To see this clearly write the solution in the form

(1.40)  ¢(t) = ds(z; A(E),h(t)) + o),  »(t)=1s(z; (1), A(t) + (1)

The purpose is to determingt) so that the error terms, ¢ can be estimated /! x L2

uniformly in time. This is achieved by using conservation laws frQ,II in conjunction

with the following infinitesimal stabilitylemma. Leth be flat as in (1.18) and for fixed
= (w,0,&,u) € Ok consider the quadratic form

S(é,iﬁ;x,m:;/(ﬂw%qxﬁ(! )il +m?6p = B(1s])|6P)

(1.41) _ qVhA (16s]) <¢|f;; |>2 —@w id) + 2’ <(vm>i¢3,¢>) dz

with s = ¢s(x; A, h) defined as in (1.25). The S|gn|f|cance of the quanditis that it is the
Hessian of the augmented Hamiltonian defined above. Introduce the subspace:

(1.42)  Typ= {(&,J}) e H' x L% Q<(<5 V), (¢>S,¢S)> =0 forall A}
where is the standard symplectic form for wave equationsi.e.,

Q: (L3(%;0))° x (L3(%;0))° = R
(1.43) s . -
(30 (6,0) = [ (00) = (3.09) da
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As remarked above the stability conditian € I ensures thatS is a local symplectic
manifold in a neighbourhood of the corresponding pdint (A, h),¥s(A\ k)) (Where as
usual A = (w,0,&,u)). The geometrical interpretation of (1.42) is then thég ;, is the
symplectic normal space t§ at the point(¢s(X, h),¥s(A, k)). The next lemma indicates the
analytical significance of the symplectic normal subspace in providing a linear or infinitesimal
interpretation of the stability conditioris (1.35). In the following recall thaB(|¢|) = |¢|P~*

and thatO% , consists of thosa € O™ with w € T:

LEMMA 1.4. - The quadratic fornf(q?, ¥; A\, h), restricted to the subspace, ;, defined in

(1.42) is equivalent to theéZ! x L2 norm, uniformly for) in compact subsets of the iéﬁab
defined in(1.37)

This lemma suggests a method of proof for Theorem 1.3: try to decompose the solution as in
(1.40) with(é,&) € T1),n,» @and use the foregoing lemma in conjunction with the conservation
laws for H, Q,II to obtainH' x L? estimates. This turns out to be possible: one crucial point
is that the stability ondition ensures tha$§ is symplectic which means that the hoped for
decomposition is possible by araplectic tubular neighbourhood theorem. The details are given
in [23].

Proof of Lemma 1.4. Fhe result as stated can be reduced to the gasé,h;; =6;; by a
linear change of variables: Ié&t be as in (1.20) and defin€ = Bjx/,U = (Bu)/q. In the case
q=1,h;; = 6;; itis proved in [23, Theorems 1.3 and 2.7]. In fact in the c@de)|) = |¢|? ! two
proofs are given, one using the fact that tfyeare then optimizers of the Gagliardo—Nirenberg
inequality ([27]). O

Remark— In fact Lemma 1.4 holds for a very large class of nonlinearitiedgscribed in [23].
In this article its validity will be required (see hypothesis (IS) below) as a structural assumption
on the nonlinearity.

1.6. Statement of theorem in pure power case with n = 3 (rescaled version)

In this section a rescaled problem is introdueddch is related to the original problem by a
simple rescaling oft, z) (see Section 3). In this scaling the soliton has finik&1() size and
the metric varies on length scales®f1/¢). It is this formulation which is more convenient for
giving detailed proofs and which will be used for the main part of the paper.

Given a metrigy on M as in Section 1.2 and a small positive numbelefine a new metrig®

by

g° dxtdx” = —p°(t,x)%dt* + g5;(t, @) da* dx?
(1.44) I

pa(tax) :p(Et,EI), gfj(t,x) :gij(Et,EI).

The next theorem describes a class of solutions to (RI)Wn the cased(|¢|) = |¢|P~*, which
are close to the exact soliton solutions of Lemma 1.2 in a certain sense. As in Theorem 1.3 the
soliton parameters evolve, although this timegtraight line motion will be replaced by geodesic
motion with respect to the background metric (to highest order).

First of all it is necessary to generalise thdidi¢éions of the parameter spaces (1.19) to take
account of a background meti€. Given\ = (w,6,&,u) € CH(R; R? x T'Y) define a spatially
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homogeneous metric= —q? dt* + h;; d=' dz? and corresponding orthonormal frarBeby

q(t) = p(et, £(t)),
(1.45) hij (t) = gi; (et,e€(1)), h(t) = det hyj(t),
Bl (t) = Al (et,e&(t)) sothath® (t)B] (t)B] (t) =",

whereA is as in (1.9). At time € R the parameters take their values in
(1.46) 02" ={\=(w,0,¢,u) €R? x TE: |w| <mandul, <q}.
Itis also useful to define the stable parameter space by

(1.47) 0L =09 N{wel}

and the corresponding space-time definitions are:

(1.48) O2=|J{t}x 0L CRZxTM,  O%, = J{t} x 0%, CR*x TM.
teR teR

DEeFINITION 1.5 Unperturbed evolution— For initial values

9,0

A(0) = (w(0),0(0),£(0),u(0)) € Ogy,

the unperturbed evolution, i.e. the zeroth order approximation to the evolution of the parameters
O = (w0 9(0) £(0) 4,(0)) is described as follows. Define as in (1.10)

¢O(t)=p°(t,€0(t)) and A (t) =g (1,60 (1)).

Then
e wO(t) =w(0) is constant,
o £)(¢)is a solution of the geodesic equation (GEpwith initial values¢ () (0) = £(0) and
2:£9)(0) = u(0) andu®) (t) = 9,6 (¢) is its velocity,

o ) is given byd©) (1) = [ <O 4 (0) with 1 =F((¢) " u®) o).

For the origin of the last line see (1.24).

Using the conjugate momentum variablen place ofu the unperturbed evolution corresponds
to integral curves of a simple vector fiel§ +< V3 as now described. Recall that the momentum
variable m € T¢Y was defined in Section 1.4, and correspondingly the geodesic equation

(GECﬁE) was written as a first order system. Combining this with the highest order evolution
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of (w, ) in Section 1.6 leads to the following system:

dw

= _0

dt ’

9 wa

di T+[xf;
(1.49) dgi qh?*

= —F—7 Tk,
dt - 14|zl
dﬂ'k 1+| |2 €Qh{,i
— =€y T4k — —F——=T;T,
dt g 2/1+ 2’

in which ¢, h are as in (1.45). Writing these equations all together in terms of the variable
A =L(\) = (w,0,¢,m) € R? x T*Y defined previously (see (1.29)) the right hand side defines
a vector field orR? x T*3 which will be denotedV 5 (\*; b)) + eV (\*; g%, ¢). The unperturbed
evolution\(®)(¢) induces a function*(*) (t) = £(A\(¥) (¢)) which satisfies

d)‘*(O) x 1y %(0) x 1y %(0)
(1.50) 7 =Vo\"h) +eVI(Aig%e).

Notice thatV; is C* for aC? metricg. Using the inverse functiod ! of (1.30) it is useful to
introduce

(1.51) V1= (DiL7N(VT) + D2L7H((Dog ) + (Dig)*ut)).
(Herei =1,...,n and the notatior(D,g)° is meant to indicatd0xig)(T, X ) evaluated at

(T, X) = (t,e&(t)) while (Dog)* indicates(0rg)(T', X ) evaluated atT’, X ) = (t,£(t)).) The
unperturbed evolution can now be defined by the integral curves of the vectovijeld=V; on
R2 x TX. It follows directly from the chain rule (sincgis assumed’?) that Vi (t, Ajgf)isa

C' function oft, u, £ and by inspection that
(1.52) [Vi|<eer [0 Vi <cs(14]9A = Vo(A k)| +eldA])

with c1 = Cl(Kl,’}/) andoz = CQ(KQ,’)/).
The curvet — A (¢) will be compared with a curve— A(t), defined in Section 2.2, which
will be used to construct an approximation(t ¢»). The dominant part of the solution will be

(¢S ( 3 A(t)vb(t)) ) 1115 ( ) A(t)vb(t)))

with A(t) given by (1.45) ands, 15 asin (1.25). Thus the idea is to freeze the metric coefficients
p, g at their values at the poirit, £(¢)) € M and try to build a solution from the corresponding
flat space solution. This may be expected to wotké metric is slowly varying compared to the
length scale over which the soliton is localisachope which is borne out by the next theorem.
The norm used for comparison afandA(®) will be

(1.53) A=A = |w—w @] + )0 — 09) + g]¢ — O] + [u — u'®).

Remark— Thee scaling in the nornﬂ . ﬂg means that the soliton appears to move along a
geodesic when viewed on large scales; this also corresponds to the scaling in Theorem 1.1.
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THEOREM 1.6 (Special case of main theorem)Assumen = 3 and 3(|¢|) = |¢|P~! with
p€[2,7/3). Let g° be a pseudo-Riemannian metric of the faim4)where(p, g) satisfy the

conditions in Sectiof.2 Consider the solutiofip(t), () to (NLWE") with initial values
(1.54) (6(0),9(0)) = (¢s(-: M0),2(0)), s (-; A(0), 2(0)))

with (¢s,vs) € S asin Lemmd.2and where\(0) € O;qt’:b as defined irf1.47) Lett — A0 (¢)
be the unperturbed evolutiddescribed in Definitiod.5. There exist positive numbers

e« =4 (A(0), K2), T, =T, (X0), K3), c=c(N0), K2)

and a function\ € C*([0, Z];R? x T'%) such that for alle < ¢,

sup (H)\(t) NG (t)H5 + 6_1’w(t) — w(O)‘

o<t

(1.55)  +[[o( 1) = ds (- A0, B) [ g + 1) =5 (- AB), (1)) | 1) S e
where, at each timg A(t) is the spatially homogeneous metric definedby5)

Before giving a more general statement in Theorem 1.7 it is necessary to give a list of
hypotheses on the nonlinearity.

1.7. More general hypotheses and statement of main theorem

In this section some more general assumptions on the nonlingg(ity= 3(|¢|)¢ are given
which allow the analysis to be carried out leading to the statement of a general theorem. To start
with it is necessary that the Cauchy problem be locally well-posed¢fap) € H' x L? in the
sense described below in (WP-1)—(WP-2); in Appendix A.10 condition @we given which
ensure this holds. For sub-critical nonlinearities the validity of (WP1)—(WP2) in the cases of
interest follows in a straightforward way from the basic estimates for the linear inhomogeneous
problem i.e. the energy identity and the Strichartz estimate (an appropriate variable coefficient
version of which is given in [25, Corollary 5]). Bhuse of this latter estiate places the solution
in someL?t(Lﬁfm) space for appropriat@, R as in Appendix A.10. This leads us to the following
two assumptions: give@w(0),+(0)) € H* x L? there exist

tioc = tloc(H (¢(0)a WO)) HHI ><L2) >0
and a solution
(WP-1) (¢,%) € Cl([O,tloc];LQ X Hﬁl) n CO([OvtIOC]QHl X L2)

which is unique under the adinal requirement that) € L2 ([0, ,.]; L) for someQ, R.
Furthermore it is assumed that the Cauchy problem is well posed in the sense that for initial

values(¢(0),+(0)) and(¢(0),1(0)) which are close inff! x L? the following estimate holds
for the unique solutions of (WP-1):

(WP-2) supocycy,.. 16— 6,9 — )| i1 x 22 < | ($(0) — $(0),1(0) — (0)) || 2 x 2

on the common domain of definitign, #1,.]. The constant in (WP-2) depends on the constant

K> introduced in (M-1)—(M-3) as well as thd* x L? norms of(¢(0),1(0)) and(4(0),(0)).
The next assumptions pertain mostly to the properties of the solitons and their linear stability.
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(NL-1) FisaC" functionC — C of the formF(¢) = (|#|)¢ which isC? for || # 0,

(NL-2) |7(0)| + [0 (6)] < Ki(1+|g]?) with p < 1+4/(n — 2),

(NL-3) For ¢1,¢, in H' there exists a numbeky = Ks(||¢1]| g1 + [|¢2/|m1) such that
|1F (1) — F'(d2)||Ln < Ka||d1 — ¢2| g1 . This is ensured for example if

|F"(9)| <e(1+]¢P~?)

with p € [2,00) forn=1,2 orp € [2,2 + 4=2] for n = 3,4.

