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ANDRÉ–QUILLEN HOMOLOGY
OF ALGEBRA RETRACTS

BY LUCHEZAR L. AVRAMOV 1 AND SRIKANTH IYENGAR 2

ABSTRACT. – Given a homomorphism of commutative noetherian ringsϕ :R → S, Daniel Quillen
conjectured in 1970 that if the André–Quillen homology functorsDn(S | R;−) vanish for alln � 0,
then they vanish for alln � 3. We prove the conjecture under the additional hypothesis that there ex
homomorphism of ringsψ :S→R such thatϕ ◦ ψ = idS . More precisely, in this case we show thatψ is a
complete intersection atϕ−1(n) for every prime idealn of S. Using these results, we describe all alge
retractsS→R→ S for which the algebraTorR

• (S,S) is finitely generated overTorR
0 (S,S) = S.

 2003 Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. – Étant donné un homomorphismeϕ :R → S d’anneaux commutatifs noethériens, Dan
Quillen a conjecturé en 1970 que si les foncteursDn(S | R;−) d’homologie d’André–Quillen son
nuls pour toutn � 0, alors ils sont nuls pour toutn � 3. Nous démontrons cette conjecture so
l’hypothèse supplémentaire qu’il existe un homomorphisme d’anneauxψ :S → R tel queϕ ◦ ψ = idS .
Plus précisément, nous montrons que dans ce casψ est d’intersection complète enϕ−1(n) pour tout idéal
premiern deS. En utilisant ces résultats, nous décrivons toutes les algèbres scindéesS → R→ S pour
lesquelles l’algèbreTorR

• (S,S) est finiment engendrée surTorR
0 (S,S) = S.

 2003 Éditions scientifiques et médicales Elsevier SAS

Introduction

Letϕ :R→ S be a homomorphism of commutative noetherian rings.
For eachn� 0, letDn(S |R;−) denote thenth cotangent homology functor on the categ

of S-modules, defined by André [1] and Quillen [25]. To study how the vanishing of these A
Quillen homology functors relates to the structure ofϕ, we define theAndré–Quillen dimensio
of S overR to be the number

AQ-dimR S = sup
{
n ∈N |Dn(S |R;−) �= 0

}
;

in particular,AQ-dimR S =−∞ if and only if Dn(S |R;−) = 0 for all n ∈ Z.
The vanishing of André–Quillen homology in low dimensions characterizes important c

of homomorphisms of noetherian rings. Recall thatϕ is regular if it is flat with geometrically
regular fibers. It isétale if, in addition, it is of finite type and unramified. A generallocally
complete intersection, or l.c.i., property is defined in 7.2; whenϕ is of finite type, it means tha
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432 L.L. AVRAMOV AND S. IYENGAR

in some (equivalently, every) factorization ofϕ as an inclusion into a polynomial ring followed
by a surjection, the kernel of the second map is locally generated by a regular sequence. The
following results were proved in [1,25] for mapsϕ of finite type, and in [4,10] in general:
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(A) AQ-dimR S =−∞ andϕ is of finite type if and only ifϕ is étale.
(B) AQ-dimR S � 0 if and only if D1(S |R;−) = 0, if and only ifϕ is regular.
(C) AQ-dimR S � 1 if and only if D2(S |R;−) = 0, if and onlyϕ is l.c.i.
Further research on homomorphisms of finite André–Quillen dimension has been dri

two conjectures, stated by Quillen in 1970. One of them, [25, (5.7)], is for mapslocally of finite
flat dimension: For each prime idealn of S the R-moduleSn has a finite resolution by fla
R-modules. That conjecture was proved in [10]:

(D) AQ-dimR S <∞ andϕ is locally of finite flat dimension if and only ifϕ is l.c.i.
As a consequence, ifϕ is locally of finite flat dimension, thenAQ-dimR S <∞ implies

AQ-dimR S � 1. The remaining conjecture, [25, (5.6)], predicts the behavior of André–Qu
dimension when no flatness hypothesis is available.

QUILLEN ’ S CONJECTURE. – If AQ-dimR S <∞, thenAQ-dimR S � 2.

No structure theorem is known forR-algebrasS with AQ-dimR S � 2, so the conjectur
presents a significant challenge beyond the generic difficulty of computing the mo
Dn(S |R;M), defined in terms of simplicial resolutions. This partly explains why so few c
have been settled. In [10] the conjecture is proved when one of the ringsR or S is a locally
complete intersection. Indirect evidence is obtained in [21]: Ifϕ is a large homomorphism o
local rings in the sense of [23],R has characteristic0, andAQ-dimR S is an odd integer, the
AQ-dimR S = 1.

Our main result establishes Quillen’s Conjecture whenS is analgebra retractof R, meaning
that there exists a homomorphism of ringsψ :S→R such thatϕ ◦ψ = idS ; any homomorphism
ψ with this property is called asectionof ϕ. Algebra retracts frequently arise from geome
considerations. For instance, to study a morphism of schemesX→ Y one often uses the induce
diagonal embeddingX→X×Y X . The underlying algebraic construction is the homomorph
of rings ϕ :S ⊗A S → S defined byϕ(s′ ⊗ s′′) = s′s′′; the ring S is an algebra retract o
R = S ⊗A S, with sectionψ(s) = s⊗ 1. A different type of retracts arises in constructions
projective schemes. They typically involve a gradedS-algebraR=

⊕∞
i=0Ri with R0 = S; the

relevant homomorphismsϕ andψ are, respectively, the canonical surjectionR→ (R/R�1) = S
and the inclusionS =R0 ⊆R.

An important aspect of our result is that it connects the homological conditions i
conjecture through the structure of retracts of finite André–Quillen dimension. Let, as a
SpecS denote the set of prime ideals ofS. If ϕ has a sectionψ, then for everyn ∈ SpecS one
can find a setx of formal indeterminates overSn and an idealb contained inn(x) + (x)2 that
fit into a commutative diagram

(Rm)∗

(ϕn)∗

Sn

ψ′

(ψm)∗

Sn[[x]]/(b)

∼=

ϕ′

Sn

(En)

of homomorphisms of rings, wherem = ϕ−1(n), asterisks∗ denote(Ker(ϕ))-adic completion
ψ′ is the natural injection andϕ′ the surjection with kernel(x).

For every real numberc set�c�= sup{i∈ Z | i� c}.

4e SÉRIE– TOME 36 – 2003 –N◦ 3



ANDRÉ–QUILLEN HOMOLOGY OF ALGEBRA RETRACTS 433

THEOREM I. – Letϕ :R→ S be a homomorphism of rings and seta =Ker(ϕ). If ϕ admits a
section andR is noetherian, then the following conditions are equivalent.

(i) AQ-dimR S <∞.
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(ii) AQ-dimR S � 2.
(iii) D3(S |R;−) = 0.
(iv) Dn(S |R;−) = 0 for somen� 3 such that�n−1

2 �! is invertible inS.
(v) For eachn ∈ SpecS, the idealb in some(respectively, every) commutative diagram(En)

is generated by a regular sequence.

We apply the results discussed above in concrete cases, illustrating the known fact
dimensions allowed under Quillen’s Conjecture do occur.

Examples. – Letx, y be indeterminates overS. The natural homomorphisms

S S[x, y] S[x, y]/(x2, xy, y2) S[x]/(x2) S

P R T

provide the following list of André–Quillen dimensions:

AQ-dimS S =AQ-dimP P =AQ-dimRR=AQ-dimT T =−∞,
AQ-dimS P = 0,

AQ-dimS T =AQ-dimP T =AQ-dimP S = 1,

AQ-dimT S = 2,

AQ-dimSR=AQ-dimP R=AQ-dimR T =AQ-dimR S =∞.
Indeed, (A), (B), and (C) yield the equalities in the first three lines; (C) also im
AQ-dimT S � 2. BecauseS is a retract ofT , Theorem I provides the converse inequality; sin
T andS are retracts ofR, the theorem also computes the last two dimensions on the las
The two remaining dimensions on that line are given by (D), becauseR has finite flat dimension
overS and overP .

We use Theorem I together with our results in [13] in a situation that does nota priori involve
André–Quillen homology – the classical homology of an algebra retractS → R→ S. In that
caseTorR0 (S,S) = S andTorR• (S,S) is a graded-commutative algebra with divided pow
but precise information on its structure is available in two instances only: whenS is a field,
cf. [22,19], or whenR→ S is locally complete intersection. Our second main result conta
description of all noetherian algebra retracts with finitely generated homology algebra.

Let MaxS denote the set of maximal ideals ofS.

THEOREM II. – Let S
ψ−→ R

ϕ−→ S be an algebra retract with noetherian ringR, and set
Max′ S = {n∈MaxS | char(S/n)> 0}. The following conditions are equivalent.

(i) TheS-algebraTorR• (S,S) is finitely generated.
(ii) For everyS-algebraT there exists an isomorphism of gradedT -algebras

TorR• (S,T )∼=
(∧

S

D1 ⊗S SymSD2

)
⊗S T

whereD1 andD2 are projectiveS-modules concentrated in degrees1 and2, respectively
and(D2)n′ = 0 for all n′ ∈Max′ S.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



434 L.L. AVRAMOV AND S. IYENGAR

(iii) TheS-modulesD1(S | R;S) and D2(S | R;S) are projective,D3(S | R;S) = 0, and
D2(S |R;S)n = 0 for all n ∈Max′ S.

(iv) For eachn ∈ SpecS, the idealb in some(respectively, every) commutative diagram(En)
e
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is generated by a regular sequence contained in(x)2, andb = 0 if n is contained in som
n′ ∈Max′ S.

If S is a flat algebra over some ringA, thenTorS⊗AS
• (S,S) is isomorphic to theHochschild

homology algebraHH•(S|A) of S over A. Our main result in [13] shows that if the rin
R = S ⊗A S is noetherian, andHH•(S|A) is finitely generated as an algebra overS, thenS
is regular overA. On the other hand, by the Hochschild–Kostant–Rosenberg Theorem [2
generalized by André [3], ifS is regular overA thenHH•(S|A)∼=

∧
SD1. Thus, in the context o

Hochschild homology the moduleD2 in Theorem II is trivial. It is also trivial for algebra retrac
where all the residue fields ofS have positive characteristic. However,Q→Q[x]/(x2)→Q has
finitely generated Tor algebra withD2 �= 0.

We proceed with an overview of the contents of the article. Although its main topic i
simplicially defined André–Quillen homology theory, many arguments are carried out
context of DG (= differential graded) homological algebra.

Section 1 contains basic definitions and results on DG algebras.
In Section 2 we recall the construction and first properties of non-negative integersεn(ϕ),

attached in [10] to every local homomorphismϕ. Thesedeviations, whose vanishing characte
izes regularity and c.i. properties ofϕ, are linked to certain André–Quillen homology modul
but are easier to compute. Section 3 contains a general theorem on morphisms of minim
els of local rings. Its proof is long and difficult. Its applications go beyond the present d
sion.

The next two sections are at the heart of our investigation.
In Section 4 we define a class of local homomorphisms, that we callalmost small. It

contains the small homomorphisms introduced in [8], and its larger size offers tec
advantages that are essential to our study. We provide various characterizations of almo
homomorphisms and give examples. The key result established in this section is a s
theorem for surjective almost small homomorphisms of complete rings in terms of morphis
DG algebras.

