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ANDRE-QUILLEN HOMOLOGY
OF ALGEBRA RETRACTS

BY LUCHEZAR L. AVRAMOV ' AND SRIKANTH IYENGAR 2

ABSTRACT. — Given a homomorphism of commutative noetherian ripg®R — S, Daniel Quillen
conjectured in 1970 that if the André—Quillen homology functbrs(S | R; —) vanish for alln > 0,
then they vanish for alh > 3. We prove the conjecture under the additional hypothesis that there exists a
homomorphism of ringg : S — R such thatp o ¢) = ids. More precisely, in this case we show thais a
complete intersection g~ (n) for every prime ideah of S. Using these results, we describe all algebra
retractsS — R — S for which the algebraorZ (S, S) is finitely generated oveFordi(S,5) = S.
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RESUME. — Etant donné un homomorphisme R — S d’anneaux commutatifs noethériens, Daniel
Quillen a conjecturé en 1970 que si les fonctelrs(S | R; —) d’homologie d’André—Quillen sont
nuls pour toutn > 0, alors ils sont nuls pour tout > 3. Nous démontrons cette conjecture sous
I'hypothése supplémentaire gu'il existe un homomorphisme d'annéauk — R tel quey o 1) = ids.
Plus précisément, nous montrons que dans ceyest d'intersection compléte esi ' (n) pour tout idéal
premiern de S. En utilisant ces résultats, nous décrivons toutes les algébres scifidéeR — S pour
lesquelles I'algébr&orl (S, S) est finiment engendrée stibrd(S, S) = S.
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Introduction

Letp: R — S be a homomorphism of commutative noetherian rings.

Foreachn > 0, letD,,(S | R; —) denote thexth cotangent homology functor on the category
of S-modules, defined by André [1] and Quillen [25]. To study how the vanishing of these André—
Quillen homology functors relates to the structurespfve define théAndré—Quillen dimension
of S over R to be the number

AQ-dimp S =sup{n € N|D,(S | R;—) #0};

in particular, AQ-dimp S = —co ifand only if D,, (S | R; —) =0 for all n € Z.

The vanishing of André—Quillen homology in low dimensions characterizes important classes
of homomorphisms of noetherian rings. Recall thas regular if it is flat with geometrically
regular fibers. It isétaleif, in addition, it is of finite type and unramified. A genelakally
complete intersectiqror l.c.i., property is defined in 7.2; whenis of finite type, it means that
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432 L.L. AVRAMOV AND S. IYENGAR

in some (equivalently, every) factorization pfas an inclusion into a polynomial ring followed
by a surjection, the kernel of the second map is locally generated by a regular sequence. The
following results were proved in [1,25] for mapsof finite type, and in [4,10] in general:

(A) AQ-dimp S = —oo andy is of finite type if and only ify is étale.

(B) AQ-dimp S <0ifandonlyifD,(S | R;—) =0, if and only if ¢ is regular.

(C) AQ-dimy S <1ifandonlyif Do(S | R;—) =0, ifand onlyyp is I.c.i.

Further research on homomorphisms of finite André—Quillen dimension has been driven by
two conjectures, stated by Quillen in 1970. One of them, [25, (5.7)], is for oapdly of finite
flat dimension For each prime ideat of S the R-module S,, has a finite resolution by flat
R-modules. That conjecture was proved in [10]:

(D) AQ-dimp S < oo andy is locally of finite flat dimension if and only ip is I.c.i.

As a consequence, ip is locally of finite flat dimension, theAQ-dim; S < co implies
AQ-dimp S < 1. The remaining conjecture, [25, (5.6)], predicts the behavior of André—Quillen
dimension when no flatness hypothesis is available.

QUILLEN’S CONJECTURE —If AQ-dimp S < oo, thenAQ-dimp S < 2.

No structure theorem is known fdg-algebrasS with AQ-dimy S < 2, so the conjecture
presents a significant challenge beyond the generic difficulty of computing the modules
D, (S| R; M), defined in terms of simplicial resolutions. This partly explains why so few cases
have been settled. In [10] the conjecture is proved when one of the RnysS is a locally
complete intersection. Indirect evidence is obtained in [21} I a large homomorphism of
local rings in the sense of [23R has characteristié, andAQ-dimy S is an odd integer, then
AQ-dimp S =1.

Our main result establishes Quillen’s Conjecture wldns analgebra retractof R, meaning
that there exists a homomorphism of ringsS — R such thatp o ¢» = idg; any homomorphism
1 with this property is called aectionof . Algebra retracts frequently arise from geometric
considerations. For instance, to study a morphism of schémesY” one often uses the induced
diagonal embeddingy — X xy X. The underlying algebraic construction is the homomorphism
of rings ¢: S ®4 S — S defined byp(s’ ® s’) = s's”; the ring S is an algebra retract of
R =S ®4 S, with sectiony(s) = s ® 1. A different type of retracts arises in constructions of
projective schemes. They typically involve a gradédlgebrak = §;°, R; with Ry = S; the
relevant homomorphismsands) are, respectively, the canonical surject®n- (R/R>1) = S
and the inclusiorb = Ry C R.

An important aspect of our result is that it connects the homological conditions in the
conjecture through the structure of retracts of finite André—Quillen dimension. Let, as always,
Spec S denote the set of prime ideals 8f If ¢ has a section), then for everyn € Spec .S one
can find a setc of formal indeterminates ove#, and an ideab contained im(x) + (x)? that
fit into a commutative diagram

wl’l’l * l’l
5, 5 L

/ b)
of homomorphisms of rings, where = ¢! (n), asterisks denote(Ker(y))-adic completion,
¢’ is the natural injection ang’ the surjection with kernekr).

For every real numberset|c| =sup{i € Z | i < c}.
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ANDRE-QUILLEN HOMOLOGY OF ALGEBRA RETRACTS 433

THEOREMI. —Letyp: R — S be a homomorphism of rings and set Ker(p). If ¢ admits a
section andr is noetherian, then the following conditions are equivalent.
(i) AQ-dimp S < 0.
(i) AQ-dimp S <2.
(i) D3(S|R;—)=0.
(iv) D, (S| R;—)=0 for somen > 3 such that| 251 |! is invertible inS.
(v) Foreachn € Spec S, the idealb in some(respectively, evejycommutative diagrartE,,)
is generated by a regular sequence.

We apply the results discussed above in concrete cases, illustrating the known fact that all
dimensions allowed under Quillen’s Conjecture do occur.

Examples— Letx, y be indeterminates ovet. The natural homomorphisms

§— S[ﬂi’y] — Slz,y)/(2* 2y,y*) — Sla]/(a?) — S
I [
P R T

provide the following list of André—Quillen dimensions:

AQ-dimg S = AQ-dimp P = AQ-dimp R = AQ-dim; T = —o0,

AQ'dimS P - 0,
AQ-dimgT = AQ-dimp T = AQ-dimp S =1,
AQ-dimy S =2,

AQ-dimg R =AQ-dimp R =AQ-dimp T = AQ-dimp S = 0.

Indeed, (A), (B), and (C) vyield the equalities in the first three lines; (C) also implies
AQ-dimy S > 2. Becauses is a retract ofl’, Theorem | provides the converse inequality; since
T and S are retracts of?, the theorem also computes the last two dimensions on the last line.
The two remaining dimensions on that line are given by (D), bec&uUsas finite flat dimension
overS and overP.

We use Theorem | together with our results in [13] in a situation that doess prodri involve
André—Quillen homology — the classical homology of an algebra refaet R — S. In that
caseTory (S,5) = S and Tor?(S, S) is a graded-commutative algebra with divided powers,
but precise information on its structure is available in two instances only: \ghisna field,
cf. [22,19], or whenR — S is locally complete intersection. Our second main result contains a
description of all noetherian algebra retracts with finitely generated homology algebra.

Let Max .S denote the set of maximal ideals 8f

THEOREM II. — Let § -5 R -2+ S be an algebra retract with noetherian ring§, and set
Max’ S = {n € Max S | char(S/n) > 0}. The following conditions are equivalent.
() TheS-algebraTor®(S,S) is finitely generated.
(i) For everyS-algebraT there exists an isomorphism of grad&ehlgebras

Tor} (S, T) = (/\ Dy ®s Symg Dz) ®@sT
s

whereD; and D, are projectiveS-modules concentrated in degreleand?2, respectively,
and(D3), =0 for all n’ € Max’ S.
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434 L.L. AVRAMOV AND S. IYENGAR

(i) The S-modulesD, (S | R; S) andD»(S | R;S) are projective,D5(S | R; S) =0, and
D2(S | R; S)n =0 for all n € Max’ S.

(iv) Foreachn € Spec .S, the idealb in some(respectively, evejycommutative diagrarE,,)
is generated by a regular sequence containe@d)?, andb = 0 if n is contained in some
n’ € Max’'S.

If S is a flat algebra over some ring, thenTor?®4% (S, S) is isomorphic to théHochschild
homology algebraHH,(S|A) of S over A. Our main result in [13] shows that if the ring
R =S5 ®4 S is noetherian, andlH, (S|A) is finitely generated as an algebra ov&rthen S
is regular overA. On the other hand, by the Hochschild—Kostant—Rosenberg Theorem [20], as
generalized by André [3], if is regular overd thenHH, (S|A) = A ¢ D;. Thus, in the context of
Hochschild homology the modul@, in Theorem Il is trivial. It is also trivial for algebra retracts
where all the residue fields ¢f have positive characteristic. Howev@r— Qlx]/(z?) — Q has
finitely generated Tor algebra with, £ 0.

We proceed with an overview of the contents of the article. Although its main topic is the
simplicially defined André—Quillen homology theory, many arguments are carried out in the
context of DG & differential graded) homological algebra.