Remark— In the case of main intereat= 3, for the pure power nonlinearity, the stability
conditionI # 0 ensures that is smaller tharl + 4/3 < 3 and so (NL-3) will then hold.

(R) The nonlinearityF(¢) = 3(|¢|)¢ is such that forw? < m? there exists a unique positive,
radial solutionf,, of (1.3) of classC** such that the map

(1.56) (A h) = (ds(-3 M k), ¥s(-3\h)) € HE x HF L,

defined for a constant coefficient metficand A € O%, is continuous fork = 4, C! for k =3
andC? for k = 2. Also assume thaf and its first four derivatives are exponentially decaying
and that the map above has the same regularity Wittreplaced by the weighted Sobolev space
H* (in which Lebesgue measure is replaced by- |z|?)®dx) for all w > 0.

(IS) The nonlinearityF (¢) = B(|¢|)¢ is such that the conclusions of lemma 1.4 hold with the

stability intervall used in the definition o , asin (1.35).

sta

Remarks— (i) The simplest case for which these two assumptions hold is the pure power
F(¢) = |¢|P~1¢ with p € (1,1 + 4/n), in which case the stability intervdlis given in (1.36),
first proved in the radial case in [16]. Stability in the general case was proved in [23], in which
the condition in (IS) appeared as interpretation of the staity condition at the linear level.

The verification of (R)—(IS) for pure power nonlinearities is explained in detail in [23], in
Sections 1.3.1 and 2.6 respectively.

(ii) The pure power nonlinearities are not very differentiable whémsmall so it is useful to
have examples of smooth for which (R)—(IS) hold. In Sections 1.3.1 and 2.6 of [23] explicit
structural conditions otF are given which imply (IS) and (R). (These arise from [2,3,18,15,13,
28] and references therein). Useful examples are of the form

pP_-
2

F(o) = (62 +62) T = 1)¢

for positive smallé. The conditions given in [23] which ensure (R)-(IS) can then be explicitly
verified. It is worth noting that for general (non pure power) nonlinearities it may not be possible
to determind any more explicitly than (1.35).

(iii) The casen = 3,m = 1, F(¢) = |¢|*¢ — |#|°¢ which has been often discussed [10,16,1]
does not fit immediately into the present framework but could probably be included with some
further work.

(iv) The precise nature of the assumptidroat weighted Sobolev spaces is not important,
and is a consequence of the fact tligtand its derivatives are actually exponentially decaying
at a rate which is uniform in compact subset§of |w| < m}. (This is proved by a maximum
principle argument ([2,23]).)

THEOREM 1.7 (Main theorem). -Assume there are given

(i) ametricg onM = R'*™ which satisfie§M-1)—(M-3) in Sectionl.2,

(i) a nonlinear functionF : C — C of the formF(¢) = ((|¢|)¢, with 3:R — R such that

(WP1)-(WP2), (NL-1)—(NL-3), (Rand(IS) hold.

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE



328 D.M.A. STUART
Consider the solutiofip(¢), 1 (t)) to the Cauchy problem fiNLWE ) with data satisfying

(1.57) 6(0) = @5 (-3 20, 2(0)) | jpu + [(0) = 95 (-5 20, 2(0)) ] 1. <€

9,0

with (¢s,7vs) € S as in Lemmal.2 and where), € O, as defined in(1.47) Then there
exist A(0) € oggjb, positive numbers.,. = £, (A(0), K2), T = Tx(A(0), K3), ¢ = ¢(A(0), K2)
and a functiom\ € C([0, Z=]; R? x T'%) such that for alle < ¢, the estimatg1.55)holds with
t — AO)(t) the unperturbed evolutiodescribed in Definitiod.5with A(9)(0) = A(0).

This theorem, which implies Theorem 1.6, is proved in Section 2.
1.8. Notational conventions

The notatiory will be used to indicate the pseudo-Riammian metric on foliated space-time
M with lapse functiorp and induced metric on the space-like hypersurfaces in Section 1.2.
g° is the rescaling defined in Section 1.6. Similaklywill be a metric onM with constituent
functionsg, h, and will often be spatially homogeneous and obtained by evalugiing along
a curve as in (1.10) or (1.45). As usual the inner product and norm defined by, sély,be
written (v, w);, and|v|,, and similarly forg.

Let Metg be the set of, x n positive symmetric matrices bounded abovey and with
determinant bounded below by K 2", and lefMet™ be the set of pairy, h;;) with h;; € Met
andq € R satisfyingl/K < ¢ < K. Let /\/letg"KS be the set ofn x n positive symmetric
matrix valued functiongy;; of (¢,x) € M whose firsts derivatives are bounded hi? and
whose determinant is bounded below by 2". Let Met>¥- pe the set of pairg, g;; where
gij € Mety™ and where is a real function whose firstderivatives are bounded everywhere
by K and which is itself bounded below By K.

Throughout this paper write

F(s) = (1—s%)7"/2
For ¢ > 0 introduce scaled spacg? on X ~ R" by |ul|3, = ¢ [|u(z)*dz, and a
corresponding scaled®olev norm (using multi-index notation)

(1.58) Julfy, = 32 [ Ve +e @) ) da
lal=1%

In the case = 1 the subscript will be omitted, i.e.H{ = H*.
The following positive number acts as an effective inertial mass for the soliton:

VSul3e
(1.59) mo = (2 3.,
while
)
(1.60) po = =5 (@l fullZz)

determines stability of the soliton. As a general rule the raised indeid be used to indicate
cotangent space variables as in the discussion following Section 1.5, except of course in the case
of a differential operator wheremeans adjoint. Underlining of symbols usually refers to space-
time quantities e.qgy is the pseudo-Riemannian space-time metric whilethe metric induced

on at = constant hypersurface.
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2. Proof of main theorem

The steps in the proof of Theorem 1.7 are as follows:

(i) Introduce (in Section 2.1) an ansatz involvirkym + 2 additional free parameters
A(t) € R? x TY. at each time.

(i) Determinet — A(t) in such a way as to be able to obtain good estimates. This is done
in Section 2.2 using the symplectic orthogbtyeconditions explained in the discussion
surrounding Lemma 1.4.

(iif) Obtain in Sections 2.3 and 2.4 an estimate for an energy-like quantity which is shown
to be equivalent to thél! x L2 normon an appropriate subspaaifined in (1.42for
appropriate frequenciesatisfying the condition in (1.35).

(iv) Obtainin Lemma 2.9 an improved estimate for the frequenaging a conservation law
which is a consequence 6f invariance of the original equation.

(v) Finally, in Section 2.6, show that the motion is approximately geodesic on appropriate
time intervals and complete the proof.

As a general point the stability of thelgon is determined by the conditieane I which ensures
positivity of certain quantities. This is used in an essential way both in the treatmeninof
Section 2.2 and in the energy estimate in Sections 2.3-2.4. Initiadly-&tthe frequency

w(0)=wpel

by assumption, but it will have to be proved thdt) remains inside an intervaby — Q, wo + €],
which is a compact subset bfat subsequent times. Thus throughout the proof care will be taken
to state clearly when it is assumed that [wo — 2, wo + ). The estimate fap(¢) in Lemma 2.9

will then be used to show that it is possible to find a posifiveo that this is true throughout the
time of existence of the solution described in the theorem.

A related point is that most of the estimates obtained, in particular in Sections 2.2 and 2.3, are
uniform for A in compact subsets of the parameter space (1.19). A convenient way to indicate this
is to have constants depending upgia—!|u|,) and(m? — w?)~. Many constants in estimates
will also depend (in a bounded way) en, since the time dependence of the metric is &a
function ofet and it is useful to make the standing assumption that

(2.1) 0<t< L

with ¢ as in Section 1.2. In this section it is convenient to introduce a slow time vafiablet,
and by abuse of notation functionstoWill be regarded interchangeably as functiongofwith
the dot notation used f@l thus:

(2.2) f=0rf=c""10,f.
The assumption above convertsiae [0, to].
2.1. Theansatz
To start with expand the set of dependent variables to include a function
A= (w,0,&u) € CHR;R? x TY),
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which will be determined later in Section 2.2. Now decompose the solution as:

o(t,x) = ¢s(Z(t,2); A(t),h(t)) +ed(t, @),

(23) ’ k
b(t,x) = s (Z(t,2): M), (1)) + <0 (t,2),

using definitions (1.45) fok(¢) etc. and where in addition (1.21)—(1.23) are generalised to allow
for time dependent metric coefficients:

V(1) (]u ‘h(t /a(t)

Z'(t, ) = Z" (z;A\(t),h(t)),
(2.4) I _ i
whereZ’ (z; M\, h) = B} (YPyn(x — &) + Qu.n(z — €)',

O(t,x) = O (z; A(t), h(t)) where® (z; \,h) = 9—§Z(x;x,@)-(3u).

Here it is to be assumed that at each time) Obtdb, WhereO;tdé is as in(1.47). The
decomposition (2.3) is underdeteined so far because the functior A(t) is still to be chosen;
this will be done so as to enforce the requirement that at eachttiime pair(é, 1/3) lies in the
subspacel’ ;) n(+) defined in (1.42). In Section 2.2 it is shown that this condition implies that
A(t) evolves according to a set of ordinary diffatial equations, which is well-posed under the
infinitesimal stability hypothesis, i.e. far € I wherel is as in (1.35). Energy estimates are then
used to obtain bounds fé5, ) in Section 2.3. The aim will be to show thaft) does not depart

by much from the unperturbed evolutiof (¢) in a specific sense. For this purpose it is useful
to introduce the following sets, for giverd?) = (w(® 90 £(0) 4,(0))

(2 5) K)\(O),l,t = {)\ = (wvavgau) 6 htdb |w w(0)| + |u (0)| < l}a

I<)\(0).,l,5.,tE {/\: (wveafvu)e stab |w w 0)|+ |U (0)|+€|6_€(0)| <l}
2.2. Determination of A(¢) (modulation theory)

Rewrite the decomposition (2.3) as
6= (fu(Z) +c0)e™® = g5 +eve’®,

(2.6) ¢_<<iw7\/ﬁfw( )_%%( )I>+€w>ei®—¢s+awei®.

0z!
For some purposes it will be clearer to use instead\@f the variableA(¢) obtained by

subtracting off the dominant unperturbed part of the evolution (i.e. that described by (1.24)).
Thus write

(2.7) A= (w,n,a,u)
wherea(t) andn(t) are defined by

t

(2.8) &(¢) :/u(s) ds+ a(t),

0
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(2.9) O(t,x) /———Z u) + 1.
In accordance with the remark jumade this is convenient because

dA  dA
whereVy is as in (1.24) ; it will be proved thaﬁ% isO(e)

In the verification of Lemma 1.2 it turns out that farconstant and\ evolving according
to (1.24) the time derivatives df, © are9,Z = —y(Bu) and9;© = wq~y. Thus in the present
situation it is convenient to define functions which measure the deviation from these values: so
consider the functiong®(t,x), u!(t,x), for I =1,...,n, defined by

YAl
enl = = +9(Bu)’,
2.11
(2.11) o8
n= o1 qy.

Explicit expressions for these quantities, which are affin,iare given in Appendix A.4.
Equationsfor (v,w). Substitution of the ansatz into (NLXKI), leads to the following system

for (v, w) (using notation of (2.2)):

a——i—z(w +e )v*iw—l—'(tx'/\[\hh)—i—f(tx')\ <. h)

ot ay Ho - \/? J1l, TIA, A R, 1 TIA, g5 1),

+ fo(t, 2, g%, h) + eN(fu(Z),ev, 6%, €).

