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MAGNETIC BOTTLES FOR THE NEUMANN PROBLEM:
CURVATURE EFFECTS IN THE CASE OF DIMENSION
(GENERAL CASE)

BY BERNARD HELFFER! AND ABDEREMANE MORAME

ABSTRACT. — In a recent paper Lu and Pan have analyzed the asymptotic behavior, in the semi-classical
regime, of the ground state energy of the Neumann realization of the Schrédinger operator in the case
of dimension3. Although these results are rather satisfactory when the magnetic field is non-constant
and satisfies some generic conditions, they are not sufficient in the case of a constant magnetic field for
understanding phenomena like the onset of superconductivity and more accurate results should be obtained.
In the two-dimensional case, the effects due to the curvature of the boundary were predicted by a formal
analysis of Bernoff-Sternberg and finally proved by the joint efforts of Lu—Pan, Del Pino—Felmer—Sternberg
and Helffer—-Morame. Our aim is to analyze similar effects in dimen8ioks known from physicists and
roughly analyzed by Lu—Pan, it turns out that the results depend on the geometry of the boundary especially
at the points where the magnetic field is tangent at the boundary. We present here the analog of the Bernoff—
Sternberg conjecture (also formulated in a different form by Pan) and prove it in the generic situation.
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RESUME. — Récemment Lu et Pan ont analysé le comportement asymptotique, en régime semi-classique,
de la plus petite valeur propre de la réalisation de Neumann d’'un opérateur de Schrodinger magnétique
dans le cas de la dimensi@n Si les résultats obtenus sont satisfaisants lorsque le champ magnétique est
variable et vérifie quelques conditions génériques, ils ne permettent pas, dans le cas d’'un champ magnétique
constant, de comprendre des phénoméenes comme la localisation d’une fonction propre associée. Dans le cas
de la dimensiorz, Bernoff et Sternberg avaient conjecturé, sur la base de constructions formelles, que c'était
la courbure du bord qui allait étre la clef de cette localisation. Ceci fut finalement prouvé par Lu—Pan, Del
Pino—Sternberg et Helffer—Morame. Nous nous proposons ici d’analyser le méme probléme en difaension
La littérature physique indique (et les premiers résultats dans cette direction furent démontrés par Lu et
Pan) que tout dépend de la géométrie de la frontiére et plus précisément de la courbe (génériquement) ou
le champ magnétique est tangent au bord. Nous présentons ici I'analogue de la conjecture de Bernoff—
Sternberg dans le cas de la dimensioftonjecture aussi formulée sous une forme un peu différente par
Pan) et en donnons la démonstration sous des hypothéses génériques.
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106 B. HELFFER AND A. MORAME

1. Introduction

Our study is motivated by a question in superconducti¥ityet us roughly explain how the
guestion occurs in this context (see [10] or [22] for a review on this aspect and references therein).
Given a bounded open s@tc R? with smooth boundary, we are interested in the properties of
the minimizers of the so called Ginzburg—Landau functional

HY(Q;C) x HY(QR?) 3 (¢, A) - G, A)
with:

(1.1) g(¢,ﬁ):/{‘(V—znA) ’ (|1/,|2 1) }dx—i—,g?/|cur1g—acurl,4|2da:.
Q

Q

Here A is a given applied magnetic potentialifit (; R?), o is a positive parameter introduced
for permitting a variation of its intensity and the parametes 0 reflects the properties of the
sampleQ2 which will be assumed to be large. A is bounded, the existence of a minimizer
is rather standard. It is also easy to observe that the(pairA) is a trivial critical point of

the functionalG which is called a normal solution. It has also be shown, that this pair is, when
curl A := H does not vanish, a global minimum ferlarge enough. It is therefore natural to
discuss in function of, if this pair is a local or a global minimizer. By looking at the Hessian of
the functional at this point, this question is immediately related to the positivity of the operator:

—(V —ikoA)? —k?* inQ,

where we get from the minimization of the functional a “magnetic” Neumann condition at the
boundary.

It can be seen that the change of sign of the lowest eigenvalue of this operator oceurs for
of the order ofx. To get a more precise information, we are immediately let to analyze the
groundstate energy (that is the lowest eigenvalue) of the Neumann realization of the Schrodinger
operator with magnetic potential in an open Qeh R3:

3

2
(1.2) Ph=> (hD., — A;(x))",
j=1
whereh = = will be a small parametethis is this problem which will be the main object of

the paperWe recall that an elementin H?(Q) satisfies the (magnetic) Neumann condition at
the boundary, if

N(z)- ((hD — A)u)(z) =0, Vxe€oQ,
whereN (x) is the normal at: to 9.

20ne can find in Chapter 4 of [30] a physical presentation of the problem we are considering. We particularly
emphasize on their Section 4.3 where they analyze (with partially heuristic arguments) the angular dependence of the
nucleation field. We will give a mathematical proof of, what they describe for example p. 87: “For type Il superconductors
(The authors meam > 1/+/2, but we treat onlyx large) the above calculation shows that superconductivity is not
entirely destroyed foH., < H < Hc,. A superconducting sheath remains close to the surface parallel to the applied
field. Conversely, when the field is decreased beldw,, a superconducting sheath appears at the surface before
superconductivity is restored in the bulk Ht= H., . If the sample is a long cylinder with the applied field parallel to
the axis, the sheath will cover all the surface of the cylinder. If it is a sphere, the sheath will be restricted to a small zone
near the equatorial plane whéhis close toH, . When the field is decreased towatds, the sheath will progressively
extend up to the poles”.
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MAGNETIC BOTTLES FOR THE NEUMANN PROBLEM 107

This realization will be denoted by’j:g but we will sometimes use shorter notations
when there is no ambiguity. IA(h) is the lowest eigenvalue and(z) is a corresponding
normalized eigenstate, we would like to discuss the asymptotiz(bf ash — 0, with the
hope to analyze in a future work the localizationudf. This problem was treated in the case
of dimensior2 by Bernoff—Sternberg [3], Lu—Pan [19-21], Del Pino—Felmer—Sternberg [28] and
Helffer—Morame [12] in a rather complete way. Later a recent work by Lu—Pan [23] was starting
the analysis of the dimensidghand this was complemented slightly in [13]. So this paper is the
continuation of the program, with a particular emphasis on the constant magnetic field case.

We start by establishing rough estimates, but sufficiently accurate for determining the effective
order of the curvature effect.

THEOREM 1.1. — LetQ be a bounded open set Bf with C> boundaryd(2. Let Pﬁjg be
the Neumann operator ob?(£2) associated to the Schrodinger operator with constant magnetic
field (hD — A)? and let us assume that the vector magnetic fiélet curl(A) is constant and of
intensity equal té = | H|.

If

A(h) = inf Sp(P)y'fy)

is the first eigenvalue dP’’), then there exists a constaf such that

(1.3) |A(h) —bOoh| < Coh*/3,

where©, € ]0,1[ is an universal constant, which will be defined4).

We observe that in the case of dimensiithe corresponding error was @(h3/2).

We then continue with the analysis of the curvature effects, which are the analog in
dimension3 of the results first conjectured by Bernoff—Sternberg (see [3]) in the case of
dimension2. Before establishing the corresponding conjecture in the case of dimehdien
us describe the main ingredients appearing in the assumptions.

It has been observed by [23] and this will be recalled in Section 4, that the ground’state
localized (ash — 0) near the boundar§<2 but more precisely on the set:

(1.4) Iy ={xe€dQ|(H|N(z)) =0},

that is the set of points 02 whereH is tangent.
Itis natural to assume that:

(1.5) 'y is a regular submanifold @i(2,

that is a disjoint union of regular curves. From now on, we choose an orientation on each
curve. At each point of I'y, we will associate the normal curvature along the magnetic field
H = H(B) by:

H
(1.6) kn,B(x) == K| T(z) A N(z), )

where K denotes the second fundamental form on the surdétésee Section 8) and(x) is
the unit oriented tangent vectorkg; atx. It is natural to assume that:

(17) IimB?ﬁO, only.
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108 B. HELFFER AND A. MORAME
The last generic assumption is:
(1.8) The set of points wher# is tangent td"y is isolated.

The following function ol i will play an important role:

H 2\ 1/3
< |H|
where?, > 0 andd, € |0, 1[ are universal constants attached to spectral invariants related to
two model Hamiltonians respectively defined RrandR™* and which will be defined in (2.15)
and (2.7).
Associated to this function, which will play the role of effective curvature, we define:

2/3
@9) o) =(5) 0ot (Jsns)f”* (80 1 - o)

Our main theorem is:

THEOREM 1.2. — LetPZ:g be the Neumann realization dit (€2) of the magnetic Laplacian

(hD — A)?, whereh € ]0, 1 is a small parameter and corresponds to constant magnetic field.
Under assumptionfl.5), (1.7)and (1.8), there exist) > 0 and4, > 0 such that

(1.11) inf Sp(P™N) = bOoh + Aob>/*h4/3 + O(h3+),
A,Q

where?y is defined in(1.10)

We conjectured this theorem in September 2001, simultaneously with Pan [26] (who proposed
another equivalestformulation and obtained the upper bound). A first complete proof was given
in mp_arc [14] under additional non generic conditions. This paper, which is a slightly modified
version of the preprint [15], gives now a complete proof in the general generic case. Although
the methods of proof can also lead to localization results for the ground state (see [12,13]) or
more generally for minimizers of the Ginzburg—Landau functional (see [19-23,17]), this will not
be discussed here. This was actually explored in [26], under the assumption that the conjecture
was true.

The paper is organized as follows.

In Sections 2 and 3, we recall previous results extracted from [6,12,23,13], which will play
an important role in the analysis. In Section 4, we recall the results of [23] devoted to the case
when the magnetic field is not constant. It is also shown there that the problem is reduced in the
constant magnetic case to a neighborhood of the boundary. In Section 5, we make explicit our
choice of coordinates near the boundary. Section 6 gives rough upper bounds for the ground state
energy by constructing quasimodes. In Section 7, we present our first lower bounds which are
sufficiently accurate for giving the right order for the remainder. In Section 8, we go further in
the choice of adapted coordinates, taking in particular account of the fact that the magnetic field
is constant. This permits to introduce our magnetic invariants attachegd #nd to present our
main results in a more precise form. Section 9 is devoted to the research of simpler models for
the magnetic potentials obtained in the adapted coordinates by suitable gauge transformations
and by neglecting “small” terms. Section 10 is devoted to the estimate of the errors done in the

3 See the appendix in [15].
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MAGNETIC BOTTLES FOR THE NEUMANN PROBLEM 109

use of the previous models. In Section 11, we start by some heuristics which lead to the spectral
analysis of a simplified model which will be used in the general case. Section 12 is devoted
to the proof of the accurate upper bounds. Section 13 gives complementary lower bounds for
the model. Section 14 presents the structure of the proof of accurate lower bounds according to
different zones and treats the easy zones. Sections 15 and 16 correspond to the treatment of the
difficult zones.

2. Thecase of dimension 2
2.1. Main resultsfor the modelswith constant magnetic fields
We first consider the operator:
P} :=(hDy, — A1) + (hDs, — A)?,
with

A= (—éxQ, 9x1>, h>0 and b>0,
2 2

and analyze the spectrum of its realizatiorRifior of its Neumann realization iR? .

We observe that by homogeneity, one can reduce the analyais-tb andb = 1. It is well
known that in the case dR? the spectrum is a point spectrum and that the eigenvalues are
given by (2n + 1) with (n € N), each eigenvalue being of infinite multiplicity. One way, to see
this is to show the unitary equivalence (via a gauge transformation, a partial Fourier transform
and a translation) with the harmonic oscillatdp? + ¢?) but seen as an unbounded operator
onL*(R? ).

The case of the Neumann realizatiorif is a little more delicate. By unitary transformation
we get the Neumann realization of the operator of

(2.1) Q(t,Dy;s) :=D? + (t —s)> onL*(R; x R),
which is reduced to the analysis of the familyq R) of operators:
(2.2) Q(s):= D} + (t—s)*,

defined onL?(R ).
Let u(s) be defined by:

(2.3) u(s) is the lowest eigenvalue of the Neumann realizatio@¢f) in R™.

One easily shows (cf. [29])

PROPOSITION 2.1. — The infimum of the spectrum of the Neumann realizatia®ofs given
by bh©( with

(2.4) Qo := ;Iel]fRu(s)
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110 B. HELFFER AND A. MORAME

2.2. Animportant one-dimensional family of operatorson R

We recall the main properties of the groundstate energy of the Neumann realizafionafn
(2.5) Q(s) = D} + (t - 5)%,

in function of the parametes € R. Let us just list some properties q@f(s) and of the
corresponding normalized eigenvecigrand refer to [6,12] for proofs or details. The Neumann
eigenvalugu(s) satisfies the following properties:

1. lims oo pi(s) = +00;

2. 1 is decreasing fos < 0;

3.u(0)=1;

4. limg oo p(s) =1;

5. admits in]0, +oo[ a unique minimun®, < 1 at some, > 0. So

(2.6) O = Silel]g/i(s) = (o) <1.
This minimum is nondegenerate and more precisely:
1 1
(27) 0<dg:= 5# (fo) < 1.

6. We introducep, = p°. We have:

(2.8) /(t —&)|wo(t)]*dt =0,

Ry

which just corresponds to the conditiph(&,) = 0.

7. ¢ is rapidly decreasing ab.

Let us just mention that the proof of some of these properties is based on the following identity,
relating the first eigenfunctiop® andu(s):

(2.9) lo® 1124 (s) = (5% — u(s)) (°(0)) .

2.3. Applications: main resultsin dimension 2

As an application of the analysis of the models, one gets (cf. [21]) via a partition of unity for
the lower bound and a suitable construction of quasimodes for the upper bound, the following
general result (in the two-dimensional case):

THEOREM 2.2.— If A(h) is the lowest eigenvalue of the Neumann realizatio®§fin ©,
then we have

. A(h) . .
o iy T~ (e @) 6o B B]),
whereB = curl A.

We emphasize that there is no assumption that the magnetic field is constant. In the case of the
constant magnetic field, one can actually have more precise resuligifoMVhenB is constant,
the minimum in (2.10) is obtained by the second term and we showed in [3,28,12] the
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MAGNETIC BOTTLES FOR THE NEUMANN PROBLEM 111

THEOREM 2.3. —If the magnetic field is constant of intensifythen

(2.11) A(h) = bOoh — e1b"/? (sup w(x))h3/% +o(h3/?),
reIN

wherec; is a universal strictly positive universal constant ang:) is the curvature obS2 at
x € 0N).

2.4. The Montgomery’'smodel and a second important family of operatorson R
We just discuss a model that we shall meet indirectly later and which is interesting. It first

appearsin [24] but see also [11]. We considé[ﬁir,]y, and for some parameter> 0 the operator:

2
(2.12) P:=h2D? + (hDy - g;&) .

The magnetic potential id = (0, £2?) and we have:
curl A = k.