The proof of Theorem I depends on another new concept – that ofweak categoryof a
local homomorphism. It is defined in Section 5, where arguments from [10] are adap
order to obtain information on the positivity and growth of deviations of homomorphisms
finite weak category. To apply these results to almost small homomorphisms we prov
they have finite weak category; the proof involves most of the material developed up t
point.

In Section 6 we return to André–Quillen homology, focusing on local homomorphisms of
rings. We show that vanishing of homology with coefficients in the residue field charact
complete intersection homomorphisms among the homomorphisms having finite weak ca
This leads to local versions of Theorems I and II above. The theorems themselves are pr
the final Section 7.

The main results of this paper were announced in [14], cf. also Remark 7.6. That
provides historical background, a more leisurely discussion of applications of André–Q
homology to the structure of commutative algebras, and new proofs of some earlier
on the subject. Recently, J. Turner [28] has started a study of nilpotency in the homot
simplicial commutative algebras over a field of characteristic2, with a view towards application
to Quillen’s Conjecture.
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1. Differential graded algebras

We use the theory of Eilenberg–Moore derived functors as described in [12, §1,§2]. We recall

every

of

-

ose
a minimum of material, referring for details toloc. cit.

1.1. Every graded object is concentrated in non-negative degrees, the differential of
complex has degree−1, and each DG algebraC is graded commutative:

c′c′′ = (−1)|c′||c′′|c′′c′ for all c′, c′′ ∈C and c2 = 0 for all c ∈C with |c| odd

where|c| denotes the degree ofc. The graded algebra underlyingC is denotedC�.
We setC[2] =C0 + ∂(C1)C�1 +(C�1)2 andind(C) =C/C[2]. This is a complex ofH0(C)-

modules and every morphism of DG algebrasγ :C →D induces a morphism of complexes
H0(D)-modulesind(γ) : ind(C)⊗H0(C) H0(D)→ ind(D).

1.2. A morphism γ :C → C′ of DG algebras is aquasiisomorphismif it induces an
isomorphism in homology; this is often signaled by the appearance of the symbol� next to
its arrow. LetC→E be a morphism ofDG algebras, such that theC�-moduleE� is flat. If γ is
a quasiisomorphism, then so isγ ⊗C E :E → C′ ⊗C E. If ε :E→ E′ is a quasiisomorphism
and the gradedC�-moduleE′� is flat as well, thenC′ ⊗C ε :C′ ⊗C E → C′ ⊗C E′ is a
quasiisomorphism.

1.3. A semifree extensionof C is a DG algebraC[X ] such thatC[X ]� is isomorphic to the
tensor product overZ of C� with thesymmetric algebraof a freeZ-module with basis

⊔
i�0X2i

and theexterior algebraof a freeZ-module with basis
⊔

i�0X2i+1; the differential ofC[X ]
extends that ofC.

A semifreeΓ-extensionof C is a DG algebraC〈X ′〉 such thatC〈X ′〉� is isomorphic to the
tensor product overZ of C� with thesymmetric algebraof a freeZ-module with basisX ′

0, the
exterior algebraof a freeZ-module with basis

⊔
i�0X

′
2i+1 and thedivided powers algebraof a

freeZ-module with basis
⊔

i�1X
′
2i; the differential ofC〈X ′〉 extends that ofC, and for every

x′ ∈X ′
2i with i� 1 thejth divided powerx′(j) satisfies∂(x′(j)) = ∂(x′)x′(j−1) for all j � 1.

1.4. Any morphism of DG algebrasC→D factors as the canonical injection

C ↪→C[X ]

followed by a surjective quasiisomorphismC[X ] � D. If ρ :F → D′ is a surjective quasiiso
morphism, then for each commutative diagram

C

γ

C[X ]

δ

D

δ

C′ F
�
ρ D′

of morphisms of DG algebras displayed by solid arrows there exists a unique up toC-linear
homotopy morphismδ preserving commutativity.

1.5. The diagramsD ← C → E of DG algebras are the objects of a category, wh
morphisms are commutative diagrams of DG algebras
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D

δ

C

γ

E

ε

is: If
n

ties;
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for

ot be

pted
e needs

n
n
,

D′ C′ E′

In view of 1.4,TorC• (D,E) = H(C[X ] ⊗C E) andTorγ• (δ, ε) = H(δ ⊗γ ε) define a functor
from this category to that of graded algebras. A fundamental property of this functor
γ, δ, ε above are quasiisomorphisms, thenTorγ• (δ, ε) is bijective. By 1.2, each factorizatio
C→ F

�−→D with F � flat overC� yields a unique isomorphismTorC• (D,E)→ H(F ⊗C E)
of graded algebras.

1.6. A DG Γ-algebra is a DG algebraK in which a sequence{x(j) ∈ Kjn}j�0 of divided
powersis defined for eachx ∈Kn with n even positive, and satisfies a list of standard identi
it can be found in full, say, in [19, (1.7.1), (1.8.1)]. Amorphism of DGΓ-algebrasκ :K→ L is
a morphism of DG algebras such thatκ(x(j)) = (κ(x))(j) for all x ∈K with |x| even positive
and allj ∈N.

Let K(2) denote theK0-submodule ofK generated byK [2] and allx(j), where|x| is even
positive andj � 2. SetΓ-ind(K) = K/K(2). This is a complex ofH0(K)-modules. Every
morphism ofΓ-algebrasκ :K→ L induces a morphism

Γ-ind(κ) :Γ-ind(K)⊗H0(K) H0(L)→ Γ-ind(L)

of complexes ofH0(L)-modules.

1.7. If K is a DGΓ-algebra, thenK〈X ′〉 has a unique structure of DGΓ-algebra extending tha
of K and preserving the divided powers of the variablesx′ ∈X ′

2i with i > 0. Every morphism
of DG Γ-algebrasκ :K→ L can be factored asK ↪→K〈X ′〉� L with second map a surjectiv
quasiisomorphism of DGΓ-algebras. Ifζ :M → L′ is a surjective quasiisomorphism, then
each commutative diagram

K

κ

K〈X ′〉

λ

L

λ

K ′ M
�
ζ

L′

of morphisms of DG algebras displayed by solid arrows there exists a unique up toK-linear
homotopy morphism of DGΓ-algebrasλ making both squares commute.

1.8. Divided powers of a cycle are cycles, but divided powers of a boundary need n
boundaries. If they are, then the DGΓ-algebraK is calledadmissible, andH(K) inherits from
K a structure ofΓ-algebra. This notion of admissibility is less restrictive than the one ado
in [12], and lacks some of the desirable properties the latter posesses, but it suffices for th
of this paper.

Let K � k be a surjective morphism of DGΓ-algebras, wherek is a field concentrated i
degree0, and letk ↪→ l be a field extension. IfK ↪→K〈X ′〉� k is a factorization as in 1.7, the
the unique DGΓ-algebra structure onl〈X ′〉=K〈X ′〉 ⊗K l is admissible, cf. [12, (2.6)] or [14
(3.4)]. Thus, Tor defines a functor from the category of diagramsK � k ↪→ l, with the obvious
morphisms, to the category ofΓ-algebras and their morphisms.
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2. Factorizations of local homomorphisms

Letϕ : (R,m, k)→ (S,n, l) be a homomorphism of local rings, which islocal in the sense that

owing

tion

n

ertical

e

ϕ(m)⊆ n. A regular factorizationof ϕ is a commutative diagram

R′

R
ϕ

S

of local homomorphisms such that theR-moduleR′ is flat, the ringR′/mR′ is regular, and the
mapR′→ S is surjective.

Regular factorizations are often easily found, for instance, whenϕ is essentially of finite
type (in particular, surjective), or whenϕ is the canonical embedding ofR in its completion
with respect to the maximal ideal. In this paper they are mostly used through the foll
construction of Avramov, Foxby, and Herzog [11].

2.1. If ϕ̀ :R→ Ŝ is the composition ofϕ with the canonical inclusionS → Ŝ, then by [11,

(1.1)], ϕ̀ has a regular factorizationR
ϕ̇−→ R′ ϕ′

−→ Ŝ with a complete local ringR′; it is called
a Cohen factorizationof ϕ̀. By [11, (1.5)], it can be chosen to satisfy the additional condi
edimR′/mR′ = edimS/mS; we say that such a Cohen factorization isreduced(it is called
minimal in [11]). Clearly, any regular factorizationϕ= π ◦ ι gives rise to a Cohen factorizatio
ϕ̀= π̂ ◦ ὶ.

Cohen factorizations need not be isomorphic. However, ifR
ϕ̈−→ R′′ ϕ′′

−→ Ŝ also is a Cohen
factorization ofϕ̀, then by [11, (1.2)] there exists a commutative diagram

R′

ϕ′

R

ϕ̇

ϕ̈

R′′′ Ŝ

R′′
ϕ′′

of local homomorphisms, where the horizontal row is a Cohen factorization, and the v
maps are surjections with kernels generated by regular sequences whose images inR′′′/mR′′′

can be completed to regular systems of parameters.

2.2. Let (A,p, k) be a local ring. We say that a semifree extensionA[X ] hasdecomposabl
differentialif X =X�1 and

∂(X)⊆ pA[X ] + (X)2A[X ].

When this condition holds, for eachn� 1 there are equalities

Hn

(
A[X ]/(p,X<n)

)
= Zn

(
A[X ]/(p,X<n)

)
= kXn.

2.3. Letϕ : (R,m, k)→ (S,n, l) be a local homomorphism.

A minimal modelof ϕ is a diagramR
ι̃−→ R′[U ]

ϕ̃−→ S where the differential ofR′[U ] is
decomposable,̃ϕ is a quasiisomorphism, andϕ = ϕ̃0 ◦ ι̃0 is a regular factorization. Ifϕ has a

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



438 L.L. AVRAMOV AND S. IYENGAR

regular factorization (in particular, ifS = Ŝ), thenϕ has a minimal model: The DG algebraR′[U ]
is obtained by successively adjoining toR′ sets of variablesUn of degreen� 1, so that∂(U1)
minimally generatesKer(π) and∂(Un) is a minimal set of generators forHn−1(R[U<n]), cf.

et

a

p

m

[9, (2.1.10)].
The next proposition elaborates on [10, (3.1)].

2.4. PROPOSITION. – Let ϕ : (R,m, k) → (S,n, l) be a local homomorphism and l
R→R′[U ′]→ Ŝ andR→R′′[U ′′]→ Ŝ be minimal models of̀ϕ.

For each integern� 2 there are equalities

card(U ′
1)− edim(R′/mR′) = card(U ′′

1 )− edim(R′′/mR′′),

card(U ′
n) = card(U ′′

n ),

and there exist isomorphisms of DG algebras over the fieldl

l[U ′
�n] =R′[U ′]/(m′,U ′

<n)∼=R′′[U ′′]/(m′′,U ′′
<n) = l[U ′′

�n].

