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BY PING XU 1

Dedicated to Rencontres mathématiques de Glanon on the occasion of their fifth anniv

ABSTRACT. – Dirac submanifolds are a natural generalization in the Poisson category of the sym
submanifolds of a symplectic manifold. They correspond to symplectic subgroupoids of the sym
groupoid of the given Poisson manifold. In particular, Dirac submanifolds arise as the stable loci of P
involutions. In this paper, we make a general study of these submanifolds including both local and
aspects.

In the second part of the paper, we study Poisson involutions and the induced Poisson struc
their stable loci. In particular, we discuss the Poisson involutions on a special class of Poisson grou
more generally Poisson groupoids, called symmetric Poisson groups, and symmetric Poisson gr
Many well-known examples, including the standard Poisson group structures on semi-simple Lie
Bruhat Poisson structures on compact semi-simple Lie groups, and Poisson groupoid structures aris
dynamicalr-matrices of semi-simple Lie algebras are symmetric, so they admit a Poisson involutio
symmetric Poisson groups, the relation between the stable locus Poisson structure and Poisson s
spaces is discussed. As a consequence, we prove that the Dubrovin Poisson structure on the space
matricesU+ (appearing in Dubrovin’s theory of Frobenius manifolds) is a Poisson symmetric space.

 2003 Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. – La notion de sous-variété de Dirac d’une variété de Poisson est une généra
naturelle de la notion de sous-variété symplectique d’une variété symplectique. Les sous-variétés
correspondent aux sous-groupoïdes symplectiques du groupoïde symplectique de la variété de Poi
classe importante d’exemples de sous-variétés de Dirac est donnée par les points fixes d’une invo
Poisson. Nous étudions dans cet article les sous-variétés de Dirac, sous l’aspect local ainsi que sou
global.

Dans la seconde partie, nous étudions les involutions de Poisson et les structures de Poisson s
des points fixes de ces involutions. Nous étudions en particulier les involutions de Poisson sur une c
groupes de Lie–Poisson et de groupoïdes de Poisson, les groupes et groupoïdes de Poisson sy
Nombre d’exemples bien connus sont symétriques et admettent donc une involution de Poiss
structures de Lie–Poisson standard sur les groupes de Lie semi-simples, les structures de Bruha
sur les groupes de Lie compacts semi-simples, ou encore les structures de groupoïdes de Poisson
d’uner-matrice dynamique. Dans le cas des groupes de Poisson symétriques, nous examinons le
la structure de Poisson sur le lieu des points fixes et les espaces symétriques de Poisson. En coroll
montrons que la structure de Poisson de Dubrovin sur l’espaceU+ des matrices de Stokes (apparaiss
dans la théorie de Dubrovin des variétés de Frobenius) est un espace symétrique de Poisson.
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1. Introduction

The underlying structure of any Hamiltonian system is a Poisson manifold. To deal with
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mechanics with constraints, it is always desirable to understand how to equip a subman
a Poisson manifold with a Poisson structure. A naive way is to consider Poisson subma
However, these are not very different from the original Poisson manifold from the view
of the Hamiltonian systems. In addition, for symplectic manifolds, there do not exis
nontrivial Poisson submanifolds. However Dirac was able to write down a Poisson bracke
submanifold of a symplectic manifoldP which is defined by a set of constraints:

Q=
{
x ∈ P | ϕi(x) = 0, i= 1, . . . , k

}
(1)

such that the matrix({ϕi, ϕj}) is invertible onQ. This is the famous Dirac bracket [8]. In th
case,Q is a symplectic submanifold, i.e., the pull back onQ of the symplectic form is non
degenerate.

Many attempts at generalizing the Dirac brackets have been made, for example, the n
cosymplectic manifolds of Weinstein [34], Poisson reduction of Marsden and Ratiu [29], j
name a few. In particular, Courant presented a unified approach to this question by intro
the notion of Dirac structures [6], by which one could obtain a Poisson bracket on adm
functions on a submanifoldQ. In some cases, one can indeed obtain a Poisson structure
functions onQ. ThenQ becomes a Poisson manifold itself.

In his study of Frobenius manifolds, which is related to the2-dimensional topological quantu
field theories, Dubrovin recently found a Poisson structure onU+, the space of upper triangul
matrices with ones on the diagonal, by viewing it as a space of Stokes matrices. Indeed D
identifiesU+ with the local moduli space of semisimple Frobenius manifolds. In particula
explicit formula was found for the Poisson bracket in the three-dimensional case (Formu
p. 243, [11]): 

1 x y
0 1 z
0 0 1


 ,(2)

{x, y}= xy− 2z, {y, z}= yz − 2x, {z, x}= zx− 2y.(3)

This Poisson structure has various interesting properties. For instance, it naturally admits
group action. The Casimir function is the Markoff polynomialx2+ y2+ z2−xyz. Its linear and
quadratic parts give rise to a bi-Hamiltonian structure, etc. Then Ugaglia extended Dub
formula, Eq. (3), to then×n case [33]. Later Boalch [2] related this Dubrovin Poisson struc
onU+ to the stable locus Poisson structure on the dual Poisson groupG∗ (G = SL(n,C); see
Example 5.11).