Section 1 contains basic definitions and results on DG algebras.

In Section 2 we recall the construction and first properties of non-negative intggers
attached in [10] to every local homomorphigmThesedeviations whose vanishing character-
izes regularity and c.i. properties ¢f are linked to certain André—Quillen homology modules,
but are easier to compute. Section 3 contains a general theorem on morphisms of minimal mod-
els of local rings. Its proof is long and difficult. Its applications go beyond the present discus-
sion.

The next two sections are at the heart of our investigation.

In Section 4 we define a class of local homomorphisms, that we atalbst small It
contains the small homomorphisms introduced in [8], and its larger size offers technical
advantages that are essential to our study. We provide various characterizations of almost small
homomorphisms and give examples. The key result established in this section is a structure
theorem for surjective almost small homomorphisms of complete rings in terms of morphisms of
DG algebras.

The proof of Theorem | depends on another new concept — thateak categoryof a
local homomorphism. It is defined in Section 5, where arguments from [10] are adapted in
order to obtain information on the positivity and growth of deviations of homomorphisms with
finite weak category. To apply these results to almost small homomorphisms we prove that
they have finite weak category; the proof involves most of the material developed up to that
point.

In Section 6 we return to André—Quillen homology, focusing on local homomorphisms of locall
rings. We show that vanishing of homology with coefficients in the residue field characterizes
complete intersection homomorphisms among the homomorphisms having finite weak category.
This leads to local versions of Theorems | and Il above. The theorems themselves are proved in
the final Section 7.

The main results of this paper were announced in [14], cf. also Remark 7.6. That article
provides historical background, a more leisurely discussion of applications of André—Quillen
homology to the structure of commutative algebras, and new proofs of some earlier results
on the subject. Recently, J. Turner [28] has started a study of nilpotency in the homotopy of
simplicial commutative algebras over a field of characterixtigith a view towards applications
to Quillen’s Conjecture.
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ANDRE-QUILLEN HOMOLOGY OF ALGEBRA RETRACTS 435
1. Differential graded algebras

We use the theory of Eilenberg—Moore derived functors as described in [12, §1,82]. We recall
a minimum of material, referring for details koc. cit.

1.1. Every graded object is concentrated in non-negative degrees, the differential of every
complex has degreel, and each DG algebi@ is graded commutative

"= (=)l forall ¢, e C and =0 forall ce C with |¢| odd

where|c| denotes the degree of The graded algebra underlyigis denoted””.

We setC? = Cy +9(C1)Cs1 + (C>1)? andind (C) = C/C?. This is a complex ofly(C)-
modules and every morphism of DG algebfas” — D induces a morphism of complexes of
Ho(D)-modulesind(v) : ind(C) @,y Ho(D) — ind(D).

1.2. A morphism~:C — C’ of DG algebras is aguasiisomorphisnif it induces an
isomorphism in homology; this is often signaled by the appearance of the symhekt to
its arrow. LetC' — E be a morphism oDG algebras, such that t@*-moduleE" is flat. If v is
a quasiisomorphism, then soqsz¢c E:E — C' ®¢ E. If e: E — E’ is a quasiisomorphism
and the graded>®-module E'! is flat as well, thenC’ ®¢ ¢:C' @c E — C' @¢ E' is a
guasiisomorphism.

1.3. A semifree extensioaf C is a DG algebraC[X] such thatC[X]? is isomorphic to the
tensor product ovef. of C'* with thesymmetric algebraf a freeZ-module with basi:i;;L.20 Xo;
and theexterior algebraof a freeZ-module with basis*,_]i20 Xo;4+1; the differential of C[X]
extends that o’

A semifreel-extensiorof C' is a DG algebraC'(X’) such thatC(X’)! is isomorphic to the
tensor product oveZ of C% with the symmetric algebraf a freeZ-module with basisY}), the
exterior algebreof a freeZ-module with basi$ |, , X3, ; and thedivided powers algebraf a
free Z-module with basi$ |, , X;,; the differential ofC(X') extends that of’, and for every

a2’ € X}, with ¢ > 1 the jth divided powerr’ 1) satisfies)(x ’(J)) = 8(z’)x’(j’1) forall j >1

1.4. Any morphism of DG algebra§ — D factors as the canonical injection
C — C[X]

followed by a surjective quasiisomorphisfi{X| — D. If p: FF— D’ is a surjective quasiiso-
morphism, then for each commutative diagram

ok Clx] D
I

| ‘ ;
v

c' F——=1D

P

of morphisms of DG algebras displayed by solid arrows there exists a unique @ginear
homotopy morphisna preserving commutativity.

1.5. The diagramsD «— C — E of DG algebras are the objects of a category, whose
morphisms are commutative diagrams of DG algebras
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436 L.L. AVRAMOV AND S. IYENGAR

D C E
I
D/ C/ E/

In view of 1.4, Tor¥ (D, F) = H(C[X] ®¢ E) and Tor}(6,¢) = H(8 ®., ) define a functor
from this category to that of graded algebras. A fundamental property of this functor is: If
v, 6, € above are quasiisomorphisms, th&or] (4,¢) is bijective. By 1.2, each factorization

C — F =5 D with F* flat overC" yields a unique isomorphisffior’ (D, E) — H(F ®¢ E)

of graded algebras.

1.6. A DG T-algebrais a DG algebrak in which a sequencéz?) € K, } ;>0 of divided
powersis defined for each € K, with n even positive, and satisfies a list of standard identities;
it can be found in full, say, in [19, (1.7.1), (1.8.1)].rAorphism of D@ -algebrass: K — L is
a morphism of DG algebras such thatz/)) = (s(z))) for all z € K with |z| even positive
and allj € N.

Let K denote thek-submodule ofK” generated by<? and allz(?), where|z| is even
positive and;j > 2. SetI'-ind(K) = K/K®. This is a complex ofiy(K)-modules. Every
morphism ofl"-algebras<: K — L induces a morphism

I-ind(s¢) : T-ind (K) @, (k) Ho(L) — I'-ind(L)

of complexes ot (L)-modules.

1.7.1f K is a DGI'-algebra, thed (X’) has a unique structure of DiGalgebra extending that
of K and preserving the divided powers of the variables X/, with ¢ > 0. Every morphism
of DG I'-algebras<: K — L can be factored a&" — K (X’) — L with second map a surjective
quasiisomorphism of D& -algebras. If¢ : M — L’ is a surjective quasiisomorphism, then for
each commutative diagram

of morphisms of DG algebras displayed by solid arrows there exists a unique kigliteear
homotopy morphism of D&'-algebras\ making both squares commute.

1.8. Divided powers of a cycle are cycles, but divided powers of a boundary need not be
boundaries. If they are, then the OGalgebrak is calledadmissibleandH(K) inherits from
K a structure of"-algebra. This notion of admissibility is less restrictive than the one adopted
in [12], and lacks some of the desirable properties the latter posesses, but it suffices for the needs
of this paper.

Let K — k be a surjective morphism of DG-algebras, wheré is a field concentrated in
degred), and letk — [ be a field extension. Ik — K (X') — k is a factorization as in 1.7, then
the unique DA -algebra structure oHX') = K(X') ® ¢ [ is admissible, cf. [12, (2.6)] or [14,
(3.4)]. Thus, Tor defines a functor from the category of diagréms: k£ <— [, with the obvious
morphisms, to the category bfalgebras and their morphisms.
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ANDRE-QUILLEN HOMOLOGY OF ALGEBRA RETRACTS 437

2. Factorizationsof local homomorphisms

Lety: (R, m, k) — (5,n,l) be ahomomorphism of local rings, whichégalin the sense that
©(m) C n. A regular factorizationof ¢ is a commutative diagram

R/

N

R S

of local homomorphisms such that tiemodule R’ is flat, the ringR’/mR’ is regular, and the
mapR’ — S is surjective.

Regular factorizations are often easily found, for instance, whéea essentially of finite
type (in particular, surjective), or whep is the canonical embedding @t in its completion
with respect to the maximal ideal. In this paper they are mostly used through the following
construction of Avramov, Foxby, and Herzog [11].

21 1f p:R— S is the composition ofp with the canonical inclusioy — S, then by [11,

(1.1)], ¢ has a regular factorizatioR —~ R’ - S with a complete local ring?’; it is called
a Cohen factorizatiorof ¢. By [11, (1.5)], it can be chosen to satisfy the additional condition
edim R'/mR’ = edim S/mS; we say that such a Cohen factorizatiorrésluced(it is called
minimal in [11]). Clearly, any regular factorizatian= = o . gives rise to a Cohen factorization
p=Tol.

Cohen factorizations need not be isomorphic. HoweveR, i~ R” - S also is a Cohen
factorization ofp, then by [11, (1.2)] there exists a commutative diagram

R

PAS

R R/// §

Xl o
R

of local homomorphisms, where the horizontal row is a Cohen factorization, and the vertical
maps are surjections with kernels generated by regular sequences whose imaggsniR’”’
can be completed to regular systems of parameters.

2.2. Let (A,p, k) be alocal ring. We say that a semifree extensidiX'] hasdecomposable
differentialif X = X, and

A(X) CpAIX]+ (X)*A[X].
When this condition holds, for eaeh> 1 there are equalities
H,, (A[X]/(p, X<n)) = Zn (A[X]/ (9, X<n)) = kX

2.3.Lety: (R,m, k) — (S,n,l) be alocal homomorphism.

A minimal modelof ¢ is a diagramR —— R'[U] % S where the differential ofR’[U] is
decomposabley is a quasiisomorphism, and= @ o iy is a regular factorization. Ip has a
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438 L.L. AVRAMOV AND S. IYENGAR

regular factorization (in particular, § = S), theny has a minimal model: The DG algebRa[U]
is obtained by successively adjoining® sets of variable#/,, of degreen > 1, so thatd(U;)
minimally generateXer(7) andd(U,,) is a minimal set of generators fot, 1 (R[U<,]), cf.
[9, (2.1.10)].

