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ABSTRACT. — Dirac submanifolds are a natural generalization in the Poisson category of the symplectic
submanifolds of a symplectic manifold. They correspond to symplectic subgroupoids of the symplectic
groupoid of the given Poisson manifold. In particular, Dirac submanifolds arise as the stable loci of Poisson
involutions. In this paper, we make a general study of these submanifolds including both local and global
aspects.

In the second part of the paper, we study Poisson involutions and the induced Poisson structures on
their stable loci. In particular, we discuss the Poisson involutions on a special class of Poisson groups, and
more generally Poisson groupoids, called symmetric Poisson groups, and symmetric Poisson groupoids.
Many well-known examples, including the standard Poisson group structures on semi-simple Lie groups,
Bruhat Poisson structures on compact semi-simple Lie groups, and Poisson groupoid structures arising from
dynamicalr-matrices of semi-simple Lie algebras are symmetric, so they admit a Poisson involution. For
symmetric Poisson groups, the relation between the stable locus Poisson structure and Poisson symmetric
spaces is discussed. As a consequence, we prove that the Dubrovin Poisson structure on the space of Stokes
matricesU; (appearing in Dubrovin’s theory of Frobenius manifolds) is a Poisson symmetric space.
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RESUME. — La notion de sous-variété de Dirac d'une variété de Poisson est une généralisation
naturelle de la notion de sous-variété symplectique d’'une variété symplectique. Les sous-variétés de Dirac
correspondent aux sous-groupoides symplectiques du groupoide symplectique de la variété de Poisson. Une
classe importante d’exemples de sous-variétés de Dirac est donnée par les points fixes d’'une involution de
Poisson. Nous étudions dans cet article les sous-variétés de Dirac, sous I'aspect local ainsi que sous 'aspect
global.

Dans la seconde partie, nous étudions les involutions de Poisson et les structures de Poisson sur le lieu
des points fixes de ces involutions. Nous étudions en particulier les involutions de Poisson sur une classe de
groupes de Lie—Poisson et de groupoides de Poisson, les groupes et groupoides de Poisson symétriques.
Nombre d’exemples bien connus sont symétriques et admettent donc une involution de Poisson : les
structures de Lie—Poisson standard sur les groupes de Lie semi-simples, les structures de Bruhat—Poisson
sur les groupes de Lie compacts semi-simples, ou encore les structures de groupoides de Poisson provenant
d’uner-matrice dynamique. Dans le cas des groupes de Poisson symétriques, nous examinons le lien entre
la structure de Poisson sur le lieu des points fixes et les espaces symétriques de Poisson. En corollaire, nous
montrons que la structure de Poisson de Dubrovin sur I'espacdes matrices de Stokes (apparaissant
dans la théorie de Dubrovin des variétés de Frobenius) est un espace symétrique de Poisson.
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404 P. XU

1. Introduction

The underlying structure of any Hamiltonian system is a Poisson manifold. To deal with
mechanics with constraints, it is always desirable to understand how to equip a submanifold of
a Poisson manifold with a Poisson structure. A naive way is to consider Poisson submanifolds.
However, these are not very different from the original Poisson manifold from the viewpoint
of the Hamiltonian systems. In addition, for symplectic manifolds, there do not exist any
nontrivial Poisson submanifolds. However Dirac was able to write down a Poisson bracket for a
submanifold of a symplectic manifolet which is defined by a set of constraints:

1) Q={zePlyi(x)=0,i=1,...,k}

such that the matrix{;, »,}) is invertible onQ. This is the famous Dirac bracket [8]. In this
case,( is a symplectic submanifold, i.e., the pull back @nof the symplectic form is non-
degenerate.

Many attempts at generalizing the Dirac brackets have been made, for example, the notion of
cosymplectic manifolds of Weinstein [34], Poisson reduction of Marsden and Ratiu [29], just to
name a few. In particular, Courant presented a unified approach to this question by introducing
the notion of Dirac structures [6], by which one could obtain a Poisson bracket on admissible
functions on a submanifol@. In some cases, one can indeed obtain a Poisson structure on all
functions onQ. Then@ becomes a Poisson manifold itself.

In his study of Frobenius manifolds, which is related to2hdimensional topological quantum
field theories, Dubrovin recently found a Poisson structuré&nthe space of upper triangular
matrices with ones on the diagonal, by viewing it as a space of Stokes matrices. Indeed Dubrovin
identifiesU . with the local moduli space of semisimple Frobenius manifolds. In particular, an
explicit formula was found for the Poisson bracket in the three-dimensional case (Formula F21,
p. 243, [11]):

(@)

OO =
O = 8
=N e

3) {ryy=ay -2z,  {y2}=yz—20, {za}=za-2y.

This Poisson structure has various interesting properties. For instance, it naturally admits a braid
group action. The Casimir function is the Markoff polynomidh- 3% + 22 — xyz. Its linear and
guadratic parts give rise to a bi-Hamiltonian structure, etc. Then Ugaglia extended Dubrovin’s
formula, Eqg. (3), to thes x n case [33]. Later Boalch [2] related this Dubrovin Poisson structure

on U, to the stable locus Poisson structure on the dual Poisson groyp: = SL(n,C); see
Example 5.11).

From a completely different angle, and independently, Bondal discovered the same Poisson
structure onU, in his study of triangulated categories [3]. He also extensively studied this
Poisson structure, including the braid group action and symplectic leaves, etc. Bondal, in his
approach, instead of writing down the Poisson structuré/qn first discovered a symplectic
groupoid M whose space of objects {$,. The general theory of symplectic groupoids [35]
then implies that/,. is a Poisson manifold. What is more interesting is that in a subsequent
paper [4], he discovered an extremely simple relationship between his symplectic gradpoid
and the symplectic groupoidover the Poisson groug* of Lu and Weinstein [26]. Namely\
is simply a symplectic subgroupoid Bfwhich can be realized as the stable locus of an involutive
symplectic groupoid automorphism bf
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DIRAC SUBMANIFOLDS AND POISSON INVOLUTIONS 405

Bondal's work suggests a simple fact, which was somehow overlooked in the literature: a
submanifold of a Poisson manifold inherits a natural Poisson structure if it can be realized as
the base space of a symplectic subgroupoid of the symplectic groupoid of the Poisson manifold.
A natural question arises as to what these submanifolds are and how they can be characterized.
The first aim of this paper is to answer this question. Such submanifolds will be called Dirac
submanifolds. Symplectic subgroupoids are very simple to describe: they are subgroupoids and
at the same time symplectic submanifolds. In contrast, Dirac submanifolds are not so simple as
we shall see. There is some interesting and rich geometry there, both global and local, which we
believe deserves further study.

Dirac submanifolds are a special case of the submanifolds, on which the algebra of admissible
functions for the pulled-back Dirac structure is comprised of all functions [6,29]. In other
words, the intersection of a Dirac submanifold with the symplectic leavd3 afe symplectic
submanifolds of the leaves. This feature explains the existence of an induced Poisson structure
on a Dirac submanifold. However, not all submanifolds satisfying this property are Dirac
submanifolds. For instance, symplectic leaves (except for the zero pointj2fare not Dirac
submanifolds (see Example 2.17). It is still not clear at the moment how to describe the global
obstruction in general. On the other hand, when the Poisson manifold is symplectic, the Dirac
submanifolds are precisely the symplectic submanifolds. Other examples include cosymplectic
submanifolds and stable loci of Poisson involutions.

The second aim of the paper is to study systematically Poisson involutions and the induced
Poisson structures on stable loci. When the underlying Poisson manifolds are Poisson groups or
more generally Poisson groupoids, there is an effective way of producing Poisson involutions,
namely by means of their infinitesimal invariants: Lie bialgebras, or more generally Lie
bialgebroids. They are called symmetric Poisson groupoids and symmetric Lie bialgebroids. As
we shall see, such a Poisson involution exists in almost every well-known example of Poisson
group or Poisson groupoid, including the standard Poisson group structures on semi-simple Lie
groups, Bruhat—Poisson structures on compact semi-simple Lie groups, and Poisson groupoid
structures arising from dynamicalmatrices of semi-simple Lie algebras. For Poisson groups,
such involutions were also studied by Fernandes [14,15]. It turns out that the induced Poisson
structure on the stable locgsof the Poisson involution of a symmetric Poisson group is closely
connected with Poisson symmetric spaces. In particular, we prove that the identity connected
component ofQ) is always a Poisson symmetric space. As a consequence, we prove that the
space of Stokes matricég, with the Dubrovin Poisson structure is a Poisson symmetric space
for the Poisson grou@™.

The paper is organized as follows. In Section 2, we introduce the definition of Dirac
submanifolds and study their basic properties. Local Dirac submanifolds are also introduced and
their relation with transverse Poisson structures is discussed. Section 3 is devoted to the study of
some further properties. In particular, we study how the modular class of a Dirac submanifold
is related to that of the Poisson manifaltl We also study Poisson group actions on Dirac
submanifolds. Finally we prove that Dirac submanifolds are indeed an infinitesimal version of
the symplectic subgroupoids. In Section 4, we investigate stable loci of Poisson involutions, and
study Poisson involutions on Poisson groupoids by introducing the notion of symmetric Poisson
groupoid. In Section 5, we consider in particular the symmetric Poisson groups and the induced
Poisson structures on stable loci. The connection with Poisson symmetric spaces is discussed.

We remark that one should not confuse the Dirac submanifolds defined here with the Dirac
manifolds of Courant [6,9]. Courant’'s Dirac manifolds are manifolds equipped with a Dirac
structure, which generalize both Poisson and presymplectic manifolds. In earlier versions of this
paper, some other names for what we study here sughsigomanifolds and IR-submanifolds
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406 P. XU

were used, but we feel that neither of these names reflects the complete nature of these objects.
In the end, we decided to call them Dirac submanifolds, which is both short and evocative.