Proof. –By 2.1 we may assume there is a surjectionR′′ → R′ with kernel generated by
regular sequencex that extends to a minimal generating set of the maximal idealm′′ of R′′.
ChangingU ′′

1 if need be, we may assume thatU ′′ = V �U with ∂(V ) = x. The canonical ma
R′′[V ]→ R′ is a quasiisomorphism,R′′[V ] is a DG subalgebra ofR′′[U ′′] and theR′′[V ]�-
moduleR′′[U ′′]� is free, so the induced map

R′′[U ′′]→R′′[U ′′]/
(
V,∂(V )

)
=R′[U ]

is a quasiisomorphism, cf. 1.2. Thus,H(R′[U ]) ∼= Ŝ, and the differential ofR′[U ] is decom-
posable because it is induced by that ofR′′[U ′′]. By [9, (7.2.3)] there exists an isomorphis
R′[U ′]∼=R′[U ] of DG algebras overR′, so we get

R′[U ′]/(m′,U ′
<n)∼=R′[U ]/(m′,U<n)

for all n � 1. The algebra on the right is equal toR′′[U ′′]/(m′′,U ′′
<n) for n � 2, so we have

proved the last assertion. In view of 2.2, it implies

lU ′
n =Hn

(
R′[U ′]/(m′,U ′

<n)
)∼=Hn

(
R′[U ]/(m′,U<n)

)
= lUn.

Thus, we obtain numerical equalities

card(U ′
n) = card(Un) = card(U ′′

n ) for n� 2;

card(U ′
1) = card(U1) = card(U ′′

1 )− card(V )

= card(U ′′
1 )−

(
edim(R′′/mR′′)− edim(R′/mR′)

)
.

All the assertions of the proposition have now been established.✷
2.5. DEFINITION. – Letϕ : (R,m, k)→ S be a local homomorphism,and letR→R′[U ]→ Ŝ

be a minimal model of̀ϕ. Thenth deviationof ϕ is the number

εn(ϕ) =
{
card(U1)− edim(R′/mR′) + edim(S/mS) for n= 2;

card(Un−1) for n� 3.
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By Proposition 2.4, these are invariants ofϕ. Deviations were defined in [10, §3] with a typo in
the expression forε2(ϕ), which is corrected above.

Note thatεn(ϕ) � 0 for all n: this is clear forn� 3; for n= 2, use the equalities

ng

l

o

,
es [10,
.

ng
card(U1) = rankl

(
Ker(ϕ′)

m′Ker(ϕ′)

)
;

edim(R′/mR′)− edim(S/mS) = rankl

(
Ker(ϕ′)

Ker(ϕ′) ∩ (m′2 +mR′)

)
.

The vanishing of deviations is linked to the structure ofϕ. We reproduce [10, (3.2)]:

2.6. PROPOSITION. – If ϕ : (R,m, k)→ S is a local homomorphism, then the followi
conditions are equivalent.

(i) ϕ is flat andS/mS is regular.
(ii) εn(ϕ) = 0 for all n� 2.
(iii) ε2(ϕ) = 0.

Proof. –(i) ⇒ (ii) The diagramR→ Ŝ = Ŝ is a Cohen factorization of̀ϕ, soϕ̀ has a minima
model withU = ∅.

(iii) ⇒ (i) Choose a reduced Cohen factorization. By definition,ε2(ϕ) = 0 entailsU1 = ∅, so
Ŝ =H0(R′[U ]) =R′, henceŜ is flat overR andŜ/mŜ is regular; these properties descend tS
andS/mS. ✷

The following notion is basic for the rest of the paper.

2.7. DEFINITION. – A local homomorphismϕ :R→ (S,n, l) is a complete intersection(or

c.i.) at n, if in some Cohen factorizationR→ R′ ϕ′

−→ Ŝ of ϕ̀ the idealKer(ϕ′) is generated by
anR′-regular sequence.

Other definitions of c.i. homomorphisms require additional hypotheses onϕ; when they hold
the general concept specializes properly, cf. [10, (5.2), (5.3)]. The next proposition amplifi
(3.3)]; it shows, in particular, that the c.i. property is detected by every Cohen factorization

2.8. PROPOSITION. – If ϕ :R → (S,n, l) is a local homomorphism, then the followi
conditions are equivalent.

(i) ϕ is a complete intersection atn.
(ii) εn(ϕ) = 0 for all n� 3.
(iii) ε3(ϕ) = 0.

Proof. –In any minimal modelR→ R′[U ]→ Ŝ of ϕ̀ the DG algebraR′[U1] is the Koszul
complex on a minimal set of generators ofKer(ϕ′). If (i) holds, thenU = U1, so (i) implies (ii).
If (iii) holds, thenH1(R′[U1]) = 0, so the idealKer(ϕ′) is generated by a regular sequence.✷

3. Indecomposables

In this section we analyze the divided powers in Tor.

3.1. If (R,m, k) is a local ring, thenTorR• (k, k) is aΓ-algebra, cf. 1.8.
Using the functorΓ-ind(−) of Γ-indecomposables defined in 1.6, we set

π•(R) = Γ-ind
(
TorR• (k, k)

)
.

If ϕ :k� l is a field extension, then the canonical isomorphism
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TorR• (k, k)⊗k l∼=TorR• (k, l)

is one ofΓ-algebras, and so induces an isomorphism of gradedl-vector spaces

of

ts
nd of
π•(R)⊗k l∼=Γ-ind
(
TorR• (k, l)

)
that we use as identification. Thus, every local homomorphismϕ :R → (S,n, l) defines an
l-linear homomorphism of graded vector spaces

π•(ϕ) :π•(R)⊗k l
Γ-ind(Torϕ

• (ϕ,l))−−−−−−−−−→ π•(S).

3.2. Example. – Let (R,m, k) be a local ring. Anacyclic closureof k is a factorization
R→ R〈X ′〉 → k of the epimorphismR→ k, as in 1.7, constructed so that∂(X ′

1) minimally
generatesm and∂(X ′

n) minimally generatesHn−1(R〈X ′
<n〉) for eachn� 2, cf. [9, (6.3)]. By

an important theorem of Gulliksen [18] and Schoeller [26], in this case∂(R〈X ′〉) ⊆ mR〈X ′〉,
cf. also [9, (6.3.4)]. This yields isomorphisms

πn(R)∼= kX ′
n for all n ∈ Z.

The nth deviationof R is the numberεn(R) = cardX ′
n. They measure the singularity

R: εn(R) = 0 for all n� 2 if and only if ε2(R) = 0, if and only ifR is regular;εn(R) = 0 for
all n� 3 if and only if ε3(R) = 0, if and only ifR is c.i., cf. [19, Ch. III], [9, §7]. These resul
can be derived from Propositions 2.6 and 2.8, since by [9, (7.2.5)] deviations of rings a
homomorphisms are linked as follows:

3.3. If ϕ :A→R is a surjective local homomorphism withA regular, then

εn(ϕ) = εn(R) for all n� 2.

The next result is a functorial enhancement of the numerical equality above.

3.4. THEOREM. – Consider a commutative diagram of morphisms of DG algebras

A
β

ρ

B

σA[X ]
φ

ρ̃ �

B[Y ]

σ̃�

R
ϕ

S

(1)

where(R,m, k) and (S,n, l) are local rings,(A,p, k) and (B,q, l) are regular local rings, the
homomorphismsϕ andβ are local, the homomorphismsρ and σ are surjective,Ker(ρ) ⊆ p2

andKer(σ)⊆ q2, and the triangles are minimal models.
For eachn� 2 there exists a commutative diagram of homomorphisms
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πn(R)⊗k l

∼=

πn(ϕ)
πn(S)

∼=

ery
ve
it, and

egree

,

ter, so
indn−1(l[X ])
indn−1(φ⊗βl)

indn−1(l[Y ])

of l-vector spaces, where the vertical arrows are isomorphisms.

The theorem shows thatπn(ϕ) and indn−1(φ⊗β l) determine each other. These are v
different maps: the first is induced by a morphism of DGΓ-algebras, while divided powers ha
no role in the construction of the second. This accounts for the intricacies of the proof. In
later in the paper, it is convenient to suppress the effect ofTorR1 (k, k) onTorR• (k, k). We do that
in a systematic way.

3.5. Thereduced torsion algebraof a local ring(R,m, k) is thek-algebra

torR• (k, k) =
TorR• (k, k)

TorR• (k, k) ·TorR1 (k, k)
.

SinceTorR• (k, k) is aΓ-algebra and the idealJ = TorR• (k, k) · TorR1 (k, k) is generated by
elements of degree1, basic properties of divided powers imply that each element of even d
a ∈ J satisfiesa(i) ∈ J for all i� 1. It follows thattorR• (k, k) admits a uniqueΓ-structure for
which the canonical surjectionTorR• (k, k)→ torR• (k, k) becomes a morphism ofΓ-algebras
hence

π�2(R) = Γ-ind
(
torR• (k, k)

)
.

If ϕ :R→ (S,n, l) is a local homomorphism, thenTorϕ• (ϕ, l) induces a morphism

torϕ• (ϕ, l) : tor
R
• (k, l)→ torS• (l, l)

Γ-algebras, so forn� 2 we get commutative diagrams ofl-linear homomorphisms

πn(R)⊗k l

∼=

πn(ϕ)
πn(S)

∼=

Γ-indn(torR• (k, l))
Γ-indn(torϕ

• (ϕ,l))
Γ-indn(torS• (l, l))

Theproof of Theorem 3.4 takes up the rest of the section. Only its statement is used la
the reader may skip to the next section without loss of continuity.

We start by forming a diagram of morphisms of DGΓ-algebras

A
β

B

A〈X ′
1〉

κ

ε �

B〈Y ′
1 〉
η�

k
ϕ

l

(2)
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in the following order. First we form the vertical sides by choosing them to be acyclic closures
of the respective residue fields. Next we note that since bothA andB are regular local rings, the
DG algebrasA〈X ′

1〉 andB〈Y ′
1〉 are Koszul complexes on minimal sets of generators ofp andq,

he

eses

ns
s

nonical
respectively. Finally, we use 1.7 to choose a morphismκ that preserves the commutativity of t
rectangle.

Base change from Diagram (2) yields the central rectangles in the diagram

R〈X ′〉

ϕ

R
ϕ

τ

S

θ

S〈Y ′〉

R〈X ′〉

�

R〈X ′
1〉

ϕ⊗βκ

S〈Y ′
1〉 S〈Y ′〉

�

k
ϕ

l

(3)

of morphisms of DGΓ-algebras. The rest is constructed as follows. In view of the hypoth
onρ andσ, minimal sets of generators ofp andq map to minimal sets of generators ofm andn,
respectively. By Example 3.2 the DG algebrasR〈X ′

1〉=R⊗AA〈X ′
1〉 andS〈Y ′

1〉= S⊗BB〈Y ′
1〉

can be extended to acyclic closuresR ↪→R〈X ′〉� k andS ↪→ S〈Y ′〉� l. Finally, the morphism
ϕ is chosen so as to preserve the commutativity of the diagram: this is possible by 1.7.

3.6. LEMMA. – Diagram(3) induces a commutative diagram

l〈X ′
�2〉

∼= torR• (k, l)
torϕ

• (ϕ,l)

∼=

torS• (l, l)

∼=

l〈Y ′
�2〉

∼=

TorR〈X′
1〉

• (k, l)
Tor

ϕ⊗β κ

• (ϕ,l)
TorS〈Y ′

1 〉
• (l, l)

of homomorphisms ofΓ-algebras.