From a completely different angle, and independently, Bondal discovered the same P
structure onU+ in his study of triangulated categories [3]. He also extensively studied
Poisson structure, including the braid group action and symplectic leaves, etc. Bondal
approach, instead of writing down the Poisson structure onU+, first discovered a symplect
groupoidM whose space of objects isU+. The general theory of symplectic groupoids [3
then implies thatU+ is a Poisson manifold. What is more interesting is that in a subseq
paper [4], he discovered an extremely simple relationship between his symplectic groupM
and the symplectic groupoidΓ over the Poisson groupG∗ of Lu and Weinstein [26]. Namely,M
is simply a symplectic subgroupoid ofΓ which can be realized as the stable locus of an involu
symplectic groupoid automorphism ofΓ.
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Bondal’s work suggests a simple fact, which was somehow overlooked in the literature: a
submanifold of a Poisson manifold inherits a natural Poisson structure if it can be realized as
the base space of a symplectic subgroupoid of the symplectic groupoid of the Poisson manifold.
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A natural question arises as to what these submanifolds are and how they can be chara
The first aim of this paper is to answer this question. Such submanifolds will be called
submanifolds. Symplectic subgroupoids are very simple to describe: they are subgroupo
at the same time symplectic submanifolds. In contrast, Dirac submanifolds are not so sim
we shall see. There is some interesting and rich geometry there, both global and local, wh
believe deserves further study.

Dirac submanifolds are a special case of the submanifolds, on which the algebra of adm
functions for the pulled-back Dirac structure is comprised of all functions [6,29]. In o
words, the intersection of a Dirac submanifold with the symplectic leaves ofP are symplectic
submanifolds of the leaves. This feature explains the existence of an induced Poisson s
on a Dirac submanifold. However, not all submanifolds satisfying this property are
submanifolds. For instance, symplectic leaves (except for the zero point) ofsu(2) are not Dirac
submanifolds (see Example 2.17). It is still not clear at the moment how to describe the
obstruction in general. On the other hand, when the Poisson manifold is symplectic, the
submanifolds are precisely the symplectic submanifolds. Other examples include cosym
submanifolds and stable loci of Poisson involutions.

The second aim of the paper is to study systematically Poisson involutions and the in
Poisson structures on stable loci. When the underlying Poisson manifolds are Poisson gr
more generally Poisson groupoids, there is an effective way of producing Poisson invol
namely by means of their infinitesimal invariants: Lie bialgebras, or more generally
bialgebroids. They are called symmetric Poisson groupoids and symmetric Lie bialgebro
we shall see, such a Poisson involution exists in almost every well-known example of P
group or Poisson groupoid, including the standard Poisson group structures on semi-sim
groups, Bruhat–Poisson structures on compact semi-simple Lie groups, and Poisson g
structures arising from dynamicalr-matrices of semi-simple Lie algebras. For Poisson gro
such involutions were also studied by Fernandes [14,15]. It turns out that the induced P
structure on the stable locusQ of the Poisson involution of a symmetric Poisson group is clo
connected with Poisson symmetric spaces. In particular, we prove that the identity con
component ofQ is always a Poisson symmetric space. As a consequence, we prove th
space of Stokes matricesU+ with the Dubrovin Poisson structure is a Poisson symmetric s
for the Poisson groupG∗.

The paper is organized as follows. In Section 2, we introduce the definition of
submanifolds and study their basic properties. Local Dirac submanifolds are also introduc
their relation with transverse Poisson structures is discussed. Section 3 is devoted to the
some further properties. In particular, we study how the modular class of a Dirac subma
is related to that of the Poisson manifoldP . We also study Poisson group actions on Di
submanifolds. Finally we prove that Dirac submanifolds are indeed an infinitesimal vers
the symplectic subgroupoids. In Section 4, we investigate stable loci of Poisson involution
study Poisson involutions on Poisson groupoids by introducing the notion of symmetric P
groupoid. In Section 5, we consider in particular the symmetric Poisson groups and the in
Poisson structures on stable loci. The connection with Poisson symmetric spaces is discu

We remark that one should not confuse the Dirac submanifolds defined here with the
manifolds of Courant [6,9]. Courant’s Dirac manifolds are manifolds equipped with a D
structure, which generalize both Poisson and presymplectic manifolds. In earlier versions
paper, some other names for what we study here such asQ-submanifolds and IR-submanifold

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



406 P. XU

were used, but we feel that neither of these names reflects the complete nature of these objects.
In the end, we decided to call them Dirac submanifolds, which is both short and evocative.

Dirac
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2. Dirac submanifolds

This section is devoted to the definition and study of the general properties of
submanifolds.

2.1. Definition and properties

Let us first introduce the definition.

DEFINITION 2.1. – A submanifoldQ of a Poisson manifoldP is called a Dirac submanifol
if the tangent bundle ofP alongQ admits a vector bundle decomposition:

TQP = TQ⊕ VQ(4)

such thatV ⊥
Q is a Lie subalgebroid ofT ∗P , whereT ∗P is equipped with the standard cotang

bundle Lie algebroid structure.VQ is called a Dirac complement toQ.

Note that the last condition above is equivalent to the condition thatVQ ⊆ TP be a coisotropic
submanifold of the tangent Poisson manifoldTP . So alternatively, we have

PROPOSITION 2.2. –A submanifoldQ ⊆ P is a Dirac submanifold if and only if there
a decomposition(4) such thatVQ ⊆ TP is a coisotropic submanifold of the tangent Poiss
manifoldTP .

In what follows, we will see thatQ naturally inherits a Poisson structure. However,Q in
general is not a Poisson submanifold ofP . First we need to introduce some notations. Bypr, we
denote the bundle mapTQP → TQ obtained by taking the projection along the decomposi
(4). And we letpr∗ :T ∗Q→ T ∗P denote the dual ofpr, by consideringT ∗

QP as a subbundl
of T ∗P . By pr∗, we denote the map fromXd(P ) to Xd(Q) naturally induced frompr, which is
defined bypr∗(D) = pr(D|Q), ∀D ∈Xd(P ). HereXd denotes the space ofd-multivector fields.