2. Dirac submanifolds

This section is devoted to the definition and study of the general properties of Dirac
submanifolds.

2.1. Definition and properties

Let us first introduce the definition.

DEFINITION 2.1.— A submanifold) of a Poisson manifol@ is called a Dirac submanifold
if the tangent bundle aP along@ admits a vector bundle decomposition:

4) ToP=TQ o Vg

such thatVQL is a Lie subalgebroid df'* P, whereT* P is equipped with the standard cotangent
bundle Lie algebroid structur&y, is called a Dirac complement Q.

Note that the last condition above is equivalent to the conditionitpat 7" P be a coisotropic
submanifold of the tangent Poisson manif@lé’. So alternatively, we have

PROPOSITION 2.2. —A submanifold) C P is a Dirac submanifold if and only if there is
a decompositiorf4) such thatVy, C TP is a coisotropic submanifold of the tangent Poisson
manifoldT" P.

In what follows, we will see that) naturally inherits a Poisson structure. Howev@rjn
general is not a Poisson submanifoldidfFirst we need to introduce some notations.[Bywe
denote the bundle mdf, P — T'() obtained by taking the projection along the decomposition
(4). And we letpr*: T*Q) — T P denote the dual ofr, by considerindl;, P as a subbundle
of T*P. By pr,, we denote the map frodi?(P) to X(Q) naturally induced fronpr, which is
defined bypr, (D) = pr(D|q), YD € X?(P). HereX? denotes the space @fmultivector fields.

We summarize some important properties of Dirac submanifolds in the following

THEOREM 2.3. - Let@ be aDirac submanifold of a Poisson manifo{@, 7). Then

(i) mlg = 7o + 7', whererg € T(A?TQ) andn’ € T'(A?Vg);

(i) m¢ is a Poisson tensor of;

(i) pr*:T*@Q — T*P is a Lie algebroid morphism, where bdlti'Q andT* P are equipped
with the cotangent bundle Lie algebroid structyres

(iv) forany X € X(P),

5) pr, [X, 7] = [pr, X, mq];
(v) for anyx € Q, wg(T;Q) =77 (T P)NT.Q;
(vi) foranyz € Q, wg (T¥Q) is a symplectic subspace of (T P);

(vii) each symplectic leaf @ is the intersection of) with a symplectic leaf oP, which is a
symplectic submanifold of that leaf.

Before proving this theorem, we need two lemmas. The following lemma, which can also
be easily verified directly, follows from the fact that the natural inclusigp — T'P is a Lie
algebroid morphism.
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LEMMA 2.4.— LetQ C P be a submanifold. Assume thiate X%(P) and D’ € X% (P) are
multi-vector fields tangent t@, i.e., D|o € X%(Q) and D’|g € X% (Q). Then

[D, D'llq = [Dlg, D'lq]-

Next is the following:

LEMMA 2.5.— Let@ be a submanifold of a Poisson manifdlf, ). Assume that there is a
vector bundle decompositidhy P = T'Q & Vi, such thatr|o = 7¢ + 7/, whererrg € T'(A?T'Q)
andn’ € I'(A%Vg). Thenn is a Poisson tensor 0.

Proof. —~Write 7/ = 3, X; A Y; where X;,Y; € (V). Now let X;,Y; € X(P) be (local)
extensions ofX;, Y;, and7’ = 3, X; A Vi. Letn” = = — 7’ € X2(P). Clearly#'|o = «’ and
7"|q = mg. Itfollows from [r, 7] = 0 that[z", "] = —2[x",7'] — [#’,7’]. On the other hand, it
is clear by definition thapr, [7”, 7'] = 0 andpr, [#,7'] = 0. Thuspr, [7”, 7] = 0. According
to Lemma 2.4, the latter implies thptg, 7o) = pr, [7”, 7] = 0. This concludes the proof.0

Proof of Theorem 2.3. By deﬁnition,VQL is a Lie subalgebroid of the cotangent Lie algebroid
T*P. By identifying T*Q with VQL, one obtains a Lie algebroid structure B¢, and a Lie
algebroid morphisnp: T*@Q — T* P. Clearly,p = pr*. By pg, we denote the anchor map of the
Lie algebroidT™Q. Thus we havé.pq = 7# ., wherei : TQ — T P is the natural inclusion. It
follows thatpg = preiopg = prom o = prom# . pr*. Hence the bundle mam, : 7*Q — TQ
is skew-symmetric, and therefore defines a bivector figld: T'(A%7'Q) so thatpg = wg. Under
the decomposition (4), we haveTo P = A2TQ & (TQ A Vg) & A*Vg. Itis clear thatrg is
the'(A?T'Q)-part of 7|, under the above decomposition. Sinﬁé(vcj) C TQ, m|g does not
involve any mixed term, i.e., the(7'Q A Vg )-part vanishes. Hence we havk, = mg + 7’ with
7' € [ (A?Vqg). This proves (i).

By Lemma 2.57¢, is indeed a Poisson tensor @h Hence (i) follows. Next we need to show
that the Lie algebroid structure @i*Q is indeed the cotangent Lie algebroid corresponding to
the Poisson structureg. Sinceyp is a Lie algebroid morphismy* = pr induces a morphism
of the (graded) differential algebras, : ('(A*TP),d.p) — ([(A*TQ),dwg). SinceT*P is
the cotangent Lie algebroid, we know th&te = [, -]. To prove the claim, it suffices to show
thatd.q = [, ]. To this end, given anyX € %(Q), choose an extensioN € X(P). Write
7 =n"+ 7 asin the proof of Lemma 2.5 so thalt | = ¢ and7’| € T'(A%?Vy). Then

dugX = (duqpr,)X = (pr,d.p)X =pr,[r, X] =pr,[r" + 7', X] =pr.[r", X] = [rq, X,

where the last step follows from Lemma 2.4. This proves (iii), and therefore (iv) as a
consequence.

Next we prove the relationf, (T;; Q) = =# (T} P) N T,.Q. Sinceiomj = n#.p, it is obvious
that wg(T;Q) C 7#(T; P) N T,Q. Conversely, leb € 7# (T} P) N T,.Q be any vector. Then
v =7#¢ for some¢ € T P. SinceT P =T,Q+ @ V.-, one can writef = & + & such that
& €T,Q* and, € V. SinceVit = o(T;Q), 76 € (7#o0)(T1Q) = mE (T1Q) C T,Q.
Hencen# ¢, = v — n#&, € T, Q. On the other hand, it is clear that'¢; € V.. Hence we have
7#¢; =0 and therefore = 7% ¢, € wg (T7Q). We thus have the relation

T (T7Q) = o (T; P) N T,.Q.

This implies that the symplectic leaves @fare the intersection of the symplectic leavesof
with Q.

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE



408 P. XU
Finally, let D, = wg(T;Q) andD/, = '# (T Q). Itis simple to see that

" (T*P)=D, ® D",

and bothmg () € A2D, andr’(z) € A2D), are nondegenerate. Thag (z)|;! @ /()| is

the inverse ofr(xr) when restricted ta™ (7 P). It follows thatwg(T;Q) is indeed a symplectic

subspace of# (T P). This implies that any symplectic leaf 6f is a symplectic submanifold
of a symplectic leaf of?. Since (vii) follows immediately from (vi), this concludes our proof of
the theorem. O

As an immediate consequence, we have

COROLLARY 2.6.— Assume thaf) is a Dirac submanifold of a Poisson manifaltl Then
we have
(i) there is a morphism on the level of Poisson cohomology

pr.: Hr(P) — Hz (Q);

(i) if X € X(P) is a vector field such thaX' | € I'(Vy), thenpr, [ X, 7] = 0.

Remark2.7. —
(i) Although we emphasize the role ¢f in Definition 2.1, indeed/; should be considered
as “part of the structure”. In other words, a Dirac submanifold should really be a
pair (Q,Vg) since many constructions depend on the choic&f For instance, the
morphismpr, in Corollary 2.6 in general depends on the choic&gf

(if) For a given Dirac submanifold, is its Dirac compleméj unique? If not, what is the
relation between different choices bf,? Let Q be a Dirac submanifold with a Dirac
complement/y and f : P — P a Poisson diffeomorphism which fixég It is clear that
f+«Vq is also a Dirac complement 9. It would be interesting to study the classification
of Dirac complements to a fixed Dirac submanifé)dup to such an equivalence. Note
that if there is a Hamiltonian diffeomorphism which fix€sand transports one Dirac
complementinto another, theirinduced morphigmsin Corollary 2.6 must be identical.

(i) Note that, according to Theorem 2.3(vii), the induced Poisson structure on a Dirac
submanifold is always independent of the choice of a Dirac complement. Indeed, any
submanifold@ whose intersections with the symplectic leavesiofare symplectic
submanifolds of the leaves admits a potential Poisson tensor, which, however, might
be discontinuous. This is simply the bivector field obtained by taking the inverse of
the restriction of the leafwise symplectic form €x In terms of the language of Dirac
structures, such submanifolds correspond precisely to those for which the pulled back
Dirac structure [6] of the one corresponding to the graph of the Poisson teng®ison
a bivector on each tangent space, which might be discontinuous. And even when it is
smooth, so that one obtains a Poisson structur@ ahis submanifold) may still not be
a Dirac submanifold. See Example 2.17 below.

We also note that Dirac submanifolds are a special case of the situation in [29], where
general Poisson reduction was studied. This provides another route to obtain the Poisson
structures on these submanifolds.

The next proposition gives an alternate definition of Dirac submanifolds, which is presumably
easier to check in practice.
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PROPOSITION 2.8. — A submanifold) of a Poisson manifoldP, 7) is a Dirac submanifold
if the following conditions are all satisfied
(i) there is a vector bundle decompositidh P = T'Q @ Vg so thatr|g = 7q + 7', where
g € T(A*TQ) andn’ € T(A?*Vg);
(i) foranyX’eTI'(Vgy), there is an extensioX € X(P) of X’ such thatpr, [X, 7] = 0.