Here M = M(),g°,h) is a self-adjoint second order linear differential operator, with coeffi-
cients depending upok g, h, given by

2

M’U:O—Apeygs’U—F |u| p°V/ g%

+i%<ug‘%(psx/g_g(g v) + 1" Ve (9°) uy (%)
(2.13) +p°VEE (m*v — B(fu)v — fuB (fo)Rv)

with notation as in (1.15). In (2.12) there are three classes of inhomogeneous term:
e j1,jo arise from the time dependence/fofindh,
e f1, fo arise becausg # ¢°, i.e. because the background metric is not spatially homoge-
neous, and B
e N arises from linearisation of the nonlinear term.
Explicit formulae and properties for these various terms are given in Appendix A.7.

Symplectic orthogonality conditions. To study (2.12) define a linear operator
M=M(\ g .h)
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by
~ ) pa )
(2.14) M(v,w) = <—8tv — iwqyv + \/?w, —0w — iwgyw — Mv>
where M = M (), g%,h) is as defined in (2.13). To enforce the condition thaty) € Thn
which was introduced in the discussion surrounding (1.42), notice its equivalence to the
requirement thatv, w) be L? orthogonal (in the usual sense) to {f2& + 2) pairs of functions

_ie_0
(2.15) e m(wsa —¢s).

LEMMA 2.1.— There exist2n + 2 pairs {(a4,ba)}3"", of functions, explicit formulae
for which are given in(A.24)—(A.27)in AppendixA.6, which have the same linear span as
(2.15) They depend parametrically on 2 and the conditior{¢, ) € T 3, is equivalent to the

requirements
(2.16) Ca(v(t), w(t); A1), () =0

forall t and forA = —1,2n + 1, whereC 4 are linear functionals defined by

(2.17) Ca(v,w; A\, h) = /(<w,bA(Z;)\)>L2 + <U,aA(Z;)\)>L2) dx
Rn

with Z = Z(t,x) as in(2.4). Finally, the map(A\,h) — (ba(-;A\),aa(-;A)) is continuous into
H3 x H? for A\ € Ok andC' into H? x H!.

In the case of flat space, whénis independent of time and space, the péirs,b4) lie in
the generalised null space 8ft*, the L?(dx dt) adjoint of M. (See Appendix A.6 and [23] for
the Euclidean case.) In the preseittigtion the slow variation oA and the background metric
introduces somé(¢) errors, indicated by the following formula:

(2.18) M*(aa,ba)=Dap(\h)(ap.bp) +e(34,T%).

In this formula, which is fully explained and derived in Appendix AlB, 5 iS a matrix whose
only non-zero entries ar®_; o and D,,; ;, while 34 = J42(Z; X\, A, b, b, 9%, §°, Vg°) are
exponentially decaying functions & which are affine inA, i; the regularity properties of the
J’s, which are recorded in Lemma A.6 follow directly from assumption (R).

The conditions (2.16) are preserved by the flow if

(2.19) /(<aA,j1+f1>+<bA7j2+f2+€N>+5<J}4+iH0aAav>+5<J?4+iH0bA,w>) dr =0
RTL

for Ae {—1,...,2n+ 1}; this set of conditions is to be regarded as a system of equations which
implicitly determine\(t).

Now for ¢ sufficiently small it is possible to find(0), close to)g, such that at time = 0 the
condition (2.16) holds: this follows from the implicit function theorem exactly as in [23, Lemma
2.4]. The conditions (2.19) then ensure that (2.16) continues to hold at subsequent times.

Modulation equationsfor \(¢). The aim of the remainder of this section is simply to prove
that the conditions (2.19) are equivalent to a system of differential equations which determine
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A(t), and thus to obtain a local existence theorem for a functien\(¢) such that (2.19) holds.
This is done in three lemmas:

e Lemma 2.2 records the result (2.24)—(2.27) of an explicit calculation of the integrals in (2.19)
which is carried out in Appendix A.9.

e Lemma 2.3 shows that the equations in Lemma 2.2 deterinfoeequivalentlyA) explicitly
and hence gives a system of ODE’s for

e Lemma 2.4 is a local existence theorem for

Before giving the statement of Lemma 2.2 it is worth recording how the different terms in
(2.19) contribute to, and defining some classes of inhomogeneous “error” terms which appear
in, the final result (2.24)—(2.27). Also recdtld standing assumption (2.1) and the surrounding
remarks.

e The integrals involvingj,, jo are computed exactly and cotiwite to the left hand side of
(2.24)—(2.27).

e The integrals involvingf, f2 are split up intaO(1) terms which contribute to the left hand
side of (2.24)—(2.27) an@ () termse F with F in the classg,; of C* functions of(¢, \) € 02,
which satisfy the bound:

(2.20) IF| <c=c(®F(qg 'uln), (m* —w?)™!) < +o0.
In addition this estimate depends &y — see the final section of the proof in Appendix A.9.
TheseO(e) terms contribute to the right-hand side of (2.24)—(2.27).

e Theterm inyolving/\/’ is of the forme I whereF' lies in the clas®, of continuous functions
of (t,\,v,w) € O x H' x L? which areC! with respect tqz, \) and satisfy the estimate:

(2.21) IF| <e=c(¥(q  uln), (m? =) 7 [, w)|| s p2) -

This estimate also depends uplip and the inequality assumed in (NL-3). R
e The integrals on the second line of (2.19). These are affineiia. of the forms F4 with

(2.22) Fyu= Fzgo)(t, A v,w, g%, hye) + FAB(t, Asv,w, g%, hy 6)AB

with 7" in the class¢, just defined (see (2.21)) anidi s are in the classt; of continuous
functions of(t, A, v,w) € 04" x L2 x H~!, which areC"' with respect tqt, \), and satisfy

(2.23) €|FAB(t, /\;U,w,gg,ﬁ,sﬂ < c(||€v||L2 + ||€w||H71)

with ¢ = c(F(q¢7|ulr), (m? —w?)~1). In addition the estimate dependsk&in —see LemmaA.6.
In the next lemmd’ is the slow time variable as in (2.2).

~ LEMMA 2.2.— The conditiong2.19)are equivalent to an implicit system of equations for
A=0rA=¢"19,A of the form

(224) My, (aTW + %u]aTOLJ> - Eﬁll(tv )\7 v, w, Avgsaﬁa 6)7

(2.25) uwBTwzsﬁo(t,)\;v,w,A,gE,ﬁ,s),
Viullie
\/ﬁ(@T<%'yua> +w||fw||%23T<§'yu¢z>)

6 Recall the remark made just prior to Section 2.1.
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(2.26) ++vhm,, <2lqulujhlfC + 7q7k> =eFj(t, /\;v,w,A,gs,ﬁ, €),

(2.27) m,dra’ =eF, (1, /\;U,w,A,gE,ﬁ, €)

where the inhomogeneous terms &€ in (t,\) and are as described i2.22) and the
surrounding discussion.

Proof. —The proof of this, which is given in Appendix A.9, consists of a direct computation of
the inner products in (2.19) using formulae in Appendices A.6 and A.7. The calculation is carried
out at fixed timeg under the assumption that= \(¢) lies in a compact subset of parameter space
(1.19) so that the dependence of various estimatesisras in (2.20)—(2.23). (It will be shown
in the final stage of the proof of the main theorem th&f) remains close to the unperturbed
evolution\(®)(¢) (of Definition 1.5) so tha#(¢) will certainly remain in such a compact subset
throughout the time interval of interest.)0

Remark— Observe that (2.26) gives an evolution equation for the momentum variable
m(t) = w(u, h(t)) rather than directly fow itself, so that it is in some ways more convenient
to use

(2.28) N =L(A(t),h(t))
instead of\(¢) to describe the soliton.
In the statements of the next two lemmas recall from (2.6)(that) = e ~*© (¢ — ¢, v —s).

LEMMA 2.3. - LetQ > 0 be such that the intervdby — 2, w + ] is a compact subset &f
then there exists a number

ot =gt (Kl’Q7wO,7(q_l|u|h)),

which depends continuously upon the final two arguments, such the)if [wg — Q,wo + Q]
and

(2:29) [(6(t) = 65 (A1), (1)), (1) = s (A1), 2 (1)) || oy g1 < &
it is possible to solvé2.24)—(2.27uniquely forA giving a system of the form
(2.30) A=V.(t,\v,w, % h,e) =Vi(t, X g°) +Va(t, \v,w, g%, h,e)

(whereV> does not depend upak). FurthermoreV, lies in the classt, defined in(2.21)and
there is an estimatg\ — V1| < ec with

c= C(Kg,ﬁ(q_l|u|h),ﬂ,woa (¢(t) —¢s (/\(t),ﬁ(t)),
(2.31) B(t) = s (A, 2)) || 1y p2)-

Remark— (2.30) implies the following equivalent equation far

(2.32) IN=V =V +eV;+2V,

with the V; having the same arguments as above.

Proof. —To see this clearly it is convenient to diagonalise the left hand side of (2.24)—(2.27):
notice that by taking appropriate linear combinations one obtains a system of equations of the
form

(2.33) A(w)Or (w, n,Q, L—u) =Vt A g%, h,e) + eFH(t, /\;v,w,A,gs,Q, €).
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In this equatiorA(w) is a diagonal2n + 2) x (2n 4 2) matrix with first two entrieg,, and
remaining entries equal tm,, (see (1.59)—(1.60)):

A(w) = diag(u’wa H’wv My, ..y mw)
and
Vn(/\) = (O, 0,0, — (%uiujhi',i + 7q7k)) .
q ,

Observe thal/* is just V; rewritten in terms of\ rather than\* i.e. V¥ = V¥ o £, Finally
F* = {F%}2"+1 | being a linear combination of th€’s of (2.22) can be written:

(2.34) (F'a = (FHD (8, 0,0, 6%, by e) + (F) ap(t, A v, w, 6%, h,e)A g
with (F#)©) and(F*) 4 lying in the classt, and

(2.35) e|(FF)ap(t, A v,w,0% hye)| (|6 — dslluz + ¥ = slla-—1)

with ¢ = ¢(K1,¥(q~ uln, (m? —w?)~1), depending continuously upon its final two arguments.
Now recall that while the maas,, is always positive, fow in the stable rangé the numbers

1, are also positive, and uniformly so farin a compact subset df It follows immediately
that it is possible to solve to get a system

(2.36) Or (w, n,a, %) =Vi(t, A\ 9% ¢) +eV5(t, A" 0,w, g%, €).
This implies (from (1.28))
(2.37) N =VE(Nh) +eVi(t A g%,e) + Vit A v,w, 6%, €).

Next substitute foh(t) from (1.45) and, with use of (1.30), invert (2.28) to obtain

A(t) = L7 (N (t), g(et, €(1)))-
The chain rule thus gives (suppressing the arguments for clarity)
OA=D1L7H(V§) +e(D1L7H(VE) 4+ D2L7H((Dog )* + (Dig)°u'))
(2.38) +e*[D1L7H(V5) + DoL7H(Dig ) V3]
(2.39) =V(t,\v,w, g% ¢€).

Here the notation is as in (1.51). In the second line use has been madeithf toenponent of
(2.37), which read$;¢' = u' + 2Vt Now to complete the proof of the theorem notice that in
(2.38)Vo=D1L7Y(V}) o L, and that the second term on the right hand sidéVis o L,jl SO

that the third term defineS Voo £, 1. O
Given this it is now a simple matter to apply standard results from ODE theory to obtain a
local solutiont — A(t) lying in the set defined in (2.5), under the smallness assumption (2.29).

The only point about which care is needed is in the dependencies of the various constants. In the
final stage of the proof the local existence theorem is applied repeatedly in conjunction with the
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estimates to show that the solution does not deviate far from the unpertubed evalftiohof
Definition 1.5. Itis thus useful to state the existence theorem for initialX@ta att = ¢; which
is close to a poinh(®) (which is taken to be\(*) (¢, ) in Section 2.6). In the following recall (2.5).