Proof. –By construction,R〈X ′〉 andS〈Y ′〉 are acyclic closures. In view of 3.2, this mea
that there are inclusions∂(R〈X ′〉) ⊆ mR〈X ′〉 and ∂(S〈Y ′〉) ⊆ nS〈Y ′〉. These inclusion
provide the equalities in the commutative diagram

l〈X ′〉

ϕ⊗ϕl

TorR• (k, l)
Torϕ

• (ϕ,l)

Torτ
•(k,l)

TorS• (l, l)

Torθ
•(l,l)

l〈Y ′〉

l〈X ′
�2〉 TorR〈X′

1〉
• (k, l)

Tor
ϕ⊗β κ

• (ϕ,l)
TorS〈Y ′

1〉
• (l, l) l〈Y ′

�2〉

induced by Diagram (3). By 1.8, all the maps are morphisms ofΓ-algebras.
The inclusions noted above also show that the external vertical maps are the ca

surjections of graded algebras, whose kernels are the ideals generated byX ′
1 andY ′

1 respectively.
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It follows thatKer(Torτ• (k, l)) is generated byTorR1 (k, l), andKer(Torθ•(l, l)) is generated by
TorS1 (l, l). In view of the definition of the reduced Tor functor in 3.5, the diagram above induces
the desired diagram.✷

ity
of DG

e

We refine Diagram (1) to a commutative diagram of morphisms of DG algebras

A[X ]
φ

ρ̃

�
κ

B[Y ]

σ̃

�

λ
R

ϕ
S

A〈V 〉 Φ

ρ̆�

B〈W 〉

σ̆ �

A
β

B

(4)

by performing the following steps. First we invoke 1.7 to construct factorizations

A ↪→A〈V 〉 ρ̆−→R of ρ and B ↪→B〈W 〉 σ̆−→ S of σ.

Next we choose by 1.7 a morphism of DGΓ-algebrasΦ so as to preserve the commutativ
of the already constructed part of the diagram. Finally, we use 1.4 to obtain morphisms
algebrasκ andλ which preserve the commutativity of the lateral trapezoids.

It should be noted at this point that, in general,Φκ �= λφ. Using Diagrams (2) and (4) w
produce a diagram of morphisms of DG algebras

A[X ]〈X ′
1〉

φ⊗βκ

ρ̃⊗AA〈X′
1〉

�

κ⊗AA〈X′
1〉

�

A[X]⊗Aε�

B[Y ]〈Y ′
1〉

σ̃⊗BB〈Y ′
1 〉
�

λ⊗BB〈Y ′
1 〉

�

B[Y ]⊗Bη �

R〈X ′
1〉

ϕ⊗βκ

S〈Y ′
1〉

A〈V 〉〈X ′
1〉

ρ̆⊗AA〈X′
1〉�

Φ⊗βκ

A〈V 〉⊗Aε �

B〈W 〉〈Y ′
1〉

σ̆⊗BB〈Y ′
1 〉 �

B〈W 〉⊗Bη�

k〈V 〉
Φ⊗βϕ

l〈W 〉

k[X ]

κ⊗Ak

�

φ⊗βϕ
l[Y ]

λ⊗Bl

�

(5)
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where the central rectangles are formed by morphisms of DGΓ-algebras, all non-horizontal
arrows are quasiisomorphisms due to 1.2, and almost all paths commute – the possible exception
being the paths around the two trapezoids with horizontal bases and hyphenated sides.

)];

-

in
From 1.5 and 1.8 we deduce the following result.

3.7. LEMMA. – The maps in Diagram(5) induce a commutative diagram

TorR〈X′
1〉

• (k, l)

∼=

Tor
ϕ⊗βκ

• (ϕ,l)
TorS〈Y ′

1 〉
• (l, l)

∼=

Tork〈V 〉
• (k, l)

Tor
Φ⊗β ϕ

• (ϕ,l)
Torl〈W 〉

• (l, l)

of homomorphisms ofΓ-algebras, where the vertical maps are isomorphisms.

We pause to recall some classical material on bar-constructions.

3.8. Let C be a connectedDG algebra over the fieldk, which means thatC0 = k and
∂(C1) = 0. The bar construction(Bk(C), ∂̄) is a connected DGΓ-algebra overk, with
multiplication (calledshuffle product) and divided powers constructed in [15, Exp. 7, §1
cf. also [24, Chapter X, §12]. It has a basis consisting of symbols[c1|c2| · · · |cp] of degree
p+ |c1|+ · · ·+ |cp|, where theci range independently over a basis ofC�1 andp = 0,1,2 . . . .
The element[c1|c2| · · · |cp] hasweightp; the weight ofx · y is the sum of those ofx andy; if |x|
is even positive, then the weight ofx(i) is i times that ofx. In general, the DGΓ-algebraBk(C)
is not admissible.

There exists a DG algebra(Bk(C), ∂) such thatBk(C)� = C� ⊗k Bk(C)� as graded alge
bras,∂ extends the differential ofC, the isomorphismBk(C) ⊗C k ∼= Bk(C) is one of DG
algebras, and the augmentationBk(C)→ k is a quasiisomorphism of DG algebras. IfC is a DG
Γ-algebra, then by [15, Exp. 7, §5)] so isBk(C), the mapBk(C)→ Bk(C) is a morphism of
DG Γ-algebras, andBk(C) is admissible.

The bar construction is natural for morphismsγ :C → C′ of connected DGk-algebras; a
morphism of DGΓ-algebrasBk(γ) :Bk(C)→Bk(C′) is given by

Bk(γ)
(
[c1| · · · |cp]

)
=

[
γ(c1)| · · · |γ(cp)

]
.(6)

There is a canonical isomorphismBk(C) ⊗k l ∼= Bl(C ⊗k l) of DG Γ-algebras overl. In
conjunction with 1.5, it induces isomorphisms of graded algebras

TorC• (k, l)∼=H
(
Bk(C)⊗C l

)
=H

(
Bk(C)⊗k l

)∼=H
(
Bl(C ⊗k l)

)
which are natural with respect to morphisms of connected DGk-algebras. WhenC is a DG
Γ-algebra the isomorphisms above are ofΓ-algebras, cf. 1.8.

3.9. LEMMA. – The DGΓ-algebrasBl(l[X ]) andBl(l[Y ]) are admissible, and the maps
Diagram(5) induce a commutative diagram

Tork〈V 〉
• (k, l)

Tor
Φ⊗β ϕ

• (ϕ,l)

∼=

Torl〈W 〉
• (l, l)

∼=

HBl(l[X ])
HBl(φ⊗βl)

HBl(l[Y ])

of morphisms ofΓ-algebras overl, where the vertical maps are isomorphisms.
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Proof. –Diagram (5) induces a diagram of homomorphisms of graded algebras

TorA[X]〈X′
1〉(k, l) TorB[Y ]〈Y ′

1 〉(l, l)

those
of the

utes.
m
ell.

at the
e lower

phisms
•

∼=

∼=

Tor
A[X]⊗Aε
• (k,l)∼=

•

∼=

∼=

∼=

TorR〈X′
1〉

• (k, l)
Tor

ϕ⊗βκ

• (ϕ,l)
TorS〈Y ′

1〉
• (l, l)

TorA〈V 〉〈X′
1〉

• (k, l)

∼=

∼=

TorB〈W 〉〈Y ′
1〉

• (l, l)

Tor
σ̆⊗BB〈Y ′

1〉
• (l,l)

∼=

∼=

Tork〈V 〉
• (k, l)

Tor
Φ⊗βϕ

• (ϕ,l)

Torl〈W 〉
• (l, l)

Tork[X]
• (k, l)

Tor
φ⊗βϕ

• (ϕ,l)

Tor
κ⊗Ak
• (k,l)

∼=

Torl[Y ]
• (l, l)

Tor
λ⊗Bl
• (l,l)

∼=

where the non-horizontal maps are bijective by 1.5. All paths commute, except possibly
around two trapezoids with horizontal bases – the one on the floor and the larger
pair at the ceiling. Composing either path fromTorA[X]〈X′

1〉
• (k, l) to TorB〈W 〉〈Y ′

1 〉
• (l, l) with

the isomorphismTorσ̆⊗BB〈Y ′
1〉

• (l, l) we get the same map, so the upper trapezoid comm
Using this, we see that the isomorphismTorA[X]⊗Aε

• (k, l), composed with either path fro
Tork[X]

• (k, l) to Torl〈W 〉
• (l, l), yields the same map, so the lower trapezoid commutes as w

We inflate this trapezoid to a diagram of homomorphisms of graded algebras

Tork〈V 〉
• (k, l)

Tor
Φ⊗βϕ

• (ϕ,l)

∼=

Torl〈W 〉
• (l, l)

∼=

HBl(l〈V 〉)
HBl(Φ⊗βϕ)

HBl(l〈W 〉)

HBl(l[X ])
HBl(φ⊗βϕ)

HBl(κ⊗Al)

HBl(l[Y ])

HBl(λ⊗Bl)

Tork[X]
• (k, l)

Tor
φ⊗βϕ

• (ϕ,l)

Tor
κ⊗Ak
• (k,l)

∼=

∼=

Torl[Y ]
• (l, l)

Tor
λ⊗Bl
• (l,l)

∼=

∼=

From 3.8 we know that the maps pointing inward from the corners are bijective, and th
upper rectangle, both triangles, and the inner trapezoid commute. We conclude that th
rectangle commutes and its vertical arrows are bijective.

Referring to 3.8 again, we note that all maps in the lower rectangle are induced by mor
of DGΓ-algebras, and thatBl(l〈V 〉) andBl(l〈W 〉) are admissible. AsBl(κ⊗A l) andBl(λ⊗B l)
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are quasiisomorphisms, it follows that the DGΓ-algebrasBl(l[X ]) andBl(l[Y ]) are admissible
and the maps in the lower rectangle are isomorphisms ofΓ-algebras. To finish the proof we
remark, with a final reference to 3.8, that the upper rectangle is formed by homomorphisms of

ith

ce

t, cf.

,

Γ-algebras. ✷
3.10. LetC be a connected DG algebra overl. The differential∂ of the bar constructionBl(C)

has the form∂′ + ∂′′, where

∂′
(
[c1|c2| · · · |cp]

)
=

p−1∑
j=1

(−1)|c1|+···+|cj|+j [c1| · · · |cjcj+1| · · · |cp],

∂′′
(
[c1|c2| · · · |cp]

)
=

p∑
j=1

(−1)|c1|+···+|cj−1|+j[c1| · · · |∂(cj)| · · · |cp].

Thus, thel-spanFq(C) of the elements[c1| · · · |cp] of degree at most(p+ q) for p= 0,1,2 . . . ,
is a subcomplex ofBl(C). The page0E of the spectral sequence of the filtration{Fq(C)} is a
complex of graded vector spaces with0d induced by∂′. It can also be obtained by tensoring w
l overC� the complex of gradedC�-modules

· · · → C� ⊗l Σp
(
C�

�1
⊗p

) δp−→C� ⊗l Σp−1
(
C�

�1
⊗(p−1)

)
→ · · ·

δ
(
Σp(c0 ⊗ c1 ⊗ · · · ⊗ cp)

)
=

p−1∑
j=0

(−1)jΣp−1(c0 ⊗ · · · ⊗ cjcj+1 ⊗ · · · ⊗ cp)
(7)

where for a graded vector spaceM we letΣpM denote the graded space with(ΣpM)n =Mn−p

for all n, and Σp :M → ΣpM be the degreep bijection defined by the mapsidMn. The
complex (7) is the standard resolution ofl by free gradedC�-modules, so the spectral sequen
of the filtration{Fq(C)} has

1Ep,q =TorC
�

p (l, l)q⇒HBl(C).(8)

In particular, the following equalities hold:

1Ep,q =
{
0 for p� 0 and all q except for (p, q) = (0,0);
indq(C) for p= 1 and allq.