We summarize some important properties of Dirac submanifolds in the following

THEOREM 2.3. – LetQ be aDirac submanifold of a Poisson manifold(P,π). Then
(i) π|Q = πQ + π′, whereπQ ∈ Γ(∧2TQ) andπ′ ∈ Γ(∧2VQ);
(ii) πQ is a Poisson tensor onQ;
(iii) pr∗ :T ∗Q→ T ∗P is a Lie algebroid morphism, where bothT ∗Q andT ∗P are equipped

with the cotangent bundle Lie algebroid structures;
(iv) for anyX ∈X(P ),

pr∗[X,π] = [pr∗X,πQ];(5)

(v) for anyx ∈Q, π#
Q (T

∗
xQ) = π#(T ∗

xP )∩ TxQ;

(vi) for anyx ∈Q, π#
Q (T

∗
xQ) is a symplectic subspace ofπ#(T ∗

xP );
(vii) each symplectic leaf ofQ is the intersection ofQ with a symplectic leaf ofP , which is a

symplectic submanifold of that leaf.

Before proving this theorem, we need two lemmas. The following lemma, which can
be easily verified directly, follows from the fact that the natural inclusionTQ→ TP is a Lie
algebroid morphism.
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LEMMA 2.4. – LetQ⊆ P be a submanifold. Assume thatD ∈ Xd(P ) andD′ ∈ Xd′(P ) are
multi-vector fields tangent toQ, i.e.,D|Q ∈Xd(Q) andD′|Q ∈Xd′(Q). Then
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[D, D′]|Q = [D|Q, D′|Q].

Next is the following:

LEMMA 2.5. – LetQ be a submanifold of a Poisson manifold(P,π). Assume that there is
vector bundle decompositionTQP = TQ⊕VQ such thatπ|Q = πQ+π′, whereπQ ∈ Γ(∧2TQ)
andπ′ ∈ Γ(∧2VQ). ThenπQ is a Poisson tensor onQ.

Proof. –Write π′ =
∑

iXi ∧ Yi whereXi, Yi ∈ Γ(VQ). Now let X̃i, Ỹi ∈ X(P ) be (local)
extensions ofXi, Yi, andπ̃′ =

∑
i X̃i ∧ Ỹi. Let π′′ = π − π̃′ ∈ X2(P ). Clearly π̃′|Q = π′ and

π′′|Q = πQ. It follows from [π,π] = 0 that[π′′, π′′] =−2[π′′, π̃′]− [π̃′, π̃′]. On the other hand,
is clear by definition thatpr∗[π′′, π̃′] = 0 andpr∗[π̃′, π̃′] = 0. Thuspr∗[π′′, π′′] = 0. According
to Lemma 2.4, the latter implies that[πQ, πQ] = pr∗[π′′, π′′] = 0. This concludes the proof.✷

Proof of Theorem 2.3. –By definition,V ⊥
Q is a Lie subalgebroid of the cotangent Lie algebr

T ∗P . By identifyingT ∗Q with V ⊥
Q , one obtains a Lie algebroid structure onT ∗Q, and a Lie

algebroid morphismϕ :T ∗Q→ T ∗P . Clearly,ϕ= pr∗. By ρQ, we denote the anchor map of t
Lie algebroidT ∗Q. Thus we havei◦ρQ = π#

◦ϕ, wherei :TQ→ TP is the natural inclusion. I
follows thatρQ = pr ◦i◦ρQ = pr ◦π#

◦ϕ= pr ◦π#
◦pr∗. Hence the bundle mapρQ :T ∗Q→ TQ

is skew-symmetric, and therefore defines a bivector fieldπQ ∈ Γ(∧2TQ) so thatρQ = π#
Q . Under

the decomposition (4), we have∧2TQP = ∧2TQ⊕ (TQ ∧ VQ)⊕ ∧2VQ. It is clear thatπQ is
theΓ(∧2TQ)-part ofπ|Q under the above decomposition. Sinceπ#(V ⊥

Q )⊂ TQ, π|Q does not
involve any mixed term, i.e., theΓ(TQ∧VQ)-part vanishes. Hence we haveπ|Q = πQ+π′ with
π′ ∈ Γ(∧2VQ). This proves (i).

By Lemma 2.5,πQ is indeed a Poisson tensor onQ. Hence (ii) follows. Next we need to sho
that the Lie algebroid structure onT ∗Q is indeed the cotangent Lie algebroid correspondin
the Poisson structureπQ. Sinceϕ is a Lie algebroid morphism,ϕ∗ = pr induces a morphism
of the (graded) differential algebraspr∗ : (Γ(∧•TP ), d∗P )→ (Γ(∧•TQ), d∗Q). SinceT ∗P is
the cotangent Lie algebroid, we know thatd∗P = [π, ·]. To prove the claim, it suffices to sho
that d∗Q = [πQ, ·]. To this end, given anyX ∈ X(Q), choose an extensioñX ∈ X(P ). Write
π = π′′ + π̃′ as in the proof of Lemma 2.5 so thatπ′′|Q = πQ andπ̃′|Q ∈ Γ(∧2VQ). Then

d∗QX = (d∗Q pr∗)X̃ = (pr∗ d∗P )X̃ = pr∗[π, X̃ ] = pr∗[π
′′ + π̃′, X̃] = pr∗[π

′′, X̃] = [πQ,X ],

where the last step follows from Lemma 2.4. This proves (iii), and therefore (iv)
consequence.