The next proposition elaborates on [10, (3.1)].

2.4. PROPOSITION — Let ¢:(R,m,k) — (S,n,l) be a local homomorphism and let
R— R'[U'] — SandR — R"[U"] — S be minimal models ap.
For each integemn > 2 there are equalities

card(U]) — edim(R'/mR’) = card(U{) — edim(R" /mR"),
card(U}) = card(U})),
and there exist isomorphisms of DG algebras over the field
UL,] =RU/(m" UZ,) = R[U"]/(m",UZ,) =1[UZ,].
Proof. —By 2.1 we may assume there is a surjecti®ty — R’ with kernel generated by a
regular sequence that extends to a minimal generating set of the maximal idéabf R".
ChangingU7’ if need be, we may assume tHat = V L U with (V') = x. The canonical map

R"[V] — R’ is a quasiisomorphismR”[V] is a DG subalgebra oR”[U”] and theR"[V]¢-
moduleR"[U"]% is free, so the induced map

R/I[UI/] N R”[U”]/(V,(?(V)) — RI[U]
is a quasiisomorphism, cf. 1.2. Thud(R'[U]) = S, and the differential of?’[U] is decom-
posable because it is induced by thatR¥f[U”']. By [9, (7.2.3)] there exists an isomorphism
R'[U'] = R'|U] of DG algebras oveR’, so we get

R[U")/(w',UL,) = R'[U]/(w',Usy)

for all n > 1. The algebra on the right is equal ®'[U"]/(m"”,U”,)) for n > 2, so we have
proved the last assertion. In view of 2.2, itimplies

Thus, we obtain numerical equalities

card(U},) = card(U,,) = card(U]') forn>2;
card(U;) = card(U;) = card(U7') — card(V)
= card(U7') — (edim(R" /mR") — edim(R'/mR’)).

All the assertions of the proposition have now been established.

2.5. DEFINITION. — Lety: (R, m, k) — S be alocal homomorphism, and [Bt— R'[U] — S
be a minimal model of. Thenth deviationof ¢ is the number

card(Uy) — edim(R'/mR’) + edim(S/mS) for n=2;
card(Up,—1) for n > 3.

i) = {
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By Proposition 2.4, these are invariantsofDeviations were defined in [10, §3] with a typo in
the expression fora (), which is corrected above.
Note thate,, () > 0 for all n: this is clear fom > 3; for n = 2, use the equalities

Ker(¢")
Card(Ul) = rankl (W 3

edim(R’/mR/) - edim(S/mS) =rank (Ker((p’;;el(nl(zjz)“r mR/) ) .

The vanishing of deviations is linked to the structurecofVe reproduce [10, (3.2)]:

2.6. PROPOSITION — If ¢:(R,m,k) — S is a local homomorphism, then the following

conditions are equivalent.
() ¢isflatandS/msS is regular.

(i) en(p)=0foralln>2.

(iii) e2(p) =0.

Proof. —(i) = (ii) The diagramR — S = S is a Cohen factorization @b, sop has a minimal
model withU = ().

(iii) = (i) Choose a reduced Cohen factorization. By definitiatiy) = 0 entailsU; = @, so

S = Ho(R'[U]) =R/, hencesS is flat overR andS/mS is regular; these properties descend'to
andS/mS. O

The following notion is basic for the rest of the paper.

2.7. DEFINITION. — A local homomorphisnp: R — (S,n,l) is acomplete intersectiofor

c.i.) atn, if in some Cohen factorizatioR — R’ TN S of ¢ the idealKer(¢') is generated by
an R’-regular sequence.

Other definitions of c.i. homomorphisms require additional hypotheses aen they hold,
the general concept specializes properly, cf. [10, (5.2), (5.3)]. The next proposition amplifies [10,
(3.3)]; it shows, in particular, that the c.i. property is detected by every Cohen factorization.

2.8. PROPOSITION — If ¢:R — (S,n,l) is a local homomorphism, then the following
conditions are equivalent.
(i) ¢ is acomplete intersection at
(i) en(p)=0forall n>3.
(ili) e3() =0.

Proof. —In any minimal modelR — R'[U] — S of ¢ the DG algebraR’[U;] is the Koszul
complex on a minimal set of generatorsi&ér(¢'). If (i) holds, thenU = Uy, so (i) implies (ii).
If (iii) holds, thenH; (R’[U;]) = 0, so the ideaKer(’) is generated by a regular sequencel

3. Indecomposables

In this section we analyze the divided powers in Tor.

3.1.If (R, m, k) is a local ring, theflor’ (k, k) is aT-algebra, cf. 1.8.
Using the functol-ind(—) of I'- mdecomposables defined in 1.6, we set

T (R)=T- md(Tor (k. k)).
If 5:k— [is afield extension, then the canonical isomorphism
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440 L.L. AVRAMOV AND S. IYENGAR
Torf (k, k) @ 1 = Torf (k,1)
is one ofl’-algebras, and so induces an isomorphism of grageattor spaces
7o(R) ®) 1 2 T-ind (Torf (k, 1))

that we use as identification. Thus, every local homomorphist® — (S, n,l) defines an
I-linear homomorphism of graded vector spaces

I'-ind(Tor? (p,1))
_

To(©) : T (R) ®p 1 7o (9).

3.2. Example— Let (R,m,k) be a local ring. Anacyclic closureof k is a factorization
R — R(X') — k of the epimorphismR — k, as in 1.7, constructed so tha¢X;) minimally
generatesn andd(X;,) minimally generate$l,,_, (R(X”,,)) for eachn > 2, cf. [9, (6.3)]. By
an important theorem of Gulliksen [18] and Schoeller [26], in this ¢dg&(X’)) C mR(X"),
cf. also [9, (6.3.4)]. This yields isomorphisms

T (R) 2 kX] forallneZ.
The nth deviationof R is the numbeg,, (R) = card X/,. They measure the singularity of
R:e,(R)=0foralln>2if and only ifeo(R) = 0, if and only if R is regular;e,,(R) = 0 for
alln > 3ifand only ife3(R) = 0, if and only if R is c.i., cf. [19, Ch. IlI], [9, 87]. These results

can be derived from Propositions 2.6 and 2.8, since by [9, (7.2.5)] deviations of rings and of
homomorphisms are linked as follows:

3.3.1f ¢: A — R is a surjective local homomorphism withregular, then
en(p) =cn(R) foralln>2.
The next result is a functorial enhancement of the numerical equality above.

3.4. THEOREM. — Consider a commutative diagram of morphisms of DG algebras

A

@

X*>

1) P A

Sy

Yl Je

~ ~

where(R, m, k) and (S, n, 1) are local rings,(4, p, k) and (B, q,1) are regular local rings, the
homomorphisms and 3 are local, the homomorphismsand o are surjectiveKer(p) C p?
andKer(o) C g2, and the triangles are minimal models.

For eachn > 2 there exists a commutative diagram of homomorphisms
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mn(R) @ 1 () n(S)

:l lz

ind,,—1 (1[X]) ind,,—1 (1[Y])

ind, 1 (¢® 1)
_—

of [-vector spaces, where the vertical arrows are isomorphisms.

The theorem shows that,(¢) andind,_;(¢ ®3 1) determine each other. These are very
different maps: the first is induced by a morphism of D@lgebras, while divided powers have
no role in the construction of the second. This accounts for the intricacies of the proof. In it, and
later in the paper, it is convenient to suppress the effe@bof (k, k) on Tor’(k, k). We do that
in a systematic way.

3.5. Thereduced torsion algebraf a local ring(R, m, k) is thek-algebra

Tor®(k, k)
Tor®(k, k) - Tor® (k, k)

torf(k, k) =

SinceTor’ (k, k) is aT-algebra and the ideal = Tor®(k, k) - Torf(k, k) is generated by
elements of degrek basic properties of divided powers imply that each element of even degree
a € J satisfiesa) € .J for all i > 1. It follows thattor’(k, k) admits a uniqué -structure for
which the canonical surjectiotior(k, k) — tor’(k, k) becomes a morphism df-algebras,
hence

T>2(R) = I-ind (tor? (k, k)).

If o: R — (S,n,1) is alocal homomorphism, théfor? (3, 1) induces a morphism
tor? (3,1) : tor? (k, 1) — tor?(1,1)
I'-algebras, so fon > 2 we get commutative diagrams bfinear homomorphisms

n(R) @ 1 (%)

!

I-ind,, (torf(k,1))

T (S)

l:

I'-ind,, (tor? (5,1
Wt @) rind, (torS (1, 1))

Theproof of Theorem 3.4 takes up the rest of the section. Only its statement is used later, so
the reader may skip to the next section without loss of continuity.
We start by forming a diagram of morphisms of D@lgebras

() A(
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in the following order. First we form the vertical sides by choosing them to be acyclic closures
of the respective residue fields. Next we note that since HAathd B are regular local rings, the
DG algebrasd(X1) and B(Y{) are Koszul complexes on minimal sets of generatogsaridq,
respectively. Finally, we use 1.7 to choose a morphisthat preserves the commutativity of the
rectangle.

Base change from Diagram (2) yields the central rectangles in the diagram

/i\

R(X") R— 2 . S¢
@ o
R(X") < R(X}) 222 S(v))— S(v)

.

l

6l

N

of morphisms of DGI"-algebras. The rest is constructed as follows. In view of the hypotheses
on p ando, minimal sets of generators pfandgq map to minimal sets of generatorsmefandn,
respectively. By Example 3.2 the DG algebfysX;) = R® 4 A(X]) andS(Y{) = S®p B(Y{)

can be extended to acyclic closufes— R(X') — kandS — S(Y’) — [. Finally, the morphism

 is chosen so as to preserve the commutativity of the diagram: this is possible by 1.7.