The differentials of the spectral sequence act according to the pattern

rdp,q : rEp,q→ rEp+r−1,q−r for eachr � 0

so for everyn� 1 at the edgep= 1 the spectral sequence definesl-linear maps

HBl(C)n � ∞E1,n−1 � · · ·� 1E1,n−1 = indn−1(C),

where the kernel of the first one is the image ofHn(Fn−2(C))→ HBl(C)n. Shuffle products
and divided powers inBk(C) are homogeneous with respect both to degree and to weigh

3.8, so the subspaceBl(C)
(2)
n of 1.6 is contained inFn−2(C)n. Thus, ifBl(C) is admissible

then for eachn� 1 the maps above define a composition

νCn : Γ-indn(HBl(C)) � ∞E1,n−1 � · · ·� 1E1,n−1 = indn−1(C)(9)
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of l-linear homomorphisms. Formula (6) yields inclusionsBl(γ)(Fq(C)) ⊆ Fq(C′) for all q
and every morphismγ :C → C′ of connected DG algebras overl. It follows that the spectral
sequence (8) above is natural with respect to such morphisms, and hence so are its edge

ned by
,

enough
known

ce
.9

), so

e
e,
homomorphismsνCn .

Proof of Theorem 3.4. –For eachn� 2 we form a commutative diagram

πn(R)⊗k l
πn(ϕ)

πn(S)

lX ′
n

∼= Γ-indn(torR• (k, l))
Γ-indn(torϕ

• (ϕ,l))

∼=

Γ-indn(torS• (l, l))

∼=

lY ′
n

∼=

Γ-indn(HBl(l[X ]))
Γ-indn(HBl(φ⊗βl))

Γ-indn(HBl(l[Y ]))

indn−1(l[X ]))
indn−1(φ⊗βl)

νl[X]
n

indn−1(l[Y ])

νl[Y ]
n

of l-vector spaces as follows: The top rectangle comes from 3.5. The middle part is obtai
stacking the commutative diagrams of Lemmas 3.6, 3.7, and 3.9, then takingΓ-indecomposables
as in 1.6. The bottom rectangle reflects the naturality of the edge homomorphismsνn defined
in (9).

To finish the proof we show that its vertical maps are bijective. It suffices to do this forν
l[X]
n .

By the isomorphisms above and 3.3, its source and target have the same rank, so it is
to prove that it is surjective. To this end we analyze the spectral sequence (8). A well
computation, cf. e.g. [9, (7.2.9)], gives

1Ep,q =Torl[X]�

p (l, l)q ∼= l〈X ′′〉p,q wherecardX ′′
m,n =

{ cardXn if m= 1;
0 otherwise.

From 3.3 we know thatcard(Xn) = card(X ′
n+1) for n � 1, so the graded vector spa

associated with the bigraded space1E is isomorphic tol〈X ′
�2〉. By Lemmas 3.6, 3.7, and 3

the latter space is isomorphic toHBl(l[X ]). This is the abutment of the spectral sequence (8
it is isomorphic to the graded vector space associated with the bigraded space∞E. Putting these
remarks together, for eachn we get

∑
p+q=n

rankl 1Ep,q = rankl
(
l〈X ′

�2〉n
)
= ranklHn

(
Bl(l[X ])

)
=

∑
p+q=n

rankl ∞Ep,q.

They imply that the spectral sequence (8) stops on the page1E, so in the decomposition (9) th
injectionsr+1E1,n−1 � rE1,n−1 are bijective for alln� 1 and1 � r �∞. As a consequenc

the mapνl[X]
n is surjective, as desired.✷

4. Almost small local homomorphisms

We introduce a class of maps of major importance for this paper.
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4.1. DEFINITION. – A local homomorphismϕ : (R,m, k)→ (S,n, l) is said to bealmost small
if the kernel of the homomorphismTorϕ• (ϕ, l) :Tor

R
• (k, l)→ TorS• (l, l) of graded algebras is

generated by elements of degree1.

f
of

s in

e

The name reflects the relation of the new concept to that ofsmall homomorphism, defined
in [8] by the condition that the mapTorϕ• (ϕ, l) is injective.

4.2. Example. – It is proved in [8, (4.1)] that for every ring(R,m, k), and for each ideala
contained inms for some sufficiently larges, the canonical epimorphismR→R/a is small. An
effective bound ons has been found recently by Liana ¸Sega.

Namely, letG be the symmetric algebra of thek-vector spacem/m2, let grm(R) be the
associated graded ring ofR, and extend the identity map ofm/m2 to a homomorphism o
gradedk-algebrasG→ grm(R). Let pol regR denote the Castelnuovo–Mumford regularity
the gradedG-modulegrm(R), that is

pol regR= sup
i∈N

{
j ∈ Z

∣∣ TorGi (
grm(R), k

)
i+j �= 0

}
.

By [27, (6.2)] the epimorphismR → R/ms is Golod for all s � 2 + pol regR. Golod
homomorphisms are small by [8, (3.5)], so the factorizationR→R/a→R/ms and functoriality
imply thatR→R/a is small for every ideala contained inms.

By [8, (3.1)],ϕ is small if and only ifπ•(ϕ) is injective. We characterize almost smallnes
similar terms, and by means of reduced Tor-algebras, cf. 3.5.

4.3. PROPOSITION. – Letϕ : (R,m, k)→ (S,n, l) be a local homomorphism.
The following conditions are equivalent.
(i) ϕ is almost small.
(ii) π�2(ϕ) is injective.
(iii) torϕ• (ϕ, l) is injective.

Proof. –Using the fact thatTorϕ• (ϕ, l) is a homomorphism ofHopfΓ-algebras, it is proved in
[8, (1.3)] that there exists a subsetG⊂TorR• (k, l) such that

Ker
(
Torϕ• (ϕ, l)

)
=

(
l〈G〉

)
�1

TorR• (k, l)

and the following hold:
(1) The image ofG in π•(R)⊗k l is a basis ofKer(π•(ϕ)).
(2) The gradedl〈G〉-moduleTorR• (k, l) is free.

Clearly, (i)⇔ (ii) follows from (1). The freeness ofTorR• (k, l) over l〈TorR1 (k, l)〉, that of
TorS• (l, l) overl〈TorS1 (l, l)〉, and (2) yield (i)⇔ (iii). ✷

Vanishing ofπ�2(R) characterizes regularity, cf. Example 3.2, so we get

4.4. COROLLARY. – If the ring R is regular, thenϕ is almost small. Conversely, if th
canonical surjectionε :R→ k is almost small, thenR is regular.

Using the functoriality ofπ•( ), we see that the proposition also implies

4.5. COROLLARY. – Letψ :Q→R andϕ :R→ S be local homomorphisms.
(a) If ψ andϕ are almost small, thenϕ ◦ψ is almost small.
(b) If ϕ ◦ψ is almost small, thenψ is almost small.
(c) If ϕ ◦ψ is almost small andπ�2(ψ) is bijective, thenϕ is almost small.

As a further corollary, we get another example of almost small homomorphisms.
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4.6. Example. – If ϕ is flat andchar(l) = 2, thenϕ is almost small by André [5].

Here is what is known for flat homomorphisms in general.

or

t
ted

hnical

g

p
ly.

y

plete

cal
,

hat

ke
4.7. Remark. – If ϕ : (R,m, k)→ (S,n, l) is a flat local homomorphism, then by [7, (1.1)] f
everyi� 1 there exists an exact sequence ofl-vector spaces

0 π2i(R)⊗k l
π2i(ϕ)

π2i(S) π2i(S/mS)
ð2i

π2i−1(R)⊗k l
π2i−1(ϕ)

π2i−1(S) π2i−1(S/mS) 0

André [6] proved
∑∞

i=1 rankl(ð2i) � edim(S/mS) − depth(S/mS) and conjectured tha
π2i−1(ϕ) is injective for all i � 2. In view of Proposition 4.3, the conjecture can be resta
to say that every flat homomorphism is almost small.

The next proposition fails for small homomorphisms, and presents one of the main tec
reasons for working with almost small homomorphisms.

4.8. PROPOSITION. – Letϕ : (R,m, k)→ (S,n, l) be a local homomorphism. The followin
maps are almost small simultaneously: ϕ, ϕ̀ :R → Ŝ, ϕ̂ : R̂ → Ŝ, and ρ :R′→ Ŝ, where

R
ϕ̇−→R′ ρ−→ Ŝ is a regular factorization ofϕ.

Proof. –The mapϕ̀ :R→ Ŝ is the composition ofϕwith the completion mapS→ Ŝ, and also
the composition of the completion mapR→ R̂with ϕ̂. Asπ•( ) applied to either completion ma
yields an isomorphism, Corollary 4.5 shows thatϕ, ϕ̂, andϕ̀ are almost small simultaneous
Finally, π�2(R′/mR′) = 0 becauseR′/mR′ is regular, cf. Example 3.2, soπ�2(ϕ̇) is bijective
by the exact sequence of Remark 4.7. Thus,ϕ̂ and ϕ̀ are almost small simultaneously b
Corollary 4.5.3. ✷

As an application, we show how to obtain almost small homomorphisms by factoring com
intersection homomorphisms.

4.9. COROLLARY. – Let ϕ :R→ (S,n, l) be a local homomorphism. If there exists a lo
homomorphismξ :S→ (S′,n′, l′) such thatξ◦ϕ is c.i. atn′, thenϕ is almost small. In particular
if ϕ is c.i. atn, then it is almost small.

Proof. –LetR→R′ ϕ′

−→ Ŝ′ be a reduced Cohen factorization of the composition

ξ̂ ◦ ϕ̀ :R→ Ŝ′.

By hypothesis,Ker(ϕ′) is generated by anR′-regular sequence, so [19, (3.4.1)] shows t
πn(ϕ′) is injective forn= 2 and bijective forn � 3. By Proposition 4.3, the mapϕ′ is almost
small, which implies, by Proposition 4.8, thatξ ◦ ϕ is almost small as well. It remains to invo
Corollary 4.5(b). ✷

Extending Example 4.2, we provide a numerical test for almost smallness.

4.10. PROPOSITION. – Letϕ : (R,m, k)→ (S,n, l) be a local homomorphism. If

lengthS
(
S/ns

)
=

s−1∑
i=0

(
e+ i− 1

i

)
lengthR

(
R/ms−i

)

for e= edim(S/mS) ands= 2+ pol regR, thenϕ is almost small.
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Proof. –First we note that for every integerr there is an inequality

( ) r−1∑(
e+ i− 1

) ( )

f the

,

ed

e

lmost

s
a

ive
lengthS S/nr �
i=0

i
lengthR R/mr−i .