Next we prove the relationπ#
Q (T

∗
xQ) = π#(T ∗

xP ) ∩ TxQ. Sincei◦π#
Q = π#

◦ϕ, it is obvious

thatπ#
Q (T

∗
xQ) ⊆ π#(T ∗

xP ) ∩ TxQ. Conversely, letv ∈ π#(T ∗
xP ) ∩ TxQ be any vector. The

v = π#ξ for someξ ∈ T ∗
xP . SinceT ∗

xP = TxQ
⊥ ⊕ V ⊥

x , one can writeξ = ξ1 + ξ2 such that
ξ1 ∈ TxQ⊥ and ξ2 ∈ V ⊥

x . SinceV ⊥
x = ϕ(T ∗

xQ), π
#ξ2 ∈ (π#

◦ϕ)(T ∗
xQ) = π#

Q (T
∗
xQ) ⊂ TxQ.

Henceπ#ξ1 = v − π#ξ2 ∈ TxQ. On the other hand, it is clear thatπ#ξ1 ∈ Vx. Hence we have
π#ξ1 = 0 and thereforev = π#ξ2 ∈ π#

Q (T
∗
xQ). We thus have the relation

π#
Q (T

∗
xQ) = π#(T ∗

xP )∩ TxQ.

This implies that the symplectic leaves ofQ are the intersection of the symplectic leaves oP
with Q.
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Finally, letDx = π#
Q (T

∗
xQ) andD′

x = π′#(T⊥
x Q). It is simple to see that

π#(T ∗P ) =D ⊕D′ ,
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and bothπQ(x) ∈ ∧2Dx andπ′(x) ∈ ∧2D′
x are nondegenerate. ThusπQ(x)|−1

Dx
⊕ π′(x)|−1

D′
x

is

the inverse ofπ(x) when restricted toπ#(T ∗
xP ). It follows thatπ#

Q (T
∗
xQ) is indeed a symplecti

subspace ofπ#(T ∗
xP ). This implies that any symplectic leaf ofQ is a symplectic submanifol

of a symplectic leaf ofP . Since (vii) follows immediately from (vi), this concludes our proof
the theorem. ✷

As an immediate consequence, we have

COROLLARY 2.6. – Assume thatQ is a Dirac submanifold of a Poisson manifoldP . Then
we have

(i) there is a morphism on the level of Poisson cohomology

pr∗ :H
∗
π(P )→H∗

πQ
(Q);

(ii) if X ∈X(P ) is a vector field such thatX |Q ∈ Γ(VQ), thenpr∗[X,π] = 0.

Remark2.7. –
(i) Although we emphasize the role ofQ in Definition 2.1, indeedVQ should be considere

as “part of the structure”. In other words, a Dirac submanifold should really
pair (Q,VQ) since many constructions depend on the choice ofVQ. For instance, the
morphismpr∗ in Corollary 2.6 in general depends on the choice ofVQ.

(ii) For a given Dirac submanifold, is its Dirac complementVQ unique? If not, what is th
relation between different choices ofVQ? LetQ be a Dirac submanifold with a Dira
complementVQ andf :P → P a Poisson diffeomorphism which fixesQ. It is clear that
f∗VQ is also a Dirac complement toQ. It would be interesting to study the classificati
of Dirac complements to a fixed Dirac submanifoldQ up to such an equivalence. No
that if there is a Hamiltonian diffeomorphism which fixesQ and transports one Dira
complement into another, their induced morphismspr∗ in Corollary 2.6 must be identica

(iii) Note that, according to Theorem 2.3(vii), the induced Poisson structure on a
submanifold is always independent of the choice of a Dirac complement. Indee
submanifoldQ whose intersections with the symplectic leaves ofP are symplectic
submanifolds of the leaves admits a potential Poisson tensor, which, however,
be discontinuous. This is simply the bivector field obtained by taking the inver
the restriction of the leafwise symplectic form toQ. In terms of the language of Dira
structures, such submanifolds correspond precisely to those for which the pulled
Dirac structure [6] of the one corresponding to the graph of the Poisson tensor oP is
a bivector on each tangent space, which might be discontinuous. And even whe
smooth, so that one obtains a Poisson structure onQ, this submanifoldQ may still not be
a Dirac submanifold. See Example 2.17 below.
We also note that Dirac submanifolds are a special case of the situation in [29],
general Poisson reduction was studied. This provides another route to obtain the P
structures on these submanifolds.

The next proposition gives an alternate definition of Dirac submanifolds, which is presu
easier to check in practice.
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PROPOSITION 2.8. – A submanifoldQ of a Poisson manifold(P,π) is a Dirac submanifold
if the following conditions are all satisfied:

(i) there is a vector bundle decompositionTQP = TQ⊕ VQ so thatπ|Q = πQ + π′, where

.
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πQ ∈ Γ(∧2TQ) andπ′ ∈ Γ(∧2VQ);
(ii) for anyX ′ ∈ Γ(VQ), there is an extensionX ∈X(P ) ofX ′ such thatpr∗[X,π] = 0.

Proof. –From (i), we know thatπQ is a Poisson tensor onQ, and thereforeT ∗Q carries a Lie
algebroid structure. HenceV ⊥

Q , which can be naturally identified withT ∗Q, is a Lie algebroid
It remains to show that this Lie algebroid structure onV ⊥

Q makes it into a Lie subalgebroid o
T ∗P . To this end, it suffices to prove Eq. (5) for any vector fieldX ∈X(P ).