LEMMA 2.4 (Local existence). -Assume
(i) (¢,%) is a solution of(NLWZ ), as in(WP1)—(WP2) and satisfying

H(¢’w)HH1><L2 <NO

fort; <t <ty +t#,
) b1
(i) AO = (@@ 9O 0 1) e 0L andK 1 COSL,
(i) |w(® —wo| < Q/4 where[wy — Q,wo + Q] is a compact subset of the stability intenfal
(V) A(t1) = (w(t1),0(t1),&(t1), u(tr)) € Kyo Y
(V) (o(t1) = @s(A(t1), b(tr)), (t1) = Ps(A(t1), k(tr))) € Taier).nnr)-

Then there exists a positive numbgr= 6; (K1, A\(?), 1, wy, Q) such that when
[(¢(t1) — s (A(t1), A(tr)), v — ¥s (A(tr), A(t1))) || oy o <01 a@nd 1< 4y

there existts = ta(e, K2, No, A0, 1w, Q) € (0,¢#] and X € C([t1,t1 + t2]; Ky 44,)
satisfying(2.24)—(2.27pand such that

(2.40) (o(t) — ps (A(t), h(t)),1p(t) — ths (A(t), h(t))) € Tace),n(e)-

Proof. —For the proof the solutiofiy, v) is assumed known as in (WP1)—(WP2). Now recall
from (2.6) that(v,w) = e 7" (¢ — ¢s,1 — 1s) so that(v,w) depend om and together with
(2.10) Egs. (2.24)—(2.27) lead to a self-contained system of ordinary differential equations for
. Notice however, from (2.22), thak is only determined implicitly; however if the quantities
(¢p—ds(N), (¥ —1s(N)) are smallitis possible by the previous lemma, to solve\fagiving a
standard system of ODE’s foA (¢) fo ,orfor\ = (w,6,£,u). The aim will be to obtain
a time interval for which there is a solu'udr(t) in the setK ) ; ;, - So choosé small enough
to ensure thah € Ko ; ;, implies |w — wo| < £, this being possible by assumption (jii). Also
recall the quantityy* of the previous lemma is continuous in its last two arguments. Therefore
it is possible to choosesufficiently small that € K ) ;;, implies 5% is bounded below by a
numberdy = 8o (K1, wo, 2, A9, 1). Sincet — (4(t),4(t)) is continuous intal.? x H~', with
modulus of continuity depending upad¥, it follows that for |A(t) — A()| < 1, with I small,
the quantity|| (¢(t) — s (A(t), h(t)), ¥ (t) — s(A(t),h(t)))||L2x -1 remains smaller than this
numbers, on some time interval depending also upgén On this time interval it is thus possible
to solve uniquely forA by Lemma 2.3. The result now follows by using (2.10) to substifutsy
A and then applying the local existence theorem for ordinary differential equations.

In the next two sections energy estimates will be obtained which will eventually allow this
local solution to be continued to long but finite times.

2.3. Energy estimates

In this section the basic energy estimate which gives long-time control of the deformation pair
(¢,1) defined in (2.3) is obtained. The parametkfs), or equivalentlyA(t), are now regarded
as known and have been chosen such that (2.40) holds. The basis for the estimate obtained is the
elementary fact that in the flat case if one linearises about one of the exact solutions described
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in Section 1.5 there is a conservation law for a quadratic energy-like quantity (1.41), which has
a positivity property ensured by hypothesis (I'Bhis quantity is the Hessian of the augmented
Hamiltonian (1.34). The results of this and tkebsequent section show that in the pseudo-
Riemannian case afl' x L? estimate can still be obtained from the related quantity (2.50)
on long but finite time intervals. Before giving the energy identity it is necessary to make a
decomposition of the inhomogeneous terms as gingR.46) and define a differential operator
(2.49). But first the equations f¢p, /) are needed.

Equationsfor (&,1/3). Substitute (2.3) into (NL\ﬂf) to obtain a system of the form:
(241) até = %’J} +51(t1$7 A7Aaﬁah)a +fl(tax7 A7g€aﬁ)a

(2.42) 9= —Mé+ jo(t,x; \ A, b b)) + fo(t, w3\, g%, h) + N (¢5(Z),20, 6% ).

Here the inhomogeneous terms are piSttimes those in (2.12), whes@ is as in (2.4), i.e. for
i=1,2:

31(t1$7 A7Aaﬁah) = eigji(t7x;)\aA7ﬁ7h)7 fl(tax7 A7gaaﬁ) = eigfi(tax;)\a£57ﬁ)7

(2.43) N(¢s.c, g%, ¢) = éf\/&{ﬁ(hﬁs +29|) (s +e¢) — B(bs)bs

— eB(65)d — B (65) <“T;’ST’> ¢s}.

Explicit formulae for thej’s and f’s are in Appendix A.7. Furthermorel = J\Z/(QE, Z,0)is the
differential operator defined by the quadratic form

@18y = [V (0)700:6,0,0) + 17
P

(2.44) ~ 8631912 - B (16s]) <¢|j; |> )dx.

Thus writingM = M ( g%, Z,©) is intended to indicate that the coefficients)df depend upon
t,xz throughg®, Z, ©.

Decomposition of inhomogeneous terms.  SinceA(t) and A(t) are now known functions
(determined in Section 2.2) it is appropriate to substitute\far (2.41)—(2.42). First of all apply
the chain rule and substitute fo§-¢ = e~ tu + dra from (2.30) to obtain the following formula
for h:

h(t) = Dog® + (€', ( )5> so thatlh| < K1 (1+ |9\
= (Dog)® + (u', (Dig)") +¢*(V5, (Dig)°)
(2.45) ::ﬁ()@)+aﬁ()@L wherei” (£) = (Dog)* + (u', (Dig)°).

(Here the notation being used for partial derivativegdt, x) = g(et,cx) is as in (1.51).) Now
substituting also foA from (2.30) this induces a decomposition of the inhomogeneous terms:

(2.46) Gt A A 0 +eh” () =50 () + e (1),
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where the first term is defined by
(2.47) FO (@) = it M), Va (A1), b(0), 57 (1)

and ;" is determined by (2.46). The termg” and j{*), which are given explicitly in
appendix A.7, will be treated differently in the energy estimate. Observe that Sipds C!
so are th§§0). The estimates needed for théerms are given in the same appendix.

Definition of X. Further to the definitions surrounding (2.3) |t is convenient to extend, at
each timet, the velocityu(t) € T¢(t)X. to a vector field/ = U’(t, :z:)
the global trivialisation determined by the isomorphidnof (1.45) in the foIIOW|ng way:

(2.48) p (et ex) Al (et, ex) U (t, ) = ¢~ (t) BY (t)u' (¢).

Notice that this definition implies thap®)~!|U]|,- = ¢~ *|ul, on all of X. Also define the
differential operator
iwp®

(2.49) X =0 - +U(V,)i.

Energy estimate for (q@,zﬁ). The next theorem records an identity which will be used to
obtain the required* x L2 control.

THEOREM 2.5. —Assume
(i) (¢,v) are solutions of the systef2.41)—(2.42)deriving from a solution tqNLW¥")
having regularity as in hypothes@a/P1)—(WP2)f Sectiorl.7.
(i) Thereis givert’ >0 and\(t) = (w,0,&,u) € CH([0,1];R? x TY).
Define a quadratic form o' x L? by

e ding) =y [ (Ll

=

+ (9, M)

L
(2:50) /)

and letE(t) = E(&(t), 1[1(t); /\(t),gs(t),ﬁ(t)) be its evaluation at time. Then for allt; < tf

(5,id) + 2Ui<(vm>m§,z;>) da

Y
9 P° 2 lNiP5)~2 10£~2
N aT(@)w ( >( L )P (7. 02l
+s<3§”+ ,\%N “ﬁz’#ﬁ Vid+ f+y<°)>

+5<J11)aM¢+ . i - Vi(0) — f2—3§°’>
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(251)  + <as, <at v i(UiM)) <5>>dx .

Proof. —A straightforward calculation which is valid for classical solutions yields this identity.
For solutions having regularity as in hypotheses (WP1)—(WP2) it also holds as these may be
approximated by classical solutions in the corresponding topology.

In order to make use of this identity it will be shown (in the next subsectionftiagquivalent
to the energy nornt/* x L? on the subspac¥ . Control over(¢, 1)) will then be obtained by
means of the following estimate of the right hand side of (2.51).

COROLLARY 2.6.— Assume that|(e¢(t),et(t))|| g1 xr2 < M. and |w(t) — wo| < Q for
0 <t <t”, where[wy — Q,wo + Q] is a compact subset of the stability interdalThen if M, is
sufficiently small orf0, £°] that (2.30)—(2.31)rold there exists; ¢z, with dependences as shown,
such that fort € [0,°] and with~(t) as in(2.4),

E(t)gE(0)+c1(K2, (£),w0, Q)1 (@(0); D] 1 .2

—|—c1(K2, )swo, )H( $(0), (0 )HH1><L2
t

+a/ (K2,7(t"), w0, 9, H( )] g1 p2)
0

Remark— Notice that? is a quadratic quantity itp(t),(t)) whereas the second term on the
right is of linear growth in|(¢(t), ¢ (t))|| g1 x 2, SO the corollary is potentially useful.

Proof of Corollary 2.6. -This result is proved by estimating the right hand side of (2.51) in
a straightforward way. Notice that it is necessary to substitute\far equivalentlyA, from
Lemma 2.3: the smallness condition dfy. is imposed to ensure the applicability of that lemma.
The assumption on ensures thatm? —w?) ! is bounded in terms afj, 2, and so all functions
in the classe&; are bounded in terms only df5, Q,wy and~(t). Lines three through six are
handled directly using integration by partee Cauchy—Schwarz inequality, substituting for
from (2.30)—(2.31) and using Lemma A.8. The estimate of the first and second lines follows
directly from Lemma A.9. For the final line use the form/af given in (2.44): this leads to

e terms arising from application oX to ¢s which can be estimated using Lemma A.12, and

» terms arising from differentiation of the coefficients,/g*(¢°)”/ andp®/g°.
All together the final line can be estimated@sc(Ka,wo, 2,7, |[(6, )| gixz2). O

2.4. Positivity of the Hessian

In order to make use of Corollary 2.6 it is necessary to relate the quaniit{2.50) and hence
E,totheH! x L?-norm. This is done in the next lemma (which depends crucially on hypothesis
(IS)). Time dependence is suppressed in both the statement and the proof.

THEOREM 2.7.— Let g = (p, g) be a metric in the class\iet!:** defined in Sections.2
and 1.8and defingq, k) as in(1.45) Assumgwy — Q,wp + Q] C I, the stability interval, that

= (w,0,&,u) € Oiab and
(2.52) |w — wo| <,
(2.53) F(a Huln) + (m* —w?) ™! +elg <1
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There exist positive numbers, c;, depending upork’;, wo, §2,1 such that fore < ¢, and all
(¢,1)) € T, as defined iff1.42)

(S, X p%,97) = er (I 9l1F + [191172)-

Proof. —First notice that, by Lemma 2.8 below, the result claimed follows (with a differgnt
from the inequality

E(d, i A 17, 9%) = er (I9ll72 + I19]Z2)

which will now be proved. Assume to the contrary the existence of sequences of positive numbers
g” — 0, of metric functionsg” = (p”,¢") as in Section 1.2, of functiong”,+") satisfying

67112, + |¥”]2, = 1, of pointsA\” = (w, 6, &, u)” € O, satisfying (2.52)—(2.53), such that

sta

liminff(cb”,w”; N, (pY), (g%)7) <0,
((¢ U)o (s 5) N h"))—

whereh” = g" (") = (¢, h") € Met{(. By phase invariance assume without loss of generality
that6” = 0. Notice that Lemma 2.8 ensures that titeare uniformly bounded it/ so there is
a numberV > 0 such that

sup([|¢” || + |4l 22) < N.