Indeed, ifR→ (R′,m′, l)
ϕ′

−→ Ŝ is a reduced Cohen factorization, then the right hand side o
formula above is equal tolengthR′(R′/m′r). The surjective homomorphism

ϕ′
r :R

′/m′r→ S/nr

induced byR′→ Ŝ yields the inequality above, andϕ′
r is bijective if and only if equality holds

that is, if and only ifKer(ϕ′)⊆m′r.
By the preceding argument, our hypothesis impliesKer(ϕ′)⊆m′s with s= 2+pol regR. On

the other hand, the associated graded rings ofR′ andR are linked by an isomorphism of grad
l-algebras

grm′(R′)∼= l⊗k grm(R)[x1, . . . , xe]

wherex1, . . . , xe are indeterminates. It follows thatpol reg(R′) = pol reg(R). Example 4.2
now shows that the homomorphismϕ′ is small. In view of Proposition 4.8, it follows that th
homomorphismϕ is almost small. ✷

The next result is a structure theorem for morphisms of minimal models over certain a
small homomorphisms. A key ingredient of the proof is the general result on the mapπ•(ϕ)
established in Theorem 3.4.

4.11. THEOREM. – Letρ : (A,p, k)→R andϕ : (R,m, k)→ S be surjective homomorphism
of local rings, withA regular andKer(ρ) ⊆ p2. If ϕ is almost small, then there exists
commutative diagram of morphisms of DG algebras

A

β

ρ

A[U ]
β̃

� B

σA[X ]

ρ̃ �

A[X,U,T ]
χ

�

υ �

B[X,T ]

σ̃�

R

ϕ

R[U,T ]
ϕ̃

� S

where (B,q, k) is a regular local ring,β and σ are surjective homomorphisms,Ker(σ) is
contained inq2, U = U1, the external rows and columns are minimal models,χ and υ are
surjective quasiisomorphisms.

Proof. –Choose a subseta ⊂ A mapping to a basis of(Ker(ϕ) + m2)/m2. As a is part of
a regular system of parameters forA, the local ring(B,q, k) = (A/(a),p/(a), k) is regular.
Sincea is contained in the kernel ofϕ ◦ ρ, this map factors as a composition of surject
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homomorphismsβ :A→ B andσ :B→ S. The choice ofa ensures thatKer(σ) is contained
in q2.

Using 2.3, we form a commutative diagram of morphisms of DG algebras

o
that
s

,

x

A
β

ρ

B

σA[X ]
φ

ρ̃ �

B[Y ]

σ̃�

R
ϕ

S

It induces morphisms of DG algebras

φ′ :B[X ] =A[X ]⊗A B
φ⊗AB−→ B[Y ]⊗A B =B[Y ];

φ :k[X ] =A[X ]⊗A k
φ⊗Ak−→ B[Y ]⊗A k = k[Y ].

Asϕ is almost small, Theorem 3.4 shows that thek-linear map

ind(φ) : ind(k[X ])−→ ind(k[Y ])

is injective. Thus, the setind(φ)(X) is linearly independent inind(k[Y ]).
Choose a subsetT inB[Y ] whose image inind(k[Y ]) extendsind(φ)(X) to a basis. It follows

thatT is a set of free variables overk[X ], and so the mapφ is injective. This map is equal t
φ′⊗B k, andφ′ is a map of graded freeB-modules, so we conclude by Nakayama’s Lemma
φ′ is injective andT is a set of free variables generatingB[Y ] overφ′(B[X ]). Changing variable
in B[Y ], we replaceB[Y ] byB[X,T ] andφ′ by the canonical inclusionB[X ] ↪→B[X,T ].

LetA[U ] be the Koszul complex withU = U1 and∂(U) = a, and set

A[X,U ] =A[X ]⊗A A[U ].

These algebras appear in a commutative diagram of DG algebras

A A[U ]
β̃

� B

A[X ] A[X,U ]
χ0

� B[X ]

A[X ] A[X,U,T ]
χ

� B[X,T ]

whereβ̃ is the canonical augmentation andχ0 =A[X ]⊗A β̃. Sincea is anA-regular sequence
β̃ is a quasiisomorphism; by 1.2,χ0 is a quasiisomorphism as well.

The mapχ is built inductively, starting withχ0. Using the inclusions∂(T1) ⊆Ker(σ) ⊆ q2,
pick for eacht ∈ T1 an elementpt ∈ p2 with β(pt) = ∂(t). Let A[T1] be the Koszul comple
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with ∂(t) = pt andχ1 the morphism of DG algebras

χ0⊗AA[T1]

phism

imits,

s lower

ction.
cond

to

r

onal

pping
A[X,U,T1] =A[X,U ]⊗A A[T1]−−−−−−−−−→B[X ]⊗A A[T1] =B[X,T1].

By 1.2,χ1 is a surjective quasiisomorphism. Assume next that a surjective quasiisomor
χn :A[X,U,T�n]→B[X,T�n] is available for somen� 1. For eacht ∈ Tn+1 we pick a cycle
zt ∈A[X,U,T�n]n such thatχn(zt) = ∂(t), then we set

A[X,U,T�n+1] =A[X,U,T�n]
[
Tn+1 | ∂(t) = zt

]
and defineχn+1 to be the extension ofχn satisfyingχn+1(t) = t for all t ∈ Tn+1. It is easy to
verify that this map is a surjective quasiisomorphism, cf. also [9, (7.2.10)]. Taking direct l
we obtain the surjective quasiisomorphismχ displayed in the diagram.

The diagram above provides the two upper squares of the diagram in the theorem. It
left square is obtained by base change alongρ̃. For its lower right square, we factorσ̃ ◦χ through
υ = ρ̃⊗A[X] A[X,U,T ] to get a surjectioñϕ :R[U,T ]→ S.

The top row and two side columns of the diagram are minimal models by constru
Furthermore,χ, υ, andϕ̃ are surjective quasiisomorphisms: the first by construction, the se
by 1.2, and the third due to the commutativity of the diagram. Since the differential ofR[U,T ]
is induced by that ofA[X,U,T ], to prove that the lower row is a minimal model it suffices
establish that the differential onA[X,U,T ] is decomposable.

For anyy ∈A[X,U,T ] with |y|= n+ 1� 2, write ∂(y) in the form

∂(y) =
∑
x∈Xn

cxx+
∑
u∈Un

buu+
∑
t∈Tn

att+w ∈A[X,U,T ]

with at, bu, cx ∈A andw ∈ (X,U,T )2A[X,U,T ]. In the resulting equality

∂
(
χ(y)

)
=

∑
x∈Xn

β(cx)x+
∑
t∈Tn

β(at)t+χ(w) ∈B[X,T ]

we haveχ(w) ∈ (X,T )2B[X,T ]. The differential ofB[X,T ] is decomposable, so for allt ∈ Tn
andx ∈Xn we obtainβ(at), β(cx) ∈ q, that is,at, cx ∈ p. SinceU = U1, we havebu = 0 unless
n= 1. If n= 1, thenw = 0, so the equality∂2(y) = 0 yields

∑
u∈U1

bu∂(u) =−
∑
x∈X1

cx∂(x)−
∑
t∈T1

at∂(t).

By construction, we have∂(x) ∈ Ker(ρ) ⊆ p2 for all x ∈ X1 and ∂(t) = pt ∈ p2 for all
t ∈ T1, so the last equality yields

∑
u∈U1

bu∂(u) ∈ p2. As ∂(U1) = a is part of a regula
system of parameters, this impliesbu ∈ p for all u ∈ U1, so the differential ofA[X,U,T ] is
decomposable. ✷

5. Weak category of a local homomorphism

We introduce a notion motivated by Félix and Halperin’s [17, (4.3)] definition of rati
Lusternik–Schnirelmann category cat0(X) of a simply connected CW complexX of finite
type. Weak category captures a Looking Glass [12] image of a corollary of the Ma
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Theorem: If cat0(X) � s, then by [17, (5.1)] for eachn � 2 then-connected coverXn of X
satisfies cat0(Xn) � s, hence by [17, (4.10)] the product of any(s+ 1) cohomology classes in
H�1(Xn;Q) is equal to0.

h

le

le.

nsure
5.1. DEFINITION. – If (B,q, k) is a local ring andB[V ] is a semifree extension wit
decomposable differential, then we define a notion ofweak categoryby the formula

wcat(B[V ]) = inf


s ∈N

∣∣∣∣∣∣∣∣
for eachn� 2 the product of any

(s+1) elements of positive degree

in H(B[V ]/(q, V<n)) is equal to0


 .

Finite weak category can often be detected by using a variant of [13, (1.2)]:

5.2. PROPOSITION. – If (B,q, k) is a local ring,B[V ] a DG algebra with decomposab
differential, andB[V ]→ S[W ] a surjective morphism of DG algebras, then

wcat
(
S[W ]

)
� sup

{
s ∈N |Hs

(
B[V ]/qB[V ]

)
�= 0

}
.

Proof. –Set

k[V ] =B[V ]/qB[V ] and k[W ] = S[W ]/qS[W ].

All DG algebras under consideration are images ofB[V ], so their differentials are decomposab
We havewcat(S[W ]) = wcat(k[W ]) by definition. As the induced morphismk[V ]→ k[W ] is
surjective, we getwcat(k[W ])� sup{s ∈N |Hs(k[V ]) �= 0} from [13, (1.2)]. ✷

5.3. DEFINITION. – If ϕ :R→ S is a local homomorphism andR→R′[U ]→ Ŝ is a minimal
model ofϕ̀, then we define theweak categoryof ϕ by the equality

wcat(ϕ) = wcat
(
R′[U ]

)
.

Proposition 2.4 shows that it does not depend on the choice of minimal model.

By [10, §3], the sequence(εn(ϕ)) is positive and grows exponentially whenϕ is not c.i. and
fdR S is finite. A close reading of the proofs shows the last condition is used only to e
wcat(ϕ)<∞, cf. Theorem 5.7, so at no further expense we get

5.4. THEOREM. – Letϕ :R→ (S,n, l) be a local homomorphism.
If wcat(ϕ) is finite, then the following conditions are equivalent.
(i) ϕ is not complete intersection atn.
(ii) εn(ϕ)> 0 for all n� 2.
(iii) limsupn

n
√
εn(ϕ)> 1.

(iv) There exist a real numberc > 1 and a sequence of integerssj with

0< 2sj � sj+1 �
(
wcat(ϕ) + 1

)
sj and εsj (ϕ)> csj for all j � 1.

Proof. –Proposition 2.8 shows that (ii) or (iii) implies (i).
If (i) holds, thenεn(ϕ) �= 0 for n= 2,3 by Propositions 2.6 and 2.8, andεn(ϕ) �= 0 n� 4 by

theproof of [10, (3.4)]; thus, (i) implies (ii).
Theproof of [10, (3.10)] shows that (i) implies (iv). ✷
5.5. COROLLARY. – The following conditions are equivalent.
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(i) ϕ is complete intersection atn.
(ii) wcat(ϕ)<∞ andεn(ϕ) = 0 for somen� 2.
(iii) wcat(ϕ)<∞ and limsupn

n
√
εn(ϕ) � 1.

,

ields

s

lar
or
(iv) wcat(ϕ) = 0.

Proof. –The theorem shows that (i) follows from either (ii) or (iii).
LetR→R′[U ]→ Ŝ be a minimal model of̀ϕ :R→ Ŝ. Proposition 2.8 shows thatϕ is c.i. at

n if and only ifU = U1. Thus, (i) implies (iv) by definition ofwcat(ϕ). Conversely, if (iv) holds
thenU = U1 by 2.2, hence (i) holds.

Finally, conditions (i) and (iv) imply (ii) and (iii) by Proposition 2.8.✷
Next we establish a most important property of almost small homomorphisms.

5.6. THEOREM. – If a local homomorphismϕ :R→ S is almost small, then

wcat(ϕ) � edimS − depthS.