3.6. LEMMA. — Diagram(3) induces a commutative diagram

torf (7.1)

tOI‘ (l Z)%K >2>

Qg ,__ l
re 7 (3,

Tor3M1)(1,1)

of homomorphisms df-algebras.

Proof. —By construction,R(X") and S(Y’) are acyclic closures. In view of 3.2, this means
that there are inclusion8(R(X’)) C mR(X') and 9(S(Y")) C nS(Y”’). These inclusions
provide the equalities in the commutative diagram

PRl

Tor? (p,l
LY — Torf (i, 1) —= P (1, 1) —= 1Y)

l TorI(k.,l)l lTorf(l,l) l
¢®5%(

, Tor ?,0) ,
HXL,) = Tor®&D (k, 1) 2 TorS Y (1, 1) = 1{YL,)

induced by Diagram (3). By 1.8, all the maps are morphisnis-afgebras.
The inclusions noted above also show that the external vertical maps are the canonical
surjections of graded algebras, whose kernels are the ideals genera&f¢@bgY; respectively.
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It follows that Ker(Tor? (k,1)) is generated bflor®(k, ), andKer(Tor?(1,1)) is generated by
Tor? (1,1). In view of the definition of the reduced Tor functor in 3.5, the diagram above induces
the desired diagram.

We refine Diagram (1) to a commutative diagram of morphisms of DG algebras

S /
@) S Tﬁ &T o

§>(
oy

by performing the following steps. First we invoke 1.7 to construct factorizations
A= AWV)-2R ofp and B— B(W)->S ofo.

Next we choose by 1.7 a morphism of OGalgebras® so as to preserve the commutativity
of the already constructed part of the diagram. Finally, we use 1.4 to obtain morphisms of DG
algebras: and A which preserve the commutativity of the lateral trapezoids.

It should be noted at this point that, in gener@k # \¢. Using Diagrams (2) and (4) we
produce a diagram of morphisms of DG algebras

PR p
PQp
N R(X{) S{Y{) g/
~®4A<x;>\\ //)\®BB<Y1/>
N M| pRAA(X]) @B |~
AN /
N ¥
(5) ~ | A[X]®ae A(VIXT) o5 B(W){YY) BlY)®pn |~
3%
AV)®ae |~ ~ | B(W)®sn
PRsP
k(V) W)
7 ~
N@Ak/ -~ ~ \>\®Bl
- - ¢®B¢ > ~
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where the central rectangles are formed by morphisms ofIB&gebras, all non-horizontal
arrows are quasiisomorphisms due to 1.2, and almost all paths commute — the possible exception
being the paths around the two trapezoids with horizontal bases and hyphenated sides.

From 1.5 and 1.8 we deduce the following result.

3.7. LEMMA. — The maps in Diagran) induce a commutative diagram

Tory 7" @.0)
_—

Torf X1 (k. 1) Tor ™) (1,1)

of homomorphisms df-algebras, where the vertical maps are isomorphisms.
We pause to recall some classical material on bar-constructions.
3.8. Let C be aconnectedDG algebra over the field, which means that’, = k£ and

d(Cy) = 0. The bar construction(B(C),d) is a connected DG -algebra overk, with
multiplication (calledshuffle produdtand divided powers constructed in [15, Exp. 7, §1)];
cf. also [24, Chapter X, §12]. It has a basis consisting of symhqls;|---|c,] of degree
p+ |e1]| + -+ + |ep|, where thee; range independently over a basis@$; andp =0,1,2....
The elemenicy |c2] - - - |¢,] hasweightp; the weight ofz - y is the sum of those of andy; if ||

is even positive, then the weight of? is i times that ofz. In general, the DG -algebraB,, (C')

is not admissible.

There exists a DG algebi@; (C),d) such thatB,(C)* = C% @, Bx(C)" as graded alge-
bras,d extends the differential of’, the isomorphisnB(C) ®¢ k = B(C) is one of DG
algebras, and the augmentatidp(C) — k is a quasiisomorphism of DG algebras(fis a DG
I'-algebra, then by [15, Exp. 7, §5)] sol;(C), the mapB;(C) — Bx(C) is a morphism of
DG I'-algebras, ant,,(C) is admissible.

The bar construction is natural for morphismsC — C’ of connected DGk-algebras; a
morphism of DGI'-algebrasB, (v) : Bi(C) — B (C") is given by

(6) Br()([e1]-++lep]) = [v(en)] -+ [v(ep)]-
There is a canonical isomorphisBy,(C) @y, | = B;(C ®y, ) of DG I'-algebras ovet. In
conjunction with 1.5, it induces isomorphisms of graded algebras
Tor? (k,1) 2 H(B(C) ®c 1) = H(Bi(C) @k 1) 2 H(By(C @5 1))

which are natural with respect to morphisms of connectedB&gebras. Wher is a DG
I"-algebra the isomorphisms above ard edilgebras, cf. 1.8.

3.9. LEMMA. — The DGTI -algebrasB; (/[X]) and B, (1[Y]) are admissible, and the maps in
Diagram(5) induce a commutative diagram

T(,vlr?@BG P,
Tor* ™) (k, 1) @D o) 1.1)
_ l HB, (¢®p3l _ l
HB,(1[X]) — 2 1B, a1y

of morphisms of*-algebras ovel, where the vertical maps are isomorphisms.
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Proof. —Diagram (5) induces a diagram of homomorphisms of graded algebras

Tor XX (k. 1) Tor 21O (1 1)

® —
ore 77

, T ) /
Tor BN (g, 1) ———% TorSM) (1, 1)

1R

& B(Y/!
Torg B8P (1 1y | =

TorA(VH{X1D) (k1) —> ’JjorBWV)(Y{)(l7 )

1R

Torf[x]®A€(k,l)

1R
IR

—
Tory % (.1)

Tor,®% (.0)

Tor*™X(k, 1) Tor'™(1,1)

where the non-horizontal maps are bijective by 1.5. All paths commute, except possibly those
around two trapezoids with horizontal bases — the one on the floor and the larger of the
pair at the ceiling. Composing either path frébor X1 (k1) to TorZMW 7 (1,1) with

the isomorphisn‘[Forf®BB<Yf>(l,l) we get the same map, so the upper trapezoid commutes.
Using this, we see that the isomorphisinrAX1®4(k 1), composed with either path from

Tor*™(k, 1) to Tor™"? (1,1), yields the same map, so the lower trapezoid commutes as well.
We inflate this trapezoid to a diagram of homomorphisms of graded algebras

Torf®56(_,l)
Tor* V) (k, 1) B Tor,

—~
~
—~
o~
o~
~—

HB,($Q5P) —
i B¥ H

- HB,(1(V)) (1)
Tor:®A (k,1)
THﬁW@@Al) HB;(A\®5!)
HB(I[X — HB
l( [ ]) HB, (¢p®5P) :
B Tori)@BG(_,l)
Tork X, 1) : Tor™(1,1)

From 3.8 we know that the maps pointing inward from the corners are bijective, and that the
upper rectangle, both triangles, and the inner trapezoid commute. We conclude that the lower
rectangle commutes and its vertical arrows are bijective.

Referring to 3.8 again, we note that all maps in the lower rectangle are induced by morphisms
of DG I'-algebras, and tha@; (1(V')) andB; (1{W)) are admissible. AB; (x ® 4 1) andB;(A®351)
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are quasiisomorphisms, it follows that the D@algebras3;(1[X]) andB; (/[Y]) are admissible

and the maps in the lower rectangle are isomorphismB-algebras. To finish the proof we
remark, with a final reference to 3.8, that the upper rectangle is formed by homomorphisms of
I'-algebras. O

3.10. Let C be a connected DG algebra oveThe differentiab of the bar constructioB; (C)
has the formd’ + 9", where

p—1

(_1)|01\+"'+|Cj|+j[

O (erlea] -+ Iep]) = il lejejval - lepl,

iNg

I
-

J

(et e 0(c) o)

-

0" ([erleal - 1ep)) =

Jj=1

Thus, thel-spanF?(C') of the elementgc, | - - - |c,] of degree at mogip + ¢) forp=10,1,2...,

is a subcomplex oB; (C). The page’E of the spectral sequence of the filtratipi?(C)} is a
complex of graded vector spaces withinduced byd’. It can also be obtained by tensoring with
1 overC” the complex of grade@?-modules

e O @y Ep(cﬂ21®p) e, ot Q4 prl(ch%@(p*l)) —

(7) P ‘
5(217(00 Rl ® - ®cp)) =) (—1Y2P e ®- - ®cjcji1 @ @ cp)
J

|
_

Il
=]

where for a graded vector spakewe let¥? M denote the graded space witi* M ),, = M,,—,,

for all n, andX?: M — ¥PM be the degree bijection defined by the mapglM,,. The
complex (7) is the standard resolutionlddy free graded’-modules, so the spectral sequence
of the filtration{F?(C)} has

(8) "By, = TorS" (1,1), = HBy(C).
In particular, the following equalities hold:

g 0 for p<0 and all ¢ exceptfor(p,q) =(0,0);
P47 ind,(C) for p=1and allg.

The differentials of the spectral sequence act according to the pattern
"dpq:"Epg— "Epyr_1,4—r foreachr>0
so for everyn > 1 at the edge = 1 the spectral sequence defiridmear maps
HB;(C)p — ©E1 1 — -+ By 1 =ind,_1(C),

where the kernel of the first one is the imagethf(F"~2(C)) — HB;(C),. Shuffle products
and divided powers i (C) are homogeneous with respect both to degree and to weight, cf.