Proof. —From (i), we know thair is a Poisson tensor ai, and thereford™* () carries a Lie
algebroid structure. HendéQl, which can be naturally identified with*Q), is a Lie algebroid.
It remains to show that this Lie algebroid structurelgy makes it into a Lie subalgebroid of
T*P. To this end, it suffices to prove Eq. (5) for any vector fiéld= X(P).

If X € X(P) is such thatX|g is tangent ta)), Eq. (5) follows from Lemma 2.4. On the other
hand, assume thaf'|g € I'(Vy). Thenpr, [ X, 7] = pr,[X, 7" + 7'] = pr,[X, 7], wheren”
and7’ are the bivector fields introduced in the proof of Lemma 2.5. Sitfdg = 7 is tangent
to @, [X,7"]|q depends only oX |. From assumption (ii), we thus hape, [X, 7] = 0. This
concludes the proof. O

Remark2.9. — The conditions (i) and (ii) in Proposition 2.8 can be replaced, respectively, by
the following equivalent conditions:

(i) n# (Vg) CTQ;

(i) for any = € @, there is a set of local vector fields, ..., X; € X(P) aroundz such
that X;|o € I'(Vy), i = 1,...,k, constitute a fiberwise basis féf, and satisfy the property
pr.[X;,]=0,i=1,...,k.

Recall that the cosymplectic submanifolds of a Poisson manifadde those submanifold3
which are characterized by the two properties [34]:
() @ intersects each symplectic leaf Bftransversely;
(i) at each point ofp, the intersection of'@ with the tangent space of the symplectic leaf is
a symplectic subspace.

LEMMA 2.10.— A submanifold@ of a Poisson manifold P,7) is cosymplectic if and
only if it satisfies the conditio(i) in Proposition2.8 with the property thatr’ € T'(A2Vy) is
nondegenerate.

Proof. —If @ is cosymplectic, thenT, P = T,Q @® 7*(T,Q"), VYr € Q [34]. Let
Vo = 7#(T'Q1). It is simple to see thaf) is a Dirac submanifold witi, being the Dirac
complement.

Conversely, assume thét is a submanifold which satisfies the condition (i) as in Proposi-
tion 2.8 with the property that’ € T'(A%V{,) is non-degenerate. For anye @, it is clear that
7 (T,Q') = n'#(T,Q+) C V,. Sincen’ is non-degenerate;” : T,Q+ — V,, is an isomor-
phism. Thus we hav¥, = 77 (T,,Q"). It follows thatT,, P = T,,Q @ n* (T,Q"). HenceQ is
cosymplectic. O

COROLLARY 2.11. - Cosymplectic submanifolds are Dirac submanifolds.

Proof. —Assume that) is a cosymplectic submanifold. L&t = 7# (T'Q~). According to
Lemma 2.10, it suffices to verify the last condition (ii) in Proposition 2.8. Cle&(lyy) is
spanned by the vector fieldsXs|o where f,g € C*°(P) and f is constant along) (here
and as well as in the sequéf; denotes the Hamiltonian vector field ¢f). Now clearly
pr.[g9Xs, 7] =pr.(Xs A X,) =0, and therefore the condition (ii) in Proposition 2.8 is satisfied.
This concludes the proof.o

Remark2.12. — Note that the Dirac complement to a cosymplectic submanifold must be
unique. This can be seen as follows. For a Dirac submanifold with a Dirac compléigent
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any other Dirac complemem’é must correspond to a bundle map Vy — T'Q such that

Vi = {¢(v) + v | Vv € Vg}. Itis simple to see that the condition (i) in Remark 2.9 implies
thatyo(7')# = 0. In particular, ifQ is cosymplecticy» must be zero s&7, is unique. However,

in general, it is not clear how to elaborate the condition (ii) of Proposition 2.8 in order to give a
clean description of.

The following proposition gives a useful characterization of the Dirac submanifolds.

PROPOSITION 2.13. — Assume that there is a set of functiofis..., fx € C°°(P) which
defines a coordinate system @n Then( is a Dirac submanifold if

(i) the Hamiltonian vector fiel(y,, Vi, is tangent taQ);

(i) d{fi, f;} =0 (mod df;) alongQ.

Proof. —Let Vo = {v € TP |vf; =0, Vi =1,...,k}. Clearly V is a vector bundle such
thatTo P =TQ & Vyp. Moreovervcj =span{df;|qg, i=1,...,k}. Thus from (i) it follows that
7# (Vg ) € TQ. Combining with (i), we see that- is indeed a Lie subalgebroid @f* P. Thus
Q is a Dirac submanifold. O

2.2. Examples

Now we will discuss some examples of Dirac submanifolds. By Corollary 2.11, we already
know that cosymplectic submanifolds are Dirac submanifolds. The following gives a list of other
examples.

Example2.14. — Assume tha? is a symplectic manifold. If) is a Dirac submanifold, the®
must be a symplectic submanifold according to Theorem 2.3 (vii). On the other hand, symplectic
submanifolds are automatically Dirac submanifolds since they are cosymplectic. In other words,
the Dirac submanifolds of a symplectic manifold are precisely the symplectic submanifolds.

Another extreme case is the following:

Example2.15.— If z is a point where the Poisson tensor vanishes, thehis a Dirac
submanifold.

Example2.16. — LetP = R" be equipped with a constant Poisson structure. THem a
regular Poisson manifold, where the symplectic leaves are the affine subspacgesHere S
is the symplectic leaf through which is also a linear subspace Rf. Assume that an affine
subspacé€) = u + V, whereV is a linear subspace @&", is a Dirac submanifold. Lel/ be its
Dirac complement at.. We have a vector space decompositish= 1V @ U. Theorem 2.3(i)
implies thatP = V x U as a Poisson manifold product, whéfeand U are equipped with
the constant Poisson structureg(u) and«’(u) respectively. This condition is equivalent to
requiring that the intersection &f with .S be a symplectic subspace $f Conversely, given any
such linear subspadé, one can decompoge= "V x U as a product of Poisson manifolds with
constant Poisson structures. Bpre=V x {u}, by takingVy = @ x U to be constant, one easily
sees that the conditions in Proposition 2.8 are indeed satisfied. ideisca Dirac submanifold.
In conclusion, an affine Dirac submanifold is the translate of a symplectic linear subspgce of

The following example, which indicates that being a Dirac submanifold is indeed a global
property, was pointed out to the author by Weinstein.

Example2.17.— LetP = M x C, where eachi/-slice is a Poisson submanifold. Namely the
Poisson tensor at each point t) € M x C'is of the formr (x,t) = m(x), wherem (x), t € C'is
a family of t-dependent Poisson structures/dn Consider a particulat/-slice @ = M x {to}
which is a Poisson submanifold. We will investigate wligbecomes a Dirac submanifold.
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Since we are only concerned with a small neighborhooi @i C, we may identifyC' with
R™ by choosing a local coordinate systém,...,t,). If @ is a Dirac submanifold, then the
Dirac complement, must be of the form:

3]
Vstpan{a—ti+Xi|i=1,...,n},

whereX;, i =1,...,n, are vector fields ord/. Clearly the condition (i) in Proposition 2.8 is
satisfied automatically. Thus according to Remark 2.9¢ftw be a Dirac submanifold, it suffices
thatpr, [~ + X;, m(z)] =0, fori=1,...,n, which is equivalent to

O ()
ot;

(6) :—[Xi,wto(:c)}, 1=1,...,n.

t=to

This means tha%]t:to is a coboundary with respect to the Poisson cohomology operator
dr, = [mt,,]. We thus conclude that

@ is a Dirac submanifold if and only if the mafx 7;,C — H?rto (M) :v — [v(m)] vanishes

Note thatv(,) is always &2-cocycle with respect td,, because of the identityr;, 7] = 0.

As a special case, let us consider the situation wher&/adllices are symplectic leaves. Then
one obtains a map : C — H?(M) by taking the symplectic class of the fiber. On the other
hand, it is known thaHZrto (M) is canonically isomorphic té72(M). By identifying these two
cohomology groups, we have

(7) f=—px.

To prove this equality, let; denote the leafwise symplectic forms, anduét TM — T* M
andwt# :T*M — T M be the bundle maps induced byandr;, respectively. It follows from the
equationv?orf = id that(v(m))# = —7 o (v(w;))Porr], foranyw € T, C. Eq. (7) thus follows
immediately. Hence we conclude that a symplectic leak {t,} is a Dirac submanifold if and
only if ¢y is a critical point of the magp. For instance, the symplectic leaves in the Lie—Poisson
su(2) can never be Dirac submanifolds except for the zero point.

Example2.18.— LetP = g* be a Lie—Poisson structure corresponding to a Lie alggbra
Consider an affine subspae= 1 + V. Assume that) is a Dirac submanifold with constant
Dirac complementlp. This amounts to saying that we have a decomposigica [ ® m
such thatV = mt and Vg = @ x m as a vector bundle ovep. Let {ei,...,e;} be a basis
of [ and {m4,...,m:} a basis ofm. Then {ey,...,e;,m1,...,m;} is a basis ofg. Now
let {\1,...,\;,71,...,7:} denote the corresponding linear coordinatesgbnTheir Poisson
brackets are given by

{)\1‘, /\j} = Z(afj/\k + b?j"’k), {)\u Tj} = Z(Ci‘cj)‘k + di»chk),
k k

wherea};,bf;, cf;, d}; are constants. Itis clear théd,, ..., \;} is a set of coordinate functions

on @ such thatV; is spanned byl);, i = 1,..., k. Sinced{\i, \;} = >, (af;d\g + b dry.),
the condition (ii) of Proposition 2.13 implies thlaf;- =0. On the other hand, we have

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE



412 P. XU

X,

i

Q= Z<{/\iv/\j}% + {/\“Tj}airj) ’

j J Q

0 0
= <Z{)\1, )\J}a—)\J + Z(ij)\k + d?jﬂk) (r“)_?°7> ‘Q,
J jk

wherepy, = (1), k=1,...,t. It thus follows thatX,, is tangent taQ iff cfj =0,Yj, k and
>k d¥ip = 0,Yj. The latter is equivalent tdad; 1, m;) = 0. Therefore we conclude that
g = [ & m must be a reductive decomposition (i.eis a Lie subalgebra anfl,m] C m) and
ad;p € m*. Hence an affine Dirac submanifold gf is the translate of the orthogonal mfin
a reductive decomposition= [ ® m, by an element. such thafl, m] C ker x. In this case, the
induced Poisson structure can be identified with the Lie—Poisson structlire on

2.3. Local Dirac submanifolds

We now introduce local Dirac submanifolds.