Proof. –Let R
ϕ̇−→ R′ ϕ′

−→ Ŝ be a Cohen presentation ofϕ̀. AsR′ =−→ R′ ϕ′

−→ Ŝ is a Cohen
presentation of̀ϕ′ = ϕ′, we havewcat(ϕ) = wcat(ϕ′). On the other hand, the mapϕ′ is almost
small by Proposition 4.8. Furthermore,edim Ŝ = edimS anddepth Ŝ = depthS. Thus, we may
assume thatR andS are complete and that the local homomorphismϕ : (R,m, k)→ (S,n, k) is
surjective and almost small.

Choose a regular local ring(A,p, k) and a surjective homomorphismρ :A→Rwith Ker(ρ)⊆
p2. From Theorem 4.11 we get a minimal modelR→R[U,T ]→ S whereU = U1, together with

a minimal modelB→B[X,T ] σ̃−→ S where(B,q, k) is a regular local ring andKer(σ̃0)⊆ q2,
linked for eachn� 2 by isomorphisms

R[U,T ]
(m,U,T<n)R[U,T ]

∼=
A[X,U,T ]

(p,X,U,T<n)A[X,U,T ]
∼=

B[X,T ]
(q,X,T<n)B[X,T ]

.

We also haveHi(B[X,T ]/qB[X,T ]) = TorBi (S,k) by definition, andTorBi (S,k) = 0 for
i > dimB − depthS by the Auslander–Buchsbaum Equality. Thus, Proposition 5.2 y
wcat(ϕ) = wcat(R[U,T ])� dimB−depthS. It remains to note thatdimB = edimS because
Ker(σ̃0) is contained inq2. ✷

For completeness, we deduce [10, (3.8)] from Proposition 5.2.

5.7. THEOREM. – If ϕ : (R,m, k)→ S is a local homomorphism, then

wcat(ϕ) � edim(S/mS) + fdR S.

Proof. –There is nothing to prove unlessf = fdR S is finite. LetR→R′[U ]→ Ŝ be a minimal
model ofϕ̀ with edimR′/mR′ = edimS/mS; call this numbere. By Proposition 5.2, it suffice
to showHi(R′[U ]/m′R′[U ]) = 0 for i > e+ f .

SinceR′[U ] is a flat resolution ofŜ overR, we haveHi(F ) = TorRi (k,S) = 0 for i > f
and F = R′[U ]/mR′[U ]. Now note thatF is a complex of free modules over the regu
local ringR = R′/mR′, and thatdimR = e by the minimality of the Cohen factorization. F
i= 0, . . . , e− 1 form exact sequences of complexes

0−→ F/(x1, . . . , xi)
xi+1−→ F/(x1, . . . , xi)−→ F/(x1, . . . , xi+1)−→ 0
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wherex1, . . . , xe is a regular system of parameters ofR. From their homology exact sequences,
one sees by induction oni that the homology of the complexF/(x1, . . . , xe) =R′[U ]/m′R′[U ]
vanishes in degrees greater thane+ f . ✷

using
nce. In

iv)

s

llel to
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ory
6. André–Quillen homology of local homomorphisms

In this section we prove local versions of our results on André–Quillen homology. When
the general properties of the theory we take André’s monograph [2] as standard refere
addition, we heavily draw on some results from [10],verbatimor in variants. We recall them
below.

6.1. For each local homomorphismψ :Q→ (R,m, k), by [10, (4.3)] one has

rankkDn(R |Q;k) = εn+1(ψ) for

{
2 � n <∞ if chark = 0;
2 � n� 2p− 1 if chark = p > 0.

6.2. For each local homomorphismψ :Q→ (R,m, k) the following are equivalent.
(i) Dn(R |Q;k) = 0 for all n� 0, andfdQR<∞.
(ii) Dn(R |Q;k) = 0 for all n� 2.
(iii) D2(R |Q;k) = 0.
(iv) Dn(R |Q;k) = 0 for somen� 2 such that�n2 �! �= 0 ∈ k, andfdQR<∞.
(v) ψ is complete intersection atm.

Indeed, (ii), (iii), and (v) are equivalent by [10, (1.8)]. Ifψ is c.i. atm, thenfdQR is finite, cf.
[11, (3.2)], so (ii) and (v) imply (i) and (iv). Conversely, (i) implies (v) by [10, (4.4)], while (
implies (v) by [10, (3.4)] via the equalities in 6.1.

6.3. Let ξ : (R,m, k)→ (R∗,m∗, k∗) be a flat local homomorphism such thatm∗ = mR∗. If in
a commutative square of local homomorphisms

P

Q
ψ

ι

R
ξ

R∗

the upper path is a regular factorization of the compositionξ ◦ ψ, then the canonical map
Dn(ξ | ι;k∗) :Dn(R |Q;k∗)→Dn(R∗ | P ;k∗) are bijective for alln� 2.

Indeed, the argument for [10, (1.7)] carries over with only notational changes.
We now present our main local result, describing c.i. homomorphisms in terms para

those in 6.2, butwithout the hypothesis of finite flat dimension.

6.4. THEOREM. – If ψ :Q → (R,m, k) is a local homomorphism, then the followi
conditions are equivalent.

(i) Dn(R |Q;k) = 0 for all n� 0, andψ is almost small.
(ii) Dn(R |Q;k) = 0 for all n� 0 andwcat(ψ)<∞.
(iii) Dn(R |Q;k) = 0 for somen� 2 with �n2 �! �= 0 ∈ k, andψ is almost small.
(iv) Dn(R |Q;k) = 0 for somen� 2 with �n2 �! �= 0 ∈ k, andwcat(ψ)<∞.
(v) ψ is complete intersection atm.

Proof. –If ψ is c.i. atm, thenDn(R |Q;k) = 0 for all n� 2 by 6.2, andψ is almost small by
Corollary 4.9, so (v) implies (i) and (iii). Ifψ is almost small, then it has finite weak categ
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by Theorem 5.6, so (i) implies (ii) and (iii) implies (iv). If (ii) holds, then theproof of [10,
(4.4)] shows thatlimsupn

n
√
εn(ψ) � 1, so (v) holds by Corollary 5.5. In view of 6.1, the same

corollary shows that (iv) implies (v). ✷

s

gs

let
To continue, we recall some general computations of André–Quillen homology.

6.5. Letϕ :R→ S be a homomorphism of commutative rings, andN anS-module.
André [1, (16.1)] constructs a universal coefficients spectral sequence

2Ep,q =TorSp
(
Dq(S |R;S),N

)
⇒Dp+q(S |R;N).

Thus, if for somem ∈ Z theS-moduleDn(S |R;S) is flat for alln�m, then

Dn(S |R;N)∼=Dn(S |R;S)⊗S N for all n�m+1.(10)

Letϕ be surjective, and seta =Ker(ϕ). There are isomorphisms ofS-modules

D1(S |R;N)∼= a/a2⊗RN ∼=TorR1 (S,N);(11)

D2(S |R;S)∼=
TorR2 (S,S)

TorR1 (S,S) ·TorR1 (S,S)
,(12)

where the second one is elementary, and the other two come from [2, (6.1), (15.8)].
We give “concrete” descriptions of split c.i. local homomorphisms.

6.6. Let ϕ : (R,m, k)→ (S,n, k) be a local homomorphism, setKer(ϕ) = a, and let asterisk
∗ denotea-adic completion. Ifψ :S → R is a section ofϕ, then there exist a setx of formal
indeterminates overS and a commutative diagram

R∗

ϕ∗

S
ι

ψ∗

S[[x]]/(f)

∼=

π
S

of homomorphisms of rings, where the isomorphism is induced by a surjective map

ρ :S[[x]]→R∗

with Ker(ρ)⊆ n(x) + (x)2, f is a minimal set of generators ofKer(ρ), π is the surjection with
Ker(π) = (x), andι is the natural injection.

Indeed, asS is discrete in thea-adic topology, completion yields homomorphisms of rin
ψ∗ :S→R∗ andϕ∗ :R∗→ S whose composition is the identity map ofS. Pick a set

a = {a1, . . . , ae} ⊂R∗

minimally generatingKerϕ∗, let x = {x1, . . . , xe} be a set of formal indeterminates, and
ρ :S[[x]]→ R∗ be the unique homomorphism ofS-algebras mappingxi to ai for eachi. It is
necessarily surjective, and in view of the choice ofa we have

Ker(ρ)⊆
(
n+ (x)

)2 ∩ (x) = n(x) + (x)2.

6.7. PROPOSITION. – In the notation of6.6 the following hold.
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(a) f is a regular sequence if and only ifψ is c.i. atm.
(b) f is a regular sequence contained in(x)2 if and only if theS-modulesD1(S |R;S) and

D2(S |R;S) are free, andD3(S |R;S) = 0.

[2,

ness

above
(c) f = ∅ if and only if the S-module D1(S | R;S) is free, D2(S | R;S) = 0, and
D3(S |R;S) = 0.

Proof. –Set P = S[[x]]. The ringR∗ is local with maximal idealmR∗ and residue field
R∗/mR∗ ∼= k, andR∗ is flat overR. Thus, [2, (4.54)] yieldsDn(S | R;S) ∼= Dn(S | R∗;S)
for all n ∈ Z, so for the rest of the proof we may assumeR=R∗.

AsD2(R | S;k)∼=D2(R | P ;k) by 6.3, (a) follows from 6.2.
Sincex is P -regular,Dn(S | P ;−) = 0 for n � 2, so the Jacobi–Zariski exact sequence

(5.1)] generated byP →R→ S yields isomorphisms of functors

Dn(S |R;−)∼=Dn−1(R | P ;−) for n� 3(13)

and, in view of the isomorphism (11), also an exact sequence

0−→D2(S |R;S)−→
(
(f )/(f)2

)
⊗R S

δ−→ (x)/(x)2 −→D1(S |R;S)−→ 0(14)

of S-modules. Note that theS-module(x)/(x)2 is free, and

Im(δ) =
(
(f ) + (x)2

)
/(x)2 ⊆

(
n(x) + (x)2

)
/(x)2 = n

(
(x)/(x)2

)
.(15)

If f is a regular sequence, thenD2(R | P ;S) = 0 and(f )/(f)2 is free overR, so the “only
if” parts of (b) and (c) are now clear. To obtain converses, we assume thatDn(S | R;S) is free
for n� 2, andD3(S |R;S) = 0. From (13) and (10) we get

D2(R | P ;k)∼=D3(S |R;k)∼=D3(S |R;S)⊗S k = 0,

from where we conclude thatf is a regular sequence, cf. 6.2. Due to (14) and (15), the free
of D1(S | R;S) impliesδ = 0, that is,f ⊆ (x)2 andD2(S | R;S)∼= (f )/(f)2. It is now clear
that the “if” parts of (b) and (c) hold as well.✷

The next theorem is a local version of Theorem II. The proof draws on results obtained
and on earlier results from [13]. One of them is for a homomorphism

ϕ : (R,m, k)→ (S,n, k)

of local rings that islarge in the sense of Levin [23], meaning that the map

Torϕ• (ϕ,k) :Tor
R
• (k, k)→ TorS• (k, k)

is surjective.

6.8. THEOREM. – For an algebra retractS
ψ−→ (R,m, k)

ϕ−→ S of local rings the following
conditions are equivalent.