So the magnetic field vanishes along the lihe= 0}. Let us briefly describe the spectral
analysis. After a Fourier transform in tlyevariable, we first get:

2
P=h2D2+ (hn - g;c?) :

and this leads to the analysis of the family, parametrized) layR, of selfadjoint operators
on L(R):

2
P(n) =h?*D? + (hn - gxz) .
Using a simple dilation, we get:

2/3
21 infinfSp(D? + (2 — p)?).
P

(2.13)  infSp(P) =infinfSp(P(n)) = h*/? 5
n

Let us recall some properties of the family of operators
(2.14) S(p) = D2+ (r* - p)?,

and of the corresponding ground state which were established in [24,11] and [27].
1. There exists a uniqye= py,;, such that:

(2.15) Do :=infinf Sp(DZ + (r* — p)?) = inf Sp(D? + (r* — pmin)?).
P

2.9* belongs taS(R) and is even.
We shall later use the notation:

(2.16) o = hPmin,
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112 B. HELFFER AND A. MORAME

3. Constant magnetic field: modelsin R3 and in R3

As in the case of dimensidh where the first thing was to understand the model with constant
magnetic field ink? andR?%, we shall discuss the case®f andRR? ..

3.1. Modd in R?

We start (after some gauge transformation) of the Schrédinger operator with constant magnetic
field in dimensior8.

(3.1) P"(H):=h2D2, + (hD,, — H3z1)? + (hDy, + Hoxy — Hyxo)?.

The following lemma has the age of quantum mechanics:

LEMMA 3.1.—The bottom of the spectrum of the selfadjoint realizatioP®fH ) in R3 is

(3.2) inf Sp (PN (H)) = bh,

b=|H|=\/H} + H3 + H?

where

is the intensity of{.
3.2. Modelsin halfspaces

We refer to [23] and [13] for the proof of the results presented in this subsectidnisif unit
vector inR?, we now consider the Neumann realizatior{in= {z € R® | z - N > 0}. After a
rotation, we can assume in the proofs that= (1,0,0), soQ isR? := {z; > 0}.

After scaling, we can assume that=1 and|H| = 1.

After some rotation in théxo, z3) variables, we can assume that the new magnetic field is
(A1, 02,0) and we are reduced to the problem of analyzing:

P(B1,82) :=D2 + D2 + (Dy, + Box1 — B122)?,

in {z; >0}, where:

B+ 8 =1
We introduce:

(B2 = cos1Y, (1 =sind,
and we observe that, i¥ is the external normal to; = 0, we have:

(3.3) (H|N) = —sind.
By partial Fourier transform, we arrive to:
(3.4) L(¥,7)= D2 + D + (1 + cosda; —sindas)?,

in z; > 0 and with Neumann condition on; = 0. The bottom of the spectrum df(«¥, 1) is
given by:

(3.5) o(9) :=inf Sp(L(V, Dy)) = irTlf(inf Sp(L(9,7))).
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MAGNETIC BOTTLES FOR THE NEUMANN PROBLEM 113

PROPOSITION 3.2. — The bottom of the spectrum of the Neumann realizatioR’tff ) in
Q:={xeR®|z-N>0}is

(3.6) inf Sp PN (H) = o(9)bh,

whered € [-7, 7] is defined by(3.3).

By symmetry considerations, we observe also that:
(3.7) o) =o(—9) =o(r —1).
It is consequently enough to look at the restrictiofta].
3.3. Propertiesof ¥ — o (1)

Let us now list the main properties of the function— o(«9) on [0, 5]. Most of them are
established in [23] but see also [13].
1.0 is continuous oo, 7.

2.
(3.8) (0) =00 < 1.
3.
(3.9) a(g> —1.
4.
(3.10) o(9) = Og(cos¥)? + (sin9)?.

5. If ¥ €]0, %[, the spectrum of_(¢J,7) is independent of and its essential spectrum is
contained in1, 4+oo|.

6. Ford €]0, 5[, o(v) is an isolated eigenvalue &f(+J, 7), with multiplicity one.

7. The functioro is strictly increasing off0, Z|.

8. The functiorr has the following expansion fat small:

(3.11) o(¥) ~ O+ Y o |9[",

n>1

with oy = \/50 = /L”(ﬁo)/? > 0.
A first consequence of this analysis is

PROPOSITION 3.3. — Whenb = |H]| is fixed the bottom of the spectrum Bf'™ (H) in
Q:={x- N >0} is minimal when$ = 0 that is, according tq3.3), that is when the magnetic
field vector satisfied - N = 0.

4. First resultsfor general magnetic fields

In the case of dimensiay, under the assumption thairl A := B(z) > 0, the basic estimate
at the interior was the inequality:

(4.1) h/B(x)\u(x)\zdx</y(hv—m)u\2dx, Yu € C3°(Q).
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114 B. HELFFER AND A. MORAME

This was not enough for understanding the Neumann problem. One should more carefully
analyze the case &2 and, in the case of the constant magnetic field, one should also analyze
more complicate models (like for example the case of the disk). The most spectacular result was:

THEOREM 4.1. — When the magnetic field is constant, the groundstate of the Neumann
realization of P} in an open regular bounded s& C R? is localized in the neighborhood of
the points of the boundary of maximal curvature.

In the case of dimensios, estimate (4.1) should be replaced by the weaker estimate
established in [11] (Theorem 3.1)

THEOREM 4.2. — There existC andh, > 0 such that, for allk € ]0, ho], we have

(4.2) h/(|H(z)|—Ch1/4)\u(x)|2dx</|(hv_m)u\2d:c, Vu € C°(9Q).
Q Q

If this result is essentially sufficient for analyzing the Dirichlet problerf2jrit is necessary to
implement the analysis given in the first part in order to treat the Neumann problem. Near each
point of the boundary:, we have to use the lower bound obtained for the model with constant
magnetic fieldd = H(x). Following for example the proof in [12] and using the same partition
of unity, we get:

THEOREM 4.3. —

(4.3) h [ Wa(a)|u(@)|® de < [ |(hY —iA)u|’ de, Yue HY(Q),

/ /
where

[ |H(z)| — Ch'/4, if d(z,00) > 2h3/8,

(4.4 (=)= { |H (s(z))|o(9(z)) — ChY* if d(z,090) < 2h3/8,

Here we recall thaf}(x) satisfies:
(4.5) |H (s(x))| - sind(z) = —(H (s(x)) | N(s(z))),
wheres(z) is, for z neard2, the point ind$? such that:
d(z,00) = d(z,s(x)),

and we observe that, due to (3.#)9(x)) is well defined by (4.5).
The first consequence (compare with Theorem 2.2) is:

THEOREM 4.4. —

(4.6) %ii%()\(h)/h) = mln(;gg‘H(I) E zienafsz|H(I) lo(9(z))).

The lower bound is a direct consequence of Theorem 4.3 and the proof of the upper bound is
sketched in [23]. WhetH (x) is constant of intensity, then the minimum in (4.6) is obtained
for the second term and we have:

(4.7) lim (A(h)/h) =b( inf o (9(x))).
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In view of (6.3), there exists a pointsuch that}(z) = 0. So we get:

(4.8) lim (A(h)/h) = ©ob.

Remark4.5. — As in [12], this leads to localization theorems ([23,13], see also [28]). In
particular, if the magnetic field is constant, then the ground state is localized near the points
of the boundary where the magnetic field is parallel to the tangent space.

Application. Aninteresting case is the case whigris constant and whef is the ellipsoid:
alx% + agzcg + agzzrg < 1.

The set of points wherél = (H1, Hy, H3) is parallel is obtained by intersecting the boundary
of the ellipsoid with the plane:

a1x1Hy + asxo Ho + azx3 Hs = 0.

More generally, if the surface is strictly convex and if the magnetic field is constant, it is
possible to show that the set of points of the boundary wiikie parallel to the tangent space
isaC® curve.

We emphasize that Theorem 4.4 does not explain all the situation. In the case with constant
magnetic field it would be nice to show the role of some curvature in the localization as in the
case of dimensioB. This is actually our goal to give an answer to this question.

5. Adapted coordinates
5.1. Magnetic geometrical invariants

The standard coordinates @* will be denoted byr = (x1,72,73) and the standard flat
metric bygo. We will also use!. | .) for go(.,.) or for g5 (.,.), and| X| for ((X|X))'/2, (if X is
a vector field or a one-form). The standard volumésrwill be denoted by

w3 = da = dzy Adzo A dzs

and will fix also the orientation dR?. _
Let A be a smooth magnetic potential one-form(@n

A=Y "Aj(w)dz;, Aj € C(GR).

j=1
The magnetic fiel® is the two-form:

DA, 0A;

(5.1) B=dA= > Bj(z)dx; Adz;, Bjj(x)= G (2).

1<i<j<3

If neededB;; (z) is extended as an antisymmetric matBx. The intensity of the magnetic field
is the non-negative function

(5.2) |B|(z) = sup{|Bm(X7Y)|; XY eT,Q, |X|=|Y|= 1}, vz e Q.
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116 B. HELFFER AND A. MORAME

One associates to the magnetic figida vector fieldH := H(B) € TQ by

(5.3) B,(X,Y)=w3(X,Y,H,(B)), VX,YeT,.

In the initial coordinates, we have:

(5.4) H(B)=Y b, (x)%, with by = Bas, by = B3 andbs = Bys.
Ly

j=1
Then the magnetic intensity satisfies:
(5.5) |B| = |H(B)|.

We associate to the magnetic potentlathe sesquilinear form o/ 1 (2):

(5.6) u— g (u /’\/_hdu—i—uA‘ da?.

Hereh € ]0,+oc[ is a parameter. The associated differential operator is the magnetic Laplacian
which is given in the standard coordinates by

3
(5.7) Ph=(hD—A4)*=3"(hD,, — A;(x))".

j=1
5.2. Local coordinates

y = (y1,y2,y3) are new local coordinates, that is,if,, is a neighborhood of some point

If
zo € Q and if z — y = ®(z) is a diffeomorphism of,, onto © C R?, then in the new basis

o 8 8 ;
ITRETR, a_yg) of TV,,, the standard metrig, and the volumevs become

(5.8) go= Z 9ij dy; ® dy;,
1<4,5<3
and
(5.9) w3 = |g|"2dyy A dyz A dys,
with
ox | Oz ~ ~
9ij = <8y1- 3—%> (XIY)= > ;X5 gl =det(gy),

1<4,5<3

where
~ 0
X = X,— and Y= .
zj: ? By, Z Jay

The magnetic potential is given in the new coordlnates by

3

(5.10) A=Y"A;dy; with A; = ZAkgx’“.
— Yj
j=1
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The magnetic field is also given by

_ o 9d, oA,
1<i<j<3

So the vector magnetic field becomes
(5.12) H(B)—Zé-i

. - . J aij

j=1

with
(5.13) by = |g|~/?Bas, by = |g|~/?Bsy, bs = |g|"V/*Bi2,

and the intensity of the magnetic field becomes:

. 1/2
(5.14) 5= (S abis)
%]

The sesquilinear form takes the following form, fosupported inv,,,,

(5.15) c_z,’fx(u)Z/lgl”2 > g7 [hDyu— Aju) x [hDy,u — Aju] dy?,
Vig 1<4,§<3

and the associated differential operator is

(5.16) Ph=|g|7'? > (hDy,, — A;)-|g|"/?g" (hDy, — A;).

1<i,5<3
Hereg® is the inverse matrix of the matrix; .
5.3. Adapted local coordinatesnear the boundary

Let ¢(x) = (y1,y2) be local coordinates on the boundary afdhe induced metric by,
on 0N in these coordinates. Then fer> 0 small enough (and modifying a littl®’,, if
necessary), we can define local coordinate¥gp

(I):VIOASX]()’&[? (I)(I):(ylay27y3)a

wheresS is an open set iR, such that

(5.17) ya(z) = dist (2,9~ " (y1,y2)) = dist(z, IY);
SO
(518) T = ¢_1(yla y?) + y3N(¢_1(yla y?))7 Yz € Vwo7

whereN (z) is the interior unit normal to@{ at the point: € 9.
Then we get by simple computation the form of the standard flat mggrin these new
coordinates,
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go = Z 9ijdyi @ dy

14,53

=dys@dys + G +2ys <

1<i,j<2
ON | ON
(5.19) +y§ Z <a—
1< VY

ON
yi

Ox >
dy; Y Yj

— )dy; @ dy;.
3yj> ’

In this case we have, using (5.10) and (5.18),
N 3
A3=>"A;N;.
j=1

Remark5.1. — In the following, we choose a finite family of open sgfs (z; € 0Q2) covering
a tubular neighborhood @f2. When we speak later of local coordinates, we mean that we take
some element belonging to this family.

6. Rough upper bounds

To prove our results, we need some rough preliminary estimates (with some control of the
remainder) of the ground state energy.

PROPOSITION 6.1. — Let Q be a bounded open set B® with smooth boundary(). Let
Pﬁjg be the Neumann operator di¥(2) associated to the Schrédinger operator with constant

magnetic field hD — A)? and let us assume that the vector magnetic filld= curl(A) is
constant of intensity.

If A(h) = inf Sp(PZ:g) is the first eigenvalue OPZ:g, then there exists a constafiy such
that
(6.1) A(R) < bOoh + Coh*/3.

Remark6.2. — It is not necessary to assume that the magnetic field is constant as the proof of
this proposition will show. If one choose a point such thatH (z() is tangent taS2, one can
get the same result with= |H (z()|. One can then optimize by choosing a point of this kind
such that H (x)| is minimal. If Ty is the set introduced in (1.4) we will prove:

(6.2) A(h) <O inf |H(z)|h+ Coh*/>.

x€ly

This kind of estimate, with a more explicit, but not optinial, appears already in the appendix
of [23].

Proof of Proposition 6.1. As the flux of the magnetic field through the boundary is zero,
(6.3) /<cur1(A(x)) | N(z))ds = /div curl(A)dz =0,
o Q

if N is the interior normal unit 0d$2, there exists:g € 992 such that the vector magnetic field is
tangent to? at z:

(curl(A(zo)) | N(z0)) =0.
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We take local coordinate(@l, y2) in a neighbourhood dily of x in 99 such that the metric is

d;; atxo and

is parallel to the vector magnetic field.

We con3|der the adapted coordinates= (y1,y2,ys), with ys(z) = d(z,0(2), and then

gij(wo) =

0A;

—(5170) I

0y2
A,
6.4

(6.4) 905

A,

—(5170) —

oy

—(5170) -

0y5. If Alis the magnetic potential in the new coordinatésdz = A- dy, then

A,

= b’
ays(:co)
0A;

p— O’
ayl(:co)
0A,
-1 =0.
Jyo (xo))

We can find a gauge transforrp i £, with ¢ real, such that, in (8.27),

12[1(170) :O, gg(xo) :O, Zg :O

We first estimate the error occuring when eliminating the terms vanishing to &rder
If we H'(Q) is such that

(6.5) supp(u) C {z; |z — x| < }

with 6 > 0, and if h is small enough, then, for sondé> 0,

(6.6) ¢ (€ Fu) < (14 W2 C)lo (u) + C LR (¢4 (w)) /-l + 2% [lu)?],

where

AV=Ri(y),  AJ=-bys+Ra(y),  A§=0,

the R;(y) are polynomial functions, homogeneous of order two,

Ri(y)= > ajay”,

|a|=2
and
(6.7) "o (u) = |(hDyu — A%y u‘ dy.

ly|<Ch?, y3>0

We take the functiom in the form

—ibt/ /

u(y17y21y3) =€ o' 2y2§0/h1 2U(y)
with
_1_ _ _ _

(6.8)  v(y1,y2.ys) =h"T P0(b2h T Pys)x (4h ys)x (4B 0 (7 + 43)'/?).

Herey is a cut off function equal to one dr- 3, 1] and supported ifi-1, 1], ¢ is introduced in
Section 2.2 and €]0, 3.
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Observing that:
/(‘Dtéﬂo(mQ +|(t - 50)%00(15)‘2) dt =0q /|<P0(t)|2dt,
R R4
and thatt — ¢ (t) is an exponentially decreasing function at infinity, we get wb‘\en%,
(6.9) ¢'4o (1) < (bO0h + CH*?)|ul|?,

where

AY AS=—bys,  AY=o.