DEFINITION 2.19.— A submanifold) of a Poisson manifoldP is called a local Dirac
submanifold if at each point @ there is an open neighborhood which is a Dirac submanifold.

Immediately we have

PROPOSITION 2.20. —-A local Dirac submanifold naturally carries an induced Poisson
structure.

Example2.21. — IfQ is a symplectic leaf of?, by Weinstein’s splitting theorem [34], locally
P =@ x N as a product Poisson manifold. It thus follows thhis a local Dirac submanifold.

The following proposition gives a characterization of local Dirac submanifolds.

PrRoOPOSITION 2.22. — A submanifold) of a Poisson manifol@ is a local Dirac submanifold
if and only if there exist local coordinatés, ..., z;,y1,...,y:) of P at each poingy € @ such
that@ is defined byy; = - -- = y;, = 0 and the Poisson brackets of coordinate functions satisfy:

Nij(2,0) =0, VI<i<l, 1<j<t;

(8) 8%”“'(;C,O):o, V1<i, j<I, 1<k<t,
Oy

wherep;; (z,y) = {zi,z;}, V1 <i, j <I,and);;(z,y) = {x;,y;}, V1 <i <, 1 <5<t

Proof. —Assume that) is a local Dirac submanifold. For any poigte @, there exists an
open neighborhool of ¢ in P such that/ N Q is a Dirac submanifold. Let;;~¢ be its Dirac
complement. By shrinking it to a smaller neighborhood if necessary, one may always choose
local coordinate$z1, ..., x;, y1,--.,y:) Of U such thaty N Q is defined byy; =--- =4, =0
andVyng is spanned b){a%i |i=1,...,t}. Inother words{zy,...,2;} is a set of coordinates

on() such thaﬁ/,}ﬂQ is spanned bydz; |i=1,...,l}. Then

3%‘;‘
& oYk

d{zi,zj}q =

) )
(z,0)dyx (moddz;); Xoilo = ijxij (x,o)a—yj (mod 8%).

It thus follows that\;; (z,0) =0, 1 <i <1, 1 <j < tand%2 (2,0) =0,1<i,j <I, 1<k <t.
Conversely, if such local coordinates exist in an open neighborbbod ¢ in P, one can

verify directly thatU N @ is a Dirac submanifold by reversing the argument above.
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Remark2.23. — It would be interesting to classify the Dirac complements of a local Dirac
submanifold® up to a local Poisson diffeomorphism fixirdg

The following result reveals a connection between local Dirac submanifolds and transverse
Poisson structures [34].

PropPoOSITION 2.24. —If @ is a local Dirac submanifold which is a cross section of a
symplectic leafS at a pointq (i.e., Q@ has complementary dimension $oand intersectsS at
a single pointg transversely, then the induced Poisson structure @nin a neighborhood of,
is isomorphic to the transverse Poisson structure.

Conversely, if@ is a cross section of a symplectic le§ifat a pointg, then@ is a Dirac
submanifold in a neighborhood @f and the induced Poisson structure is isomorphic to the
transverse Poisson structure.

Proof. —From Weinstein’s splitting theorem [34], it follows that a cross section of a symplectic
leaf S must be a Dirac submanifold in a small neighborhood of the intersection point. It remains
to show that the induced Poisson structurepas a Dirac submanifold is indeed isomorphic to
the transverse Poisson structure.

We choose local coordinates as in the proof of Proposition 2.22. Xhuare all tangent to)
fori=1,...,1. By definition, the transverse Poisson structuréis z; }|o = ¢:;(z,0), which
is precisely the induced Poisson structureipas a Dirac submanifold. O

An immediate consequence, by combining with Example 2.18, is the following theorem of
Molino [30].

COROLLARY 2.25.—-Let 1 € g* and g, be the isotropy Lie algebra gt. If g admits a
reductive decompositiong = g, ® m,, then the transverse Poisson structure iatto the
symplectic leafG - 1 (i.e., the coadjoint orbit through:) is isomorphic to the Lie—Poisson
structure ongy,.

3. Propertiesof Dirac submanifolds
This section is devoted to the further study of properties of Dirac submanifolds.
3.1. Relativemodular vector fields

First we want to see how the modular class of a Dirac submanifaftiiefrelated to that of.
We start with the following:

LEMMA 3.1.— Let Q@ be a Dirac submanifold of a Poisson manifold with Dirac
complemeni,. Assume thaf € C>°(P) satisfies the propertyf|q € ch. Denote byy, the
flow generated by the Hamiltonian vector fiélg. Then botil’'Q andV, (hencel'Q+ andVQL
are stable undeyp;.

Proof. It is clear thatX is tangent toQ), and thereforéX ;,Y]|q is well-defined for any
Y eT(TgP). fY eT(TQ), clearly[X,Y]|q € T(T'Q). HenceT'Q is stable undep,.

Now assume that” € I'(Vy). LetY € X(P) be any of its extensions. By the graded Jacobi
identity, we have

[Xf’i;] = [[T‘—vf]v?} = [[fai;]’ﬂ—} - [[va]vf]

Now [[.fv i‘}]a 7T] = _[?(f)vﬂ'] = _D’;(f)vﬂ'n +ﬁ-/] = _[?(f)vﬂ'n] - [i}(f)vﬁ'l]’ wherer” and7’
are bivector fields o as in the proof of Lemma 2.5, i.et) | = 7o and7’ € T'(A%Vy). Since
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Y (f)lo=Y(f)lo =0, itis obvious that
Y(£).7"lle =¥ (f),mq] = 0.
Thus][f,Y],7]|q € I'(Vy). On the other hand, according to Eq. (5), we have
pr,[Y, 7] = [pr. Y, mo] = 0.
Therefore, one can writd”, 7| = 3_ Z; A Z] with Z, e T(Vy). Then
(V7). flle = (2412} - ZUNZ:) =3 Zi(f)Z, € T(Va),

sinceZ/(f) = 0 by assumption. This shows that , Y]|o = [X;,Y]|q € ['(Vo), which implies
thatVy, is stable under the flow,. O

We are now ready to introduce the relative modular classfY.etT'(A*PT'Q~+) be a nonzero
section, which we always assume exists. Otherwise, one needs to consider densities as in [36].
Foranyf € C*(Q), let f e C>(P) be an extension of satisfying the propert;if|Q € V(j.
According to Lemma 3.1, the Hamiltonian flow (Xff preserves both vector bundlg&) and
Vg, hence it preserveEQ+. It thus follows thatLXfQ’ is a section of\**?T'Q+, and therefore
(Lx ;') /9" is a well-defined function o). In this way, one obtains a linear operator

vp: C°(Q) — C(Q), f—>(LXfQ/)/Q'.

Althoughv,. appears to be a second-order operator, a simple computation, using the property that
Xf|Q is tangent ta), shows that/,. is a derivation:

VT(fg):er(g)+er(f)7 vf’gecoo(Q)’

and hence a vector field d@p; we call it therelative modular vector fieldorresponding t6’.

Let (z1,...,x1,41,..--,y:) be the local coordinates as in Proposition 2.22. Take
Q' =dx; A --- Adx;. Then its relative modular vector field is
O\ 8
9 ”
©) Z (?yj 81:1

Remark3.2. — From this, one sees that, in generalmay depend on the choice of a Dirac
complement.

ProPOSITION 3.3. — v, is a Poisson vector field with respecttg. For different choices of
', the corresponding relative modular vector fielgsdiffer by a Hamiltonian vector field.

As a consequencgy,] is a well defined class in the Poisson cohomolﬁ@y} (@), which will
be calledthe relative modular classf the Dirac submanifold). The proof of Proposition 3.3
follows from the lemma below.

Choose a nonzero sectiél, € F(AtoPVQl) =~ ['(A*PT*Q), which we again assume exists.
ThenQ = Qg A QY € T(APT*P|q) is a nonzero section. Exteritito a volume form onP (at
least locally along the submanifolgl), which will be denoted by the same symnIBy vp and
vg, we denote the modular vector fields of the Poisson manitBlésid ) corresponding t6?
and()q, respectively.
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LEMMA 3.4.—The modular vector fields are related by
(10) Vp =PI, Vp — VQ.

Proof. -V f € C~(Q), let f € C>(P) be an extension off satisfying the property
df|Q S VQJ‘ ThenLXfQ|Q = I/p(f)Q|Q = (pl"* I/p)(f)Q|Q, andLXf.QQ|Q = VQ(f)QQ. From
the derivation IaV\LXf.Q = (LXf.QQ) ANY + Qg A LXfQ’, it follows that

(pr,vp)(f) =vo(f) + v (f)-

Eq. (10) thus follows. O
Another consequence, besides Proposition 3.3, is the following:

PropPosITION 3.5. —The modular classes of the Poisson structures?oand () are related
by

(11) pr.[vp] — [vq] = [,
wherepr, : H2(P) — Hy (Q) is the morphism of Corollarg.6.

Remark3.6. — It would be interesting to see how other characteristic classes [7,5 ol
@ are related, and in particular, how to descrilie[Cy(P)] — [Cx(Q)] € H;(Q) for other
characteristic class,.