(i) TheS-algebraTorR• (S,S) is finitely generated.
(ii) For everyS-algebraT there is an isomorphism of gradedT -algebras

TorR• (S,T )∼=
(∧

S

D1 ⊗S SymSD2

)
⊗S T
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whereD1 andD2 are freeS-modules concentrated in degrees1 and 2, respectively.
Moreover, ifchar(k)> 0, thenD2 = 0.

(iii) TheS-modulesD1(S |R;S) andD2(S |R;S) are free, andD3(S |R;S) = 0. Moreover,

si-
r-

y
er an
e

e

r large

entially
d almost

r,

l.
if char(k)> 0, thenD2(S |R;S) = 0.
(iv) The sequencef in the commutative diagram constructed in6.6 is contained in(x)2.

Moreover, ifchar(k)> 0, thenf = ∅.

Proof. –Suppose thatchar(k) > 0. Conditions (iii) and (iv) are then equivalent by Propo
tion 6.7(c). Functoriality in the ring argument shows thatϕ is large. For every large homomo
phism, conditions (i), (ii) and (iv) are equivalent by [13, (3.1)].

Now consider the case whenchar(k) = 0. Conditions (iii) and (iv) are equivalent b
Proposition 6.7(b). The equivalence of (i), (ii), and (iv) is established in [13, (4.1)] und
additional hypothesis,R has finite flat dimension overS, which is used only once, to conclud
that Dn(R∗ | S[[x]];k) = 0 for all n � 0 implies thatf is regular (cf. [13, p. 163]). By
Theorem 6.4, the same conclusion holds when the mapρ :S[[x]]→ R∗ is almost small. To se

that it is, note that the compositionS[[x]]
ρ−→R∗ ψ∗

−→ S is complete intersection atn, and apply
Corollary 4.9. ✷

The proof above raises the question whether the first three conditions are equivalent fo
homomorphisms in characteristic0. Here is what we know.

6.9. Letϕ :R→ (S,n, k) be a large homomorphism, wherechar(k) = 0. If R→R[U ]→ S is
a minimal model ofϕ, then results of Quillen, [25, (9.5), (10.1)], imply

sup
{
n ∈N |Dn(S |R;k) �= 0

}
= sup{n ∈N |Un �= ∅}.

Thus, [13, (3.2)] shows that ifTorR• (S,S) is finitely generated, thenAQ-dimS R is finite, and
[21, (3.1)] proves that in this caseAQ-dimS R is equal to1 or is even.

7. André–Quillen dimension

In this section we prove the theorems stated in the introduction. The local case was ess
settled in Section 6, but reduction to that case needs some attention, as weak category an
small homomorphism are intrinsically local notions.

We start by recording a slight extension of a result of André [2]. For eachn ∈ SpecS, we let
k(n) denote the residue fieldSn/nSn.

7.1. If Q→ R→ S are homomorphisms of noetherian rings andj is a non-negative intege
then the following conditions are equivalent.

(i) Dn(R |Q;−) = 0 on the category ofS-modules for alln� j.
(ii) Dn(Rm |Qn∩Q;k(m)) = 0 for all n� j, all n ∈ SpecS, andm = n∩R.
Indeed, [2, (4.58), (5.27)] produce for eachn canonical isomorphisms

Dn(R |Q;k(n))∼=Dn(Rm |Q;k(m))⊗k(m) k(n)∼=Dn(Rm |Qn∩Q;k(m))⊗k(m) k(n)

which show that (i) implies (ii). IfR→ S is the identity map, then (ii) implies (i) by [2, Supp
Prop. 29]; theproof of that proposition appliesverbatim to every homomorphismR→ S in
which the ringS is noetherian.

We recall from [10] the definition of l.c.i. homomorphism of noetherian rings.
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7.2. DEFINITION. – A homomorphism of noetherian ringsϕ :R → S is called locally
complete intersection(or l.c.i.) if for every n ∈ SpecS the induced local homomorphism
ϕn :Rn∩R→ Sn is complete intersection atnSn in the sense of 2.7.

isms

are

g this

y a
riski

, which
0]: If

n

ch

ields

of
We return to the discussion, started in the Introduction, of criteria for l.c.i. homomorph
in terms of André–Quillen homology. Recall thatϕ :R→ S is said to belocally of finite flat
dimensionif fdR(Sn)<∞ for everyn ∈ SpecS.

7.3. If ϕ :R→ S is a homomorphism of noetherian rings, then the following conditions
equivalent.

(i) AQ-dimR S <∞, andϕ is locally of finite flat dimension.
(ii) AQ-dimR S � 1.
(iii) D2(S |R;−) = 0.
(iv) Dn(S |R;−) = 0 for somen� 2 with �n2 �! invertible inS, andϕ is locally of finite flat

dimension.
(v) ϕ is locally complete intersection.

Indeed, (v) is equivalent to (ii), (iii) by [10, (1.2)], and to (i), (iv) by [10, (1.5)].
A major difficulty in dealing with Quillen’s Conjecture is thatR-algebrasS with

AQ-dimR S � 2 have not been described in structural terms. All known algebras satisfyin
condition are constructed by factoring some l.c.i. homomorphism.

7.4. Example. – Let Q→ S be an l.c.i. homomorphism from a noetherian ringQ (say, a
surjection with kernel generated by a regular sequenceg), through some homomorphismQ→R
that is c.i. at all primes ofR contracted fromS (say, a surjection with kernel generated b
regular sequence in(g)). The desired vanishing property follows from 7.3, via the Jacobi–Za
exact sequence [2, (5.1)].

The construction described above is rather rigid. This is demonstrated by the next result
could be compared with another factorization theorem for local homomorphisms from [1
ϕ◦ψ is l.c.i. andϕ is locally of finite flat dimension, thenϕ is l.c.i. andψ is complete intersectio
atn∩R for eachn ∈ SpecS.

7.5. THEOREM. – If ψ :Q→R andϕ :R→ S are homomorphisms of noetherian rings su
thatϕ ◦ψ is l.c.i., then the following conditions are equivalent.

(i) AQ-dimR S <∞.
(ii) AQ-dimR S � 2.
(iii) D3(S |R;−) = 0.
(iv) Dn(S |R;−) = 0 for somen� 3 such that�n−1

2 �! is invertible inS.
(v) ψ is complete intersection atn∩R for eachn ∈ SpecS.

Proof. –The Jacobi–Zariski exact sequence of André–Quillen homology, cf. [2, (5.1)], y
an exact sequence of functors on the category ofS-modules

· · · →Dn+1(S |Q;−)→Dn+1(S |R;−)→Dn(R |Q;−)→Dn(S |Q;−)→ · · · .

Sinceϕ ◦ ψ is l.c.i., we haveDn(S | Q;−) = 0 for n � 2 by 7.3, so forn � 2 we get
isomorphismsDn+1(S | R;−) ∼= Dn(R | Q;−) of functors ofS-modules. Thus, each one
conditions (i), (ii), and (iii) is equivalent to its primed version below:

(i′) Dn(R |Q;−) = 0 on the category ofS-modules for alln� 0.
(ii ′) Dn(R |Q;−) = 0 on the category ofS-modules for alln� 2.
(iii ′) D2(R |Q;−) = 0 on the category ofS-modules.
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(iv ′) Dn(R | Q;−) = 0 on the category ofS-modules for somen � 2 such that�n2 �! is
invertible inS.

The equivalence of (ii′) and (v) results from 7.1 and 6.2. For eachn ∈ SpecS, the homo-

m I

t the

tion

ts

above

.5.i)
morphismψn∩R :Qn∩Q→Rn∩R is almost small by Corollary 4.9. The equivalence of (i′), (iii ′),
(iv ′), and (v) now comes from 7.1 and Theorem 6.4.✷

The last result implies part of [10, (1.5)]: Quillen’s Conjecture holds when the ringS is l.c.i.,
because the theorem then applies withQ= Z. More to the point, it reduces the proof of Theore
from the Introduction to a mere formality.

Proof of TheoremI. – Let ψ :S→R be any section ofϕ.
The mapϕ ◦ ψ = idS is obviously l.c.i., so Theorem 7.5 and Proposition 6.7(a) show tha

conditions of Theorem I are equivalent.✷
It remains to deduce Theorem II from its local version established in Section 6.

Proof of TheoremII . – The implication (ii)⇒ (i) is clear. By (11) and (12), theS-modules
D1(R | S;S) andD2(R | S;S) are finitely generated. Thus the implications (i)⇒ (iii) ⇔ (iv)
follow from Theorem 6.8 via the isomorphisms

TorR• (S,S)n ∼=TorRn∩R
• (Sn, Sn);

D•(S |R;S)n ∼=D•(Sn |Rn∩R;Sn),

respectively of gradedSn-algebras and gradedSn-modules, cf. [2, (4.59), (5.27)].
It remains to prove (iii)⇒ (ii). Let D• denote the gradedS-module withDn =Dn(S |R;S)

for n = 1,2, and Dn = 0 otherwise. The isomorphisms (11) and (12) define a surjec
τ :TorR• (S,S)→D• of gradedS-modules. SinceD• is projective, we may choose anS-linear
mapθ :D•→TorR• (S,S) with τ ◦θ= idD• . It extends to a homomorphism of gradedS-algebras

ϑ :
∧
S

D1 ⊗S SymSD2 −→TorR• (S,S).

Theorem 6.8 and the isomorphisms above show thatϑn is bijective for everyn ∈MaxS, soϑ is
an isomorphism. It induces an isomorphism

ϑ⊗S T :
(∧

S

D1 ⊗S SymSD2

)
⊗S T

∼=−→TorR• (S,S)⊗S T

of gradedT -algebras. As eachS-moduleTorRn (S,S) is projective, the Universal Coefficien
Theorem shows that for everyS-algebraT the homomorphism

TorR• (S,S)⊗S T
∼=−→TorR• (S,T )

of gradedT -algebras given by the Künneth map is bijective. Composing the isomorphisms
we obtain the desired isomorphism of gradedT -algebras. ✷

We finish the paper by revisiting the announcement in [14].

7.6. Remark. – In [14, (2.6)], which is an avatar of Theorem 7.5, instead of condition (7
one finds the seemingly weaker condition:AQ-dimR Sn <∞ for all n ∈ SpecS. We show that
this condition is in fact equivalent to those in Theorem 7.5.
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Indeed, under the hypotheses of Theorem 7.5 (which coincide with those [14, (2.6)]) the
composition of the mapsψ :Q→R andR→ Sn is an l.c.i. homomorphism. Fixing a prime ideal
n of S, from Theorem 7.5 we see thatAQ-dimR Sn is finite if and only ifψ is c.i. atq∩R for all

eux, in:
,

6)

n the

topy
83)

ally
0)

up.
,

n’s
q ∈ SpecS with q⊆ n. Letting nown range overSpecS, we conclude thatAQ-dimR Sn is finite
for all n ∈ SpecS if and only if ψ is c.i. atq∩R for all q∈ SpecS. This is condition (7.5.v).

We take this opportunity to make two minor corrections to [14]:
– in [14, (2.6.i)] ‘at eachp ∈ SpecR with p ⊇ Ker(ϕ)’ should read ‘atn ∩ R for each

n ∈ SpecS ’;
– in [14, line above (4.1)] ‘in [13, (4.1.iii)]’ should read ‘in [13, Theorem II]’.

We thank the editors of the present article for pointing out these errors to us.
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