2
We then have to compaqé (u) anquo( u). The first try could be to use:

(6.10) ol Fu) < (1+h0C)g, (u) + C R (¢ () - lull + h* ul|?].

This leads to error terms of sizé+%, h2125, 449 andh2—2%, But this leads only, using (6.9) and
(6.10) withd = 1, to (6.1) withO(h"/%) instead ofO(h*/?) as expected.

In order to get effectively (6.1), we need to use (2.8). We have indeed to analyze more carefully
the term which was bounded from above in (6.10¥B§(¢", (v))"/? - [|u-

The terms which were estimated b‘7+25 are of the form

1 bl/2y _ _
B3 26/%% (50_h1—/23)‘p3(b1/2h 1/2y3)x2(4h 5(y%+y§)1/z)dy,

with j andk equal tol or 2. But they actually vanish due to (2.8).
The other terms have actually better upper bounds. For example:

1 bl/2y _ _ _
h3 26/y2y3(§0— h1/23)90(2)(b1/2h Y2y3)x (AR~ ys)x* (4h 0 (yF + v3)"/?) dy,

can be estimated b§(h!*?). This achieves the proof of Proposition 6.1

This suggests strongly that the next term in the expansiai/ofis O(h*/?), but to go further
we need to analyze the model more carefully in the neighborhood of the points of the boundary
where(H (z) | N(z)) vanishes. For this we need to enter more deeply into the geometry of the
boundary in connection with the magnetic vector field, and this will be done in Section 8.

7. Rough lower bounds

We assume that the magnetic field is constant..l’ebe an eigenfunction associated to the
eigenvalue\(h) = inf Sp(PZ:g).

7.1. A priori estimates

As proved in [12], we have, without the assumption (1.5), the following behavief of
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PROPOSITION 7.1. — If t = t(z) = d(z, 09), then, for anyk € N, there exists a constant,
depending only o, such that

(7.1) [#5/2uM | < Cxh*/H|u”|
and
(7.2) |t¥/2(hD — A)u"|| < Ch*F2/4|un).

Proof. —Proposition 6.1 and the fact th@, < 1 give the existence of constanig > 0 and
Cy > 1 such that

(7.3) Cy tbh < bh — A(h) < Cobh, Yh €]0,hy).

Of course this is a very rough estimate.
Let us remark that (7.1) and (7.2) are valid whiea 0. As for the2-dimensional case in [11],
we proceed by recursion.
By changing: away from the boundary, we can assume that ¢(x) = d(z, 99) is extended
as aC'(Q) function. By choosing suitable coordinates and after a gauge transform, we can
assume that
b b

AI(ZC):O, AQ(I):—Exg’ AS(I):§I’2

As t/092 = 0, we have by integrating by parts and for- 0,

z‘hb/t’f|uh|2 de = /t’f [(hDs — Az), (hDs — Az)]u" - a" da
Q Q
= /tk{(hDg - Ag)uh(hDQ — Ag)uh — (hDQ - Ag)uh(hDg - Ag)uh } dx
Q

ot ot
; k—1) ~% _ h _ h-h
(7.4) —i—zhk/t { s (hDs — As)u P~ (hDy — As)u }u dx

Q
and

(7.5)/tky(hD — Ay dx = /{)\(h)tk|uh|2 —ihkt* 1 ((V4t) - (hD — A)u")a"} da.
Q Q

If k=1 we getfrom (7.4)

(7.6) hb/t|uh|2d;c< /t|(hD—A)uh|2d:c+ChH(hD—A)uhH ]
Q Q

and then, we use (7.5) to get

(7.7) hb/t|uh|2dx < A(h) /t|uh|2dx + Chl||(hD — A)u"|| - |Ju"].
Q Q

So

(7.8) (hb— A(h)) /t|uh|2dx < Chy/A(R) |Ju®|?.

Q
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We obtain (7.1) withk = 1 from (7.3) and (7.8), and then it is easy to get (7.2) foe 1

from (7.5) by using (7.3), (7.1) with = 1 and (7.2) withk = 0.
If £ > 2, we getinthe same way

(7.9) (hb— A(h)) /tk|uh|2 dz < hEC||[t™ 15 (hD — Ay || - [[¢*/2u”]],
Q

which gives, using (7.3),

(7.10) [£5/2u | < Okt~ 5 (hD — A)u”.

Using (7.10) and (7.5) we get

(7.11) [#*1(hD — Ayu||* < CRR[||E*/2u™ | + ||t 5| (hD — A)u”|*].

Then we can proceed by recursion. (7.2) kot j — 2 and (7.10) fork = j give (7.1) fork = j.
Formulas (7.11) withk = j and (7.2) fork = j — 2 give (7.2) withk =j. O

7.2. A partition of unity

Let (x+(2)),ez2 be a partition of unity ofR*. For example we can take

Xy € C®(R%R) and supp(x,) Cy+[-1,1°, VyeZ’

(7.12) in(z)zl and Z}va(z)|2<oo.
kY B!

If 7(h) is a function ofh such that (k) € ]0,(£2)[, wheres(2) is the geometric constant which
is the maximak for the property thafd(x,d9) < €} is a regular tubular neighborhood §h
of 912, we will define the functions

(7.13) X (2) =y (2/7(W)), Yy €2

So we get a new partition of unity such that

(714) ZXi,T(h) (Z) = 17 Z|VX’Y7T(}L) (Z)|2 < CT(h’)727
Y il

and

SUpP(Xy, () C T(h)y + [—7(h), 7(h)]".

Then, for anyu € H'(Q2), we have:

(7.15) ¢ (w) = " [dh O i) — B2V X, g ]|

Y

Let us define
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Loy () = {7y € Z°; supp(x+,-(n)) N Q2 # 0},
(7.16) T2 () = {7 € Tr () (); dist (supp(x,r(ny), O) > 7(h) },
L1 (Q) = {7 € T (Q); dist(supp(x+,7(n)), Q) < 7(h)}.

7.3. Proof of Theorem 1.1: lower bounds

For the moment, we give a rough lower bound of the ground state energy in the case of constant
magnetic field.

PROPOSITION 7.2. — Under the assumptions of Propositi6ri, there exists”y such that
(7.17) bOoh — Coh*® < A(h).

Proof. —We proceed as in the proof of Proposition 9.2 of [12] and use the partition of unity
introduced in the previous subsection.
Far from the boundanAs curl A is constant, the standard estimate gives:

2 [e o)
H(hD—A)wHLz(Rs) >bhl|w|‘%2(R3)’ VwECO (R3)'

So
(7.18) a4 (X r () = bRy ryull®, Yy € F‘l(h)(ﬂ)-

Near the boundansupposey € FT(h)( ); then there exist local coordinatesdapted to the

boundaryy = (y1,y2,ys) such thatys(z) = d(z, 99Q).
Then, forr(h) < 1 and for some integet € N*,

qﬁ(X'y,‘r(h)u) 2 (1 - CT(h))q%(k) (X’y,T(h)u)
k+1 1/2
— O (7(h) " Iyl - (@ Oy ) /
k
(7.19) = C(r ()" s iyl
with, for somey, € 92N {[—7(h), 7(R)]> 4+ supp (x4, (1))}

0 A

(7.20) AR = Ayo) + > (y—yo)o‘a — (%0)
1<[al<k Y
and
SO
o () =g/ (0) / U(hDyS—Ag))w]
R2xR4
(7.21) + > g7 (yo)(hDy, — Zg’“)w-(hDyj—A;’“))w] dy.
1<14,5<2
Let us remark that
(7.22) el < (L4 Cr®)lal*w0) [ el do

R2 XR+
4 Belonging to the family introduced in Section 5.3.
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and by (5.12)

(7.23) b* = 9|~ (o) [<H§>2 + 0y gjk<yo>ﬁ§’ﬁ2]
1<j,k<2
if
0A; OA,
HO = 2223 (yo) — =2 (y0),
1 ay2 (yO) ay3 (y())
. 0A, OA;
7.24 1 = 225 () — 228 (o),
( ) 2 ay3 (yO) ayl (y())
OA, 0A,
HY =222 =1
3= o (o) 95 (o)

We observe that by (3.3)

sind(yo) = — g~/ (yo) H3 /0.

So, the study of the constant magnetic field in a half-space done in Section 2, (more precisely
(3.10), property7 in Section 3.3 and Theorem 3.11), (7.23) and (7.24) show that there exists
1 > 0, such that for allw € C>°(RR?.) with compact support,

725 () =000+ crll 1/2<yo>'H')|g|1/2< 0 [ P

R2 XR+

We will consider two cases. Lét; > 1 to be chosen later. For more simplicity, we can assume,
after a rotation and a dilation ify1, =), that the metrig is standard a:

(7.26) 9(yo) = (0i5)-

First case . *‘ > Sp =127 (h)2,
We takek = 1 Then (7.19), (7.22) and (7.25) prove that
da (X'y (h)U )+C( ( )) HX’YT h)u” (QA X~,7(h)W )
(7.27) > [bh(80 + C1h 27 (h)2) = C(hr(h) + (T(h) )] - Iy~ myull*.
This implies:
h 1/2 2 2
((QA(X’Y,T(}L)U)) +C7(h) HX%T(h)UH)
(7.28) > bh(09 + C1h™Y27(h)?) - (1 — C7(h)) |Ix4.+ (nyull*-
Taking the square root, we get:
(¢ Oy, rm)

(7.29) > ((bh)/2(©0 + C1h™ 27 (h)*)" 2 (1 = C7(h)) = CT(1)?) Xyl

This finally gives, ifC; is large enough and if, for somg > 0, the weightr(h) satisfies the
conditionh!/4*+=0 > 7(h) > h'/2,

(7.30) () > <<@0+ Lo WTW)—OT<h>)|x7,T<h>un2.
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Soif h1/4+20 > 7(h) > h'/2 and(; is large enough, there exislts > 0 such that
(731) qZ(X'Y,T(h)u) 2 bh@OHX'y,T(h)ul|27 Vh e ]07 ho]

We now keep’; fixed such that (7.31) is satisfied.

Second caséHTg' <Sn=1 27 (h),
We proceed by steps:
Stepl: We use (7.23) but we takke= 2. This leads to:

a (X mmyu) = (1= C7(h)) g%, (O ,7(myu)
3 1/2
— (1) I rmyll - (¢ O rny)
(7.32) = C(r(M) *xy.r iyl

Step2: Let us now remark that
q%(g) (X’Y,T(h)u) 2 q%(gyl) (X’Y,T(h)u)

1/2
= C (M) 1Ys X, r (yull + 193X, yull] - (@4 Oty rnyw)

(733) - C[T(h)2|‘y3X'y,‘r(h)uH2 + ||y§X'y,T(h)uH2] )
with
> HA
AR = )+ Z yo; (o)
j=1 Yi
9 ~ ~
2 0%A 0%A
(7.34) +Z — Yoj) g2 —— (Wo) + 2(y1 — yo1) (y2 —yoz)ay 902 (%0)-
j=1 J

Step3: But it is easy to find a real polynomial functipiy) such that

h h P2
(7.35) Py Xy r (1) = a1 ) (€7 X m ()1,
with
AP = Hys + a1yl + i (y),
(7.36) 1%2’1’0) = —HYys + HYy1 + azyi + ba(y),

1%2,1,0) —0,
where:

b1(y) = cuiy1ys + 129293, ba(y) = ca1y1y3 + Cc2292Y3-

Step4: Modulo an error like in the right hand side of (7.33), we are reduced to the analysis of

AP = HYys + ayy2,
(7.37) AZEY = {4 + HYyy + any?,
AP — .

We write
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q%@,l’l) (w) = h2||Dygw||2 + l~)2|| (y3 - l;_l(siHGLl — cos 9L2))w||2

(7.38) + || (cos 0Ly + sin@Lg)wHQ,
with
b= [(ﬁf)Q—l-(fNIg)?}l/Q, H? =bcosb, HY = bsind,
and
(7.39) Ly=hD,, —a1y3,  Le=hD,, - Hiyr — axyi.

As the operatosinfL; — cosfLs, a priori defined onS(R?), has a self-adjoint realization
on L?(R?). This is indeed, after rotation, an operator of the faréh + ¢(¢,y) which is unitary
equivalent to%at. Hence, we can consider the spectral representatieméf.; — cosf L, and
the analysis of Section 2.1 to see that

(7.40) 2| Dy, wl||? + 52| (y3 — b (sin 6Ly — cosOLs))w||* = hbO|jw]>.

Step5: We now comparé andb. We are in the case Whé@ < C1h=Y27(h)2. So
(7.41) |b—b] < CC*h~r(h)*.

Step6: Then (7.32), (7.26) and (7.33)—(7.41) prove that'ifis the eigenfunction associated
to the ground state energy Bﬁ:g and if 7(h) = h'/3, then

406 ") > (1680 = CH ]ty |
= O ity g2 = ClIE ey |
— ChY3 x| [0 O )] 2
(7.42) _ C||t2X’y,T(h)uh|| [‘JZ(X%T(h)uhﬂ 1/2'

We now eliminate the two last lines at the price of a worse error term. We get first the existence
of C such that:

(1+ CRY)gh (™) = (hBOG — ChY3) [ oyt
(743) — Chl/gHtX'y.,T(h)uhHQ . Ch71/3||t2X»y,T(h)uh||2,
which leads to the existence 6fsuch that:
45 (X - 00u") = (WO — Ch %) [ty -y
A = CRYP s e I* = CR™ 210 gy

The last two terms will be controlled by summation using Proposition 7.1.
End of the proofWith 7(h) = h'/3, we get from (7.31) and (7.44) that

¢4 06 rme™) > 000 = CH*] - [ |2
e = ORI | = OB,
if y €17 (Q).
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Using Proposition 7.1, we verify that:

(7.46) D (Pl 1P+ BB X " |17) < CRYZ.
vEFi(h)
So we get
(7.47) > dirmu") = ®00h) - > X rau? = CRYfun|?.
~yert ~ert

7(h) T(h)

Then (7.17) is deduced from (7.13)—(7.16) witth) = »!/3, (7.18) and from (7.47). O

Proof of Theorem 1.1. Fheorem 1.1 follows from the lower bound (7.17) and the previously
obtained upper bound (6.1).0

8. Refined adapted coordinateson the boundary and curvatures
8.1. Curvatures

For the following geometric properties of embedded surfad®?inwve refer mainly to the first
chapter of [7] (see also the volume two of Spivak’s book [31]). Let us suppose more specifically
thatz, is a point of the boundar§<). The neighborhood aof, V,, can be chosen such that, in
W, = 0QNV,,, there exist local coordinatés;, y-), i.e. there exist an open subsebf R?
and a diffeomorphism

(8.1) ¢:00N Ve, =8, ¢(x) = (y1,92)-

We denote by — z(y) its inverse. Ther{ , 6”” -} is a basis ol W,,,.
The first fundamental form a¥<2 is the restrlcuon ofj to 902 and it is denoted by. In the
local coordinatesy, y2), G is given by:

3
Oxr Ox
(8.2) G= Y Gudyidy, Gy=Y 35 .
1<4,5<2 = Y Yi

The element of area is given by
ds® = |G| dy, A dys,
with

|G| = det(Gij)i<i <
The unit normal vector toX2 is defined by

Oz A Oz
(8.3) N=Dn _Ou
|ayl ayz

For any vector fieldsX andY, X AY is the vector field defined by
w3(X, Y, XAY)=|X]* [V~ (X |Y)?,

(8.4)
(X|XAY)=(Y|XAY)=

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE



128 B. HELFFER AND A. MORAME

When 092 is the boundary of a bounded regular domain, we can choose moreover these
coordinates such th&{ is the interior normal unit vector, and we observe, using (8.4), that:

ox Oz
9 N >o.
wg(@/l ) >

Remembering thdtV|? = 1, we get that, forj = 1,2,

ON ¢ a0,
0y,

This permits us to introduce the Weingarten nigipom 7°0€2 into 702, by:
2 2
ox ON
k N— | =—> A\—.
(Z ’ 5yj> Jz:: ! dy;

This map is independent of the choice of the coordinates respecting (8.3Wiither normal.
The second fundamental forii on 7052 is defined, forX andY in 709, by

(8.5) KX, Y)=G(XkY))= Y K;X;Y;
1<i,5<y
where
Oox | ON
&5 = —{ 22|20,
J 8yz 8yj

andX; andY; are the components df andY” in the local basi%iyj).
Observing thatg—; | Ny =0, itis easy to see, by differentiating this equality, that

(8.7) Kij=< Oa N>.