3.2. Poisson actions

Next we consider Poisson group actions on Dirac submanifolds. As we shall see below, Dirac
submanifolds behave well under Poisson group actions, which include the usual Hamiltonian
actions as a special case.

THEOREM 3.7.— Assume thatP, r) is a Poisson manifold which admits a Poisson action of
a connected Poisson grodp. Assume thaf) is a Dirac submanifold stable under tlié¢-action.
Then the action of7 on @ is also a Poisson action. Moreover, Jf: P — G* is a momentum
map, then/|g : Q — G* is a momentum map of th@-action onQ.

Proof. —Let up: T*P — g* andug : T*Q — g* be the linear morphisms dual to the infini-
tesimalg-actions onP and @, respectively. Since the infinitesimglaction onQ: g — ¥(Q)
is the composition of the infinitesimag-action on P:g — X(P) with the projection
pr,: X(P) — %(Q), it follows that g = ppopr*, wherepr*: 7*Q — T*P is the dual of the
projectionpr: T P — T'Q). Sincepr™ is a Lie algebroid morphism according to Theorem 2.3(iii),
it follows immediately from Proposition 6.1 in [38] that tli¢-action on@ is also a Poisson ac-
tion.

Assume that/ : P — G* is a momentum map for the PoissGraction [24]. By definition, for
any¢ e g, n# (J*¢!) = €, whereg! € Q1(G*) is the left invariant one-form correspondinggp
and¢ e X(P) is the vector field onP generated by. Thus we haver, n# (J*¢!) = £ sinceé
is tangent taQ). On the other hand, it is clear that, 77 (J*¢!) = wg(J*gl). This shows that
J|g:@Q — G* isindeed a momentum map for the Poisgé#action onQ). O

3.3. Symplectic subgroupoids

Finally we consider symplectic groupoids of Dirac submanifolds. As we shall see below, Dirac
submanifolds are indeed an infinitesimal version of symplectic subgroupoids: the base space of
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a symplectic subgroupoid of a symplectic groupoid is a Dirac submanifold of the base Poisson
manifold of the groupoid. And conversely, this property can serve to characterize symplectic
subgroupoids of symplectic groupoids.

THEOREM 3.8.— If TV=2(Q is a symplectic subgroupoid of a symplectic groupoid
('=P,a,p), then@ is a Dirac submanifold ofP. Conversely, ifP is an integrable Pois-
son manifold with symplectic groupoldand @ is a Dirac submanifold whose corresponding
cotangent Lie algebroid™(Q integrates to a Lie subgroupoild of I, thenI” is a symplectic
subgroupoid.

Proof. —Assume thatI” = @ is a symplectic subgroupoid of a symplectic groupoid
(' = P,a, ). By w andw’ we denote the symplectic forms @handI” respectively, and byl
and A’, we denote their corresponding Lie algebroids. Théns a Lie subalgebroid ofl. As
vector bundlesd = T'3T" (the subbundle of the tangent bundlelbalong P consisting of vec-
tors tangent to the-fibers) andA’ = TS5, and the Lie algebroid morphisdf — A is simply
the inclusion7 3T — TET. Itis well known [5] thatw® : T3T — T* P and(w')?: TST" — T*Q
are isomorphisms of Lie algebroids, wh&réP andT*(Q) are equipped with the cotangent Lie
algebroids corresponding to the induced Poisson structures. Thus one obtains a Lie algebroid
morphismy : T*Q — T* P so that the following diagram

Tgr — =TT
(12) (w/)bl lwb
T*Q — > TP

commutes. In particular(7T*Q) is a Lie subalgebroid of* P. In what follows, we will show
thaty*.i is the identity map, where: T'Q) — T' P is the inclusion.

Let £ € T*Q be any covector. Assume thgt= (w')’u for somew € T§T'. Using the
commuting diagram (12), we have for an¥ T..Q,

((i*ep)€,v) = (p€,v) = {p(w) u,v) = (wPu,v) = w(u,v) =W (u,v) = (W) u,v) = (£ ).

Thereforei*.¢ = id, or equivalentlyp*.i = id. Let Vy = ker ¢*, which is a subbundle dfg P.
ThenTo P =TQ & V. In fact VQL =o(T*Q), soVQL is a Lie subalgebroid of * P. HenceQ
is a Dirac submanifold.

Conversely, assume th@tis a Dirac submanifold of, andyp = pr*: T*Q — T*P is the Lie
algebroid morphism as in Theorem 2.3(iii). U€tC I" be a Lie subgroupoid integrating the Lie
subalgebroid(T*Q). For anyz € Q, we havel,I' =T, P& T2T andT, IV =T, Q & TSTY. By
identifying 7T with 77 P via w® as above, one obtains a decomposifioi = 7, P & T, P,
under which the symplectic form, € A?T;T takes the form:

(13) (2 o)

Now T, P =T,Q ®V, andT P =T,Q- @V, =V ® T Q. Thus
T.T=T,QaV, eV, aT!Q.
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Itis clear that under this decompositi@pl’ corresponds to the subspaEg) & 7Q. Thus the
restriction ofw, to the subspacg,I" has the form:

(14) (_OI WQI(:C)),

which is clearly non-degenerate. It follows immediately that the pull back of the symplectic form
w is non-degenerate along the identity sectipnTo show its non-degeneracy at every point of
T, it suffices to show that through each pointldf there exists a Lagrangian (local) bisection

S of I' such thatS|q is a bisection of”. This is true since any closed one-form @rextends
locally to a closed one-formoR. O

4. Poisson involutions

This section is devoted to the study on a special class of Dirac submanifolds arising as the
stable locus of a Poisson involution. In particular, we discuss Poisson involutions on Poisson
groupoids as well as on Poisson groups. As we will see, such involutions often exist. Examples
include the standard Poisson group structures on semi-simple Lie groups, Bruhat Poisson
structures on compact semi-simple Lie groups, and Poisson groupoids associated with dynamical
r-matrices of semi-simple Lie algebras.

4.1. Stablelocus of a Poisson involution

Recall that a Poisson involution on a Poisson maniflds a Poisson diffeomorphism
®: P — P such thatb? = id. An important class of Dirac manifolds arises as follows.

PROPOSITION 4.1. —Let ®: P — P be a Poisson involution. Then its stable loa@sis a
Dirac submanifold.

Proof. —It is well known that@ is a smooth manifold. For any € @, since the linear mor-
phism®., : T, P — T, P is an involution, its eigenvalues are eithet or —1. Let V, denote the
(—1)-eigenspace 0., andVy =, Vz- ClearlyT,Q coincides with theé+1)-eigenspace of
®,,andT, P =T,Q & V,. Sinced..m = , itis clear thatr|o = mg + 7', whererg € T'(A?TQ)
andn’ € I'(A?Vg). It remains to verify the condition (i) of Proposition 2.8. For this purpose,
note that any vector fiel on P can be decomposed 86= X+ + X, where®, X+ = X+
and®, X~ =—X". Indeed,

(15) XtT==(X+,X) and X =—(X - &,X).

N —
N —

It thus suffices to prove thatr, [X —, ] = 0. This is obvious since
D, [ X 7 =[P X, Puw| = —[X ", 7). O

As a consequence, the stable locus of a Poisson involution carries a natural Poisson structure.
This observation was hidden in the work of Bondal [4] and Boalch [2] in their study of the
Poisson structures on the space of Stokes matrices. On the other hand, an algebraic version of
this fact recently appeared in the work of Fernandes and Vanhaecke [17]. Below we give an
explicit description of such a Poisson tensor.
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PROPOSITION 4.2. —Let Q be the stable locus of a Poisson involutibn P — P. Assume
that the Poisson tensaron P ism =), X; AY;, whereX; andY; are vector fields oi. Then
the Poisson tensarg on Q is given byrg = >, X;t AY;"|o, whereX;" andY," are defined
by Eq.(15).

As a consequence of Theorem 3.8, we have the following

COROLLARY 4.3.—If Q) is the stable locus of a Poisson involution on an integrable Poisson
manifold P, then(@ is always an integrable Poisson manifold itself.

Proof. —Assume that) is the stable locus of a Poisson involutién P — P. LetI" be ana-
connected and simply connected symplectic groupoid.dfo the Poisson involutiot : P — P,
there corresponds an involutive symplectic groupoid automorptisin— I'. Then the stable
locus of®, which is a smooth manifold, is a symplectic subgroupoifl @ftegratingl. O

4.2. Poisson involutions on Poisson groupoids

For Poisson groupoids, there is an effective way of producing Poisson involutions. This is via
the so called symmetric Poisson groupoids. A special case of these, namely, symmetric Poisson
groups and their infinitesimal version, symmetric Lie bialgebras, were studied by Fernandes [14,
15]. 2

DEFINITION 4.4.—

(i) A symmetric Poisson groupoid consists of a pdit ®), wherel is a Poisson groupoid
and®:T' — T is a groupoid anti-morphism which is also a Poisson involution.

(i) A symmetric Lie bialgebroid consists of a tripled, A*, ¢), where (A, A*) is a Lie
bialgebroid andy: A — A is an involutive Lie algebroid anti-morphism such that
p*: A* — A* is a Lie algebroid morphism.

THEOREM 4.5. — Under the assumption that the relevant Lie algebroid be integrable, there
is a one-to-one correspondence betweesimply connected symmetric Poisson groupoids and
symmetric Lie bialgebroids.

Proof. —Assume that(A, A*,¢) is a symmetric Lie bialgebroid. LeE' be an «-simply
connected Poisson groupoid corresponding to the Lie bialgebrpid*). It is known that any
Lie algebroid isomorphism integrates to a Lie groupoid isomorphisnufeimply connected
Lie groupoids. Hence the Lie algebroid involutiph= —: A — A integrates to a Lie groupoid
involution®’:T" — T'. By assumption(¢’)* = (—¢)* = —¢* is a Lie algebroid anti-morphism.
By the Poisson groupoid duality [27,28], is an anti-Poisson map. Let I" — I" be the groupoid
inversion:7(g) = g~ !, Vg € T, which is clearly a groupoid anti-morphism and an anti-Poisson
map. Setd = &’.7. Then® is an integration of, which possesses all the required properties.