3.8, so the subspad®(C)!? of 1.6 is contained ifF"~2(C),. Thus, if B,(C) is admissible,
then for eacln > 1 the maps above define a composition
9) vS :T-ind,,(HB;(C)) = ®E1 1 = - 'Ey 1 = ind,,_1(C)

n
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of I-linear homomorphisms. Formula (6) yields inclusiddg~y)(F?(C)) C F4(C") for all ¢

and every morphismy: C — C’ of connected DG algebras ovérlt follows that the spectral
sequence (8) above is natural with respect to such morphisms, and hence so are its edge
homomorphisms¢ .

Proof of Theorem 3.4. For eachn > 2 we form a commutative diagram

7771,(‘/’)

T-ind,, (torS (I,1)) <— 1Y

lz

T-ind,, (HB; (I[Y]))

J/Vim

ind,_1 (I[Y])

~ I'-ind, (tor? (p,!
1X! —=> T-ind,, (tor® (k, 1)) tore @)

!

I-ind,, (HB; (1[X]))

VAIX] J/

ind,,—1(I[X]))

I-ind, (HB;(¢®sl))

ind,—1(¢®pl)

of [-vector spaces as follows: The top rectangle comes from 3.5. The middle part is obtained by
stacking the commutative diagrams of Lemmas 3.6, 3.7, and 3.9, then t&kmigcomposables,
as in 1.6. The bottom rectangle reflects the naturality of the edge homomorphjsdesined
in (9).

To finish the proof we show that its vertical maps are bijective. It suffices to do thig!fol
By the isomorphisms above and 3.3, its source and target have the same rank, so it is enough
to prove that it is surjective. To this end we analyze the spectral sequence (8). A well known
computation, cf. e.g. [9, (7.2.9)], gives

card X,, if m=1;

1 — T I[x]" o~ " /A
Eyp.q = Tor'™XV (1,0, 2 1(X"),, wherecard X7, , { ‘ i

From 3.3 we know thatard(X,) = card(X;,,,) for n > 1, so the graded vector space
associated with the bigraded spdeeis isomorphic td(X%,). By Lemmas 3.6, 3.7, and 3.9

the latter space is isomorphic HB; (1[X]). This is the abutment of the spectral sequence (8), so
it is isomorphic to the graded vector space associated with the bigradedspa&utting these
remarks together, for eaechwe get

Z rank; 'E, , = rank; (l(X’ﬂ)n) =rank; H,, (EZ(Z[X])) = Z rank; ©E, ;.
ptg=n ptg=n

They imply that the spectral sequence (8) stops on the pagso in the decomposition (9) the
injections™'E; ,,_; — "E; ,,_1 are bijective for alln > 1 and1 < r < co. As a consequence,

the mapuffXJ is surjective, as desired.O

4, Almost small local homomorphisms
We introduce a class of maps of major importance for this paper.
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4.1. DEFINITION. — A local homomorphismp: (R
if the kernel of the homomorphisfior? (w,1) : Tor,
generated by elements of degfiee

m, k) — (S,n,l)is said to bealmost small
k,1) — Tor?(1,1) of graded algebras is

The name reflects the relation of the new concept to thanwdll homomorphispdefined
in [8] by the condition that the m&por? (i, ) is injective.

4.2. Example— It is proved in [8, (4.1)] that for every ringR, m, k), and for each ideat
contained inm® for some sufficiently large, the canonical epimorphisf — R/a is small. An
effective bound o has been found recently by LiaSzga.

Namely, letG be the symmetric algebra of thevector spacen/m?, let gr.,(R) be the
associated graded ring d@t, and extend the identity map @f/m? to a homomorphism of
gradedk-algebrasi — gr.. (R). Let polreg R denote the Castelnuovo—Mumford regularity of
the gradeds-modulegr,, (R), that is

polreg R = sup{j ez ‘ ToriG (grm(R), k)iﬂ- #+ 0}.
ieN
By [27, (6.2)] the epimorphismR — R/m?® is Golod for all s > 2 + polreg R. Golod
homomorphisms are small by [8, (3.5)], so the factorizafior» R/a — R/m® and functoriality
imply thatR — R/a is small for every ideah contained inm®.

By [8, (3.1)], ¢ is small if and only ifr, (¢) is injective. We characterize almost smallness in
similar terms, and by means of reduced Tor-algebras, cf. 3.5.

4.3. PROPOSITION — Lety: (R, m, k) — (5, n,l) be alocal homomorphism.
The following conditions are equivalent.
(i) ¢ is almost small.
(i) m2(¢p) is injective.
(iii) tor?(wp,1) is injective.

Proof. —Using the fact thalor? (, 1) is a homomorphism dflopfI'-algebrasit is proved in
[8, (1.3)] that there exists a subsgtc Tor(k,1) such that
Ker(Tor? (3,1)) = (I{G)) ., Tor’ (k,1)

and the following hold:

(1) The image of7 in 7, (R) ®y, | is a basis oKer (7, (¢)).

(2) The graded(G)-moduleTor’(k,1) is free.
Clearly, (i) < (ii) follows from (1). The freeness offor’(k,1) over I(Tor{*(k,1)), that of
Tor? (1,1) overl(Tor{ (1,1)), and (2) yield (i) (ii). O

Vanishing ofr,(R) characterizes regularity, cf. Example 3.2, so we get

4.4. COROLLARY. —If the ring R is regular, theny is almost small. Conversely, if the
canonical surjectiorz : R — k is almost small, them® is regular.

Using the functoriality ofr, ( ), we see that the proposition also implies

4.5, COROLLARY. — Lety:@Q — Randy: R — S be local homomorphisms.
(a) If v andy are almost small, thew o v is almost small.

(b) If o9 is almost small, thew is almost small.

(c) If p o is almost small and 2 (1)) is bijective, thenp is almost small.

As a further corollary, we get another example of almost small homomorphisms.
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4.6. Example— If ¢ is flat andchar(l) = 2, theny is almost small by André [5].

Here is what is known for flat homomorphisms in general.

4.7. Remark— If ¢: (R, m, k) — (S,n,l) is a flat local homomorphism, then by [7, (1.1)] for
everyi > 1 there exists an exact sequencé-o€ctor spaces

m2i () 7_‘_21_(5,) . ng(S/mS) L

0

7T2i(R) ®kl

m2i—1(¢)
_—

——moi—1(R) Q| mi—1(S) ——— mai—1(S/mS) ———0

André [6] proved) ;2 rank;(J2;) < edim(S/mS) — depth(S/mS) and conjectured that
m2i—1(p) Is injective for alli > 2. In view of Proposition 4.3, the conjecture can be restated
to say that every flat homomorphism is almost small.

The next proposition fails for small homomorphisms, and presents one of the main technical
reasons for working with almost small homomorphisms.

4.8. PROPOSITION — Lety: (R, m, k) — (S,n,l) be a local homomorphism. The following
maps are almost small simultaneously, »: R — S, ¢:R — S, and p: R’ — S, where
R -2 R' -2 S is a regular factorization ofs.

Proof. -The mapp: R — Sisthe composition op with the completion mag’' — S, and also
the composition of the completion mé@p— R with ¢. As, () applied to either completion map
yields an isomorphism, Corollary 4.5 shows thatp, andy are almost small simultaneously.
Finally, 7>2(R’'/mR’) = 0 becauseR®’ /m R’ is regular, cf. Example 3.2, so-1(¢) is bijective
by the exact sequence of Remark 4.7. Thasand ¢ are almost small simultaneously by
Corollary 4.5.3. O

As an application, we show how to obtain almost small homomorphisms by factoring complete
intersection homomorphisms.

4.9. COROLLARY. — Lety: R — (S,n,l) be a local homomorphism. If there exists a local
homomorphisng: S — (S, n',1") suchthat o is c.i. atn’, theny is almost small. In particular,
if p is c.i. atn, then it is almost small.

Proof. -Let R — R’ -, S’ be a reduced Cohen factorization of the composition
fop:R— 5.

By hypothesisKer(y') is generated by ai’-regular sequence, so [19, (3.4.1)] shows that
m(¢") is injective forn = 2 and bijective forn > 3. By Proposition 4.3, the map’ is almost
small, which implies, by Proposition 4.8, that ¢ is almost small as well. It remains to invoke
Corollary 4.5(b). O

Extending Example 4.2, we provide a numerical test for almost smallness.

4.10. PROPOSITION —Letp: (R,m, k) — (S,n,l) be a local homomorphism. If

s—1

lengthg (S/n®) = Z (e +i._ 1) length (R/m*~*)

i=0

for e = edim(S/mS) ands = 2 + polreg R, theny is almost small.
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Proof. —First we note that for every integerthere is an inequality

r—1

lengthg (S/n") < Z (e + z B 1) length  (R/m"~").

=0

Indeed, ifR — (R',w’,1) ", Sis areduced Cohen factorization, then the right hand side of the
formula above is equal tength . (R’ /m’"). The surjective homomorphism

@l R Jm"" — S/n"

induced byR’ — S yields the inequality above, and. is bijective if and only if equality holds,
that is, if and only ifKer(¢') C m'".

By the preceding argument, our hypothesis impkes(y’) C m’® with s = 2+ polreg R. On
the other hand, the associated graded ringg’aind R are linked by an isomorphism of graded
l-algebras

gt (R) 21 @k gro (R)[a1, -, 7]

wherex,...,z. are indeterminates. It follows thatolreg(R’) = polreg(R). Example 4.2
now shows that the homomorphisp is small. In view of Proposition 4.8, it follows that the
homomorphisny is almost small. O

The next result is a structure theorem for morphisms of minimal models over certain almost
small homomorphisms. A key ingredient of the proof is the general result on therpiap
established in Theorem 3.4.