If X ∈X(P ) is such thatX |Q is tangent toQ, Eq. (5) follows from Lemma 2.4. On the oth
hand, assume thatX |Q ∈ Γ(VQ). Thenpr∗[X,π] = pr∗[X,π

′′ + π̃′] = pr∗[X,π
′′], whereπ′′

andπ̃′ are the bivector fields introduced in the proof of Lemma 2.5. Sinceπ′′|Q = πQ is tangent
to Q, [X,π′′]|Q depends only onX |Q. From assumption (ii), we thus havepr∗[X,π] = 0. This
concludes the proof. ✷

Remark2.9. – The conditions (i) and (ii) in Proposition 2.8 can be replaced, respective
the following equivalent conditions:

(i) π#(V ⊥
Q )⊆ TQ;

(ii) for any x ∈ Q, there is a set of local vector fieldsX1, . . . ,Xk ∈ X(P ) aroundx such
thatXi|Q ∈ Γ(VQ), i = 1, . . . , k, constitute a fiberwise basis forVQ and satisfy the propert
pr∗[Xi, π] = 0, i= 1, . . . , k.

Recall that the cosymplectic submanifolds of a Poisson manifoldP are those submanifoldsQ
which are characterized by the two properties [34]:

(i) Q intersects each symplectic leaf ofP transversely;
(ii) at each point ofQ, the intersection ofTQ with the tangent space of the symplectic lea

a symplectic subspace.

LEMMA 2.10. – A submanifoldQ of a Poisson manifold(P,π) is cosymplectic if and
only if it satisfies the condition(i) in Proposition2.8 with the property thatπ′ ∈ Γ(∧2VQ) is
nondegenerate.

Proof. –If Q is cosymplectic, thenTxP = TxQ ⊕ π#(TxQ⊥), ∀x ∈ Q [34]. Let
VQ = π#(TQ⊥). It is simple to see thatQ is a Dirac submanifold withVQ being the Dirac
complement.

Conversely, assume thatQ is a submanifold which satisfies the condition (i) as in Prop
tion 2.8 with the property thatπ′ ∈ Γ(∧2VQ) is non-degenerate. For anyx ∈Q, it is clear that
π#(TxQ⊥) = π′#(TxQ⊥) ⊆ Vx. Sinceπ′ is non-degenerate,π′# :TxQ⊥ → Vx is an isomor-
phism. Thus we haveVx = π#(TxQ⊥). It follows thatTxP = TxQ⊕ π#(TxQ⊥). HenceQ is
cosymplectic. ✷

COROLLARY 2.11. – Cosymplectic submanifolds are Dirac submanifolds.

Proof. –Assume thatQ is a cosymplectic submanifold. LetVQ = π#(TQ⊥). According to
Lemma 2.10, it suffices to verify the last condition (ii) in Proposition 2.8. ClearlyΓ(VQ) is
spanned by the vector fieldsgXf |Q wheref, g ∈ C∞(P ) and f is constant alongQ (here
and as well as in the sequelXf denotes the Hamiltonian vector field off ). Now clearly
pr∗[gXf , π] = pr∗(Xf ∧Xg) = 0, and therefore the condition (ii) in Proposition 2.8 is satisfi
This concludes the proof.✷

Remark2.12. – Note that the Dirac complement to a cosymplectic submanifold mu
unique. This can be seen as follows. For a Dirac submanifold with a Dirac complemenVQ,

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



410 P. XU

any other Dirac complementV ′
Q must correspond to a bundle mapψ :VQ → TQ such that

V ′
Q = {ψ(v) + v | ∀v ∈ VQ}. It is simple to see that the condition (i) in Remark 2.9 implies

thatψ◦(π′)# = 0. In particular, ifQ is cosymplectic,ψ must be zero soVQ is unique. However,
ive a
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in general, it is not clear how to elaborate the condition (ii) of Proposition 2.8 in order to g
clean description ofψ.

The following proposition gives a useful characterization of the Dirac submanifolds.

PROPOSITION 2.13. – Assume that there is a set of functionsf1, . . . , fk ∈ C∞(P ) which
defines a coordinate system onQ. ThenQ is a Dirac submanifold if

(i) the Hamiltonian vector fieldXfi , ∀i, is tangent toQ;
(ii) d{fi, fj} ∼= 0 (mod dfi) alongQ.

Proof. –Let VQ = {v ∈ TQP | vfi = 0, ∀i = 1, . . . , k}. ClearlyVQ is a vector bundle suc
thatTQP = TQ⊕ VQ. MoreoverV ⊥

Q = span{dfi|Q, i= 1, . . . , k}. Thus from (i) it follows that
π#(V ⊥

Q )⊆ TQ. Combining with (ii), we see thatV ⊥
Q is indeed a Lie subalgebroid ofT ∗P . Thus

Q is a Dirac submanifold. ✷
2.2. Examples

Now we will discuss some examples of Dirac submanifolds. By Corollary 2.11, we alr
know that cosymplectic submanifolds are Dirac submanifolds. The following gives a list of
examples.

Example2.14. – Assume thatP is a symplectic manifold. IfQ is a Dirac submanifold, thenQ
must be a symplectic submanifold according to Theorem 2.3 (vii). On the other hand, sym
submanifolds are automatically Dirac submanifolds since they are cosymplectic. In other
the Dirac submanifolds of a symplectic manifold are precisely the symplectic submanifold

Another extreme case is the following:

Example2.15. – If x is a point where the Poisson tensor vanishes, then{x} is a Dirac
submanifold.

Example2.16. – LetP = R
n be equipped with a constant Poisson structure. ThenP is a

regular Poisson manifold, where the symplectic leaves are the affine subspacesx + S. HereS
is the symplectic leaf through0 which is also a linear subspace ofRn. Assume that an affin
subspaceQ= u+ V , whereV is a linear subspace ofR

n, is a Dirac submanifold. LetU be its
Dirac complement atu. We have a vector space decompositionRn = V ⊕ U . Theorem 2.3(i)
implies thatP ∼= V × U as a Poisson manifold product, whereV andU are equipped with
the constant Poisson structuresπQ(u) andπ′(u) respectively. This condition is equivalent
requiring that the intersection ofV with S be a symplectic subspace ofS. Conversely, given an
such linear subspaceV , one can decomposeP = V ×U as a product of Poisson manifolds w
constant Poisson structures. ForQ= V ×{u}, by takingVQ ∼=Q×U to be constant, one easi
sees that the conditions in Proposition 2.8 are indeed satisfied. HenceQ is a Dirac submanifold
In conclusion, an affine Dirac submanifold is the translate of a symplectic linear subspaceS.