Conversely, if T, @) is a symmetric Poisson groupoid, it is clear that A*, ) is a symmetric
Lie bialgebroid, where>: A — A is the derivative ofb. O

Remark4.6. — Note that the roles offi and A* can be switched for a symmetric Lie
bialgebroid. Namely, if A, A*,¢) is a symmetric Lie bialgebroid, thefd*, A, —¢*) is also
a symmetric Lie bialgebroid. This means that from a symmetric Lie bialgebroid one can in fact
construct a pair of Poisson involutions: oneloand the other on its dual Poisson groupbid
(provided that botd and A* are integrable).

2However note that our definition here is the opposite to that in [14,15]. We requirebthat a group(oid) anti-
morphism and a Poisson map, while in [14,#5]s required to be a group morphism and an anti-Poisson map. To get
from one notion to the other, one needs to compbs&ith the group(oid) inversion.
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Theorem 4.5 indicates that a useful source of producing Poisson involutions on Poisson
groupoids is to construct symmetric Lie bialgebroids. Next we will consider the case of
coboundary Lie bialgebroids [22], namely those Lie bialgebradidsA*) where the Lie
algebroid structure on the dudl is generated by an-matrix A € I'(A2A) with the property
[X,[A,A]] =0, VX eT'(A).

PROPOSITION 4.7.—A coboundary Lie bialgebroiflA, A*) with anr-matrix A € T'(A2A) is
a symmetric Lie bialgebroid if there is an involutive Lie algebroid anti-morphism — A such
thatpA = —A.

Proof. —Let d.:T'(A*A) — T'(A**t1A) be the exterior differential induced from the Lie
algebroid structure omd*. Then for any X € I'(A*A), d.X = [A,X]. Hence assuming
that pA = —A, (pod )X = p[A, X] = —[pA, pX] = [A, 0 X] = (dxop) X, which implies that
pody = dwop. Thereforep* : A* — A* is a Lie algebroid morphism. O

4.3. Symmetric Courant algebroids

A nice way of understanding a Lie bialgebrdid, A*) is via its doubleE = A & A*, which
is a Courant algebroid [20]. Roughly speaking, a Courant algebroid is a vector bindlé/
equipped with a non-degenerate symmetric bilinear form) of signature(n,n) on the fibers,
a bundle map: E — TM, and a brackef , -] onT'(E), which satisfy compatibility conditions
resembling those of a Lie algebroid up to a homotopy. Lie bialgebroids correspond to splittable
Courant algebroids, namely those which admit two transversal Dirac structures. We refer the
reader to [20] for details.

DEFINITION 4.8.—
(i) A symmetric Courant algebroid is a Courant algebr@fd (-, ), o, [-,-]) equipped with
an involutive anti-morphisny: £ — F, i.e.,

poX = —fxop; (xe1,xez) =—(e1,e2); and xler,ez] = —[xe1, xea]

foranye;,es € I'(E), wheref : M — M is the base map of;
(i) A symmetric splittable Courant algebroid is a symmetric Courant algel§#@ic; ), such
that £ admits a pair ofy-stable transversal Dirac structures.

THEOREM 4.9. — There is a one-to-one correspondence between symmetric Lie bialgebroids
and symmetric splittable Courant algebroids.

Proof. —Assume that A, A*, ¢) is a symmetric Lie bialgebroid. Lét/ denote the base of the
Lie bialgebroid(A, A*), anda, a. the anchors oA and A* respectively. Denote, by: M — M,
the involution on the base manifold correspondingtd heny* is a bundle map over the same
base mapf: M — M sincef is an involution. LetEl = A & A* denote the double of the Lie
bialgebroid, which is a Courant algebroid [20] over the base manifb|evith anchop = a + a..
Definex: E — FE by

(16) XX+ =X —p"¢, VX €A, and{e A"|,.

Clearly y is an involutive bundle map over the base nfapl/ — M. It is also simple to check
that x anti-commutes with the anchor diy, and(xe1, xe2) = —(e1, e2) for anyey, es € T'(E).
It remains to check thdjer, xez] = —[e1, 2] for anyeq, es € T'(E). To this end, it suffices to
show thafx X, x¢] = —[X,¢] forany X € T'(A) and¢ € T'(A*). First we will need the following
identities:
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a7 LpepX = (L X);
(18) Lox¢™§ = —¢"(Lx§).
Note that for any; € T'(A*),

(LorepX,m) = (a:0") (0 X, m) — (¢ X, [¢"E,n])
fula&){pX,m) — (0 X, [p"& 7))
= (a&)(X, ") — (X, ¢"[¢" &)
= (@)X, ¢™n) — (X, [§, 0™ n])
= (LeX, 9™ n)
= (p(LeX),m).
Eq. (17) thus follows. Eg. (18) can be proved similarly. Now

XX, x&] = —[eX, ¢*¢]

1 1
= LyeepX — 5d(0"6,0X) = Lox"é + 5d(0"€,0X)  (by Egs. (17)-(18)

= (LX) — 2da{6, X) +9° (Lx€) - 5" d{E, X).

On the other hand,
X =x|(~rex+ gaex) ) + (Lxe- Jate 1) )]

~plLeX) + (e, X) — 0" (Lx€) + 50°dE, X).

Thus[x X, x¢] = —x[X, ¢].
Conversely, assume thét is a splittable Courant algebroid such thiat= A  A* for a Lie

bialgebroid(4, A*), andx : E — F is an involutive anti-morphism preserving both components
AandA*. Lety=x|a:A— Aandy = x|a-: A* — A*. Then bothp andy are involutive Lie
algebroid anti-morphisms. For any € I'(A) and¢ € T'(A*), since(x&, xX) = —(£,X), and
xX = pX, x& = ¢, it follows immediately thato*¢) = —id, which implies that) = —¢*. This
concludes the proof of the theoremn

4.4. Poisson involutionson dynamical Poisson groupoids

As a special case, we will consider the dynamical Poisson groupoids introduced by Etingof
and Varchenko [12]. Recall that a dynamicamatrix on a Lie algebrg with Lie subalgebrd
is a functionr: h* — AZg satisfying:

(i) r:p* — /\29 is H-equivariant

(i) > hi /\ +[r, 7] is a constantA?g)?-valued function orp*,
whereH is the connected Lie subgroup 6f with Lie algebrah, {hq,...,hs} is a basis ob,
and{\y,...,\;} are the induced coordinates ph

It is known [1,23] that a dynamical-matrix naturally defines a coboundary Lie bialgebroid
(A, A* A), whereA = Th* x g, andA = my« + Zle(a%i Ah;)+7(X) €T(A?A). Herery- is
the Lie—Poisson tensor dyi.

The following theorem can be verified directly.
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THEOREM 4.10. — Let r: h* — A2g be a dynamical-matrix. Assume that:g — g is an
involutive Lie algebra anti-morphism, which preseryesnd satisfies the property

s(r(N) = —r(sgA),

VA € h*. Here sy:h — b is the restriction ofs to h. Then(Th* x g, T*h* x g*, ), where
o= (=Tsp,s):Th" x g — Th* x g, is a symmetric Lie bialgebroid.

COROLLARY 4.11. -Under the same hypothesis as in TheorerQ let S: G — G be the
group anti-morphism corresponding to Then,
() ©:6" xh* xG—=bh* xh* x G, ®(u,v,9) = (spv,spu,5(9)), Vu, v € h* andg € G, is
a Poisson involution of the dynamical Poisson groupgid h* x G.
(i) T°={(u,stu,9)|Vuech*, gc G} is aDirac submanifold, wher&® C G is the stable
locus ofS.

Example4.12.— Letg be a semi-simple Lie algebra ovét of rank & with a Cartan
subalgebrd. Let {e,, fo,hi | @« € Ay, 1 <4<k} be aChevalley basis. Then

r(\) = Z dy, coth(%(a, /\>)ea A fa
aEA L
is a dynamicat-matrix overh*, where(e,, fo) = do, @andcoth(z) = jzfziz is the hyperbolic
cotangent function [12].
Let s: g — g be aC-linear morphism, which, on generators, is defined as folléws:

(19) 5€q = fas Sfa=¢€q, sh;=h;.

It is clear thats is an involutive Lie algebra anti-morphism an¢l, = id. Moreover, it is
also clear thats(r(\)) = —r(A\) for any A € h*. Therefore, according to Theorem 4.10,
(Th* x g, T*h* x g*, ) is a symmetric Lie bialgebroid, where: Th* x g — Th* x g is given

by ¢(v, X) = (—v,sX), V(v,X) € Th* x g. Thus one obtains a pair of Poisson involutions on
the corresponding Poisson groupofdlsl’ — I" and ¥ :T* — I'*. Now I' = h* x h* x G, and
®(u,v,9) = (v,u,Sg), Yu, v € h* andg € G. Hence, the stable locus 6fis diffeomorphic to

h* x G°, whereG? is the stable locus of. It would be interesting to compute explicitly the
induced Poisson structure @i x G°. On the other hand, it is not obvious what the stable locus
of ¥ should look like (see [19] for the description of the dual Poisson groupoid

Let [ be a reductive Lie subalgebragtontainingh, i.e.,

(20) (=h® B (9 D g-0),

a€A’

whereA/, is some subset af | .
We now show that the claim in Example 4.12 in fact holds in the more general situation where
b is replaced by.