4.11. THEOREM. — Letp: (A4,p,k) — Randy: (R, m, k) — S be surjective homomorphisms
of local rings, with A regular and Ker(p) C p2. If ¢ is almost small, then there exists a
commutative diagram of morphisms of DG algebras

where (B, q,k) is a regular local ring, 5 and o are surjective homomorphismKer(o) is
contained ing?, U = Uj, the external rows and columns are minimal modglsand v are
surjective quasiisomorphisms.

Proof. —Choose a subset C A mapping to a basis ofKer(¢) + m?)/m?. As a is part of
a regular system of parameters fdr the local ring(B, q,k) = (4/(a),p/(a),k) is regular.
Sincea is contained in the kernel af o p, this map factors as a composition of surjective
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homomorphismg: A — B ando: B — S. The choice ofa ensures thaKer(o) is contained
ing2.

Using 2.3, we form a commutative diagram of morphisms of DG algebras

]

X]—2~BlY] |

L

A

pl A

R

It induces morphisms of DG algebras
¢ B[X] = A[X]®4 B 247 B[Y]®4 B = B[Y];
G k[X] = A[X] @4 k 22 BlY] @4 k = K[Y].

As ¢ is almost small, Theorem 3.4 shows that ihknear map
ind(¢) : ind(k[X]) — ind(k[Y])

is injective. Thus, the séhd(4)(X) is linearly independent imd (k[Y]).

Choose a subs@tin B[Y] whose image ifnd(k[Y]) extendsnd(¢)(X) to a basis. It follows
that 7 is a set of free variables ovéfX], and so the map is injective. This map is equal to
¢' ®p k, and¢’ is a map of graded freB-modules, so we conclude by Nakayama’s Lemma that
¢’ isinjective andl is a set of free variables generatiB§y’] over¢’ (B[ X]). Changing variables
in B[Y], we replaceB[Y] by B[X,T] and¢’ by the canonical inclusioB[X] — B[X,T].

Let A[U] be the Koszul complex withh = U; andd(U) = a, and set

A[X,U) = A[X]®4 AlU].

These algebras appear in a commutative diagram of DG algebras

AC AlU)

1| @

X]——— A[X,U,T] %)B[

whereg is the canonical augmentation agti= AX]®a /. Sincea is anA-regular sequence,
(3 is a quasiisomorphism; by 1.8° is a quasiisomorphism as well.

The mapy is built inductively, starting withy°. Using the inclusion®(7}) C Ker (o) C g2,
pick for eacht € Ty an elemenp; € p? with 3(p:) = O(t). Let A[T1] be the Koszul complex
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with 9(t) = p; andx! the morphism of DG algebras

A[X, Ule] :A[)(7 U] ®a A[Tl] X ®aA[T1]

B[X]|®a A[T1] = B[X,T1].

By 1.2, ! is a surjective quasiisomorphism. Assume next that a surjective quasiisomorphism
X" A[X,U,T¢,) — B[X,T<,] is available for some > 1. For eacht € T, we pick a cycle

z € A[X,U, T<y]n such thaty"(z,) = 9(¢), then we set

A[X, U, Tgn+1] = A[X, U, Tgn] [Tn+1 | 8(t) = Zt]

and definey™ ! to be the extension of" satisfyingy™*!(t) =t forall t € T, . It is easy to
verify that this map is a surjective quasiisomorphism, cf. also [9, (7.2.10)]. Taking direct limits,
we obtain the surjective quasiisomorphigndisplayed in the diagram.

The diagram above provides the two upper squares of the diagram in the theorem. Its lower
left square is obtained by base change algrigor its lower right square, we factéro y through
v=p®x] A[X,U,T]to getasurjectiop: R[U,T] — S.

The top row and two side columns of the diagram are minimal models by construction.
Furthermorey, v, andy are surjective quasiisomorphisms: the first by construction, the second
by 1.2, and the third due to the commutativity of the diagram. Since the differentR(afT]
is induced by that ofA[X, U, T}, to prove that the lower row is a minimal model it suffices to
establish that the differential af[ X, U, T'] is decomposable.

Foranyy € A[X,U,T| with |y| =n + 1 > 2, write 9(y) in the form

A(y) = Z cx + Z buu + Zaﬁ—f—weA[X,U,T]

reX, uclUy, teTy,

with ay, by, ¢, € Aandw € (X, U, T)?A[X, U, T]. In the resulting equality

O(x(w) = > Blea)z+ Y Blat+ x(w) € B[X,T]

reXy, teTy,

we havey(w) € (X,T)?B[X,T]. The differential of B[ X, T'] is decomposable, so for &l T,
andz € X,, we obtain3(a;), 5(c.) € g, thatis,ay, ¢, € p. SinceU = Uy, we haveh,, = 0 unless
n=1.1f n=1, thenw = 0, so the equality?(y) = 0 yields

> budu) == > cd(x) = > a;0(t).

ucUy reX) teT

By construction, we havé(z) € Ker(p) C p? for all z € X; and 9(t) = p, € p? for all
t € Ty, so the last equality yield$® ., 0.0(u) € p2. As 9(U;) = a is part of a regular
system of parameters, this impliég € p for all u € Uy, so the differential ofA[X,U,T] is
decomposable. O

5. Weak category of alocal homomor phism

We introduce a notion motivated by Félix and Halperin’s [17, (4.3)] definition of rational
Lusternik—Schnirelmann category ¢@X) of a simply connected CW compleX of finite
type. Weak category captures a Looking Glass [12] image of a corollary of the Mapping
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Theorem: If cat(X) < s, then by [17, (5.1)] for each > 2 the n-connected coveK,, of X
satisfies cat( X,,) < s, hence by [17, (4.10)] the product of afy+ 1) cohomology classes in
H>1(X,; Q) is equal to0.

5.1. DEFINITION. — If (B,q,k) is a local ring andB[V] is a semifree extension with
decomposable differential, then we define a notioweék categorpy the formula

for eachn > 2 the product of any
weat(B[V]) =inf ¢ s € N| (s + 1) elements of positive degre
in H(B[V]/(q,V<y)) is equal tad

Finite weak category can often be detected by using a variant of [13, (1.2)]:
5.2. PROPOSITION — If (B, q,k) is a local ring, B[V] a DG algebra with decomposable
differential, andB[V'] — S[W] a surjective morphism of DG algebras, then

weat(S[W]) <sup{s € N|H,(B[V]/qB[V]) #0}.

Proof. —Set
k[V]=B[V]/qB[V] and k[W]=S[W]/qS[W].

All DG algebras under consideration are imageB8f], so their differentials are decomposable.
We havewcat(S[W]) = weat(k[W]) by definition. As the induced morphiskiV] — k[W] is
surjective, we getvcat(k[W]) < sup{s € N | Hs(k[V]) # 0} from [13, (1.2)]. O

5.3. DEFINITION. — If o: R — S is a local homomorphism an@ — R'[U] — S is a minimal
model ofp, then we define theveak categoryf ¢ by the equality

weat(p) = weat(R'[U]).

Proposition 2.4 shows that it does not depend on the choice of minimal model.

By [10, 8§3], the sequende,.(y)) is positive and grows exponentially whenis not c.i. and
fdgr S is finite. A close reading of the proofs shows the last condition is used only to ensure
weat(p) < oo, cf. Theorem 5.7, so at no further expense we get

5.4. THEOREM. — Lety: R — (S, n,l) be a local homomorphism.

If weat(yp) is finite, then the following conditions are equivalent.
(i) ¢ is not complete intersection at

(i) en(p)>0forall n>2.

(iii) limsup,, Ven(p) > 1.

(iv) There exist a real number> 1 and a sequence of integers with
0<2s; <8541 < (wcat(tp) + 1)sj and e, (p) >c¥ forall j>1.
Proof. —Proposition 2.8 shows that (ii) or (iii) implies (i).
If (i) holds, thene,, () # 0 for n = 2,3 by Propositions 2.6 and 2.8, aagl(¢) # 0 n > 4 by

theproof of [10, (3.4)]; thus, (i) implies (ii).
Theproof of [10, (3.10)] shows that (i) implies (iv). O

5.5. COROLLARY. — The following conditions are equivalent.
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(i) ¢ is complete intersection at
(i) weat(p) < oo ande, () =0 for somen > 2.

(iii) wcat(¢) < oo andlimsup,, V/en(p) < 1.
(iv) wcat(p)=0.

Proof. —The theorem shows that (i) follows from either (ii) or (iii).

LetR — R'[U] — S be a minimal model o> : R — S. Proposition 2.8 shows thatis c.i. at
nifand only if U = U;. Thus, (i) implies (iv) by definition ofvcat(y). Conversely, if (iv) holds,
thenU = Uy by 2.2, hence (i) holds.

Finally, conditions (i) and (iv) imply (ii) and (iii) by Proposition 2.8.0

Next we establish a most important property of almost small homomorphisms.

5.6. THEOREM. — If a local homomorphismp: R — S is almost small, then

weat(p) < edim S — depth S.

Proof. —Let R -2+ R’ £~ § be a Cohen presentation ¢f As R’ — R’ -2~ § is a Cohen
presentation op’ = ', we havewcat(y) = wcat( ’). On the other hand, the map is almost
small by Proposition 4.8. Furthermorelim S = edim S anddepthS depth S. Thus, we may
assume thak and.S are complete and that the local homomorphisnR, m, k) — (S, n, k) is
surjective and almost small.