9y 0y,
In particularK is symmetric. We recall that the Gauss curvature is

(88) kG = det(k:) = (KllKQQ — K%Q)/(GllGQQ — G%Q),
and that the mean curvature is

1
(8.9) KM = 5‘51"(/?) =~ (k11 + k22),

N | =

where(k;;);; is the matrixG—1 K.

Let a < b. If [a,b] 5 7 — ~(7) € 00 defines a parametrized closed curve, we denote its
oriented image by'. We assume moreover that it is parametrized by arc length, that is:
(8.10) ]7’(7)\ =1.
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The curvature vectqik,, x,,) of I at the pointy(7) is defined® by

(8.11) Y'(1) = =kg(V(T)) N (7(7)) Ay () + n (7(7)) N (7(7)).

The functions, is called the geodesic curvature arg the normal curvature of, at the
point~ (7). We observe that this is well defined once an orientatioh isfchosen.
As shown in [7] (formula (18)), the normal curvature is given by the equation

(8.12) ki (V(7)) = K (7 (7),7/ (7).

Remark8.1. — Note (cf. [7]) that the geodesic curvature vanishes whisna geodesic. Let
us also recall that the scalar curvaturd'as

=" = (kg + k).
8.2. Local coordinatesnear a curveinside the boundary

Let T be a curve indf) parametrized by arc lengths on some interfat [—aq, +as]:
I'={~(s); s€I}.Sowe havey'(s)| = 1. Then, there exists a neighborhoad,, of o = ~(0)
in 09, such that, for any € W,,, N T, there exists a unique geodedi¢c throughz and normal
toI'. The neighborhoo®V,,, of =y can also be choosen such that

(8.13) Ve € W,y,y, Fz=z(x) eTNW,, St.daa(x, z) =dsq(z,T),

wheredyq(.,.) denotes the distance @i).
Then, there exists an open sebf R? and a regular diffeomorphism

(8.14) ¢ Wy — S, d(x) =(r,s) with £7=dpa(z,T) =daq (z,7(s)).

We observe that:

2(0,5) = (s).
We choose a positive orientation (and this determines the choice of the siyjrbgfimposing:

(8.15) %(O,s)/\ %(O,s):N('}/(s)),

whereN (z) is the interior normal o< at the pointz € 9Q. Then(r, s) are local coordinates
in W,,, and observing that, for any fixed r — z(r, s) is a parametrization by arc lengths of the
geodesic\,, ), we have

ox
(8.16) E(T’ s)| =1,
and
(8.17) <%(O,s) ’ %(O,s)> =0.

More precisely we have the following lemma.
5The definition of the geodesic curvature is not uniform in the literature. Some authors [7] use the opposite sign.
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LEMMA 8.2.—Inthe above local coordinates, the metéicon 012 is diagonal
(8.18) G=dr®dr+ a(r,s)ds ®ds.

On the curvd’, we have

(8.19) a(0,8) =1, g—f(o,s) = —2r4(7(s)) and 2—3(0, s)=

wherer4(y(s)) denotes the geodesic curvature of the curve (s).

Proof. —As for any fixeds, the mapr — x(r, s) is a parametrization by arc lengths of the
geodesic\,, ), the curvature of\, () is given, using (8.11), (8.12) and Remark 8.1, by

2x T
(8.20) %(r, s)=K (E(r, ), %(r, s)) N (z(r,s)).

Ox
or /"

Then, we get from (8.20) that

% B 9%z
or/  \ 9sor

So, using in addition (8.16), we have

0 /0x
(8.22) E<$

0

(8.21) _<5)x

or \ s

or\ 10 Jor
or/ 20s\0r

ox
o),

) is normal tol'; so (2%(0, s) | 4%(0, s)) = 0. Then, using (8.22), we get:

g—i(r,s)>=0.

This shows that the metric is diagonal as announced in (8.18) with

%(T,s)>.

But Av(s

(8.23) <% (r,s)

a(r,s) = <%(7’, s)

We get also from the orthogonality of and~” that

Oa

But, differentiating the identity (8.23) with respectd¢pwe have

o5\ _ /0
ds/ or

O« 0%x
(8.24) E(T’S) :2<8587’

s
0s2 /]’

But, by (8.11), we have:

2:6 X
0 20,9) = i (H)N (1)) + 1 (1) 2 0,8) AN (1),
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so (8.15) and (8.17) lead to

0%z ox

(8.25) (0,5) = 5 (Y(5)) N (1(5)) + g (4(5)) 5 (0, 5).

The formulas (8.24) and (8.25) give the non-obvious part of (8.19)

1oJe"

E(O’S) = —2,%9(7(3)). ]

Remark8.3. — In the coordinate§-, s) introduced in Lemma 8.2, the second fundamental
form is given (see (8.7)) by:

K=K1dr®dr+ Kiodr®ds+ Ko1ds @ dr + Koo ds ® ds,
with:

62
Kq1(r,s) = <8—7§(r,s)

N(atr))
N(atr))

N(atr))

62
Kaa(r,s) = <8—;§(7‘78)

9%z
Kia(r,s) = <%(r, s)

K21(7’, S) = K12(7’, S).

The functionK (r, s) is the normal curvature of the geodegic, atz(r, s) and the function
K25(0,5) = kn((s)) is the normal curvature of the cur¥eat z(0, s) = 7(s).

8.3. Local coordinatesnear a curvein theboundary

We come back to previous computations and relate them to the curvaturegzl.et (y1,y2)
be local coordinates of the boundary as defined in (8.1). We have observed in (5.19), that

(8.26) go=dys®@dys+ > [Gij(y1,2) — 2ysKi;(y1,2) +y3 Lij] dy: @ dy;;,
1<i,7<2

where

o G= Zlgi,j§2 Gij dy; ® dyj,

o K= Zlgi,ng K dy; ® dyj,

o L=3 14 <o Lijdyi @ dy; = Z1<i,jg2<g_g §—£>dy1‘ ® dy;.
G, K and L are respectively called the first, second and third fundamental formd$oif we
take local coordinate&y:,y2) = (r, s) on the boundary given by Lemma 8.2, the sesquilinear
form introduced in (5.15) becomes

¢’y (u) = / 912 [mDyS —Azul?+ " g9(hDyu— Aw) - (hDy,u— Aju)| dy?,
Vig 1<4,5<2
(8.27)
for u supported in/,,, the associated differential operator is
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~ h B o ~
Ph= Dy~ &+ gl (ol ) 0Dy, ~ o

(8.28) +lol ™ >0 WDy, — A (19l g7 (WD, — Ay)).

1<4,j<2

If we now consider the coordinates introduced in Section 8.2, thasisys) = (s,t) and
complete byt = y5 introduced in Section 5.3, then

(8.29) lg| = a(r, s) — 2t [a(r, ) K11 (r, 8) + Kao(r, s)] + t2e3(r, 5, 1),

and, forl <i4,5 <2,

i 1 0 Kll a_1K12 9

1] . —
(8:30) (9" )1<i<2 (0 a1> +2t (alel a 2Ky TR,
wherees andR;; are smooth functions.

8.4. More magnetic geometry: discussion around our invariants

We assume that the magnetic figld= curl A is constant and we can assume, without loss of
generality, that:

(8.31) Ax) = g(O,—x3,xg)

for some fixedh > 0.

Let Q be bounded open set & with regular boundary$). We now assume that (1.5) is
satisfied. We observe that this assumption is satisfied Whinstrictly convex. We consider a
parametrization — ~(s) of I'y by arc length, and

(8.32) 0(s) = Arcsin<<7’(s) %>>
We have already introduced, 5 in (1.6). Similarly, we can define:
(8.33) o (106) = (Y6) Ty )

We observe that we have:

fin,B (7(s)) = K(2 H(B) ) =cos6(s)K11(0,s) 4 sinf(s)K12(0, s);
(8.34)
ke, (7(s)) = K(%, %) =c0s0(s)K12(0,5) + sinf(s) K22(0, s).

Let us observe that the anglés) is not “free” in our picture. In fact we have the geometrical
fact:

PROPOSITION 8.4. — The assumptioi/ (B) is constant and tangent to the surfag® along
the curvel' i implies that

(8.35) kt,g(z) =0, Vexely.
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Moreover, we have
(8.36) 0'(s) =rg(y(s)), Vs.

Proof. —Let us write:

(8.37) H(B) =sin(6(s))7'(s) 4+ cos(0(s)) [v'(s) A N(y(s)].
As H(B) is constant, we can differentiate with respect {®.37) and we get:
0'(s)[cos(6(s))7'(s) —sin(0(s))7 (s) AN (v(s))] +sin(6(s))v"(s)
+ cos(@(s)) ['y”(s) A N(V(s)) +4'(s)A(No 7)’(8)] =0.
But using the coordinates of Lemma 8.2, formula (8.6) gives

(Nov) =—(Kiz07)y AN(y) — (K 07)y,

and (8.25) becomes
V"= (K5g 07y AN 07) + (kn 0 y)(N o).
So
0 [cos 0 —sindy' A (N 07)] +sind[(kg 07)y A (N oy) + (r 07)(N 07)]
+ cosf[—(rkg0y)y + (K12 07)(No7)] =0,
and then, expressing the previous equality on the bagig N o~),~', N o+,
cosf[0 — (kg07)] =0,
(8.38) sinf[—0" + (kg0v)] =0,
sinf(k, o) + cos@(K120v) =0.
We get (8.36), and using (8.12) we get also (8.35) frgm v = K55 oy and from (8.34). O
Remark8.5. — In the case wheif) is strictly convex, & > 0), then (8.35) implies that

(839) IinyB#O, Veely.

One can also meet degenerate cases wheigenot invertible (locally cylindric domains).
When d(s) = 0, we deduce from (8.34) and (8.35) thAt»(x(s)) = 0. So the curvature
matrix K becomes diagonal.

Proof. —We observe that (8.34) can be rewritten at a poisty(s) in the form:

(8.40) <f’»n.,B(x)> _x, <c§s9(s)) |
“t-,B(I) sin 9(5)
Observing that(, is inversible wher) is strictly convex {, is actually strictly positive), we

immediately see thak,, p(x)| + |k, ()| # 0.

Remark8.6. — The condition that’ = x4 o+ is obtained also in the cade= 0. So in this case
we have effectivelys, = 0. SoI'y should be a geodesic. Conversely, wligp is a geodesic,
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we should havé = 0 if H(B) is constant. We observe indeed that by computing the circulation
of H(B) alongl'y; and using Stokes Lemma (or more simply thét(B) | 1) = L (H(B) | 7)),
we should have:

b
/sin@(s) ds=0.

Whend is constant, this implieg¢ = 0.

Example8.7. — Let us consider the case of the ellipsoid:
alx% + agx% + agzv% =1.

It is interesting to compute our invariants. Take for simplification, the case hen(0,0,1).
ThenI'g is the intersection of the ellipsoid withy = 0. So we get an ellipse in this plane. We
can now observe that the vector fidiflis orthogonal td" 5. We observe that:

a3x3

(H|N)=—|B]

)
v

with

v= \/afyf +ady? +a3xi.
This leads to:

"‘in,B(ylayz)’ :@-
v

The minimum ofk,, g (which appears in formula (1.10)) is then obtained at the point where
is maximal. If we assume for example that > a2, we get that this maximum is obtained at
xo = x3 = 0 and equal taz;. This differs from the intuition we got from the two-dimensional
case.

Remark8.8. — Using (8.32), we observe that we have:

sin® (0(z)) = <T(x) ‘ %y,

and this permits to compare various formulations of the constaimtroduced in (1.10).

Remark8.9. — The expressionin (1.10) can be related more directly to the curvature by using
the following formula:

tin, B ()2 (%M”(fo) sin?@(z) + cos? 9(96))
=k (w)? (m(o)? + 0 (€0 (7). T AN (2)))
(8.41) % (kin(2)? + K, (T(2), T(x) A N(z))) .

The proof is left to the reader. The interest of this formula is that its computation depends only
on invariants related tb g.
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Remark8.10. — Ifx“ #£0, thenk,, g is different from0. We have indeed:

kG

(8.42) Kn,B = — cos 0.

mn

Note that if we assume in addition that

Kn (x) #0,

thenH can not be tangent . This would mean indeed thét= 7, and by (8.34) and (8.35)
thatK22 =0.

9. Towardsthe model: new normal forms

In this section, the vector magnetic fielfi B), introduced in (5.3), is assumed to be constant,
more precisely

0
(9.1) H(B) =by .

with b= |H(B)| > 0. Moreover the sel'y = {z € 90Q; H(B) € T,(002)} is assumed to be a
regular curve.

The angle between the normallig; in 7,02 and H (B) will be denoted by (x).

We will work near a point of 'y x( to be determined and will look for a good approximation
of the operator in a small box around.

We consider local coordinatés, s, ) in a neighborhood,,, of z,, such that(r, s) are the
coordinates of Lemma 8.2, ands such that

t = t(x) = distance(z, 09Q).
9.1. Normal form for the magnetic potential

In this subsection we shall show how after a suitable gauge transform, we can arrive to a more
tractable model. We assume that the magnetic field is constant.

LEMMA 9.1.— LetA be the magnetic potential defmm]i; inthe coord|nate$r s,t) defined
near zo = (0, s0,0). Let A® pe the Taylor expansion to order of A. Then there exists a
polynomial function of) = (r, s — s, t), p°(y) such that,

(9.2) A® = A% 4 grad, p°,

with
A =bt[sinby + ry(zo) cosbo(s — so) — sinbor™ (20)t],
AY = bt [cos 0o — Kg(x0) cosbor — Kg(z0) sinbo(s — s¢) — cos OorM (xo)t}
(9.3)

1
— 51)/{”73(170)7"2,

A =0.
Remark9.2. — The proof will use assumption (1.8). We recall that this assumption is always
satisfied in the strictly convex case. In this c#5€B) cannot be tangent ©;.
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Proof. —To prove this lemma, we have just to determine the Taylor expansion up to lorder
of the magnetic field in the coordinatés s — s, ¢) at the point0, so,0). Let us first recall that
we have assumed thdtwas given by (8.31) and that the corresponding ve&toB) is defined
by (9.1). Let us analyze its expression in the new coordinatest):

0 0 0 0
(9.4) H(B)_baac1 bla +b26 +b38
and, by (8.26), (8.18) and (9.4), we get
(95) axl = < ‘ —> = 1 - 2tK11) 2tl~)2K12 + O(tQ),
(91'1 2
(9.6) b— = — ) =ba(a — 2tKas) — 2th1 K12 + O(t?),
and
8171 - 8 ~
(9.7) bW = <H(B) 8t> bs.
Using (8.19), (9.5), (9.6) and Schwarz Lemmafgr we get:
oy 0, - = 0Oby
(9.8) D5 = E(abz)——Q(ﬁgOV)bﬁ-E,
whent =r =0.
We have:
9.9) by =bcosb(s), by = bsinf(s), bs =0,

whent =r =0.