Apply the translations bg" to the minimising sequences to give new sequentemd(¢”, 1" );

the norms are unchanged. There exiseslabelled subsequence along whi¢l§” convergesto a
limit = with || <! and after applying the translatioA% converges to\ = (w, 0,0, u) satisfying
(2.52)—(2.53). Wnt@ ( ) =p¥(e¥x + 7€) and similarly forg; notice that the frozen values,
defined as above by = (5 ”(0),gV(0)) are in fact equal t&”. The Arzela—Ascoli theorem
implies that there exists a further subsequence along witich converge inCy) . to a limit
metric; C{ . convergence implies that”, g converge uniformly on compact subsets to the
constant values = p(Z), h = g(=); write h = —¢*dt? + h as usual. Translation invariance of

Lebesgue measure implies

(2.54) liminf E(¢¥, " N, 5", ") <0.

V—00
Next consider the functions

(2.55) m—A(qu,z/Js)(:v;/\”,Q”);

it is clear from the formulae in Section 1.5 that as— oo these converge irC__ to
m%(gbg,q/)s)(:c;)\,ﬁ). In fact this convergence is also strong Iit: this follows from the
assumption of continuity of the mgp.56) into weighted Sobolev spacE$ * in hypothesis (R).
(Alternatively, and more explicitly, note that the functions (2.55) are linear combinations of the
functions(aa,b4) defined in Appendix A.6, and hence have exponential decrease at infinity
uniformly in v by [23, Theorem 1.4]). In any case as— oo the functions (2.55) converge
stronglyin L? so, recalling the definition in (1.42) of the symplectic normal spégceg, it follows

from weak continuity of inner products that there exists a further relabelled subsequence along

which (¢, ") converges weakly itif ' x L? to (¢, 1)) € Ty .
CLAIM A. — ¢ £ 0.
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Proof of Claim A. -Assume that) is identically zero. By uniform boundednessiift of ¢”
together with Rellich’'s compactness theorem (e.g. [6, Theorem 6.14]) it may be assumed that
the ¢ converge to0 strongly in L?(K) for compactK. Next we assert that the hypotheses
in Section 1.2 together with the uniform decay fof(Z) ensure that the final two integrals in
<<5, 1\7[@ converge to zero. To see this consider the first of these two terms and noticeRhat if
is compact then

s [ V@5l DI 0
K

because” converge td) strongly in L2(K) while everything else is uniformly bounded i
(by the hypotheses on the metric andggy). On the other hand it is possible to choose compact
K (independent of’) such thatsup,, [,.. 7"v8"6(|¢s(-; AV, h")])|¢”|* is less than any pre-

assigned value (whet&* is the complement of’) becausd ¢ || > < 1 and

Jim_sup|(|gs (3, 2°)) =0
by hypothesis (R) (or [23, Theorem 1.4]). This implies the truth of the assertion for the
penultimate integral |r<|¢ M¢> and the argument for the final term is identical and the assertion
is proved. Now given the truth of the assertion it follows immediately that

@.56) timinf / D045 B @) 007, 056) 4 mla P+ 207 (0 ) <0

Now |U”|2 2 with strict inequality uniformly inv by (2.53). Therefore the Cauchy—Schwarz
inequality |mpI|es that the integral in (2.56) is bounded belowegi |2, + ||4"||2.) with ¢
independent of. Thus (2.56) is impossible sind@” |12, + |[¢”|2. =1. O

Referring now to the infinitesimal stability hygwsis (IS) in Section 1.7, the validity of the
lemma follows from the next assertion:
CLAIM B. —E&(¢,¥; A, q,h) <0.

Proof of Claim B. -As in the proof of Claim A, the uniform decay df, referred to above
makes it possible to take the limit under the integral sign in the last two integrals in (2.44). To
show “lower semi-continuity” for the others notice that, writiig= £(¢, ¥; A\, p, 9),

(¢s,8)* )dx

26+ [ (B(0s IR+ (s 220

R

b |5 \/ENZ' < w\/§.~2
— (| + rias - VB
RA\/@’W S0 Y8i;

2
) dx.

Write the integrand on the right hand side of (2.57)@s; A, p, g), and define

+ pvE(97(0:6,80;0) +m?|9|?)

Ui - w.-
2.57 - ~0ip——i
(2.57) p\/E‘ ’ ¢ 71925

In(6, 353 0 psg) = / (6, %5\ p, g) d'a

lz|<R
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The identity¥(|U],/p) "2 + |U|?/p* = 1 implies:

o - 2 o )
(2.58) —p@’;am — %w > —p\/8(97(0:9,0;0) + w?| ).

Thusi(é,; A, p, g) > 0; together with weak convergence of andV¢” in L?(|z| < R) and
the strong convergence of in L?(|z| < R) this gives

Ir(d, 03\, q,h) <liminf Ir(¢¥,¥"; X, q,h)
<liminf (Ir(¢”, 0" N, 5, §%) + Ir(6”,¥"; N, q. h)
— Ir(¢", 4" N, " ~"))
<liminf| Lo (¢ 0" N, ¥, %)

(2.59) + sup Tr(6, 03 X, 5%, 37) — Ir(d,s M q, )]
el gr+lYllL2=N

The CY . convergence op”, g” to ¢, h implies that the second line has limit zeroas- co.
Therefore taking supremum ov&r

Lo (&, 43 A, a, h) < liminf Lo (67,95 3, 5, §")
and so by the remark at the beginning of the proof of Claim B

(6,93 A, q,h) <liminf E($, 4 X", 5", ) <O
which completes the proof.O

LEMMA 2.8.—Letg = (p,g) € Met® o If

v=7(Uly/p) < 0
there exisiC; = C;(v, Ky) < +oo such that

2

IV6]2: + Hm Eiiob- 225 <ared.iinng)+

L2

Proof. —In (2.57) estimate (for an§ > 0)

(2.60) —a¢——¢ cov0) vz (14 L)L 5

. (3 p2 g 10 72 .
Sincel < 7 < oo it follows that1 — |U| /p? < 1 so that choosing sufficiently small that
(1406)(1 —~~2) < 1 the result foIIows O

2.5. Animproved frequency estimate

Even in the case of a nontrivial background metric the system (ﬂm’ly invariant under the
action of S' by phase rotation. This implies a conservation law by Noether’s theorem, a fact
which in turn provides a stronger estimatewmhan that obtained by means of the modulation
theory already described. Recall thg)) = wy.
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LEMMA 2.9. - Let (¢,v) be a solution of(NLWZ") of the form(2.3) with regularity as in
(WP1)—(WP2)ynd assume that— \(t) = (w,0,&,u)(t) is aC* function such tha¢2.40)holds
on an interval0 < ¢t < ¢; and thatw(0) = wy € I. Then there exist positive numbers= p(wo)
andd, such thatifsup, ¢ (o ;| (6, €)[|z2x 2 < 52 on an interval[0, to], with t < ¢1, then

(2.61) sup |w(t) —wo| <e%p sup [|[(6.9)| 20, -
t€(0,to] t€[0,to]

Proof. —As just remarked the system has an invariance under the action of the gtdup
phase rotation. Corresponding to thiganiance is the fact that the quantity

[ty

is independent of time for solutions of (NI with regularity as in (WP1)-(WP2). Now
substitute into this the ansatz (2.3) and use the fact(that) € T ») () to deduce that the

terms linear inp, ) vanish, and hence using the jacobian identity in Appendix A.1 the quantity
2 s
_waw(Z)HLgZ + 52<¢7 “/J>Liz

is independent of time. The definition bimplies that the first term has non-zero derivatives for
|w — wp| small and implies the estimate (2.61)a

2.6. Completion of the proof of main theorem

In order to complete the proof it is necessary to compare the evolutiortpfdefined by
(2.30) (or equivalently Egs. (2.24)—(2.27)) with the evolutid® (#) introduced in Definition 1.5
in Section 1.6. This is carried out in the norm (1.53). To achieve this it is helpful to use the
momentum variable € 7% defined in Section 1.4 and the variable

N =L\ = (w,0,¢,7) €ER? x T*Y,

defined just prior to (1.29), in terms of whiche unperturbed evolution was written in (1.49).
An estimate for\ — A\(9) in (1.53) will follow from an estimate for

(2.62) X =MOf = jw—w® | +£0 — 00| +e|¢ — O + |7 — 2O,

Now let A(¢) be the curve defined by (2.30), considéit) = L(A(¢)), and, using (2.7)—(2.10)
and (2.2)), (2.37) gives

d\* o o -
(263) - =V5(\'ih) +eVi(N5 g7, e) + 2 VE(E AT e 00, e 0% g7 he).

This is possible as long as the smallness condition (2.29) holds. In thigCasea continuous
function of ¢, \* and (¢,) (the latter being given the strong® x L? topology) forw in a
compact subséty — Q,wg + ] of I.
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Introduce, in addition t&2, two positive numberg.,., M, and define

t*:inf{to>0: |w(t0)—w0|>§20réﬂ,\*(t — N O (¢0) ”
(2.64) or [[(é(to), ¥(to))l| mrr w2 > M.

or A*(¢) cannot be extended as a solution of (2.63) bey{ﬁml))}.

Lemma 2.4 implies the existencef=t; (¢) > 0 such that there is a local solution to (2.24)—
(2.27) on[0, t1] and consequentls is strictly positive. The plan is to show thgt > T? where
T, is independent of, by a contradiction argument using the fact that

(2.65) |w(t) —wo| <O, [N &) - N OW[ < Lee and [|[(3,8)] 12 < Mo

on the time intervalo, ¢..).

To do this observe that (2.65) implies that (2.53) holds for sbaepending upof, L, and
the unperturbed evolutioh*(®), which is in turn determined by the initial da0). Therefore
Corollary 2.6 and Theorem 2.7 together imply thatffer .. the following estimate holds

7 ~ 2

(2.66) 1 (2(8), () [ 51 2 < €3-(1+ M) +ecat

wherecs = ¢3(A\(0), K2,9Q, L) andcy = c4(N\(0), K2,Q, L., M,). Now chooseM, such that
M2 > c3(1+ M,) and let

Mf — 03(1 + M*)
ECq '

to =

Next lete be chosen to ensure thal(¢ (), ¢ (t))|| g1 x 2 < M, is small enough that Lemma 2.4
and (2.61) can be applied. The latter will give the first estimate of (2.65) as larfgpas? < Q.
To obtain an estimate for*(t) — \*(?) (¢) notice, from (1.49), thaV; * is globally Lipschitz ifw
andr are bounded. To be precise if (2.65) holds there exists a number; (K, 2, L.) such
that

(2.67) [Vi(ATip.g.6) = ViOAsipg.6) | <eeslAf — Al <e?es L.

It is now straightforward to compare solutions of (2.63) and of (1.50) which have the same initial
data:

LEMMA 2.10.—There existgs depending upoiis, A(0), wo, 2, L., M, such that for < ¢,:

H )\*(O) )HE < e%es Lot + £2cgt.

Proof. —Write \* = (w,6,2£, 7) and similarly forAz® . Then
N =eV§+eVi +e°V3,
INO =V +eVi.

Fort < t. (2.31) implies the existence af as in the statement so th&3| < ¢g. Recall that
the initial data determines*(®) and hence provides a bound ¢ft) as long ag < t, so that
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(2.65) holds. The estimate now follows by inspection sifiedways appears ag in V§, V; on
account of the scaling® (¢, z) = g(et,ex). Finally let

ty= -
5 E(C5L* + 06)

and definindl’. /e = min{t2, t3} the proof of the theorem is completed

3. Proof of Theorem 1.1

Theorem 1.1 will be deduced from the next result which is obtained directly from Theorem 1.7
by rescaling. Introduce the scaling byf space and time (and also the phase):

(3.2) X =ex, ==¢&¢, T =et, 6 = eb.
The metric is now

1 ) )
9= (=p*dT* + gi; dX" dX7)

with p = p(T, X), g;; = ¢:; (T, X ). Under this scaling the system (NI%)/can be conveniently
written in the form:

9% _r,
(NLW2) or g
o _

1
o7 = Lpa® — ZpVE(M* e — B(|9])¢).