Choose aregular local rin(@l, p, k) and a surjective homomorphism A — R with Ker(p) C
p2. From Theorem 4.11 we get a minimal model R[U,T] — S whereU = Uy, together with
a minimal modelB — B[X,T] -2+ S where(B, q, k) is a regular local ring anier(¢) C ¢?,
linked for eachn > 2 by isomorphisms

R[U,T] N A[X,U,T] N B[X,T]
(m, U, Ten)RIU,T] ~ (p, X,U, T<n)AX,U,T] ~ (q,X,T<n)B[X,T]’

We also haveH;(B[X,T]/qB[X,T]) = Tor?(S,k) by definition, andTor?(S,k) = 0 for

¢ > dim B — depth S by the Auslander—Buchsbaum Equality. Thus, Proposmon 5.2 yields
weat(p) = weat(R[U,T]) < dim B — depth S. It remains to note thatim B = edim S because
Ker () is contained ig>. O

For completeness, we deduce [10, (3.8)] from Proposition 5.2.

5.7. THEOREM. — If ¢: (R, m, k) — S is a local homomorphism, then
weat(p) < edim(S/mS) +fdg S.

Proof. —There is nothing to prove unlegs= fdy S is finite. LetR — R'[U] — S be a minimal
model of with edim R’ /mR’ = edim S/m.S; call this numbee. By Proposition 5.2, it suffices
to showH; (R'[U]/m'R'[U]) =0fori>e+ f.

Since R'[U] is a flat resolution ofS over R, we haveH, (F) = Tor’(k,S) =0 for i > f
and F = R'[U]/mR'[U]. Now note thatF' is a complex of free modules over the regular
local nngR R'/mR’', and thatdim R = e by the minimality of the Cohen factorization. For

1=0,. — 1 form exact sequences of complexes
0— F/(z1,...,0:) =S F/(a1,...,0:) — F/(21,...,Ti41) — 0
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wherez,. .., z. is a regular system of parametersifFrom their homology exact sequences,
one sees by induction arthat the homology of the compleX/(z1,...,z.) = R'[U]/w' R'[U]
vanishes in degrees greater than f. O

6. André-Quillen homology of local homomor phisms

In this section we prove local versions of our results on André—Quillen homology. When using
the general properties of the theory we take André’'s monograph [2] as standard reference. In
addition, we heavily draw on some results from [1@8rbatimor in variants. We recall them
below.

6.1. For each local homomorphisi: @ — (R, m, k), by [10, (4.3)] one has

L 2<n<oo if chark =0;
ranky Dn (R Q3 k) = en 1 (¥) for {2§n<2p—1 if chark =p > 0.

6.2. For each local homomorphisih: Q — (R, m, k) the following are equivalent.
(i) Dn(R|Q;k)=0foralln>> 0, andfdg R < co.

(i) D, (R|Q;k)=0foralln>2.

(iii) Da(R|Q;k)=0.

(iv) D, (R|Q;k)=0forsomen > 2 such that % |! # 0 € k, andfdg R < oo.

(v) v is complete intersection at.
Indeed, (ii), (iii), and (v) are equivalent by [10, (1.8)].4dfis c.i. atm, thenfdg R is finite, cf.
[11, (3.2)], so (ii) and (v) imply (i) and (iv). Conversely, (i) implies (v) by [10, (4.4)], while (iv)
implies (v) by [10, (3.4)] via the equalities in 6.1.

6.3.Let¢: (R, m, k) — (R*, m* k*) be aflat local homomorphism such that = mR*. If in
a commutative square of local homomorphisms

P

o

Q R : R*

the upper path is a regular factorization of the compositiany, then the canonical maps
D,(&]t;k*):Dp(R| Qs k*) — D, (R* | P; k*) are bijective for alln > 2.

Indeed, the argument for [10, (1.7)] carries over with only notational changes.

We now present our main local result, describing c.i. homomorphisms in terms parallel to
those in 6.2, butvithoutthe hypothesis of finite flat dimension.

6.4. THEOREM. — If ¢:Q — (R,m,k) is a local homomorphism, then the following
conditions are equivalent.
(i) D,(R|Q;k)=0forall n>>0, andy is almost small.
(i) D,(R|Q;k)=0forall n>>0andwcat(e)) < co.
(i) D,(R|Q;k)=0forsomen > 2 with |3 ]! # 0 € k, andv is almost small.
(iv) Dn(R|Q;k) =0 for somen > 2 with | 2 ]! # 0 € k, andwcat(v)) < oo.
(v) ¢ is complete intersection ai.

Proof. —If ¢ is c.i. atm, thenD,, (R | Q; k) = 0 for all n > 2 by 6.2, andy is almost small by
Corollary 4.9, so (v) implies (i) and (iii). If is almost small, then it has finite weak category
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by Theorem 5.6, so (i) implies (ii) and (iii) implies (iv). If (ii) holds, then tpeoof of [10,
(4.4)] shows thatimsup,, V/e,(¢) < 1, so (v) holds by Corollary 5.5. In view of 6.1, the same
corollary shows that (iv) implies (v). O

To continue, we recall some general computations of André—Quillen homology.

6.5. Let p: R — S be a homomorphism of commutative rings, avdan.S-module.
André [1, (16.1)] constructs a universal coefficients spectral sequence

2 Ep,q = Tory (Dg(S | R; S),N) = Dpig(S | B; N).
Thus, if for somen € Z the S-moduleD,,(S | R; S) is flat for alln < m, then
(10) D,(S|R;N)=D,(S|R;S)®s N foralln<m+1.
Let ¢ be surjective, and sat= Ker(y). There are isomorphisms §fmodules
(11) Dy (S| R;N)=a/a* ©p N = Tor{'(S, N);
(12 Da(8 | 758) = —p 2 (5:5)

B Tort' (S, S) - Torf'(S, )’

where the second one is elementary, and the other two come from [2, (6.1), (15.8)].
We give “concrete” descriptions of split c.i. local homomorphisms.

6.6. Let v: (R, m, k) — (S,n, k) be a local homomorphism, sEkr(y) = a, and let asterisks
* denotea-adic completion. Ify: S — R is a section ofp, then there exist a set of formal
indeterminates ove$ and a commutative diagram

R*

§ 5 S[lall/(f) T8
of homomorphisms of rings, where the isomorphism is induced by a surjective map
p:S[[z]] = R

with Ker(p) C n(z) + (x)?, f is a minimal set of generators Bfer(p), 7 is the surjection with
Ker(w) = (x), and. is the natural injection.

Indeed, asS is discrete in thes-adic topology, completion yields homomorphisms of rings
Y*: S — R* andy*: R* — S whose composition is the identity map 8f Pick a set

a={ay,...,a.} CR"

minimally generatinder ¢*, let x = {x1,...,z.} be a set of formal indeterminates, and let
p:S[[x]] — R* be the unique homomorphism Sfalgebras mapping; to a; for eachi. It is
necessarily surjective, and in view of the choicezofrie have

“N(z) =n(z) + (2)°.

Ker(p) C (n+ ()
6.7. PROPOSITION — In the notation of6.6the following hold.
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(a) fis aregular sequence if and onlyjfis c.i. atm.

(b) fis aregular sequence contained(a)? if and only if theS-modulesD, (S | R; S) and
Do (S| R;S) are free, andD3(S | R; S) = 0.

(c) f =0 if and only if the S-module D;(S | R;S) is free, Do(S | R;S) = 0, and
D3(S| R;S) =0.

Proof. —Set P = S[[x]]. The ring R* is local with maximal ideamR* and residue field
R*/mR* = k, and R* is flat overR. Thus, [2, (4.54)] yieldD,,(S | R; S) 2 D, (S | R*;S)
for all n € Z, so for the rest of the proof we may assuRe- R*.

AsDy(R|S; k)= Dy(R| P; k) by 6.3, (a) follows from 6.2.

Sincex is P-regular,D, (S | P;—) =0 for n > 2, so the Jacobi—Zariski exact sequence [2,
(5.1)] generated by — R — S yields isomorphisms of functors

(13) D,(S|R;=)=D,_1(R|P;—) forn>3
and, in view of the isomorphism (11), also an exact sequence
(14) 0—Da(S| R:S) — ((£)/(H)?) ©r S~ (@)/(x)* — Di(S | R S) — 0
of S-modules. Note that thé-module(z)/(x)? is free, and
(15) 1m(8) = ((£) + (2)°)/(@)* € (n(z) + (2)?) /(2)® =n((z)/(x)?).

If fis aregular sequence, th&n (R | P;S) =0 and(f)/(f)? is free overR, so the “only
if” parts of (b) and (c) are now clear. To obtain converses, we assum®th& | R; S) is free
forn < 2,andD3(S | R;.S) =0. From (13) and (10) we get

Da(R| P;k)=Ds(S | R;k) 2 Ds(S | R; ) @5 k=0,

from where we conclude thgtis a regular sequence, cf. 6.2. Due to (14) and (15), the freeness

of D1(S | R; S) impliesé = 0, that is, f C (x)? andDy(S | R; S) = (£)/(f)?. It is now clear
that the “if” parts of (b) and (c) hold as well.0

The next theorem is a local version of Theorem Il. The proof draws on results obtained above
and on earlier results from [13]. One of them is for a homomorphism

v: (R,m k) — (S,n,k)
of local rings that idarge in the sense of Levin [23], meaning that the map
Tor? (@, k) : Tor® (k, k) — Tor? (k, k)
is surjective.

6.8. THEOREM. — For an algebra retractS 2, (R,m, k) —%., S of local rings the following
conditions are equivalent.
() TheS-algebraTor®(S,S) is finitely generated.
(i) For everyS-algebraT there is an isomorphism of gradddtalgebras

Torl'(S,T) = (/\ Dy ®s Symg Dz) ®sT
5
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where D; and D, are free S-modules concentrated in degreésand 2, respectively.
Moreover, ifchar(k) > 0, thenDs = 0.

(i) TheS-moduled: (S| R;S)andD2(S | R; S) are free, ands(S | R; S) = 0. Moreover,
if char(k) > 0, thenDy(S | R; S) = 0.