This leads by differentiation with respect4do:
dby
s
dby
s
Obs
E — Y
whent = r = 0. Then we get by coming back to (9.8) that (9.9) leads to:

= —bsinf(s)0'(s),

(9.10) =bcosf(s)d'(s),

(9.11) % = —bsin00’ + 2(ky 0 y)bsinb.
r

Using (8.36), we get:

oy _,
or
We would like now to have an expression 1%‘% We shall again use thdf (B) is a constant

vector field and compute the square of its norm, using (5.14), formula (5.19) and Lemma 8.2.
This leads to:

(9.13) b2 =02 + a(r, s)b3 + b2,

(9.12) Kg0y)bsinf.
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ont=0.
Differentiating (9.13) with respect to we get forr =t =0,

6[)1 1 0a 6b2
(9.14) bla +§a—(b) b28 =0.

But we can now use (8.19) and (9.9) and we get:

b B
0059(5)5(0, 5,0)=0.
This gives finally, using (1.8):
(9.15) % =0,

whent =r =0.
Let us now use (9.7) to write that

ab 0 ON
O = ey | v) = ()| 50 ),

whent = 0.
Then, using also (9.4), (9.9) and (8.6), we obtain:

(1) 20 st 2| 20 ot (2

This leads to

(9.16) % = —bcos(s) K11 — bsinf(s) Ko,
T
whent =r =0.

But by (9.5), (9.7) and Schwarz Lemma, we have

dbs b
(9.17) a—f = 8—; —2b1 K11 — 202K 1o

whent =r =0.
So, from (9.16), we get:

b
(9.18) % =bcosh(s)K11 + bsinb(s) K12,

whent =r =0.
Once again, Schwarz Lemma, (9.6) and (9.7) lead to

b b
%s _ E — 2by Koy — 2b1 K1,

9.19 —
( ) ds Ot

whent = 0.
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Then, (8.19), (9.9) and (9.10) lead to
Obs

(9.20) T 2bcos0 K15 + 2bsin 0 Koo,

whent =r =0. )
It remains to determin%b?3 whent = r = 0. Let us denote the magnetic field

g=§23d8/\dt+§31dt/\d7‘+§12d7‘/\d8.
So by (5.11) and using the property that:

OB OB OB
23+ 31+ 12

or s o O
we get from (5.13) that
Oby by  Ob3] 1. - - -
(9.21) |g|'/? 5t 5 T +§|g| /2[(841g1)bs + (9rlgl)b1 + (0s]gl)b2] = 0.

Let us now use this formula an=r = 0. Using (9.15), (9.10), we get first:

ob 1, - . ~
S+ beost()0' () = 319 (@1lgl)Bs + (Drlg )b + (Dulg)2),
ont=r=0.

We now use (8.29) and Lemma 8.2 (more precisely (8.19)), we obtain, using (9.9):

(9.22) (0rlg) = —2k4(v(s)), whent=r=0.
This leads to:

Obs ,
(9.23) =b(kgoy—0")cosd whent=r=0.

ot
We actually need a more complete expansiofypfWe have:

(9.24)  [g| =1—2k4(v(s0))r — 2(K11(0,50) + K22(0,50) )t + O((t,7,5 — 50)%).

We can establish the Taylor expansion of the magnetic field in the coordimates).
We can now establish the formulas in full generality. Ferr = 0, we have, with) = 6(s):

by = bcos 0,
oby
or
oby
Ds
dby
ot

= ()7
(9.25)
= —bsinb,

=bcosOK11 + bsinf0Kqo;
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by = bsinf(s),
dby

5 =b(2k50v —6')sinb,

(9.26)

b
% =bcosbt,

b
% = 2bcosOK 12 + 2bsin 0 Koo;
by =0,

b
% = —bcosKy1 — bsinf K,
or

(9.27)

Obs
ke beosO(kgoy—6').

Using the Taylor extension (to ordgy of |g|'/2,

|g|1/2 =1—ry (*y(so))r — (Ku((), s0) + KQQ(O,SO))t—l- (9(}(7’, 5 — so,t)|2),
we obtain the model:

b9 =bcosb(so) — bsind(so) (so)(s — s0) + (beosB(s0)K11(0, s0)
+ bsin6(sg) Ka2(0, so))t,
(9.28)  bY =bsinb(se) — bcosh(s0)d (s0)(s — so) + bsind(2k4(v(s0)) — 0 (s0))7
+ (2bcos9K12 + 2bsin9(so)K22)t,
b = —(bcosB(so) K11 + bsinf(sg)K12)r + beos(so) (kg (v(s0)) — 0 (s0))t.
These formulas lead to the introduction of the “model” corresponding magnetic field:
B33 =bcosfy — bsinby 0’ (so)(s — so) — beos ok, (v(s0))r
+ b((cos@o —1)K11 + (sinfy — 1)K22)t,
(9.29) BY, =bsinfy — beos o (s0)(s — s0) + bsinby (kg (V(s0)) — 0 (50))7
+ b(2cosby K12 + sin g Ka2)t,
£~3102 = —b(cosOpK11 + sinfgK12)r + beosby (kg (v(s0)) — 0 (s0))t,
with 6y = 6(so), K;j = Ki;(0, so). B
This corresponds to the Taylor expansion up to oidef B at the point(0, s, 0).
by = b[cos(ﬁ(so )
by = b[sin(0(s0)) + sin(6(s0)) (
+6'(s0) cos(B(s0)) (5 — s0) + 2k¢,5(w0)t] + O(|yl*),
bs = b[—Fn,B(zo)r + (Kg(20) — 0 (50)) cos(0(s0))t] + O(|y[?).
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As from (8.29)
|g|1/2 —1— Hg(IO)T — 2I£]wt+ O(|y|2)’

we get using the relation between the magnetic field and the vector magnetic field given by (5.11)
and (5.12)

Bos = b[cos 0o — ig(wo) cosBor — 0’ (s0) sin by (s — 30)}
+ b(kin, B(20) — 2cosbor™ (z0))t + O(|y|?),
(9.31) By = b[sin b + sin g (rg(z0) — 0’ (s0)) 7 + 6’ (s0) cos by (s — s0)]
+2bt [k, g (20) — sinbor™ (20)] + O(Jy|?),
Bio = b[—#n,(w0)r + (Kg(x0) — 0/ (s0)) cosbot] + O(|y[?),
with 6 := 6(s0).
If we write that| H (B)| = b, using the relatiod’ (sg) = k,4(z0), this leads first to:
by = b[cos By — kg () sinbo(s — s0) + kn,p(20)t] + O(Jyl?),
(9.32) by = b[sinbo + sinfokg(20)r + Ky (20) cosbo(s — s0)] + O(|yl?),
bs = =brin, 5(w0)r + O(Iyl?),

and then to:

Bos = b[cos by — kg (0) cosbor — kg(xo)sinbo(s — so)

+ (Kn,B(w0) — 260390111‘4(:00))15} + (9(|y|2),
Egl = b[sin@o + Kg(xo) cosby(s — so) — 2sin90/£M(:co)t} + (’)(|y|2),
Bia = —btiy, p(x0)r + O(ly[?).

(9.33)

By comparison of the curls on the left and right hand side of (9.2) we get the lemma.
9.2. Towardssimplified models

If we neglect the terms of ordef, we get the potentiall®® whose components are given by:

(9.34) AL =bt[sin by + kg(x0) cosbo(s — so)],

(9.35) A" = —bt[cosby — ry(wo) cosbor — ky(zo)sinby(s — so)] — bﬂn%(xo)fﬂ,
and

(9.36) A =0.

The corresponding magnetic field is:

B39 =bcosty — beosbykg(zo)r — bsin bk, (x0)(s — s0),
(9.37) BYY =bsinfy — beosbyk,(x0)(s — s0),

BYY = —bk,, (o).

If we neglect in addition the terms corresponding(to— s, ), we get the magnetic potential
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A% = btsin by,

(.39 AR = ostly — vy o) ost] b2 2
At =0.
The corresponding magnetic field is:
B% =bcosby — becosborg(zo)r,
(9.39) BY} = bsin 6,
3?21 = —bkn, B(w0)7

But we will start our analysis with the model, where we neglect also the ter@$|ir|):

1211 = bsin@ot,
A b

(940) A2 = —bCOSH()t — iﬁn,B(SO)"’Qa
Az =0.

Neglecting also the geodesic curvature, this leads to the model:

(9.41) Pod.— (hD, — A})? + (hD, — Ag)? + h2D?.

10. Comparison lemmasnear I'y

Although the problem is easier in the case of upper bounds where we work with explicit
guasimodes, we need in the two cases (proof of upper bounds and proof of lower bounds)
comparison lemmas permitting to control the error made when considering the simplified models.
Further comparison lemmas will be needed later.

10.1. A first comparison lemma

We are interested in the energy(u), introduced in (8.27), of some functianin H2(£2) such
that

(10.1) supp(u) C Q(xo),
where
(10.2) Q(wo) = {z € (r(z),s(x)) € (ro,50) + [-h°, h°]?, t(x) € [0,€2]},

for somes € ]0,1].
From now on, we assume in this section thdt:), s(zo)) = (0, so).

LEMMA 10.1.-If (10.1)is satisfied, then

(1= Ch*)q", (u) = O[3 (hDy — Ayul|”

(2)

— Clg",, (w)] 1z, (B3 + B2t 4+ 12 4 2)u| — C||(h* + 2 + BOE? + £¥)ul|®

i (u)
(1

+ Ch2) g (u) + C|[tY2(hD, — Ayul|’

<
< n
= A2
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+ gl )] (W + B2t + 132 4 2)u|

(10.3) +C||(h* +h%t 4+ B°t% + t)ul|”,

where
q%(z) (u) = / (1 — Tlig(l'o)) H(th — 252))11’2
Q(o)
(10.4) + (14 2rkg (20)) | (hDs — AP Yu|* + | (ADy — AP )u|?] dr ds dt.

A?) s the guadratic part of the Taylor expansionagt of A defined in(8.27):

~ P A yP
AB)(y) = Z W(()?SOaO)Ea

1B8l1<2

with y = (y1,2,y3) = (r,5 — s0,1).
The functionk, () is the geodesic curvature at, introduced in(8.11)

We have actually two types of errors in order to control the comparisof @f) andq%@) (u).

The first erroris that we replace the initial metric in the coordinates, t) by the new metric
(see Lemma 8.2):

g0 =dt @ dt +dr @ dr + (1 — 2rkg(20)) ds ® ds,

with the corresponding approximation jgf*"|'/2 by (1 — r#,, (o)), and we consider a similar
linearization (with respect te andt) for ¢%.
We then observe that, on the supporugfve have:

l9['/? =1 = kg (z0)r + Ot) + O(h*),
e — 97 = O(1) + OU™)
The second errooccurs when replacing by A® and this leads to an error estimated by:
A=A = 0(jyl*) = o((|t|+r%)?).

Once these estimates are satisfied, the lemma follows easily using the Cauchy-Schwarz
inequality, after having written:

(hDy — A) = (hDy — A®) 4+ (A — A®).
10.2. A second comparison lemma

We now perform a gauge transform. We also decide to consider as remainder the@d)in
in A. In addition we need to change of unknown in order to go back to the Lebesgue measure.

LEMMA 10.2. —If (10.1)is satisfied, then

¢oo (@) — C|[t"/2(hD, — A)ul|?
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= Cdhon(@)] " (0% + b+ B2t + )l
= O|(h® + h+ Wt + )u)”
< 4 (u)
< djon (@) + C[[¢/(hD. — Ay
+ Clahoo (@] |(h% + B+ h2t 4 £2)u|
(109 +C|(h + h+ B2t + ),
where
(100 i = (1 =rkg(z0)) Y2 emin by,

Moo (1) = / [[ADyit|* + (14 2rry(20)) | (hDs — AL)d|* + | (AD, — AL)a|*] dr ds dt,
Q(zo)
(10.7)
where A% was introduced ir{9.34)—(9.36)and wherep® is the polynomial function introduced
in Lemmad.1

We recall that in the particular case whe: 0, it results from (8.36) that:
Kg(z0) =0,

forzgeIl'y.

11. Spectral theory for a simple model
11.1. Heuristics

We would like to understand the following simplified model considered in (9.41):
T2 2
(11.1) Py:= (hD, —sinft)? + <hDS + cos Ot + /@7) +h%D?

onR? x RT. Hered is assumed to be fixed ands a real parameter. We have moreover assumed
for simplicity that

b=1.
We will take later
(11.2) K= kn,B(S0)s 0 =10(so),

but it is better to keep them as an independent parameter for the first part of the analysis.
We are interested in the analysis of the bottom of the spectrum but will concentrate on the
research of.? normalized solutions” such that{ Pyu”, u") is minimal.

Scaling. We first introduce the following scaling:= h'/?t, r = h'/37 and the coefficients
of the operator being independentswifve take a Fourier transform in
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Dividing by h, we get thatP, /h is unitary equivalent to:
~2 2
(11.3) Py := (/%D —sin6i)? + <h1/20 + cos Ot + nh1/6%> + D?

onRR? x R*. We can rewrite the operator in the form:

2
P—D?+ (E—hl/s [SMD% —cos@(h1/3a+ gﬁ)D

(11.4) /o (cosep,~w N sin9<h1/3a N gfz))z_
We note that we have “formally” a lower bound of the type:
(11.5) P> P,

where:

Py = u(hl/ﬁ sin@Dz — cos (h1/30 + gfz))

2
(11.6) + <h1/6 cosf Dy + sin 6 <h1/30 + gﬁ)) ,

now considered as an operator bA(R? ). In order to find a suitable quasimode, it is better to
first decompose it as an Hilbertian integral of operaféi ), this time defined o.?(R), and to
look for a minimization orv. In this context, it is natural to replageby its approximation at the
bottom. We recover a differential model, which will give a good understanding of the problem,
modulo an error term which has to be controlled.

We consequently analyze the family (dependingdn

2
P3(0) := 0 + 6o <h1/6 <sin0D; - cost9<h1/3a + gf2>) - go)

2
(11.7) IRV (cosepf N sin0<h1/3cr N gf2)>

with & = L (&).
It is now better to introduce

(11.8) o(8) =—&ocosh, p(f) = —&psindb,

(11.9) oc=c(@)h V2 +n 13,

which permits to rewriteP; (o) in the form:
2

2
+nt/3 (COSG(D; + p(0)h~/%) 4 sind (a + gfﬂ)) .
A translation ins and a gauge transform lxpih—/6p(#)r leads then to the analysis of the
family:
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K 2
Py(5) := 00 + h/38, (siné‘D; — cosf (& + 5#))

K 2

(11.10) + hl/3 (cos@D;—i—sinH(&—i— 5#)) .