The following example, which indicates that being a Dirac submanifold is indeed a g
property, was pointed out to the author by Weinstein.

Example2.17. – LetP =M ×C, where eachM -slice is a Poisson submanifold. Namely t
Poisson tensor at each point(x, t) ∈M ×C is of the formπ(x, t) = πt(x), whereπt(x), t ∈C is
a family of t-dependent Poisson structures onM . Consider a particularM -sliceQ=M × {t0}
which is a Poisson submanifold. We will investigate whenQ becomes a Dirac submanifold.
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Since we are only concerned with a small neighborhood oft0 in C, we may identifyC with
Rn by choosing a local coordinate system(t1, . . . , tn). If Q is a Dirac submanifold, then the
Dirac complementVQ must be of the form:

is
s

rator

en
her

son

ra
nt

s

VQ = span
{

∂

∂ti
+Xi | i= 1, . . . , n

}
,

whereXi, i = 1, . . . , n, are vector fields onM . Clearly the condition (i) in Proposition 2.8
satisfied automatically. Thus according to Remark 2.9, forQ to be a Dirac submanifold, it suffice
thatpr∗[

∂
∂ti
+Xi, πt(x)] = 0, for i= 1, . . . , n, which is equivalent to

∂πt(x)
∂ti

∣∣∣∣
t=t0

=−
[
Xi, πt0(x)

]
, i= 1, . . . , n.(6)

This means that∂πt(x)
∂ti

∣∣
t=t0

is a coboundary with respect to the Poisson cohomology ope
dπt0

= [πt0 , ·]. We thus conclude that

Q is a Dirac submanifold if and only if the mapf :Tt0C→H2
πt0
(M) :v→ [v(πt)] vanishes.

Note thatv(πt) is always a2-cocycle with respect todπt0
because of the identity[πt, πt] = 0.

As a special case, let us consider the situation where allM -slices are symplectic leaves. Th
one obtains a mapϕ : C → H2(M) by taking the symplectic class of the fiber. On the ot
hand, it is known thatH2

πt0
(M) is canonically isomorphic toH2(M). By identifying these two

cohomology groups, we have

f =−ϕ∗.(7)

To prove this equality, letωt denote the leafwise symplectic forms, and letωbt :TM → T ∗M

andπ#
t :T ∗M → TM be the bundle maps induced byωt andπt, respectively. It follows from the

equationωbt ◦π#
t = id that(v(πt))# =−π#

t ◦(v(ωt))b◦π
#
t , for anyv ∈ Tt0C. Eq. (7) thus follows

immediately. Hence we conclude that a symplectic leafM × {t0} is a Dirac submanifold if and
only if t0 is a critical point of the mapϕ. For instance, the symplectic leaves in the Lie–Pois
su(2) can never be Dirac submanifolds except for the zero point.

Example2.18. – LetP = g∗ be a Lie–Poisson structure corresponding to a Lie algebg.
Consider an affine subspaceQ= µ+ V . Assume thatQ is a Dirac submanifold with consta
Dirac complementVQ. This amounts to saying that we have a decompositiong = l ⊕ m

such thatV = m⊥ andVQ ∼= Q × m as a vector bundle overQ. Let {e1, . . . , el} be a basis
of l and {m1, . . . ,mt} a basis ofm. Then {e1, . . . , el,m1, . . . ,mt} is a basis ofg. Now
let {λ1, . . . , λl, r1, . . . , rt} denote the corresponding linear coordinates ong∗. Their Poisson
brackets are given by

{λi, λj}=
∑
k

(
akijλk + bkijrk

)
, {λi, rj}=

∑
k

(
ckijλk + dkijrk

)
,

whereakij , b
k
ij , c

k
ij , d

k
ij are constants. It is clear that{λ1, . . . , λl} is a set of coordinate function

onQ such thatV ⊥
Q is spanned bydλi, i= 1, . . . , k. Sinced{λi, λj} =

∑
k(a

k
ijdλk + bkijdrk),

the condition (ii) of Proposition 2.13 implies thatbkij = 0. On the other hand, we have
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Xλi |Q =
∑
j

(
{λi, λj}

∂

∂λj
+ {λi, rj}

∂

∂rj

)∣∣∣∣
Q( )∣

t

ld.

on

ly

fy:

hoose

s

=
∑
j

{λi, λj}
∂

∂λj
+

∑
jk

(
ckijλk + dkijµk

) ∂

∂rj

∣∣∣
Q

,

whereµk = rk(µ), k = 1, . . . , t. It thus follows thatXλi is tangent toQ iff ckij = 0,∀j, k and∑
k d

k
ijµk = 0,∀j. The latter is equivalent to〈ad∗

ej
µ,mj〉 = 0. Therefore we conclude tha

g = l ⊕ m must be a reductive decomposition (i.e.,l is a Lie subalgebra and[l,m] ⊆ m) and
ad∗

l µ ∈m⊥. Hence an affine Dirac submanifold ofg∗ is the translate of the orthogonal ofm in
a reductive decompositiong= l⊕m, by an elementµ such that[l,m]⊂ kerµ. In this case, the
induced Poisson structure can be identified with the Lie–Poisson structure onl∗.