(iv) The sequencg in the commutative diagram constructed@r is contained in(x)?.
Moreover, ifchar(k) > 0, thenf = 0.

Proof. —Suppose thathar(k) > 0. Conditions (iii) and (iv) are then equivalent by Proposi-
tion 6.7(c). Functoriality in the ring argument shows thais large. For every large homomor-
phism, conditions (i), (i) and (iv) are equivalent by [13, (3.1)].

Now consider the case whethar(k) = 0. Conditions (iii) and (iv) are equivalent by
Proposition 6.7(b). The equivalence of (i), (ii), and (iv) is established in [13, (4.1)] under an
additional hypothesisk has finite flat dimension ove¥, which is used only once, to conclude
that D,,(R* | S[[x]]; k) = 0 for all n > 0 implies that f is regular (cf. [13, p. 163]). By
Theorem 6.4, the same conclusion holds when the mafi[x]] — R* is almost small. To see

that it is, note that the compositii{[x]] <~ R* 2 sis complete intersection at and apply
Corollary 4.9. O

The proof above raises the question whether the first three conditions are equivalent for large
homomorphisms in characteristicHere is what we know.

6.9.Lety: R — (S,n, k) be alarge homomorphism, whetear(k) = 0. If R — R[U] — S'is
a minimal model ofp, then results of Quillen, [25, (9.5), (10.1)], imply

sup{n € N|D, (S| R;k) #0} =sup{n e N| U, # 0}.

Thus, [13, (3.2)] shows that ifor’(S, S) is finitely generated, theAQ-dimg R is finite, and
[21, (3.1)] proves that in this cageQ-dimg R is equal tol or is even.

7. André—Quillen dimension

In this section we prove the theorems stated in the introduction. The local case was essentially
settled in Section 6, but reduction to that case needs some attention, as weak category and almost
small homomorphism are intrinsically local notions.

We start by recording a slight extension of a result of André [2]. For @ael$pec S, we let
k(n) denote the residue fielst, /nS,,.

7.1.If Q@ — R — S are homomorphisms of noetherian rings gnid a non-negative integer,
then the following conditions are equivalent.

(i) D,(R]|Q;—) =0 on the category of-modules for alln > j.

(i) Dy(Bm | Qnng; k(m))=0foralln > j, alln € SpecS, andm =nnN R.

Indeed, [2, (4.58), (5.27)] produce for eacltanonical isomorphisms

Dy (R| Q;k(n)) = Dn (R | Q3 k(M) @k(m) k(1) = Do (R | Qnngs k(M) ®p(m) k(n)
which show that (i) implies (ii). IfR — S is the identity map, then (ii) implies (i) by [2, Suppl.
Prop. 29]; theproof of that proposition applieserbatimto every homomorphisnk — S in

which the ringS is noetherian.
We recall from [10] the definition of I.c.i. homomorphism of noetherian rings.
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7.2. DEFINITION.— A homomorphism of noetherian rings: R — S is called locally
complete intersectiorfor I.c.i.) if for every n € SpecS the induced local homomorphism
©n: Runr — Sk is complete intersection atS, in the sense of 2.7.

We return to the discussion, started in the Introduction, of criteria for I.c.i. homomorphisms
in terms of André—Quillen homology. Recall that R — S is said to bdocally of finite flat
dimensionf fdg(Sy) < oo for everyn € Spec S.

7.3.If ¢: R — S is a homomorphism of noetherian rings, then the following conditions are
equivalent.
(i) AQ-dimp S < oo, andy is locally of finite flat dimension.
(i) AQ-dimp S < 1.
(i) Do(S|R;—)=0.
(iv) Dn(S | R;—) =0 for somen > 2 with | % ]! invertible in.S, andy is locally of finite flat
dimension.
(v) ¢ is locally complete intersection.
Indeed, (v) is equivalent to (ii), (iii) by [10, (1.2)], and to (i), (iv) by [10, (1.5)].
A major difficulty in dealing with Quillen’s Conjecture is thaR-algebras.S with
AQ-dimp S < 2 have not been described in structural terms. All known algebras satisfying this
condition are constructed by factoring some I.c.i. homomorphism.

7.4. Example—Let @ — S be an l.c.i. homomorphism from a noetherian rifg(say, a
surjection with kernel generated by a regular sequegicarough some homomorphisth— R
that is c.i. at all primes of? contracted fromS (say, a surjection with kernel generated by a
regular sequence ifg)). The desired vanishing property follows from 7.3, via the Jacobi—Zariski
exact sequence [2, (5.1)].

The construction described above is rather rigid. This is demonstrated by the next result, which
could be compared with another factorization theorem for local homomorphisms from [10]: If
poryisl.c.i. andy is locally of finite flat dimension, theq is |.c.i. andy is complete intersection
atnN R for eachn € Spec S.

7.5. THEOREM. — If ¥: Q — R andy: R — S are homomorphisms of noetherian rings such
thaty o 9 is l.c.i., then the following conditions are equivalent.
() AQ-dimp S < 0.
(i) AQ-dimp S <2.
(i) D3(S|R;—)=0.
(iv) D, (S|R;—)=0 for somen > 3 such that| ;1 |! is invertible inS.
(v) ¢ is complete intersection atn R for eachn € Spec S.

Proof. —The Jacobi-Zariski exact sequence of André—Quillen homology, cf. [2, (5.1)], yields
an exact sequence of functors on the category-afodules

= Dpy1(S1Q;—) = Dpt1(S| Ry =) = Dp(R|Q; =) = Dp(S | Q;—) — -+

Since ¢ o ¢ is l.c.i., we haveD, (S | @;—) =0 for n > 2 by 7.3, so forn > 2 we get
isomorphismaD,,1(S | R;—) 2 D,,(R | @;—) of functors of S-modules. Thus, each one of
conditions (i), (ii), and (iii) is equivalent to its primed version below:
(i) D,(R]|Q;—) =0 on the category of-modules for alln >> 0.
(i") D,(R|Q;—) =0 on the category of-modules for alln > 2.
(iii") D2(R | Q;—) =0 on the category of-modules.
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(iv') Dn(R | Q;—) = 0 on the category of5-modules for some: > 2 such that| 3 |! is
invertible in S.
The equivalence of (i) and (v) results from 7.1 and 6.2. For eatke Spec S, the homo-
morphismyunr : Qung — Runr iS almost small by Corollary 4.9. The equivalence Of (iii '),
(iv"), and (v) now comes from 7.1 and Theorem 6.41

The last result implies part of [10, (1.5)]: Quillen’s Conjecture holds when theSirggl.c.i.,
because the theorem then applies Wtk Z. More to the point, it reduces the proof of Theorem |
from the Introduction to a mere formality.

Proof of Theorenh. —Let¢: S — R be any section ap.

The mapy o ¢ =idg is obviously I.c.i., so Theorem 7.5 and Proposition 6.7(a) show that the
conditions of Theorem | are equivalent

It remains to deduce Theorem Il from its local version established in Section 6.

Proof of Theorenil. —The implication (ii)= (i) is clear. By (11) and (12), th&-modules
Di(R | S;S) andDy(R | S;5) are finitely generated. Thus the implications=§) (iii) < (iv)
follow from Theorem 6.8 via the isomorphisms

Torf%(S’7 Sy & Torf%““’*(S,17 Sh);
D.(S | R; S)n = D.(Sn | Runr; Sn)v

respectively of graded, -algebras and grades},-modules, cf. [2, (4.59), (5.27)].

It remains to prove (iii)= (ii). Let D, denote the gradei-module withD,, =D,,(S | R; S)
for n = 1,2, and D,, = 0 otherwise. The isomorphisms (11) and (12) define a surjection
7:Torf(S,S) — D, of gradedS-modules. SinceD, is projective, we may choose ahlinear
mapé : D, — Tor(S, S) with 706 = id p, . It extends to a homomorphism of gradgdilgebras

9 /\D1 ®g Symg Dy — Tor(S, ).
S

Theorem 6.8 and the isomorphisms above showithas bijective for everyh € Max S, sod is
an isomorphism. It induces an isomorphism

YRsT: (/\D1 ®SSymSD2) ®STiTorf%(S,S) ®sT
S

of gradedT-algebras. As each-moduleTor? (S, S) is projective, the Universal Coefficients
Theorem shows that for everalgebral’ the homomorphism

Tor’*(8,8) ®s T — Tor™(S,T)

of gradedr’-algebras given by the Kiinneth map is bijective. Composing the isomorphisms above
we obtain the desired isomorphism of gradé@lgebras. O
We finish the paper by revisiting the announcementin [14].

7.6. Remark— In [14, (2.6)], which is an avatar of Theorem 7.5, instead of condition (7.5.i)
one finds the seemingly weaker conditidtQ-dim .S, < oo for all n € Spec S. We show that
this condition is in fact equivalent to those in Theorem 7.5.
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Indeed, under the hypotheses of Theorem 7.5 (which coincide with those [14, (2.6)]) the
composition of the mapg: @ — R andR — S, is an |.c.i. homomorphism. Fixing a prime ideal
nof S, from Theorem 7.5 we see that)-dim ; S, is finite if and only ify is c.i. atq N R for all
g € Spec .S with q C n. Letting nown range oveSpec .S, we conclude thaAQ-dim; S,, is finite
forall n € Spec S if and only if ¢ is c.i. atq N R for all g € Spec S. This is condition (7.5.v).

We take this opportunity to make two minor corrections to [14]:

— in [14, (2.6.i)] ‘at eachp € Spec R with p D Ker(y)’ should read ‘atn N R for each

n € Spec S’
— in[14, line above (4.1)] in [13, (4.1.ii))] should read ‘in [13, Theorem II]'.

We thank the editors of the present article for pointing out these errors to us.
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