PrRoOPOSITION 4.13. —Let [ be a reductive Lie subalgebra of a semi-simple Lie alggbes
in Eg. (20), andr: I* — A2g a dynamical-matrix. Then the map: g — g defined by Eq(19)

3 Note that—s is the Cartan involution of the split real form.
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satisfies the conditions of TheorehilQ and thereforg T1* x g, T*[* x g*, ¢) is a symmetric
Lie bialgebroid. Herep = (—T'sf,s): T1* x g — T1* x g.

Proof. —We prove this proposition using the classification result in [12].7get* — A%g be

the function:
ro(A) = >

a€A’,

1
@) ea N fa.

According to [12],7 = 7|y« + r9:h* — A%g is a classical dynamicat-matrix on h*.
Hence from Example 4.12 (the rational case can also be similarly checked), we know that
s(7(X)) = —=7(\), YA € b*, which in turn implies thags(r(\)) = —r()\), VA € b*.

Now assume that = Ad} .\ € I, whereX € h* andz € L. By S: G — G, we denote the
group anti-morphism corresponding4oThen

s(r(p)) =s(r(Ad.-1))) (sincer is L-equivariant)
= s[Ador(N)] = Adg,-15(r(N))
= Adg, (—r(/\)) = —r(Adg,\)
=—r(s*Ad,-18"\) = —r(s"Ad; -1 \)
= —r(s*u).
Here we used the identitiesiAd, = Adg,-1.s and Ads, = s*-Ad,—1.s*. Since those

pointsu = Ad,-1 A\, VA € h*, x € L, consist of a dense subset 6f the conclusion follows
immediately. O

5. Poisson involutions on Poisson groups
In this section we turn our attention to Poisson involutions on Poisson groups.
5.1. Symmetric Poisson groups

As a special case of Definition 4.4, we have

DEFINITION 5.1. —

(i) A symmetric Poisson group consists of a p@if, ), whereG is a Poisson group, and
®: G — G is a group anti-morphism which is also a Poisson involution.

(i) A symmetric Lie bialgebra consists of a triplg, g*, ), where(g, g*) is a Lie bialgebra
andy: g — g is an involutive Lie algebra anti-morphism such thét g* — g* is a Lie algebra
morphism.

In this case, a combination of Theorems 4.5 and 4.9 leads to the following:

THEOREM 5.2. —

(i) There is a one-to-one correspondence between simply connected symmetric Poisson groups
and symmetric Lie bialgebras.

(i) There is a one-to-one correspondence between symmetric Lie bialggbrgisy) and
involutive anti-morphismg : o — o (i.e., (xe1, xe2) = —(e1,e2); andxle1, ea] = —[xe1, xez])
of the doubler = g @ g* preserving both componergsandg*.

(iii) If (g,g*) is a coboundary Lie bialgebra with an r-matrix e A%g, then (g, g*,¢) is
a symmetric Lie bialgebra ifp: g — g is an involutive Lie algebra anti-morphism such that
©or = -—r.
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Now assume thatlg,g*,») is a symmetric Lie bialgebra. According to the proof of
Theorem 4.9x:0 — o, x(X +&) = pX — ™, VX + £ € g @ g*, is an involutive Lie algebra
anti-morphism, where = g @ g* is the double of the Lie bialgebra. On the other hand, it is
well known that(c, o*) itself is a Lie bialgebra with the-matrix:r = >, X; A &' € A%o, where
{Xi,...,X,}is abasis ofy and{¢?, ..., £"} is the dual basis of*. Then

X(r) == pXiNg*E = -1,

since {p*¢t, ..., p*¢"} is the basis dual to{¢X7,...,¢X,}. Thus we have proved the
following:

PrRopPOSITION 5.3. —The double of a symmetric Lie bialgebra is a symmetric Lie bialgebra.

Remark5.4. — LetD be a simply connected and connected Lie group with Lie algebra
The spaceD possesses three different structures (under certain assumptions on completeness):
a Poisson group, a symplectic groupdid: over G and a symplectic groupoi’s« over
G*. If (g,g%,¢) is a symmetric Lie bialgebra, thep induces a Poisson involution afi, an
involutive automorphism on the symplectic groupdig, and an involutive automorphism on
the symplectic groupoidl'-. These three involutions adéfferent (see [4]). Their stable loci
correspond to a Dirac submanifold 6, a symplectic groupoid over the stable locusbgfand
a symplectic groupoid over the stable locuslofHere®:G — G and ¥ : G* — G* are the
corresponding involutions induced by

5.2. Poisson structureson stable loci
Below we outline a scheme to explicitly compute the Poisson tensor on the stablé)afus

the Poisson involutio® for a symmetric Poisson groud, ®). Sinced is an involutive group
anti-morphism, we have

(21) Ad@(m)flo@:s@oAdmlg—?g7 Vr eG.

DEFINITION 5.5.—Let®: G — G be an involutive group anti-morphism.
(i) A smooth mapt : G — A*g is said to beb-equivariant if

(22) £(®(2)) = Adayp(&(2)), Vo eG;
(ii) It is said to be anti®-equivariant if
(23) 5(@(:6)) = —Adcp(m)cp({(x)), Vr eG.

Indeed, any smooth map: G — A*g can be decomposed &s= ¢+ + ¢~ such that¢™ is
d-equivariant and — is anti-b-equivariant, where

(24) £ (@) = 3 [6() + p(Adagry£(2(x))
(25) € (@) = 5 60) ~ p(Aduiay 16(2(2)))].

Itis simple to see that: G — A*g is ®-equivariant (or anti®-equivariant) if and only if its right
translationr,..£(x) is a®-invariant (or anti®-invariant) multi-vector field org.
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Let §:g — A2g denote the cobracket of the Lie bialgelfrag*), which is also a Lie algebra
1-cocycle, and leh : G — A?g be its corresponding Lie groupcocycle. It is well known that
7(x) =1z A(z), Yo € G, is a Poisson tensor on the Poisson gréugsincer is ®-invariant, it
thus follows that\: G — A2Zg is ®-equivariant.

PROPOSITION 5.6. —Assume that the group-cocycleX: G — A2?gis A = >, & A n;, Where
&,mi:G — g. Thenmg(z) = Y, 10 (2) A ruant (7)| is the Poisson tensor on the Dirac
submanifold®, where¢;” and ;" are defined as in Eq$24)—(25) Moreover, the symplectic
leaves ofy are the intersection of) with the dressing orbits af*.

When( is a coboundary Poisson group, one can wrigemore explicitly.

COROLLARY 5.7.— In addition to the hypothesis of Theoretn2, assume that7 is a
coboundary Poisson group withmatrix » = >~ e; A f; € A%g. Then the Poisson tensor on
Q is given by

1 - — 1 -
(26)  mo=7> (& +7E) A (fi+efille = (@ +FE) A (fi + @ file

where€; ande; are, r(e_spectilgly, the left- and right-invariant vector fields(@corresponding
to e; € g; similarly for f; and f;, etc.
In particular, if e; and f; are chosen such thate; = e¢; andy f; = — f;, then

—

(27) wQ=%Z(a+a’)A(E—ﬁ)IQ-

3

Proof. It is simple to see, using Eq. (24), that for apy¢ g, £ (2) = %(5 + Ad,(p€)) and
(Ad )T (z) = $(AdE + ¢€). It follows that

—

ree(AdL 8 () = (T4 58) and e (@) = 5(E +50).

It is well known that, for a coboundary Poisson grodfy) = >, (Adye; A Ady fi — ei A fi).
Eq. (26) thus follows immediately. O

5.3. Poisson symmetric spaces

In what follows, we discuss the relation between the stable locus of the Poisson involution of
a symmetric Poisson group and Poisson symmetric spaces. By a Poisson symmetric space for a
given Poisson grou@, we mean a symmetriG-spacel equipped with a Poisson structure such
that the natural projectio& — P is a Poisson map. In particuldt is a Poisson homogeneous
space in the sense of Drinfel'd [10].

Assume thatG, ®) is a symmetric Poisson group, afd= {g | ®(g) = g} is the stable locus
of ®. The following result is standard (c.f. [31,32]). For completeness, we outline a proof below.

PROPOSITION 5.8. —Any connected component@fis a symmetric space.

Proof. —Let go € Q be any fixed point of®, and @),, the connected component ¢}
throughgg. Consider the twistedr-action on (the spacé) given by [31]:

(28) g-x=gzP(g), Vg,xz€G.
4 Note that our definition of Poisson symmetric spaces is different from that in [14,15].
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Since® is a group anti-morphism, this is clearly an action. Now

P(g-z) =P(92®(g)) = gP(x)P(9) =g (),

so @ is stable under this action. Therefore in particu@y, is stable as well. Let);
denote theG-orbit throughge. Then Q; is a homogeneous spacg, = G/H,,, where

Hy={9l9€G, g90P(g9) =go} isthe isotropy group ajy. Set
(29) Dy G— G, @y (g9)=Adg,®(97"), VgeG.
Then®,, is an involutive group homomorphism, since
@50 (9) =Py, (Adgoq)(g_l)) = Ada, (g0)Pgo (q> (9_1))
= Ad 1 Ady, ®(0(g7")) =g, VgeG.

Itis clear thatH ,, is the stable Iocus obg, . HenceQ’0 is indeed a symmetric space, and its di-
mension is equal to the dimension of kel )-eigenspace af,,, wherep, = —Adg op: g — g

is the Lie algebra involution correspondingdg, . On the other hand, the tangent spdggQ),

is spanned by those vectarss T, G such that®.,.v = v. By identifying T,, G with g by right
translation,7,,Q4, can be identified with the subspace gtonsisting of those elemenfs
satisfyingAd,, .0 X = X, i.e., the (-1)-eigenspace op,,. ThereforeQ; is a submanifold of

Qg4, Of the same dimension, so it must be an open submanifold. Since it is also closed, they must
be identical. This concludes the proofo

We are now ready to prove the following:

THEOREM 5.9. — Let (G, ®) be a symmetric Poisson group, adpl= {g | ®(g) = ¢} the
stable locus ofb. If the Poisson tensor on GG vanishes at a poing € @, then the connected
componeng),, is a Poisson symmetric spatscaled by a factor of). In particular, the identity
component of) is a Poisson symmetric space.