11.2. Analysisof the simplified model

It is then natural to introduce:
(11.11) Ps5(5) :=h™Y3(Py(6) — ©p),

which becomes independent/af
K 2
Ps(6) =60 <— cos @ (§r2 + &) + sin@Dr)

2
11.12 + (cosbD, +sind( Zr2+5)) .
(11.12) :

Here we have omitted the tilde’s for the next computations.

Our aim is to first minimize ove# and then to minimize over the points Bf;, remembering
thatk = k., p(z) andd = 0(z) with 2 inT'gy.

Let us now show, that by a gauge transform, we can revi#jté) in the form:

(11.13) Ps(6) = cD?+d(r* — p)*.

We look for a gauge transformation of the form:

(11.14) #(0,r) = a(8) (gr3 + (fr).
We consider
(11.15) Ps(6) :=exp —it(0,7) - P5(5) - expit(6,r).

The functiona(#) in (11.14) is chosen such that the coefficients of the operator
<gr2 n c}) D, + D, (g# T c})

o) — sinf cos (1 — dp)
© Sosin®6 +cos26

vanish. This leads to:

(11.16)

Of course, we have

(11.17) c=cos? 0 + Jgsin? 6,
and
(11.18) p=26/k.
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But for this value ofw(9), we get:

d= (g) (60 (cos b + a(h) sin9)2 + (—sin6 + a(6) cos 9)2).

After computation, this gives:

2
(11.19) d= (50 (g) )/(§osin29+c052 0).

We now rescale the operatab? +d(r? — p)?. We recall that we deleted the tilde’s for simplicity.
But we come back to the former writifigand consider:

Ps(6) = cD2 4 d(7* — p)*.

This means that we perform a new scaling:

) VO
r=1|\-= r
d 3
such thatPs;(6) becomes in the new coordinates:

(11.20) Pr(5) = dB3 (D2 + ()2 - )%,

o E —-1/3
=17 p-

We observe that andd are independent @f. So in order to minimize over the bottom of the
spectrum of the initial operator, we will have to minimize oyérthe bottom of the spectrum
of the operatorD?, + ((r')? — p’)?) which is obtained forp’ = p,i, and take the valué,
introduced in (2.15). This corresponds to

e v .
2 d pmma
with

2\ —1
(11.22) 2—(00329+5osin29)2<50<g>> .

So, the bottom of the spectrum 6%, is given for this value of by:

with

(11.21) &=

2/3
(11.23) d'\/3c2 By = (%) 58/3|f<a|2/3(60 sin? 0 + cos? 0) /3.

If we now remember the values efandé in our application, this leads to:
6 This is better, if we want to follow all the scalings we have done in the construction of quasimodes.
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PrROPOSITION 11.1. —The ground state energy of the model operdtpis given by
1 2/3
(11.24)  infinfSp P4(6) = O + h /30, (§> 5673 |K)2/3 (50 sin2 0 + cos? 0) /3.

Moreover the minimum is obtained férdefined in(11.21)
In our applications andé are not independent but satisfy (11.2) for somé I';. This
suggests that we have to look for a minimum oler of the expression:

tin,8(2)* (80 sin? f(z) + cos? o(x)),

thatis:
(11.25) 2= inf ((kn5(@))*(60sin®0(x) + cos® 0(x))).

zely

Here we recall that we use in this subsection a slightly different notafiiar): was previously
written 6(s) with x = ~(s).

12. Proof of Theorem 1.2: upper boundsin general

We give now the rigorous proof of the upper bound. This is reformulated in the

PROPOSITION 12.1. — Let PV be the Neumann magnetic Laplace operator ot{f2)
(hD — A)?%, wheref is a bounded open set & with smooth boundary). We assume that
the magnetic field? = curl A is constant and thafl.5)and (1.7) are satisfied. Then there exist
n > 0andC, > 0 such that, for all € )0, 1],

(12.1) inf Sp(P"N) < hbOg + h*/3b2/35¢ + Coh3 17,

whereb = |H| and#y is defined in(1.10)

Proof. —This is based on the MiniMax principle. We use Lemma 10.2 and we have just to find
an L? normalized functioni, supported irh’Q, with Q =]—C, C[? x [0, C[, such that

(12.2) qlioo(it) == / [|(hDy — AL + (1+20) | (D — ARL)a|* + h?| Dyaf?] dr ds dt
hoQ
satisfies
(12.3) o0 () < Ogbh+ /200 (1" (€9)) 40, h1/* + ChH,
for somes € ]2, 1[ and some; > 0, and
(12.4) R=H|(1+ A=Y 4Y2) (hDy — Ayu||* + ||(1+ h~20%]* < C,
with « related tou through (10.6),
AP (1, s,t) = bt[sinhy + mg cos bys],

(12.5) 00 0 0 b o
Ay (r,8,t) = bt[—cosb + ki, cos Oor + K sin fgs| — 3fn,BT
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5))

0o =0(z0) = Arcsin(

(T(e0)

(12.6) ,%2 = kg(20),

O

n,B — Kn .B(70),

and wherery € I'y is chosen such that

Yo(z0) = Yo,

where we recall thaf, was defined in (1.9). We have chosen a system of coordilfates)
such thatzg = (0,0,0). We recall thatd°° was introduced in (9.34)—(9.36).
We search for a function of the form

ﬂ’(T?Sat; h) = Clhié/2 GXP( h1/3 p'%n BS)

(12.7) X exp(hl/2 (sinfpr — cosbys)b /250) X(hC 1 s)u(r, ),
wherec; is a normalization constan,is a constant to be determined latglis an even function
onR supported ori— 3, 7] and equal td on [—1, 1].

As s+ x"(s) := ch=%/2x(h=9C~'s) is an even function and
[|(hDs — bk} sinfgst)x HL2(R) C(h>~20 4+ h2%t%),

we only have to search for a normalized functidn, t) satisfying

1/3

(12.8) o0 (V) < WO + h36%/ 30, (1" (€0)) 0 + CRIT 3,
with
(12.9) Qoo (V) := / [|(hD, — Mloo)v|2 + | M3%|* + B*| Dyol?] dr dt,

hoQs
Q2 =1]-C,C[x[0,C[, and

MO(r,t) = b2 sin 0o (b'/%t — h'/2¢),

(12.10)  M(r,t) = (1+ 2&27‘)1/2 [—bl/Q cos B (b1t — h1/2¢y) + Ky cos Bobrt

N o

/191_’3(1"2 — h2/3b_1p)] .

Moreoverv must satisfy

(12.11) At / (14 h28)[|(hD, — MP)o|? 4+ | M 0|? + h2|Dyo|?] drdt < C,
h9Qz

and

(12.12) (1 + K122 < C.
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So we can neglect the? andr? terms inM° which will lead to error terms in (12.8), and we
get the new
MY (r,t) := b2 sin 6o (b'/%t — h'/2¢p),
(12.13) M (r,t) = —b"/2 cos Oy (b2t — h'/2&g) + R/ 26 2¢o ) cos for
b _
— ok p(r2 = 1),
We introduce the scalin'/?(h—'/3r, h=1/2t) = (#,1) and takev in the form:
v(r,t) = b 25 24 (7,1).

We then delete the hats and we get easily that
(12.14) o1 (v) = bhq" (vo)
with

~ 2 2

7" (vo) == /[|Dtvo|2 +[(t—& — hMSLY(r, D,))vo|” + B3| L (r, D, )o| 7] dr dt,
(12.15) on

Q" =1-Cb"/2h°=5 Cb/2h0 =3 [ x [0,h°~2b7,
and with

b—1/2
L}1L ('f', Dr) =sin HODT — COS 90

[K9 p(r* —p) — 2h1/6§0,‘€2 cosfor];

(12.16) om1/2

LY, D,) = cosby D, + sinfy

[/1,0173(7*2 —p)— 2h1/6§052 cosfor].
We search for a functiony such that

H(l + Tz)’l}oH < Clvo]-
We can neglect terms with!/ in factor, and thd;‘;? are replaced by:

b71/2 )

LY(r, D,) = sinfyD, — cosby [52780 Ik

(12.17) P

L(Q)(Ta Dr) = COS QQDT —+ sin 90

[KQ,B(TQ - P)} :

Let v (t) be the normalized eigenfunction (&) associated to the groundstate eneggy
(cf. Section 2.2). Then one can check easily as in [12] that there &Xistach that

(12.18) a9 - |00+ (e~ )] o < Cule - P
where
(12.19) ¢ (t) = o (t) + (€ — &)1 (t) + (€ — &0)%2(t),
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(12.20) 1 =2[Q(&) — 0] " [(t — &0)o]
and
(12.21) @2 =2[Q(%) — O] - [(t = &)1 — ((t — &o)prleo) o]

Here(Q(&) — ©9) 1" is the regularized resolvent defined by:

(Q(&) —©0) "o =0,

(Q(&) — @0)71"% = (Q(%) — 90)71U if (ulpo) = 0.

The inequality (12.18) is first proved far= ¢ — £, small enough by perturbation, but we
then claim that it is also true fdr| > 7o > 0, if we observe that the square of the left hand side
of (12.18) is a polynomial of degrelewith respect to the variable.

By (12.18) and using Fourier transform, we know that there exist function@)
(=0,...,2), which are exponentially decreasing at infinity [0n+oo[ with their derivatives,
such that, for any € S(R), if

(1222) wh (T‘, t) = SDO(tW(T“) + ¥1 (t)h‘l/ﬁL(lJ (T‘, DT)’L/J(T) + P2 (t)hl/3 (L(lJ (T‘, Dr))Qw(T),
then we get,

H {D‘? + (6= &~ n°LY(r, D)) (90 + %M”(fo)hl/ 3(L9(r, Dr))g)} v

(12.23) < ChY2||(LY(r, D)) w.

This is indeed a consequence of the estimate (12.18) and of a suitable functional calculus. For
defining this functional calculus, we can, for example, whg# 0, use a gauge transform which
transformsL! into sin 6y D,. and the proof can then be done by partial Fourier transform. In the
case wherdy = 0 a direct proof can be done. Note that the consfanis independent of.

Let us define

(12.24) M(r, D) = g (€) 3, D, )2 + L(r, D).

At this point, we have justified the heuristic part of the previous section and can use the
results obtained for the model (11.12) in Section 11.2.:kebe the normalized eigenfunction
(cf. Section 2.4) associated to the groundstate enéggycf. (2.15)) of the Hamiltonian
D2 + (r? — pmin)? on L%(R). We recall that — v, (r) is an even function.
Let

(12.25) WO(r) = (5)1/12 expicp(r)1/)0<((—cl>1/6r),

wherep(r) corresponds (modulo the scaling leading te 1) to the gauge transform introduced
in (11.14), and

(12.26) =10 x(C A0 5p).
We take (see (12.7)):

e\ /3
(12.27) p—b1/3<3> Prmin;

with ¢ andd as in (11.22)y = &, 5 and6 = 6.
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We then consider, withv" (r, t) defined in (12.22) ang therein defined in (12.26),

(12.28) vo(r, 1) = wh(r, t)x(éh_‘;*%t).

We recall that) is exponentially decreasing at infinity with all its derivatives.
Then we get easily from (12.23) and (11.24) that

(12.29) oo (v0) < [O0 + h/330b™ Y3 + CRY?] - o>, O

Remark12.2. — It is possible to treat more degenerate situations, for example if there exists
o € 09 such that the Gauss curvaturergtvanishesH is tangent tod2 at 2y and the normal
curvature atry along the vectoH vanishes:

(12.30) HeT,00, k% x0)=0, K. (H H)=0.

We refer to [15] for a result in this direction.

13. New lower boundsfor generic models
13.1. Introduction

We come back to the model analyzed in Section 11. We recall that we were interested in the
model:

2
(13.1) Py = (hD, —sinft)* + <hDS + cos Ot + gr2> +h?D?.

It is useful to consider the dilation= h'/2¢, r = h!'/3# and to divide the operator by.
This leads to:

2
(13.2) Py = (h'/SD; —sin0t)? + (hl/zDs + cos Ot + ghl/sz) +D?.

We look at functions supported if{h) x R x R+, where
(13.3) I(h)=]-Cho=5,CRhO~5].
Hered € ]i, %[, but other restrictions will appear during the proof.
After a new dilation and a partial Fourier transform with respect to the varighhe starting
point is the operator:

2
P(h,0,0) := D} + (t — ht/6 [sinb’DT - cose<a + gﬁ)])
P 2
(13.4) +nt/3 (cos 0D, +sin6 (0 + 573)) )

that we would like to analyze ii(h) x R x R,. We choose to consider first the problem for
a family of operators depending on a parametemd we would like to have a uniform lower
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bound (with respect te, of (P(h, o, 8)u, u) for u's supported in{ (r,t) | = € I(h), t >0}. Itis
convenient to rewrité®(h, o, 6) in the form:

(13.5) P(h,0,0) = D? + (t — & — hY/° L)% + h'/3L2,

Here L, and L, are the differential operators of ordedefined by

Ly :=sinfD, — cosf (0’ + g7’2> — fghil/ﬁ,
(13.6)

Lo:=cosbD, + sin9<a+ gr2>.

Remark13.1. — We have subtractegh—'/6 for simplicity. Note that because everything
should be uniform with respect tg, this is not really important, because the bracket.pfand
L, is unchanged. A gauge transformdyp i (&, sin 0~ 1/67) gives indeed:

LYY :=sinéD, — cos@(a + grz + §0h_1/6 cos@),
(13.7)
L5 :==cos6D, + sin@(cr + grz + &hY/0 cos@) .

13.2. Proof of thelower bound

We will have to treat two cased:= 0 andd € |0, 5]. Because we can recover the first case
from the casé # 0 by a continuity argument (see [14] for a direct proof) we always treat first
the casé € |0, 5] but we control the constants uniformly with respecfto

The operator we would like to study has the following structure.

(13.8) P:=pu(h*/SLy 4+ &) — O + h'/3L2.

What follows is based on a variant of the functional calculus of two non commuting
operatord.; andLs. This is related to operators appearing in the representation theory of rank
nilpotent groups. We observe indeed that all the brackets of drefmmish (see Helffer—Nourrigat
[16]).

Remark13.2. — For the justification of some abstract formulas, it could be useful to use a
gauge transformation (which is singular #& 0), and leading to

ﬁl :=sin6D,.,
(13.9)

- 1
Lo:=cosbD, + 7 (U—i—foh_l/G cosf + gTQ)

sin

but it is better, at least at the beginning, to remain “abstract” noting that for any boynoleel
can associate by a functional calculus a bounded opeyéfar) defined onZ..

A partition of unity.Let x1, x2 OnR, with x; equal tol in a neighborhood of the origin, say
on]—1,+1[ and with supportin—2, +2[, that we dilate by some factar :

X5.h(p) = X (R p).
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We keep of course the property:
(13.10) X%,h + X%,h =1,

and we can obtain the following commutator formula:
(13.11)  Loxjn(L1)u=xyu(L1) Lou+ ik k(W Ly)r + hQTg sin(0)x/(h™L1).

We first write, with P defined in (13.8):
(Pu,u) = (Px1,n(L1)u, x1,n(L1)u) + (Px2,n(L1)u, x2,n(L1)u)

— B2 e sin(6) Re{Z [ (A" La)u, X n(L1) Law)
J

R0 L]

2
(13.12) — WS | (0 Lora|* 4 527 sin® (0)][x (07 Lo,

J

We have used here that>_, X/, ,x;j.» = 0.
Stepl. We first observe that, by the propertiesidnd estimating from below the second term
of P, in (13.8) by0, we have, ifr €10, [:

1 1
(PXan (L1 )t o0 (L1 )u) > Ehr?THm(Ll)uHQ, Yu e S(R).