(This involves a scaling by of ¢ also. The operataf\, , is now defined withV x in place of
V. of course.) Define at tim&' the spatially homogeneous metric

WT) = —q(T)*dT? + hij(T)dX"dX’
where

a(T)=p(T.E(T)),  hy(T)=gi(T.E(T)).

The rescaling converts the norﬁn ﬂs into thee = 1 case, which will be denoteﬁj . ﬂ The
parameters for the soliton will now be taken to be

A(T) = (w(T)a é(T)a E(T)v U(T));
the unperturbed evolution
AT = (O(T),6°/(T), 2(T), uUT))

is now described as follow§ — Z(°)(T") is a solution of the geodesic equation (GEQ)ith
parametef” rather thart), u(*)(T") = %(TO), wON(T) =w®(0) = wp and

T
- (0) -
0 () = / ____ g +0©0),
) (@) HuO] )
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where
(1) =p(T.E2OUD)),  hJ(T) =g (T.EON(TD)).
With this change of variables Theorem 1.7 translates into the following:

THEOREM 3.1. — Letg be a pseudo-Riemannian metric of the f¢tnm4), where(p, g) satisfy
the conditions in Sectioh.2, and letg be as in Sectiof.7. Consider the solutiot(t), 1 (t)) to

(NLW ) with initial values
(8:2) ¢(0,X)=f.(Z2(0,X)/c)e®0X)/e,
(33) ¥(0.X)=1 (m\/ﬁfw (2(0,X)/e) - %(Bu) V2fu(200, X)/s)) e0.X)/e
where Z(T, X) = Z(X; /\(T) W(T)) and O(T, X) = ©(Z(T, X ); N(T), h(T)) with Z,© as
defined in(2.4). If \(0) € Obtdb there exist positive numbers

ex=6:(A0),K2),  T.=T.(A0),K2), c=c(X0),K>)

and a function\ € C*([0,7.];R? x TX) such that for alle < ¢, and0 < T < T the solution
persists and satisfies

(ﬂA( AOD)[ + ™M w(t) = wo| + [[$(T, X) = fulZ(T, X) [e)e®TXV2|

(T, X)— é (iw’y\/ﬁ f.(2(T,X)/e)

— i(Bu) Vzfo (Z(T’X)/E)>ei(~)(T,X)/g

) < ce.
L2

The statement in this theorem is now very close to that in Theorem 1.1. There are two things
remaining to be done to complete the proof of Theorem 1.1:

e Obtain the slightly improved estimate fgiin (1.13).

e Obtain the estimate fa¥.(¢ — ¢5) in (1.14).

Introduce, as in Section 2.the alternate variable

A= (w,7, & u)
with 7 = en anda = e« SO that == dﬁ —Vo(A; ). It follows from the formulae in Lemma 2.2
that
(3.4) |07d| + 07| < ce”

from which follows the estimate foy as required.
Now to derive the estimate f@k (¢ — ¢§) in (1.14) notice firstly thaif & = 0 the function

$5(T, X) = fo(Z(T, X))’/

is exactly the function defined in (1.12) (after relabellifif, X) to (¢,z) etc.) By (3.4) the
presence of a non-zefocontributes arO () error. Next compute

(3.5) drd5(T,X) = %(i&T@ Fo(Z(T, X)) +0rZ -V 7 £,(Z(T, X)/e)) e’ T-X)/e,
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Therefore, suppressing the argume(fitsX') of Z and®O:

e0r (¢ — ¢5) = e% <1/} - é (iwvx/ﬁfw(Z/e) - i(Bu) szw(Z/e)) ei@/5>
(3.6) <8T¢>o ﬁ_ (mf fu(Z]e) — i—(Bu) Vz fw(Z/a)>ei@/5) ,

To prove Theorem 1.1 it is necessary to estimate thi3nThe first line is estimated from
Theorem 3.1, so it remains to deal with the second line. As in Appendix A.4 the following
formulae hold:

o7 S
a7 9T —y(Bu)' — B (vP} + Q%) 0rd? + u5 27,
' 00 L w ~
a_T = —wqy + BTT] — E(B’U/)I/LI + /LOJZJ

for uh = ph(\,0rA,h,0rh) and pY = pS(\,0rA, h,0rh) and i’ as in Appendix A.4.
Substitute (3.5) into the second line of (3.6) using (3.7). Terms arising from the first terms in
(3.7) cancel with

L (iwvBLiz/e) - 2R w0 Variz)e)

up to an error which is< ce by Lemma A.10. The estimate (3.4) makes it easy to estimate
expressions arising from the middle terms. The third terms<ate since Z/e times f,,(Z/¢)

and its derivatives are bounded Iif by the known exponential decay of these functions: this

completes the estimation of (3.6) needed. Thhsorem 1.1 is proved for the general class of

nonlinearities described in Section 1.7.
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Appendix A

A.l. Variousformulae

Let ¢ be fixed and suppressed and4et 7 (|u|,/q). The inverse of the functiom — Z =
Z(x; N\, h), defined in (2.4) is given by
(A.1) r=x(Z;\h)= (%Pu,h(Blz)JrQu,h(BlZ)).
The Jacobian of the transformatien— Z(z) is yv/h, so thatd"Z = yv/hd"z. The measures
d"z,d™Z will usually be writtendx, dZ respectively.
A.2. Projection operators

Given an inner produdt = h;; onR™ it is possible to introduce projection operators in the
direction ofu and orthogonal ta, for anyu € R. These are given by

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE



348 D.M.A. STUART

(A-2) (PupV) = <U,|":7|>2hw7
h

Iul2

A convenient way to write this is to write the isomorphism inducediby

(A.4) R™ — (R™)",

(A.5) Vi V= hi V7,

in terms of raising/lowering indices in the usual way. The projection operators can then be written

%

(P 7h)l.:_J (Q 7h)l.:51.__J
Sl Sl

A.3. Spatial derivatives

Let ¢ be fixed, and so suppressed, and+et F(|u|;/q) whereh = (¢, h) is a spatially
homogeneous metric (as in (1.45)) withh;; depending only or. Then the derivatives of the
functionsZ = Z(x; \,h ) and® = ©(z; A, h ) defined in (2.4) with respect toare

071 - - 192"
00  wuyy
(A7) o0 g

A.4. Timederivatives

Assume thah = (g, h) is a spatially homogeneous metric (as in (1.45)) with;; depending
only ont. The derivatives with respect toof the functions defined in (2.4) can be computed as
(using(, ) for the duality pairing):

0 Z = (O\Z, O \) + (OnZ,0:h)
= <6XZ, V(/\)> + <8)\Z,(9t)\> + (%Z,Bt@

and similarly for®. Thus, using the notation of (2.2), the expressiphsu’ defined in (2.11)
can be written in terms df,, © defined in (2.4):

(A.8) en! (t,z) =ep! (2, A(t), A(t), h(t), h(t)) where
p! (2, A\ A b ) = (A, DXZ(:C A, h)>+ (h, DhZ(z,\h)),

(A.9) eul(t,z) = eu (z, A(¢), A(t),h(t),h h(t)) where
pl(z, A A b h) = ISZI <A DA\®(Z,\,h)) + (h, DL®(Z,\,h)).
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Here it is to be understood that all quantities are to be evaluatZdsat\, i ). Rewrite all of
these as functions df by composing with the inverse function (A.1):

it 2) = p" (t,x(Z,A2),0(1)), 1% Z) = p° (t,%(Z,A(t), b(t))),
(A20) @l (Z,\Ahh)=p! (x(Z,\h),\ A b L),
BO(Z, N A b ) = p® (x(Z, A k), N\ AL 1).

These are affine irZ: decomposeai’ and z° into partsii’, i independent ofZ and parts
whz7 . 1% 77 linear inZ. The following identities summarize these definitions:

oz’ . . .

ot —v(Bu)! - EBZ'I(”YP]'Z +Q%)0ra? + ens 27,
i a—@*w +e0 —EE(BU)IJ—FE 0z’

or qay T q H gz

Notice that the derivatives with respectficcontribute only to the parts linear id. The parts
independent of are given by

(A.12) i = orn - %(Bu)fﬂf,
(A.13) fi' =—B!(vP}+Q})ora’.

The explicit formulae for the parts linear i i}, = (A, A, b, b)) andpS = uS (N, A, b, b)) will
not be needed, only the following identities

LEMMA A.1.-With the summation convention
opl or(vvh)

(A.14) M{r:azl —Wa

(A.15) (Bu)’ i (B(yP + Q)1 = (), — (9,(Bu)”) (B(vP + Q)
Lol WYU;

(A.16) (B(YP+Q)), 7L = —at( p )

Proof. —The first is best proved by use of the change of variables for integrals exactly as in [23,
Lemma A.2]. The other two are simple calculations:

LEMMA A2.—Let) € K, ;4 the setdefined iB.5and assuma(t) € Met” for somek .

There exists = ¢(K, A(*), 1), uniform forA(?) in a compact subset of the parameter spgicd6),
such that

BN (Z N A )|+ 8220 A b )| < e(L+12]) (JAL+ |A)).
A.5. Derivativeswith respect to velocity u

In order to compute the elements of the generalised null space of the linearised operator it
is helpful to first introduce some notation for the derivatives with respeatab the function
Z(z; )\, h) defined in (2.4). Lety =5 (|u|n/q) and given the expression
Z=27" ;)\, h) = Bl (y(Pun)i (@ =€) + (Qun)(x — £)7),
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define¢? = (*(Z; A\, h) by:

= L P — O+ (Qua)i (e — &)

v Qut

0
= o (= D(Punlila =)' + (@ = €)")
2Ui -~ o -1 - . )
A17) =T (BT D)+ T Quaiue(B 2+ o Quae(B2)"

(In the final line (A.1) is used to expressas a function ofZ.) Notice that( is affine inZ, and
introduce

a a a
(A18) b= g

The following identities can be verified directly,

2

a YU
(A19) BJ¢y = Z

¥ |ul;

(A20) = (5795 ((0= D@t + TR R

—1 212
e %(Pum,

(A22) (BL¢Y + B¢ = ql ((Bu)! (vP? + Q%)B; + (Bu)’ (vP{ + Q¢)BL).

A.6. Multipliers

In this appendix formulae are given for the elements of the generalised null spaeg of
the L? adjoint of the operator defined in (2.14h the case of flat space-time. From these
will be derived the inhomogeneous terms in (2.18) for the general case. In the Euclidean case
q =1, hyj; = 6;; the formulae for the generalised null space have been given in [23]. As usual they
are generated by differentiatiavith respect to the parametexg and then taking the simplest
possible linear combinations. The definitions made here depend upon an arbitrary spatially
homogeneous metric and can be obtained by a change of variables from those in [23].

To start with, the operator in question is given explicitly by:

(A.23) M*(a,b) = (8ta+iwq7a—M(/\7_E,ﬁ),6tb+iwq7b+ b Ea).

Ve®

Now given A = (w,6,£,u) € R? x TS and the metrich = —¢?dt? + h;; dz' dz? define the
following exponentially decaying functions @ (written with the convention thaf,,, g, are
evaluated with argumeni):

fo whereg, =0, fu,
(A.24)

a/fl(Z;Avb): ~y fw“l‘?('Y(BU)VZ—Zu)q’Y)b,l,
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bO(Z7A7ﬁ) :ifwa

(A.25) -
ao(Z;\,h) = % (iv(Bu) - Vz fu +wayfs),
b(Zi\h) = 22
(A.26) 5
ar(Z;\h) = ? (7(Bu) -Vz 3?01 zwqwag‘;)
0f, iw
busi(Z:0h) = BIGE 90— (4, 1 Quye(B2) L,
(A.27) 1

vh of. .
an+i(Z; A h) = . <(7Pu h+ Qun)l B! Béf + (v(Bu)-Vz — zwqy)an).

Here~ is asin (1.21).

RemarkA.3. — Notice that the dependence an= (w,,{,u) is only through(w, ). The
convention introduced following (M-3) aboubt explicitly indicating dependence dhas well
ash is used here.

LEMMA A.4.— The map
(A\h) = (ba(sAR),aa(-3Mh)) € H* x H*,

defined forh in anyMet™ and X € O%, is continuous fok = 3, C for k =2 andC? for k = 1.