2.3. Local Dirac submanifolds

We now introduce local Dirac submanifolds.

DEFINITION 2.19. – A submanifoldQ of a Poisson manifoldP is called a local Dirac
submanifold if at each point ofQ there is an open neighborhood which is a Dirac submanifo

Immediately we have

PROPOSITION 2.20. –A local Dirac submanifold naturally carries an induced Poiss
structure.

Example2.21. – IfQ is a symplectic leaf ofP , by Weinstein’s splitting theorem [34], local
P ∼=Q×N as a product Poisson manifold. It thus follows thatQ is a local Dirac submanifold.

The following proposition gives a characterization of local Dirac submanifolds.

PROPOSITION 2.22. – A submanifoldQ of a Poisson manifoldP is a local Dirac submanifold
if and only if there exist local coordinates(x1, . . . , xl, y1, . . . , yt) of P at each pointq ∈Q such
thatQ is defined byy1 = · · ·= yt = 0 and the Poisson brackets of coordinate functions satis

λij(x,0) = 0, ∀1� i� l, 1� j � t;
∂ϕij
∂yk

(x,0) = 0, ∀1� i, j � l, 1� k � t,(8)

whereϕij(x, y) = {xi, xj}, ∀1� i, j � l, andλij(x, y) = {xi, yj}, ∀1� i� l, 1� j � t.

Proof. –Assume thatQ is a local Dirac submanifold. For any pointq ∈ Q, there exists an
open neighborhoodU of q in P such thatU ∩Q is a Dirac submanifold. LetVU∩Q be its Dirac
complement. By shrinking it to a smaller neighborhood if necessary, one may always c
local coordinates(x1, . . . , xl, y1, . . . , yt) of U such thatU ∩Q is defined byy1 = · · ·= yt = 0
andVU∩Q is spanned by{ ∂

∂yi
| i= 1, . . . , t}. In other words,{x1, . . . , xl} is a set of coordinate

onQ such thatV ⊥
U∩Q is spanned by{dxi | i= 1, . . . , l}. Then

d{xi, xj}|Q =
∑
k

∂ϕij
∂yk

(x,0)dyk (moddxi); Xxi |Q =
∑
j

λij(x,0)
∂

∂yj

(
mod

∂

∂xi

)
.

It thus follows thatλij(x,0) = 0, 1� i� l, 1� j � t and∂ϕij

∂yk
(x,0) = 0,1� i, j � l, 1� k � t.

Conversely, if such local coordinates exist in an open neighborhoodU of q in P , one can
verify directly thatU ∩Q is a Dirac submanifold by reversing the argument above.✷
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Remark2.23. – It would be interesting to classify the Dirac complements of a local Dirac
submanifoldQ up to a local Poisson diffeomorphism fixingQ.

sverse

f a

the

ectic
mains
to

m of

n

obi
The following result reveals a connection between local Dirac submanifolds and tran
Poisson structures [34].

PROPOSITION 2.24. –If Q is a local Dirac submanifold which is a cross section o
symplectic leafS at a pointq (i.e.,Q has complementary dimension toS and intersectsS at
a single pointq transversely), then the induced Poisson structure onQ, in a neighborhood ofq,
is isomorphic to the transverse Poisson structure.

Conversely, ifQ is a cross section of a symplectic leafS at a point q, thenQ is a Dirac
submanifold in a neighborhood ofq and the induced Poisson structure is isomorphic to
transverse Poisson structure.

Proof. –From Weinstein’s splitting theorem [34], it follows that a cross section of a sympl
leafS must be a Dirac submanifold in a small neighborhood of the intersection point. It re
to show that the induced Poisson structure onQ as a Dirac submanifold is indeed isomorphic
the transverse Poisson structure.

We choose local coordinates as in the proof of Proposition 2.22. ThusXxi are all tangent toQ
for i= 1, . . . , l. By definition, the transverse Poisson structure is{xi, xj}|Q = ϕij(x,0), which
is precisely the induced Poisson structure onQ as a Dirac submanifold.✷

An immediate consequence, by combining with Example 2.18, is the following theore
Molino [30].

COROLLARY 2.25. –Let µ ∈ g∗ and gµ be the isotropy Lie algebra atµ. If g admits a
reductive decomposition: g = gµ ⊕ mµ, then the transverse Poisson structure atµ to the
symplectic leafG · µ (i.e., the coadjoint orbit throughµ) is isomorphic to the Lie–Poisso
structure ong∗µ.

3. Properties of Dirac submanifolds

This section is devoted to the further study of properties of Dirac submanifolds.

3.1. Relative modular vector fields

First we want to see how the modular class of a Dirac submanifold ofP is related to that ofP .
We start with the following:

LEMMA 3.1. – Let Q be a Dirac submanifold of a Poisson manifoldP with Dirac
complementVQ. Assume thatf ∈ C∞(P ) satisfies the propertydf |Q ∈ V ⊥

Q . Denote byϕt the
flow generated by the Hamiltonian vector fieldXf . Then bothTQ andVQ (henceTQ⊥ andV ⊥

Q )
are stable underϕt.

Proof. –It is clear thatXf is tangent toQ, and therefore[Xf , Y ]|Q is well-defined for any
Y ∈ Γ(TQP ). If Y ∈ Γ(TQ), clearly[Xf , Y ]|Q ∈ Γ(TQ). HenceTQ is stable underϕt.

Now assume thatY ∈ Γ(VQ). Let Ỹ ∈ X(P ) be any of its extensions. By the graded Jac
identity, we have

[Xf , Ỹ ] =
[
[π, f ], Ỹ

]
=

[
[f, Ỹ ], π

]
−

[
[Ỹ , π], f

]
.