Everything is uniform, with respect #b< |0, 5] and is valid forh small enough. We get that, for
any(C’, there existd(C") such that¥h €0, ho(C")],

(1313) <PX27h(L1)u, ngh(Ll)u> 2 Clhl/gu)(zh(Ll)uHQ.
Step2. We consider now the first term. Using now the Taylor expansignaif¢,, we get:

<PX1,h(L1)u,X1,h(L1)u> > pl/? (5OHL1X1,h(L1)uH2 + HL?Xl’h(Ll)uHQ)
— ChM2 (| Ly Pxa n (L )u, a0 (L)),

This is first transformed into:

(Px1n(Ly)u, x1,p(L1)u) > hl/3 (6OHLIXl,h(L1)UH2 + HL2X1,h(L1)UH2)
(13.14) — ChE %[ n (Lo )u| .

The analysis of this term is then reduced to the analysis of the simplified model:
SoL3+ L3

which is done in Section 11.2 and we also have to observe that a good remainder in (13.14) is
obtained if — 37 > 4:

1
(13.15) T e}o, " {
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Again, we emphasize that is independent ok, 0, x and ofc.

(Px1,1(L1)u, x1,n(L1)u)

(13.16) > W30 (1,0)| | xn (L1 )u||* = ChE =37 || xa n (L )ul |,
where

. 1 2/3 1/3
(13.17) M (k,0) := 190(5) 5073 (1)%/3 (80 5in2 0 + cos0) /°.

We now glue together the estimates (13.12), (13.13) and (13.16), then using that by (13.3) we
have

Vue G5 (I(h),  llrull < Ch*5 ul,
we get the following lemma.

LEmMmMA 13.3. —Foranyr €0, %[, there exists a constant, such that, for any, for anyo,
for anyu € C5°(I(h)), we have

(W13 (&0 +hYOLy) = ©0) + L3)u,u)
(13.18) > ¢ (k,0)[|ul|® — CR2TH= %) [u)|2 — ChS =37 |[ul|® — Ch2" |[u]| - || Lau].-

Herecc°™(k, #) is the constant introduced in (13.17).
Itis clear that the above inequality implies:

(™3 (& + hYOL1) — ©9) + L3)u,u)
> Cconj(li, 9)”11,”2 _ C(hQ(TJrJ*%) +h" + h%*37) HUH2

We also see that this is satisfactory if (13.19)

1
(13.19) b= +7>0,

is satisfied.
Takingr = ﬁ we conclude with the following lemma.

LEMMA 13.4.—Foranys €0, %[, there exists a constant, such that, for any, for anyo,
foranyu € C3°(]—-Ch?,Ch?[ x R x RT ), we have

(13.20) (Pou,u) = [hOg + h/3ceom — (M8 4 0+ 32)] [|u)2.

Here we recall thatP, is the operator defined if.3.1)

14. Proof of Theorem 1.2: preliminariesfor the lower bounds
14.1. Decomposition in four zones
Before to enter into the technicalities, let us explain the ideas which lead to the partition of

unity we shall consider.
We cutQQ in different zones.
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e The first zone corresponds to the points which are far from the boundary. They are treated
rather easily, exactly as in the case of dimen@oHere the model with constant magnetic
field in R3 is relevant. This corresponds to the introductioﬂl“&g‘h already done in (7.16).

The other zones correspond to a finer decomposmoﬁqub) also already introduced
in (7.16).
e The second zonEi}h) corresponds to the points which are n€ar at a distance which is

O(h?%). The model which was analyzed in the previous section is essentially relevant. This
will be treated in Section 15.
e The third zonel'}?, | corresponds to the points which are né&r but far fromI';. Here
the model analyzed in Section 3 is relevant.
¢ Unfortunately, we need an intermediate zone. This will correspond to the introduction of
Flfh) corresponding to points neBi; but not in the second zone. In some sense, we need
to interpolate between the second zone and the third zone. This will be treated in Section 16.
Then, we have to glue together the estimates introduced in each zone and to control the errors
related to the partition.

14.2. A partition of unity

We proceed as in the proof of Proposition 7.2. In the partition of unity (7.14), we take

(14.1) r(h) =h? with§ e] 158 ; {

Let us denote by:." a normalized eigenfunction associated to the ground state engkgy
of PN We recall that:

(14.2) Mh) =i (") <gh()/|[v]]?, Yve HY(Q).

As announced in Section 14.1, we s;ﬂ}l »» Which was defined by (7.16), in the following way.
For Cy > 1 fixed large enough, let us deflne

I‘H = {7 S Fi(h); dist (supp(X%T(h)),FH) < Cm’(h)},
(143) Fl (h) — {7 € Fr(h)v OlT( ) dist (Supp(X’y,T(h))v FH) < Cfl}v
Tl = {7y €Ty Ot <dist(supp(xy,-(n), Trr) }-

, 10
14.3. First zone: T,

This was already analyzed in Section 7.3. We established in (7.18), that:
LEMMA 14.1. —
(14.4) > dOermu) Zhb Y Xyl

Y€y V€ )

13
14.4. Third zone: I'" )

We use the proof of Proposition 7.2. We observe that we are in the first case considered in the
proof of this proposition. We use (7.25) and get (7.27) in the following modified form:
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2 1/2
¢ Oty m) + C (7)) Iyt - (@ Ocy i)

(14.5) > [bh(©0 + ¢3) — C(hr(h) + (1(M)")] - I, r (myull?,

wherecs > 0. This leads to the existence of > 0 andh, > 0 such that, for any, € H'(2) and
anyh €10, ho],

(14.6) 05 (Xyr(ny) = h(O0 + )Xy rmyull®s Vv €T,

Takingu =« and summing ovey € Fi%h), we get

LEMMA 14.2.—There exist; > 0 andhq > 0 such that, for any: € |0, ho],

(14.7) > dirmu) 2 hb(O0+cs) Y Iy rmul®
VET Tt VET Tl

15. Proof of Theorem 1.2: lower boundsin the second zone
15.1. A new comparison lemma

We start from the conclusion (10.7) of Lemma 10.2. Omitting the tilda’'s, we consider the
quadratic formg!, (which was denoted by",, there) onL?(Q"), whereQ" = Q" x 10, h°],
with Q" =]—h%, ho[ x ]—h?, h®[, which is defined by:

(15.1) " (v) z/[|hDru—A1u|2+o<(r)|hDSu—A2u|2+h2|Dtu|2] drds dt,

glh,

for all u € Dy, where

Dy = {’U S Hl(Qh), U/(th)x]o,hé[ = O,’U/th{h(i} = O}

Here
Al = Al(S,t) = bta1 (S),
(15.2) b
Ao = Ay(r, s,t) = btas(r,s) — 5/1"_,37’2,
with
a1(s) =sinf + k4 cosbs,
(15.3) as(r, 8) = —cosb + kg cosOr + Kysinbs,
a(r) =14 2k4r.
Here

kg =Kg(z0), 0=0(x0) and kn = kn p(T0).

The coordinates of are(0, sq, 0) and we take in what follows, = 0 (after a change of originin
thes-variable). As already mentioned these formulas coincide (modulo some change of notation)
with the formulas (9.34)—(9.36). We assume that0, § > 0 and thath € |0, ko] with ko small
enough. We assume also thdt) > 1/2.

We denote byP” the associated self-adjoint operator bt Q").
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As beforeC' will denote some constant independenthgfwhich can change from a line to
another.
Let us remark for future use that

(15.4) |hDyul? + ||hDsul|* < C[qh (u) + |[tu)|® + h*|[u]|?], Vu € Dy.
LEMMA 15.1. —For anyr; > 0, there exist€ > 0 such that, for any. € Dy,

(15.5)  (1+Ch®)gp,(u) > (1~ Ch™)qy, o(u) = CL(A* + W™ )[[tul® + A%~ |u]|?],

with
. q u) = rul” + |btu — Lyu|” + U rdsdt,
(15.6) ko h?|Dyu)? + |btu — Liu|* + |Lhu|?] drdsd
Qr
and
b
Lg =a1hD, + aghDs ~3 cos 9/<an7Br2,
b
L}f = a%hDr + a}hDs + 3 sin 9/<amBr2,
(15.7) a3 = —cosf — kg cosOr + K, sin s,

a1 =sinf + kg sinfr + K, cos s,

a3y = cosf — k,sin fs.

Remark15.2. — In order to have a right remainder, that is at leagp{n*/3*"), for some
n > 0, the constant; should satisfy the condition, > 1/3 and66 — 7, > 4/3. So surely, we
willimpose:1/3 < 71 < 2/3. The constand should also satisfyt /3 > ¢ > 1/6 and will be later
chosen to be quite neay'3.

We will for example take:

1
(15.8) 71 =30 — 3
under the condition that
5
(15.9) o> 5

Proof. —Let us write

|hD,u — Ayu|* + a|hDsu — Asul?
2

b
— 0*1%(a? + aad)|ul® + 12| Dyul? + a|hDgu+ 2k pru

2
(15.10) — 20t Re( [alhDTu + aas (hDsu + glimBTQu) } u) .
Using (15.3), we verify that:
(15.11) ‘1 —(a] + aa%)’ < C’[(r2 +82) 4+ (r* + 52)3/2} ,

and this leads to
(15.12) 11— (a + aa3)| < CH*,
on the support of..
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As a consequence, we obtain:

|hDyu — Ayu|* + alhDgu — Ayul?
2

b
— b2t2|u|2 + h2|DTu|2 + alhDgu + gnn73r2u

b
(15.13) — 2bt Re< [al hD,u + aas <hDsu + gﬂn,BTQU)} ﬁ) — Oh26|tu|2_

Similarly to the decomposition of (15.10), we observe that:

b 2
‘btu — {alhDru + aag (hDsu + §An13r2u>}

2

b
+ alashD,u — a1 (hDsu + —Hn,BT2U)

2

b
= b2 |ul* — 20t Re< [alhDru + aas <hDSu + Eﬂn,BTQU) ] ﬂ)

2

b
+ |la1hDyu+ aas | hDsu + Efin,BT2u)

2

b
ashDyu — ay (hDsu + _fin,BT2u)

(15.14) +a 5

Using again (15.3), we get

b
l)2t2|u|2 — 2bt Re( {alhDru + aag (hDsu + §An13r2u>} ﬁ)

2

b
+ |a1hDyu + aag (hDsu + _’in,BT2u)

2

2

b
+ alashD,u — ay (hDsu + —Hn,BT2U)

2

b
< b2t2|u|2 — 2bt Re< [alhDru + aas <hDSu + §An131"2u) ] ﬂ)

2

b
hDgu + —ﬁn7Br2u

+ |hDyul? + a 5

g

Combining the previous inequalities, we get, for any functiohD,,

b
(15.15) + Ch?% [|hDru|2 + ’hDSu + S kn,Bru

|hD,u — Ayu|* + a|hDsu — Agul?
2
>

b
btu — [alhDru + aas (hDSu + EnnyBTQU)]

2

b
+ alashD,u — a; (hDSu + Eﬁn,BT2U>

|

b
(15.16) — Ch®|tu|® — Ch? [|hDru|2 + ‘hDsu + EHH,BT%
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Writing that
|hDyu| < |hDpu — Aju| + Cltu|

and

b
‘hDsu—i— §f<an73r2u < |hDsu — Asu| + Cltul,

we get easily from (15.10)—(15.16) that for amy Dy,

(1+ Ch25) [|hDTu — Ayul® + a|hDyu — A2u|2]
2

b
> |btu — {alhDru + aag (hDSu + §nn7372u>]
b 2 ? 2614, 12
+ a|—ashD,u+ a1 | hDsu+ 5/1"731" U — Ch*|tul
b 2
= ‘btu — {alhDru + aag (hDSu + §nn7372u>]
b 2
(15.17) + ‘—almaghDru +a'?a, (hDSu + §mn,3r2u) — Ch25|tu|2.
We now observe that:
(15.18) laas — S| + | 2az + a}| + ' ?a; —al| < C(? + %)
and
(15.19) |o/2a; — sin @] + |aag + cos8] < C(r? + s%)1/2,

Implementing these inequalities in (15.17), we get easily (15.5) from (15.17)—(15.19).

More precisely the estimate (15.18) permits indeed the comparison of the coefficignts of
andD; and the estimate (15.19) permits the treatment of the coefficients gf>. Let us show
how the parameter; appears in the conclusion. As a typical error (corresponding to mixed
terms), we get:

o(r*(r* + 32)1/2)|u|(|tu| + |hDyu| + [hDgul) = O(h35)|u|(|tu| + |hDyu| + |hDgul).
This can be controlled by:
RO~y 2 4 pT (Jtu)® + |hDyul? + [hDgul?),

and using (15.4) (or a similar estimate W*m,o), we arrive to the right conclusion.
This ends the proof of the lemman

Remark15.3. — Of course, we will also have to add the previous remainders coming from the
other comparison lemmas.

15.2. Some“linearizing” change of variable

We are now looking for a change of variables permitting to “eliminate” the slightly varying
coefficient ofD,. or D, in (15.7). We introduce:

(15.20) Ri=kg = Kq(0).
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Let us make the change of variables
(Tv S) = (I)I%(pa q)7

(15.21) r =sinfp + cosfq — g[— cos fp + sinfq]?,

s=—cosfOp+sinfq — g [sin(20)(p* — ¢°) + 2 cos(20)pq] .

The map®;, is a perturbation of a rotation and, by the local inversion Theorem, is easily seen
as a local diffeomorphism sending a fixed neighborhoo@o6) onto another neighborhood
of (0,0).

Then, forh small enough@” becomes byi)gl a setQ? satisfying:

(15.22) Qi =d1(Q") C]-Ch®,Ch[ x |—-Ch®,Ch|.
If we write

(15.23) Dy =ci1 D, + c12Ds, Dy =ca1 D, +c2Ds,
we have:

€11 = ? =sinf + R cosf(— cosOp + sin 0q);
p

cl2 = g—; = —cosf — &(sin(20)p + cos(26)q);
or . .
=g = cosf — A sinf(— cosfp + sinfq);
q

Cog = % =sing — & (—sin(26)q + cos(26)p).
q
Using again (15.21), we get
c11 =sinf + kcosfs + O(r? + s2);
c12 = —cosf — k(cosOr —sinf s) + O(r? + s2);
o1 = cosf — isinfs + O(r? + s2);

Coo = sin @ + &(sinOr + cosfs) + O(r* + s2).

(15.24)

Let us now control the measure in the change of variable. By an easy computation, we get:
(15.25) drds=aidpdg with |o; — 1 — &r| < C(r% + 52).

Similarly to Lemma 15.1, we also get the following one.

LEMMA 15.4. —For anyr; > 0, there exists a constant > 0, such that, for allu € Dy,
(15.26) (14 Ch*)qp, o(u) = (1 —Ch™)qp, 1 (u) — C[(* +h™)|[tu]|* + h% = Ju?];
with

(15.27) a1 (u) = /[h2|Dtu|2 + [btu — M{u)® + [M{'u)?] oy dpdg dt,

Qnr

4€ SERIE— TOME 37 — 2004 N° 1



MAGNETIC BOTTLES FOR THE NEUMANN PROBLEM 161

Q5 = Qg x 10,1,
and
b

My = hD, — = cos 0k, p(sinOp + cosfq)?,
(15.28) i
=hD,+ 3 sin 0k, p(sinp + cosfq)?.
By a unitary transformation, and after control of a commutator, we get

(1+ChY?)gh, 1 (u) + OB ||ul|?