In the case whep® = h = const and ) satisfies (1.24) the operatar* reduces, on functions
of Z (whereZ is as in (1.22)), to the operator

M (a,b) = (—v(Bu) -Vza+iwgya — M (N h,h)b,—y(Bu) - Vzb+iwgyb+ %a) .

Calculation, using (A.19)—(A.22), then shows that the pairs of functiensb.) lie in the
generalised null spacé(aa,ba) =0if A=0orif A=T€{1,...,n} while

Mila_1,b_y) = —%(ao,bo) (A=-1)

and

. h .
Mo (@nti,bnyi) = %(WP +Q)!Bj(ar,br) (A=n+i).

Now in the general case wherdoes not satisfy (1.24), whenis time-dependent angf is both
space and time dependent the following formula holds

~ ~ 0
M*(a,b) = M§(a,b) +ep’ (?Zl(a b) +e(ADy + Dy, )(a,b)

(A.28) + <(M()\,ﬁ,b) — M\, g%, h))b, (;} - ih)a>
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wheren! is as in (A.8). From this follows (2.18), where the only non-zero elements of the matrix
DapareD_; o= —q/vand

vh :
Dpyin= T(WP"‘ Q)] Bj
and the inhomogeneous terms are given by

0 . .
(I, I3 =¢ep! 377 (aa,ba) +e(ADx+hDp)(aa,ba)

pE
h)—M(\ g% h))ba, .
st (- o)
RemarkA.5. — The (aa,ba) are functions of(Z,\,h) but the explicit dependence on
= (w, 0, &, u) is only through(w, «) which is why it is possible to replacewith A here.

(A.29) + <(M(/\, h,

The inhomogeneous terms are exponentially decaying functiors which also have the
following parametric dependence:

I3 =32(Z N A bl g7, 67,V g°).
They have the following form (using the summation convention):

Vil =3+ LpA" + D0k + 337 Qalg", Dg)

NZ2ynY

where theQ),, are affine in their second argument and rational in their first argument and all of

theJ';? have dependendg? = I3 (Z; A, h).

LEMMA A.6.— The maps
(A R) = (3555 Ah), I3 (5 A k) € HY x H*,

defined for in anyMet™ and\ € O, are continuous fok = 2 andC' for k& = 1. Furthermore
e(J%,w) =eF4 with

(A.30) FA—FoA(t)\wg ha)—i—FAB(t/\wg hE)AB—i-FW(t)\wg h,e)h

ng

where theF{,} are continuous functions af A and ofw € H~! and are < ¢||ew||z-1 with
c=c(K1,5(q" Huln), (m? — w?)~1). Similarly £ (T, v) = eG4 with

(A31) GA = éOA (t7 )\7 v, gaaﬁa 5) + C:VAB (ta Av v, g87 ﬁa E)AB + éuu (ta Av v, ggaﬁa E)huy

where theé{_} are continuous functions of, A and of v € L? and are < c¢||ev||zz with
c=c(K1,5(q " uln), (m® —w?)7h).

Proof. —This lemma can be essentially read off from (A.29) using Lemmas A.4 and A.10. The
stated estimates are given in the form neede®kiation 2.2, and are not necessarily optimat

A.7. Inhomogeneousterms

In this appendix formulae and estimates for the inhomogeneous terms in (2.12) are given. Thus
it is assumed that
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o t—= \(t) = (w(t),0(t),£(t),u(t)) isaC?! function andA () is defined as in (2.7), with time
evolution as in (2.30), (2.32),
o t— (p(t, (1)) is a solution of (NLV\Z ), with regularity as in (WP-1)—(WP-2),
and the various inhomogeneous termgj;, fi, fi, N, NV are as defined in (2.12) and (2.41)—
(2.42) and the surrounding discussion. The explicit formulae are:

jl(tv'r;)\aAvhvh) = _€_i®<D)\¢SvA> - e_i®<Dﬁ¢Svh>

. 10fu
(A.32) = —wg, —p! 971 ipofu, Whereg, =09, fu,
jQ(tv'r;)\aAvhvh):_ 7ZO<D)\U)57 >_87i®<Dﬁw57h>

_or (7f u> Vot — iOr (V)

— Orw (iw\/ﬁgw - %(BU) ‘ VZgw)

(mf ”G >vz>afw

oz
(A.33) — i’ (sz ”G U)'Vz>fw,
(A38)  fultmAgth) = 1(} }) 0y,

6710

fg(t,x;/\,gs,ﬁ)z (Ape,g= — Aqn)(9s)

(A.35)

(p°vE — q\/ﬁ) (m*ps — B(|6s|)ds),

N (forev,g2) = =5 VE(B(1 S+ 20l) (o + 20) = U)o
(A.36) —eB(fu)v —eful (fu) R}

In these formula&s, s, Z, © are as in Section 2.1. Notice that j» are linear inA, i, or, after
substituting forh from (2.45) affine inA. The regularity properties of these terms as functions of
(A, h) can be read off from hypothesis (R):

LEMMA A.7.— The map(\, k) — j; (resp.jz) are continuous ta7? (resp.H?), C! to H?
(resp.H'), andC? to H! (resp.L?), for h in anyMet® and\ € OL.

LEMMA A.8.— There existe = c¢(Ko, (m? — w?) ™1, 5(|uln/q),||v| z1), whereKj is as in
(M-1)—(M-3), such that

||5N(fw,E’U,g€,€ HL2 X CEHUHHl

Proof. —It is convenient to use the variable= ¢’®v and F instead of3 (see (1.1)). Now
compute, suppressing arguments where possible,

[Nz = €N |2 = 2||p" V&= (F(¢s +6) — Fl(ps)) — e(F'(65),)]| .-

:a_

L2

e veE / (F(¢s +erd) — F(¢3),d) dr
0
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Recalling now the hypotheses (NL-3) the redoltows by applying Holder’s inequality with
1/2=1/2*+1/n. O

The estimates involving the operators

(A.37) X =0, +U"(Va)i,
wp®

(A.38) X=0,— + U (Vo)

needed in Section 2.3 are now given. Recall the decomposition in (2.46)—(2.47).

LEMMA A.9. - The inhomogeneous teryis appearing in(2.46)—(2.47are of the form

(A.39) 3Ot x) = —(Dros, V1) — <Dg¢s,ﬁ(0)>,
(A.40) 30 (t,2) = —(Dags, Vi) — <D@¢S,Q(O)>,
(A.41) iVt 2) = —(Dads, Va) — (Dugs, b)),
(A.42) it 2) = —(Davbs, Vi) — (Dyibs, b))

and satisfy the estimates
1XG e < cas (1 + |A] + [2,A]),
I1X fill 2 < cre(1+0A +|A)),
1Vt ee + 115 122 < ese

with ¢; = ¢; (K;, ¥(|u|n/q), (m? — w?)~1) fori = 1,2 and

C3 = C3 (K217(|u|h/q)7ﬂaw07 (an)HHl XLZ)'

Proof. —To prove the first observe thaf; is itself aC! function of ¢, A (as can be seen
by inspection of the formulae in Section 2.2) which satisfies (1.52), while (2.45) implies
immediately

; (0)

- (0 .
5]+ 1007 < e(K) (1 + 1A+ |A).

The result now follows the explicit expressions for the inhomogeneous terms above.
The second follows from the product rule and Lemma A.13. Finally recall from (2.45) that

ﬁ(l) =¢e(V5,(Dig)°) so thaﬂﬁ(l)| < K;]eVo| and the last estimate follows from (A.41)—(A.42)
and (2.31). O

A.8. Estimatesfor someintegrals

In this appendix various estimates for integrals used primarily in Sections 2.2 and 2.3 are
given.

LEMMA A.10.- (a)LetF € C'(R"™;R) have bounded first derivative apce an integrable
function satisfying

/(1+|Z|)\p(2)yd2<oo
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and letA be ann x n matrix. Then for allp > 1
11 +12)™ (F(e(e + A2)) = F(9)p(2)] 5 < celAIDF o= [[(1+121)™ p(2)]] 1, -

(b)Let F € C?(R";R) have bounded second derivativebe as above, angbe an integrable
function satisfying

/Zp(Z) dZ=0 and /(1 +1Z*)p(Z)dZ < .
Then
(Pt 42)) = Fe0)o(2)d2) < AR IDF L (04 12P)p(2)
If further F € C3(R™; R) has bounded third derivatives then

’/[DF(&({“—FAZ)) — DF(£)]p(Z) dZ‘ <c?|AID°F e | (14 217)p(2)] 1, -

Proof. —The proof of, for example, the middle inequality follows from the assumptions by
writing:

11
F(e(€+ AZ)) — F(e€) —e(DF(e€), AZ ://s F(e€+ steAZ),eAZ,cAZ) ds dt.
00

The others are proved similarly.c

In the following it is assumed, as usual, thats a pseudo-Riemannian metric of the form
(1.44), whergp, g) satisfy the conditions in Section 1.2; it is rescaled as in (1.44) and evaluated
atz = &(t) as in (1.45) to define a spatially homogeneous métee(q, h).

LEMMA A.11l.— Given \ = (w,6,&,u) € R? x TS consider the affine transformation
Z — x(Z) given by(A.1), which is itself the inverse of the affine transformation definda.i).
Assume further thay is an integrable function withj|(1 + |Z]);j(Z)([z2, < oo, and given

u € T¢ ¥ define a vector field onY as in(2.48) Then

(1 +12)" (0 (2(2)) = )i (2)| 1 <ecl| (1 +12)™5(2)] 2
H(1+|Z|)m(0l(x(z)) —u) ||L2 <50||(1+|Z|)m+1 ||L2
with ¢ = (K1, 5(q~uln)).

Proof. —By (A.1) 2(Z) = £ + AZ whereA is a linear transformation with norm bounded (in
terms of K; for anyi > 0) and~(¢ ! |u|;). Now estimate as follows

[lotet +2a2) - pee)iiPaz < | 1+ |2)i2)1,
since the derivatives gf are bounded byK;. The second inequality is proved similarlyc
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LEMMA A.12.- Given aC' curve
= A(t) = (w,0,6,u) € 02",

let the functionsZ = Z(t,z) and® = ©(t, x) be as in(2.4), introduce the first order differential
operatorsX, X asin(A.37)—(A.38) and definév . by

(A.43) EV.(t) = D) — Vo(AL): (D).

Assuming thalf (1 + |Z|)j(Z)||2L§Z +](1+ |Z|)sz(Z)||2L§Z < oo and that the functiori(t, z)
is of the formj = ¢©(Z) the following estimates hold
1 +12)" X 2 < cas (L0 + VLD (14 12)™ 7 (3(2)] + [V 232 ]
10 +12)" X5 o < cas (U [0+ [VL]) < [ (1412)™ 7 (3(2)] + [V 23(2)]) |
11 +12) " Va(X )| o < cas (11N VD[ (L4 12)" (12| + V2D o
1 +12) " Va(X ) o < cas (11N VD[ (L4 12)™ (12| + V2D o0
with ¢; = ¢; (K;,¥(q " tul,) fori=1,2.

Proof. —This follows directly by using the identities

ate+(7iami@—‘*’—pg:au0+f(q—p6)—ﬂ(0i—ui)ui,
v v q

ozl + U0, 28 =ep! + (U — u')B] (YPun + Qu.n)l,

where, for allA, A (t, z) = p? (x, \(t), V.. (t), h(t), A(t)) is as in (A.10) and: is as in (2.45),
to reduce to Lemma A.11.0

LEMMA A.13. - In the situation of Lemm&.12 assume in addition that there is given a
functiona € C2(R'*" R) and a(t) = a(et,e£(t)). Then the following estimates hold fer
smalt

H (1 + |Z|)mX((€_1 (a(at,am) — a(t))j(Z(t,x))) HL2

oo (L o+ V) ([ (4120 ()] + V232D 12):
|(1+12])" V. [(Xe (alet,ex) — a(t)j(Z(t,2)))] N .-

<o (LA +IV-I) x (|14 1207 (4l + V23] + (72D

with ¢ = ¢(K1,5(q " |u|n, |o|c2), as do the analogous statements witteplaced byj and X
replacing X .