Proof. —Consider the map

[:G—=Qg, 9g—9-90=990%(9), Vgedq.

It suffices to prove thaf is a Poisson map, whetg,, is equipped with the Poisson tenSat,.
First, it is simple to see that

(30) Jx0g = Ry a(g)0g + Lgg, Pidy, Vo4 € T,G.
On the other hand, we have

(31) LggyPidg = Pu (RqMI’(Q)‘S )-

To see this, take a curvgt) starting atg with < \ g(t) = d4. Since® is an involutive anti-
morphism, we havego®(g(t)) = ®(g(t)go®(g )) Eq (31) thus follows by taking the derivative
att = 0. Combining Eqg. (30) with Eq. (31), we are thus led to

(32) fi0g =2(Ryya(4)09) "

Now write w(g) = >, 6; A 6J, whered,, 6] € T,G. Then we have

ij °g
42 g0 ®(g 51 ( 90®( )5j)+'
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On the other hand, from the multiplicativity condition of the Poisson tenggy, it follows
that

7(9909(9)) = Ryya(9)7(9) + Lgm(90P(9))
= Rgya()7(9) + Lggom(®(9))
=Ryy0(g)7(9) + Lggy ®:7(9)
= Ryya(9)7(9) + 4 (Ryo0(9)7(9))
= Roga()Fy A Rooai0) 5 + Y PuRgga(g)y A PuRgyn(5) 0.

Here we used the assumptiefy,) = 0 in the second equality. Therefore we have

0 (9902(9)) =2 (Rgya()0}) " A (Rgpn()03) "

This concludes the proof.O

Remark5.10. —

(i) Theorem 5.9 would follow from Theorem 3.7, if the action defined by Eq. (28) were a
Poisson action where the Poisson group is equipped with the Poisson tépsavhile
the space upon which it acts, whichGsagain, is equipped witBr(g). However, this is
false in general. So we can see that a Poisson group action on a Poisson niamifaid
not be a Poisson action, but it can still be Poisson when restricted to the stabl€lo€us
a Poisson involution.

(i) One drawback of Theorem 5.9 is that the stable loci do not seem to produce any new
examples of Poisson manifolds for symmetric Poisson groups in contradiction to what
one may initially expect. A good point, on the other hand, is that one might be able to
quantize these Poisson structures on stable loci including the one on Stokes niatrices
(see Example 5.11) using quantum homogeneous spaces.

(iif) One can construct a symplectic groupoid of a Poisson symmetric space by reduction [37].
On the other hand, according to Corollary 4.3, for a stable locus Poisson structure, one
can construct a symplectic groupoid directly via the lifted involution on the corresponding
symplectic groupoid. It would be interesting to compare these two approaches.

5.4. Examples

We end the paper with a list of examples. We refer the reader to [14] for a complete list of
orthogonal symmetric Lie bialgeras, which also contains the examples below.

Example5.11. — Letg be a semi-simple Lie algebra of rahloverC with a Cartan subalgebra
bh. Let{eq, fa,hi | @« € A4, 1 < i<k} be a Chevalley basis. It is well known th@t, g*) is a
coboundary Lie bialgebra withrmatrix:

r = Z do(ea N fa),

acAy

whered, = (eq, fa)-
As in Example 4.12, lep: g — g be theC-linear morphism, which, on generators, is defined
as follows:

Veq = fa, @fa=¢€a, @h;=h;.
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It is clear thaty is an involutive Lie algebra anti-morphism apet = —r. Therefore(g, g*, ¢)
is a symmetric Lie bialgebra, which in turn induces a pair of symmetric Poisson gfGugs
and(G*, ¥). Thus one obtains a pair of Poisson involutidnsz — G and¥ : G* — G*, which
are the group anti-morphisms corresponding to the Lie algebra anti-morphisgs> g and
—p*:g* — g*, respectively.

Forg = sl(n,C), itis well known thatG = SL(n,C) and

G*: =B, +*B_={(B,C)€ B x B_|d(B)d(C) =1},

whereB. andB_ are the upper and lower triangular Borel subgroup&'of SL(n,C), andd
takes the diagonal part. It is simple to see thand ¥ are given by the following:

®: SL(n,C) — SL(n,C), ®(A)= AT, VAc SL(n,C);

and
U:B.+xB_—ByxB_, ¥(B,0)=(c’,BT), V¥(B,C)eB;*B_.

The stable locus off thus consists of all symmetric matrices #.(n,C). On the other
hand, the spac& of Stokes matrices, i.e., upper triangular matrices with all main diagonal
entries equal tol, can be identified with the identity component of the stable locu® of
As a consequence, both the spatef symmetric matrices ir6L(n,C) and the spacé/,
of Stokes matrices admit natural Poisson structures. These Poisson manifolds, together with
their symplectic groupoids, were studied in details by Bondal [4] in connection with his study
of triangulated categories. The Poisson structurd/gnwas also obtained independently by
Dubrovin [11] in the3 x 3-case and by Ugaglia [33] in the generak n-case in connection
with the study of Frobenius manifolds. Boalch also realized, independently from Bondal, that
this Poisson structure di,. coincides with the induced Poisson structure on the stable locus of
a Poisson involution on the Poisson graBp « B_ [2]. We refer the reader to [2,4] for details.

As a consequence of Theorem 5.9, we conclude that Bo#imd U, are indeed Poisson
symmetric spaces.

THEOREM 5.12. —Scaled by a factor o2, S is a Poisson symmetric space for the Poisson
group G = SL(n,C), while U, is a Poisson symmetric space for the dual Poisson group
G* = By x B_. More precisely,

(i) the mapSL(n,C) — S, A — AAT, VA € SL(n,C), is a Poisson map, and therefoseis

a Poisson symmetric space with the Poiss$@itn, C)-actiorn

SL(n,C)x S — S, — A-X=AXAT VAcSL(n,C), XecS;

(i) the mapB, * B_ — Uy, (B,C) — BCT,¥(B,C) € B, * B_ is a Poisson map, and
thereforeU . is a Poisson symmetric space with the Pois&Bn * B_)-action

(By *B)xUy —U,, (B,C)-X=BXC", V(B,C)eB.*B_, XeU,.

Example5.13. — Let K be a compact semi-simple Lie group with Lie algebrandt its
Cartan subalgebra. It is well known that admits a standard Poisson group structure called
Bruhat Poisson structure [25]. Lgt= ¢ be its complexification, which is a complex semi-
simple Lie algebra. Choose a Chevalley bakis, fo,hi | @« € A4,1 < i <k} of g as in
Example 5.11 such thdtX,,, Y,,t; |« € A, 1 <i < k}, where

(33) Xo=eq—fo, Ya=V —1(€a-‘rfa), and t;=+v—1h;,
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is a basis (oveR) of ¢, and

(34) f:\/—_lT:\/__l Z da(ea/\fa): Z %daXa/\YO‘E/\QE

aE€A aEA

is the r-matrix generating the corresponding Lie bialgebta*). Let o:g — g be the anti-
morphism as in Example 4.12. Itis then clear thaX ) = — X, p(Y.) =Y, andy(t;) =t;,

so t is stable undemp. It is also clear thatpi = —#. Hence(t, £*, %), where = ¢|¢: € — ¢,

is @ symmetric Lie bialgebra. Thus it induces a pair of Poisson involutions — K and
U: K* — K*.

To describe the stable loci of these involutions, we need to consider the double of the Lie
bialgebra(t, £*), which is isomorphic tg as a real Lie algebra. According to Theorem %52,
induces an involutive Lie algebra anti-morphism (o®gry : g — g, under which bottt and¢*
are stable and whose restrictions to these Lie subalgebras ame —*, respectively. In our
case, a straightforward computation yields that on genergtargiven by:

x(V-Tes) =vV-Tea, x(V-1fa)=V-1fa, x(V=1h;)=V—1h;,
X(€a) = —€a; X(fa)=—fa, x(hi)=—h.

In other words,y = —7p, wherery is the complex conjugation o defined by the split real
form spanned bye,, fo,h: | @ € Ay, 1 <4 < k}. We will denotery(X) = X, VX € g. On the
group level,y induces an involutive Lie group anti-morphisit G — G such thaf('(g) = g1,

Yg € G, whereG is a simply connected Lie group (considered as a real Lie group) integrating
the Lie algebray. By @, we denote the stable locus ®f i.e.,Q ={g€ G |g=g '}. Then

the stable locus of and ¥ are K N Q and K* N Q, respectively. In particular, according to
Corollary 5.7,

(35) ro= Y 14u(X0 - Xa) A (Va + T2)

aEA

is the Poisson tensor did N Q. Theorem 5.9 implies that the mgp— gg—! is indeed a Poisson
map (scaled by a factor @) when being restricted t&" and K*.

For K = SU(n), its dual group* is isomorphic taSB(n, C), and the doubl& = SL(n,C),
considered as a real Lie group. Thigs= {A € SL(n,C) | AA = I'}. Hence we have

KNQ={A|A*A=AA=1,det A=1},
which is the submanifold af U (n) consisting of all symmetric matrices. On the other hand,
K*NQ={AcSB(n,C)|AA=1T}.

We note thatSB(n,C) is Poisson diffeomorphic to the linear Poisson structuretdm, C)
according to Ginzburg—Weinstein theorem [18]. The recent result of Boalch [2] suggests that
there may exist a Poisson diffeomorphistB (n, C) — sb(n,C) commuting with the Poisson
involutions, where the Poisson involution 6 (n, C) is given byA — A~! while the Poisson
involution onsb(n,C) is A — —A. If so, the induced Poisson structures on their stable locus
should be isomorphic. The latter is a lot easier to compute and in fact is again a linear Poisson
structure.
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