(15.29) >qh L (v) = / [R?|Dyw]? + |btv — M| + | M{o[*] dpdgdt,

Qnr

for all u in Dy, with v associated ta by v = a1/?u.

Let us consider the new model. We first observe that the result is independecbns$idered
as an independent parameter. The proof is moreover uniform with respect to this parameter. As a
consequence, ib = ®; was the transformation used abo@%il, more explicitely the transfor-
mation(p, q) — (7 = sinfp + cosfq, 5§ = — cosOp + sinbq) will bring us (in the new variables
(7, 8,t)) to the initial model with% replaced by). This can also be done by explicit computation.

15.3. End of the proof relative to the second zone

So, for finding a lower bound fo;hm 5(v) in (15.29), we have only to look at the corresponding
model which was exactly the model analyzed in Section 13. Implementing inequality (13.20)
and (13.17), we get

LEMMA 15.5. - There exist$; € |, [ such that, for any € ]61, 1[, there exist constants
C >0, ho > 0 andy > 0 such that, for any; € Dy and anyh € ]0, ko,

(14 C(h% + h*=%)]g" (u) + C(h? + h3*7)||tul|>
+O(h%+n+h35+%+h5+%)”u”2
" 1/3
(15.30) > hb®0+h4/3b2/3aomi{g(50sm29+cos29)2/3% l[u?,

with O, &y, 1(€) defined in2.6)and?, defined in(2.15)

Then, using a modified version of Lemma 10.1, Whﬁtg) ) andg¢’ (u) are interchanged,
and also Lemma 10.2 (witf;, (u) andg’} (v) interchanged), we get easily the following lemma

LEMMA 15.6.—Leté €4, 1[, Co > 0. Then there exist§), such that, for any, € T'y, for
anyu € H'(Q2) such that

supp(u {ZEGQ | — zo| < Coh‘;},
for anyh €10, 1], we have
1 1/3
i (w) > [hbO + h 22 [ (&0)2 ()] |

— G| (hD. — Ayu* ~ Colas@)] /2 [|(h* + bt h% + %)
(15.31) — Co||(h*F5 + 13+ h+ B2t + 62| = Coh 57 |[tu|® = Coh 37 ||ul2.
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This lemma and (7.1) prove that for the ground state eigenfunction defined in (14.2), we have,
foranye > 0,

0 (O () = [ADOg + h*3406% 3] | Xy m(myu |2 = C (R FE + 1 79) Ixy . nyu” |2
2 _
- CHtl/Q(h’D - A)X'y,r(h)uhH —Ch E||t2X'y.,7'(h)uhH2
(15.32) — Ch3 |ty |2 = CREF x4 nyu |1

So, choosing = 36 — % we have proved that there exists> O, such that, for any € Fi%h)
defined by (14.3), we have

04 (X, () = [R0Og + W 3500 > — CRY /2] | 7 uyu” |12
— Ch¥* 3 ||x, L yu”||? = C||t/*(hD — A)X'y,r(h)uhHQ
(15.33) — CRE™3 2y, L anyul ||

Summing overy € I'{,,, we will obtain

LEMMA 15.7.-There existd; € |15, £[, such that, for any € ], 1[, there existC, n > 0
andhg such that, for allk € ]0, ho],

Z i (.7 (yu) = 0O + h*/350b%/%] Z 1y, (yu” 112
VET ) VET )

(15.34) — Ch**s — Chst,
Proof. —Let

1 4
PIU(R) = O+ 4 30y L ou® |2+ CIE2(hD — A)xy -y |2

1 1
+Ch?2 36||t2X’y,T(h)uhH2 + Ch3+n||er(h)tuh||2-

We obtain:
5+1 339
S AR SO ST eaul P+ CRER ST x|
verth,, YET iy YET )
2
L0 Y 0D - A
e

7(h)
We use then Proposition 7.1 for the first two terms of the right hand side. The last term is treated
in the following way. As for (7.15), we have also

(15.35) [[t1/2(hD — Ayu"||* = 3" [|[t/2(hD — A)xy rquyul || = B2 [/ x| -
Yy

So

(15.36) Z Htl/Q(hD—A)X%T(h)uhHZgC’(h?’/Q—I—h?’*%). 0

11
Ve )
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16. Lower boundsin thefourth zone and end of the proof of Theorem 1.2
16.1. Introduction

As for the second zone, we assume thapp(x-,-(n)) C Q(xo), but with zg = (10,0, s0),
ro # 0. For simplicity of notation, we take, = 0. We have also to consider the case when
J = [~Ch?,Ch’] and I = ro + [—h°,R°], with |ro| small enough. We will also impose
Iro| > C1h?, with C; large enough in order to have the property that the correspording
is always sufficiently far frond.

16.2. Comparison

One first observes that the proof of the rough lower bound will permit to treat the region
r > h% (but the conditions o, are too bad for what we need). We proceed as in the proof
of Proposition 9.2 of [12] and use the partition of unity introduced in Section 7. We follow the
first steps of Section 7.3 till (7.25). We recall that there exist local coordihadéapted to the
boundaryy = (y1,v2,y3) such thats(z) = d(z, 99Q) and that, forr(h) < 1 and for anyk € N*,

dA O rmyu) = (1= C7(h)) g%, (¢, 7(nyu)

= (7)) M e yull - (@ Oy r )

2k+4-2
(16.1) —C(r(h) Iy eyl

with, for someyo € 9Q N {7 (h) + supp(x-.~(ny)}, A® andq%(m defined in (7.20) and (7.21).
If we takeT(h) = h? andk = 1 the estimate we got in Section 7 is good when

d(yo,Trr) = Coh*~1/2,

with Cj large enough. So we have to take- 2 for the general case, and we will then consider
the condition:

d(yo,Tr) = C1h°.
16.3. Adapted normal forms
We can always by a change of variable
(y1,92) — (coswyy — sinwys, sinwy; + coswya),

with
coswflg + sinwﬁlo =0,

arrive to a situation where the new second componeﬁN{ whnishes:
HY =0.
Then, for suitable gauge,
7 Belonging to the family introduced in Section 5.3.
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g?) (y) = &y3 + Riay2ys + Ri 393,
(16.2) 1%2) (y) = _ﬁ?% + ﬁ:?yl +&y; + §2,1y1y3 + f§2,3y§7
1%2) (y) = §3,1y1y3 + §3,2y2y3-
Let us defined 20 as A defined above but witt®;; = 0:
AP (y) =cly3,
(16.3) AP (y) = —Hys + Hys + 03,
AGO () =0.

As for (16.1), we have
GA O rmyu) = (1= C7(h)) g%, o O m(ny)

(
1/2
- CT(h)HtX'y 7( h)“” (qA(X%T(h)u))
1/2
— O e ytll - (€O riye)
- C(T(h))Q”tX'y,‘r(h)u”2
(16.4) — O () |y e iyl

We recall that = y3. So
(1+CT(1) ¢ Oy, 7 nyw) = (1= CT(1)) %, o) Oy, rnyw)
= CT(h)[[txy 1 (ryu]|?
(16.5) = C(r(0) Py, oyl
If we assume thad(yo, T'z) € [C1h%,1/C4[, using that in (16.2) we have:

(HY)? + (HS)? =b?
and the hypothesis (1.7), then, in (16.2), we get

d(yo,T'r)
C

(16.6) IHY| - b < Cd*(yo, T),
erl +lel<C

<|HS| < Cd(yo,Tr),

16.4. Analysis of the model

LEMMA 16.1.—Forall 6 €]0, 1[, for all C' > 0, there exist; andC] such that ifC; > C

then, if
(16.7) d(yo,T'm) € [Clh5 ! [
Cy
is satisfied,
(16.8) 4%, o (0) = B0[O0 + erd(yo, T ||v]1%,

for any functionv in C§°(]—Ch?, ChO[2xRT).
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Proof. —Making the dilation
r=h %R s=hTV30%5, t=h"V 201

with by = | H?|, we get that

2
(169) g%, (v) = hbogo(w) = hbo [I| Dol + || (¢ = Li)u]|” + L],
with
(16.10) LY = h'/ODs + h™H0dy7 4 h1/0doi® 4 1Oy,
| Ly =h°Ds,
(16.11) C™ld(yo, Trr) < |da| < Cd(yo, Tmr),

|da| + |d3] < C,
andw € C§°(]—Cho~1/3 ChI=1/3[2 x RT), related tov by:

w(7,5,t) = h7/12b0_1/4v(7’, 8,1).

We now omit the tilda’s. Here we observe that:

(16.12) [L?, L8] = i(dy + 2hY3dor + W1/ 3d3s),
and
(16.13) [[LY, LA, L] = —h'/2d,.
But
(16.14) qo(w) = (WL} + &)w,w) + || Lhw|>.

As the functionu is of classC*> on R and satisfies the properties recalled in Section 2.2, it is
easy to find a real’> function f satisfying

p(t) — O = f2(1),
(16.15) f(t) >0, with strict inequality in a neighborhood &§,
f is constant at: co.

The main property is here that there exists> 0 such that:

(16.16) £+ f(1)? = pr.
Writing that
(16.17) go(w) — Oollw]|? > || f(L} + &o)wl|* + | Lhw]?,

we use a standard bracket argument to get that
(16.18) go(w) — Oollw|]® = [([f(LT + &), Ly w, w)].
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But this bracket can be computed as:

1
(16.19)  [F(LY +&0), L5] = f'(L] + &)[LY, L5] — 5 f" (L} + &) (LY, L], L]
One way to get this formula is to use a gauge transformation for having:

L;L,I]GW _ hl/GDS,

(16.20)
LY = pt/SD, — h=1/8dy s — 20/ Odyrs — h/0dys?.

Taking the Fourier transform with respect to all variables, we are left with the commutation of a
second order differential operator with a function and the proof is easy.
So, for anyw € C§°(|—Cho~1/3 ChI=1/3[3)
(16.21) [([f(LY + &), Ly]w,w)| = [da] (LY + &0) f' (LT + &o)w,w) — Ch®[|w]?.
Then, by (16.11) and (16.14), we obtain:
(16.22)  go(w) = Opllwl]|? + C~ d(yo, D) {f (L} + &o)w, w) — Ch®[wl|?.

But, remembering that:

(16.23) go(w) = (u(L} + &o)w,w),

the properties (16.21), (16.22) and (16.23) combined with (16.15) and (16.16), prove that, for
somec; >0 and ifC1h% < d(yo,T'r) < Oy, then

(16.24) go(w) > (90 + c1d(yo, Tr)) lw]|*.

The lemma follows. O
From the estimate (16.8) of Lemma 16.1, we can recover in the fourth zone.

LEMMA 16.2. -There existy > 0, C, and C1, such that, ifC{1 > d(7(h)y,Tg) = C1R°,
with C; > C} then, for anyu € H(Q),

(16.25) s (xy.r(nyu) = h(b00 + cod(7(h)v, T ) ) 1.7 (myull® = C2h® [[ X+, nyul?,
12
forall v € T'7,).
16.5. Control of theremainders
We have now to control the remainders appearing in the right hand side of (16.25). We plan

indeed to use this estimate with= " and to sum over the’s in Fi%h). More precisely, we will
show:

LEMMA 16.3.- Let§ € |1, 3[. There existzy > 0, C and C1, such that, ifC; satisfies
C; > Cf then

(16.26) 0 (X (myw) = h(0Og + EoC1 A% )| Xy -yt I — 732 (R),
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forall v € T77,, with

(16.27) > oo,

12
'VEFT(h)

Proof. —Using Lemma 16.2, the remaining problem is with the te}m5nz7 [ty u|?.
Proposition 7.1 indeed gives that:

Y Il u | < B eu”|® < ChYF,
5
but this error is too large. One could think that one could get instead the better:

D 5 RN e/ S P

12 12
vEFT(h’) vEFT(h’)

but this is probably not true. We will actually show the weaker:

(16.28) WYl P S CRM YT (I ul P+ O 0).
VEN ) Ve T

In order to get this more accurate upper bound, we need a:
Local control of||tyu"||. We follow the proof of Proposition 7.1, but we have to take account
of the presence of. One first obtains (see (7.4)) that:

hb/t2X2|uh|2 dr < /tQ\(hD — A)xu| dz + Ch|(hD — A)xu"| - |[txu”|.
Commutingy and(hD — A) in the second term of the right hand side, we get:
hb/t2X2|uh|2dx < /tz‘(hD - A)th|2dx + Chl|x(hD — A)uhH x|

(16.29) + Ch|[t|Vx|(hD — A)u"|| - [txu"].
Let us now analyzd t2|(hD — A)xu"|?. Starting from:

/tQ}(hD - A)th}zda: = /t2 (x(hD = A)u" + hVxu") - (x(hD — A)ul + hV xu) dz,

we get:
/tQ‘(hD — A)th‘2 dx < /tQXQ(hD — A)2ulul do + h? /t2|VX|2|uh|2 dx
+ 2h||txuh|| Ht(Vx) -(hD — A)uhH

+ Chltxu”|| | x(hD — A)uhH.
This leads to

/t?\(hp — A)xu" |’ de < )\(h)/t2|xuh|2 dx + h?/152|vx|2|uh|2 da
+ 2h||txuh|\ ||t(Vx) -(hD — A)uhH
+Ch|\txuh|\Htx(hD—A)uhH.
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We then get:
(hb— A(h)) /t2|xuh|2d:c< h2/t2|Vx|2|uh|2dx
+ CthxuhH Htx(hD — A)uhH

+ Ch||t|Vx|(hD — A)uhH ltxu®|.

This leads to the estimate:

ltxu | < Cl[[x(hD — Ayu” || + [tV x| (hD = A)u"|[] [t + A / 2|V x| de
and consequently
(16.30) [[txu”||> < C|||x(hD — A)u"||* + |[t|Vx|(hD — A)u”||* + h/t2|VX|2|uh|2d:c} .

On the other hand, we have:
[x(hD = Ay [[* < MBI |2 + 2] x(hD — A" || - Vx|
and consequently to:
(16.31) Ix(hD — Ayut||” < C[hllxu”|® + B[ |V x|u"||*].
Finally the two estimates (16.30) and (16.31) give
(16.32) [[txu” | < C[hllxu™(|? + B2 |||V x|u®||” + h|[t|Vx|u®||* + ||t Vx| (hD — A)u”|)?].

We now takey = ., and sum ovety € Fi%h). Using Proposition 7.1, we get, with

(16.33) 7L = R2|||Vx [uh P + B[tV s u" ||+ |61V X [(hD — Ay,

1 2—26
(16.34) > orl<onr
’yel—‘}'%h)

16.6. End of the proof

Then (14.1), (14.7), (14.4), (16.26), (15.34) and (7.15) prove that, for a suitable chaice of
(6= % is enough), there exist> 0, C andhq such that, for alh € ]0, ko,

(16.35) A(h) = [hbOg + h*34b*/3) — Chs .

This corresponds to the announced lower bound in Theorem 1.2.

17. Conclusion

In this article, we have established and proved a new conjecture extending Bernoff-Sternberg
conjecture in the case of dimensi®nAs in [12], one can expect applications to the localization
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of the ground states which was mentioned in the introduction as our main motivation. We hope
to come back to these points in a near future (see [26]). We observe also that the possible role of
these lower bounds for problems in superconductivity is, in the same spirit of what was done in
the case of dimensiahin Helffer and Pan [17], developed in [26].
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