Remark— In applications an estimate fot. is provided by Lemma 2.3.
Proof. —Compute
(0 + U (t)V; Je M alet,ex) —a(t))j(Z(t,x))
= [O1alet,ex) — Dra(et,e£(t))
— (04 — u)daa(et,e€) — (u— U)dyo(et, e€)
+ U (20(et, ex) — Daar(et,e£(1))) ] (Z(t, )
+e Ha(et,ex) —a(t)) (9, + Ut WVi)i(Z(t,z)).
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Use Lemma A.10 to estimate the first third and fourth lines and (A.43) and Lemma A.11 for
the second. This gives the first estimate. Theosdds proved similarly, observing in addition
that a spatial derivative applied thx(st, ex) introduces an additional factor of O

A.9. Computation of the modulation equations (proof of Lemma 2.2)

In this appendix thé.? inner products which appear in (2.19) are computed in order to obtain
the modulation equations (2.24)—(2.27) and prove Lemma 2.2. Asumi(t) lies in a compact
subset of the parameter space (1.19). Since tilméxed (and will be suppressed) in this section,
it is possible to regard’, defined in (2.4), as the independent variable rather tharhus all
functions ofz will be regarded as functions &f (obtained by composition with the inverse
functionz — x(Z; A\, h) given in (A.1)), but by abuse of notation will be represented by the
same symbols. Since, as explained in Appendix A.1, the meaddresd”Z anddx = d"x
differ only by a nowhere vanishing function of time, it is permissible in condition (2.19) to
replacedz by dZ. Also it will be convenient to suppress the subscripté on the projection
operatorsP,  and to writey for ¥(|u|,/q). The notation,) and|| - || will be used for thel.2,
inner product and norm respectively.

It will transpire that the terms on the left hand side of (2.24)—(2.27) arise from the inner
products involvingj, j2, f1, f2, up toO(e) terms which are continuousinX and lie in the class
¢, (see (2.20)) and hence contribute to the right hand sides. (Continuity follows immediately
from the assumption (R) in Section 1.7). The other contributions to the right hand side come
from the terms with am explicitly in front; these will be discussed first.

Terminvolving /. The terminvolvingV is independent af, and, by Lemma A8, satisfies
the bound (for any < 1):

(A.44) [(ba(Z; M, h),eN)| < ec||v]|3n

wherec = (g ulp), (m? —w?) 1), eljv|| g1, Ko, K2). Now (ba(Z; A, b),eN) is a continuous
function of \, and also ofv (in the strongH ! topology) since the nonlinearity is not allowed to
have supercritical growth by (NL-1)—(NL-3). Therefore this term lies in the alassee (2.21))

and contributes to the terlﬂgo), and is bounded as in (2.21) (withdepending also ok, and
the K; of (NL-1)—(NL-3).)

Termsinvolving (v, w) explicitly. The other terms with an appearing in front are those in
the second line of (2.19). These are treated directly using Lemma A.6 and substitufirfgdior
(1.45). It follows that these terms can be brokennip two terms which contribute, respectively,

to F') and F4 5 in (2.24)—(2.27) and as functions afA are bounded as in (2.21)—(2.23) with
constants: (which depend also o).

Termsinvolving ji,j2. The contributions frony,, jo may be computed directly:
1vh
q

(b—1,72) + (a—1,41) =7 "Vhi°| fu|* — (Bu)” i’ (%<V9wavfw> +W|fw|2)

2
VR (2w<fw,gw> " '%mv)
2
_ \/5(7_1 +~y'%) 1£ul20 + 209 VB (for )
o 0
:7\/E,u0%(w”fw”2)v
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(b0, j2) + (a0, j1) = =Or(wyVh)|| ful|* - 2w7\/—8Tw<fw,gw>+w7\/—|\fw|\QaZI

= —0r (wyVhl| full?) + wvllfwl\QaZI

= —yVhor (w]| fu]l?).
Forle{l,...,n}

rs32) + Gar) = S P0n (2R B0 ) 23 (L2 ) {2, B

+¥(BU)J /uf( Pfo 0fs O f 3fw) W

0Z707ZK 971 0710727 07K

+ 2w7\/ﬁ<u°fw, %>

2
= \/H(P371 + vQBfl)‘} <8T <%vua> +wl| fol*or <%’yua>>

Forie{l,...,n}

. . \/H ] ~ afw afw
(brgis J2) + (Qnti, 1) = —T(VP‘F Q)'ZB;IMI<ﬁa ﬁ>

7\/_ K~ 62fw Jra Ofw
2 (BT <8Z18ZK’B“ 1 9Z7

h Ofw
+ 2w272§/11<(713 +Qie(B™'Z)" [, 8—21>
+ 2w7\/ﬁﬂ0<fw,B;f <;%>

0f, _
— 2w72§(BU)KﬂO< 6§K (VP +Q)ic(B 1Z)ch>

h /|Vf.l? .
= B (L ) 2+ Qo

Termsinvolving f1, fo. To calculate the quantiti€s 4, f1) + (ba, f2), first of all notice that
forAe {—1,n+1,...,2n} Rb4 is an even function of andRa 4 is odd, while the situation
is reversed for the imaginary parts. From this observation it follows directly that for these values
of A itis possible to write

anc )+ a2 [ (= L) P2 + v - VB )

+ (P Ve (9°)" — q\/ﬂh”)ﬂj(z)>

where all theF”s are even functions of . In accordance with the remarks above about uging
instead ofr as independent variable in these formulae

P =p(El+e(y ' P+Q)(B'Z)) q=p(ck)
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etc.; therefore by Lemma A.10 these terms, which are continuous functions afeO(¢) and
lie in the class®; and satisfy a bound as in (2.20) witllepending also oK>. Thus these terms
contribute toaf«“xgo) on the right hand side of the modulation equations.

For A =0 it follows by inspection thata 4, f1) + (ba, f2) =0, thus it is left to compute this
expression in the casé =1, ...,n. The final answer is

(br, £2) + ar f1) = mu( 7 PBT + QBT

(A.45) X (hf;7 ;Z'hq\/ﬂpij + 272\/Hq,k) +0(e),
where theO(g) term is a continuous function af A which satisfies a bound as in (2.20) (in

which ¢ depends also oA’;) and so contributes t@l?fxo) in the modulation equations.
To prove this it is helpful to split up the various terms carefully. Far {1,...,n}

b= o5 (S ) )
- [orvE - i (G 2 - (1) 1 a2

=En + Eja,
71 \/H pa q fu afw .
<a1,f1>—g/7<\/§—ﬁ>< ( ) VZW—WQ”YWJW’Y\/HJ@(Z)
vh 8f.,

I )
= Ers3.

Using the proof of Lemma A.10 and integration by parts it is possible to writd (fof 1, ..., n}
anda =1,2,3)

Ero= (v 'PB '+ QB YWE), +cEL,

where
B = %mn(f@(gﬂ“) . (%(f& +Qu)+ v IR
B =5 (Vo vE)| [ (2~ G az
By = 1V, ( ) (Vf””” ulf + 7B L)

with

G'(t) =2tB(t).

Notice that here, and in the following, after differentiation the terms involying* are to be
evaluated atr = ¢, using the notation (1.10). Lemma A.10 implies that the remainder terms
eE} , are indeed)(¢) and satisfy a bound as in (2.20) (in whicllepends also o). Since
they are continuous functions of\ they lie in the class®; and so contribute t(ﬂlo) in the
inhomogeneous terms.
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To evaluate the dominant terms, use the Pohazaev identity (see e.g. [23])

(A.46) @ =W VLI =l = )£+ [ G(£) =0
to combine them as

(A.47) B +EY +EY =

VAR,
3 (FELavaines),

where (for fixedk)

A= (Va)e (Ve (99)7) (7* Pij + Qig) + (2 =) (Va ) (0°VET) + hq—flumvm)k (xj/;)’

B= (Vo VE)) el + <m>k<p6@>+wzh<vm>k(j;).

Here it is understood that®, g° are evaluated at = ¢ (after differentiation if need be).
Calculation shows that these are in fact equal:

(A.48) A= B = (V.)e(g)? (” Wi e /e P, )+272\/§(Vm)kp

which finally gives (A.45) (by way of the definition in (1.59)).
A.10. Local existence

In this appendix basic estimates are given which imply the validity of the local existence
hypotheses (WP-1) and (WP-2) of Section 1.7 will be given. It is convenient to rewrite (1.11) as

(A49) Dg(b = Fv ¢(O) = ¢07 ¢t(0) = 7/107

with F = F(¢).

THEOREM A.14. — Assume thaf : C — C satisfies
() |F(¢ >| < Mol +|oP)
(i) |7(6) ~ F(6)] < L6~ 0|+ (1ol 4 |671)]6 — d))
wherep € (1, oo) if n=1,2andp € (-2, 2£2) if n > 3. Then the Cauchy problem f¢A.49)

n2’n2

is well-posed ind! x L? and satisfies the hypotheg®¥P1)—(WP2)of Sectior.7.

The theorem is proved by showing convergence of the Picard iterates in the corresponding
topology by means of the following two estimates for the inhomogeneous problem (A.49) (in
which F is now regarded as a given function):

(A50) Sl[lopt]||(¢’¢)||H1 x L2 <a (QCZtH(‘bO”/’O)HHl wrz T ||]:||L1([07t];L2))7
se|0,

(A.51) 18]l Lo 0,457y < €3(][(@0,%0)|| 1y 12 + IF I L1 (0,03522)) -
Here the constants; depend on the constarit, introduced in Section 1.2 and in (A.51)
Re (n =5, (7:”31)], Q= (n_;)};_%, n > 2 andt < t; wheret; is a positive number depending

upon K. The first of these follows from the energy identity while the second is a variable
coefficient Strichartz estimate proved in [25, Corollary 5] for the cas€“ofmetrics relevant
here.
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A.11. Proper referenceframes

In this appendix a local co-ordinate system corresponding to an observer moving along the
curveé(t) will be used to clarify the meaning of the expressions for the dominant term in (1.12).
The construction of the co-ordinate system is given in [14, Section 13.6]; see also [11]. First of
allletv = df be then-velocity along the curve and introduce theper timer(t) by

)

where, as usual(t) = p(t,£(t)), hi;(t) = gi;(t,£(t)) and~y(t) =5(1 — [v[n/q). The idea is
to find a local system of co- ordlnatés0 =t,4) in a tube surrounding the curvg,£(t))

in which 7(t),& = 0 corresponds tdt,x = £(t)). As explained in [14] this can be done by
using an orthonormal framé&y, ..., E, to TM along the curve in which¥, is the space-
time velocity vector of the curv Z ”q”) and Ey,...,FE, are (non-parallel) propagated in
such a way as to preserve orthonormality (see Bd, 13.60, Section 13.6]. The co-ordinate
system is then produced from the geodesic flow.&@t, £(t)), o, n) be the geodesic emanating
from the point(to,&(ty), parametrised by arc-length, in the directionn = n’E;: then if
(t,x) = ®((to, &(to)), o, n), the new co-ordinates of this point aitei?) = (7(to),on’). Observe
that by construction the co-ordinates of a paint(t)) on the curve arét = 7(t), & = 0). Forg
aC? metric the geodesic flow €2, and from this and the expression B it follows that for

|z — £(t)] sufficiently small the new time co-ordinaté, =) satisfies:

(A.52) i(t,) — 7(8) + —v(){v,x — E(t)), | < Clz — ()]

From this it follows by consideration of the pseudo-Riemannian distance bef#&ét)) and
(t,x) in both co-ordinate systems that
(A.53) |2, 2)|° = |y (8) Po(a — €) + Quiz — &)|7| < Clz — £(1) .

Thus to conclude, the functias defined in (1.12) pulls back under this change of co-ordinates to
et f,(|2])+o(1), in aneighbourhood of the curg¢t), as stated in the remark following (1.12).
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