Now [[f, Ỹ ], π] =−[Ỹ (f), π] =−[Ỹ (f), π′′+ π̃′] =−[Ỹ (f), π′′]− [Ỹ (f), π̃′], whereπ′′ andπ̃′

are bivector fields onP as in the proof of Lemma 2.5, i.e.,π′′|Q = πQ andπ̃′ ∈ Γ(∧2VQ). Since
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Ỹ (f)|Q = Y (f)|Q = 0, it is obvious that

[Ỹ (f), π′′]|Q = [Ỹ (f), πQ] = 0.

in [36].

rty that

ake

ac

f

3

ts.
Thus[[f, Ỹ ], π]|Q ∈ Γ(VQ). On the other hand, according to Eq. (5), we have

pr∗[Ỹ , π] = [pr∗ Ỹ , πQ] = 0.

Therefore, one can write[Ỹ , π]|Q =
∑
Zi ∧Z ′

i with Z ′
i ∈ Γ(VQ). Then

[
[Ỹ , π], f

]
|Q =

∑(
Zi(f)Z ′

i −Z ′
i(f)Zi

)
=

∑
Zi(f)Z ′

i ∈ Γ(VQ),

sinceZ ′
i(f) = 0 by assumption. This shows that[Xf , Y ]|Q = [Xf , Ỹ ]|Q ∈ Γ(VQ), which implies

thatVQ is stable under the flowϕt. ✷
We are now ready to introduce the relative modular class. LetΩ′ ∈ Γ(∧topTQ⊥) be a nonzero

section, which we always assume exists. Otherwise, one needs to consider densities as
For anyf ∈ C∞(Q), let f̃ ∈ C∞(P ) be an extension off satisfying the propertydf̃ |Q ∈ V ⊥

Q .
According to Lemma 3.1, the Hamiltonian flow ofXf̃ preserves both vector bundlesTQ and

VQ, hence it preservesTQ⊥. It thus follows thatLXf̃
Ω′ is a section of∧topTQ⊥, and therefore

(LXf̃
Ω′)/Ω′ is a well-defined function onQ. In this way, one obtains a linear operator

νr :C∞(Q)→C∞(Q), f → (LXf̃
Ω′)/Ω′.

Althoughνr appears to be a second-order operator, a simple computation, using the prope
Xf̃ |Q is tangent toQ, shows thatνr is a derivation:

νr(fg) = fνr(g) + gνr(f), ∀f, g ∈C∞(Q),

and hence a vector field onQ; we call it therelative modular vector fieldcorresponding toΩ′.
Let (x1, . . . , xl, y1, . . . , yt) be the local coordinates as in Proposition 2.22. T

Ω′ = dx1 ∧ · · · ∧ dxl. Then its relative modular vector field is

νr =
∑
ij

∂λij
∂yj

(x,0)
∂

∂xi
.(9)

Remark3.2. – From this, one sees that, in general,νr may depend on the choice of a Dir
complement.

PROPOSITION 3.3. – νr is a Poisson vector field with respect toπQ. For different choices o
Ω′, the corresponding relative modular vector fieldsνr differ by a Hamiltonian vector field.

As a consequence,[νr] is a well defined class in the Poisson cohomologyH1
πQ
(Q), which will

be calledthe relative modular classof the Dirac submanifoldQ. The proof of Proposition 3.
follows from the lemma below.

Choose a nonzero sectionΩQ ∈ Γ(∧topV ⊥
Q )∼= Γ(∧topT ∗Q), which we again assume exis

ThenΩ= ΩQ ∧Ω′ ∈ Γ(∧topT ∗P |Q) is a nonzero section. ExtendΩ to a volume form onP (at
least locally along the submanifoldQ), which will be denoted by the same symbolΩ. By νP and
νQ, we denote the modular vector fields of the Poisson manifoldsP andQ corresponding toΩ
andΩQ, respectively.
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LEMMA 3.4. –The modular vector fields are related by

νr = pr∗ νP − νQ.(10)

, Dirac
ltonian

of

i-

iii),
-

t

Dirac
pace of
Proof. –∀f ∈ C∞(Q), let f̃ ∈ C∞(P ) be an extension off satisfying the property
df̃ |Q ∈ V ⊥

Q . ThenLXf̃
Ω|Q = νP (f̃)Ω|Q = (pr∗ νP )(f)Ω|Q, andLXf̃

ΩQ|Q = νQ(f)ΩQ. From
the derivation lawLXf̃

Ω= (LXf̃
ΩQ) ∧Ω′ +ΩQ ∧LXf̃

Ω′, it follows that

(pr∗ νP )(f) = νQ(f) + νr(f).

Eq. (10) thus follows. ✷
Another consequence, besides Proposition 3.3, is the following:

PROPOSITION 3.5. –The modular classes of the Poisson structures onP andQ are related
by

pr∗[νP ]− [νQ] = [νr],(11)

wherepr∗ :H1
π(P )→H1

πQ
(Q) is the morphism of Corollary2.6.

Remark3.6. – It would be interesting to see how other characteristic classes [7,16] onP and
Q are related, and in particular, how to describepr∗[Ck(P )] − [Ck(Q)] ∈ H•

πQ
(Q) for other

characteristic classCk.

3.2. Poisson actions

Next we consider Poisson group actions on Dirac submanifolds. As we shall see below
submanifolds behave well under Poisson group actions, which include the usual Hami
actions as a special case.

THEOREM 3.7. – Assume that(P,π) is a Poisson manifold which admits a Poisson action
a connected Poisson groupG. Assume thatQ is a Dirac submanifold stable under theG-action.
Then the action ofG on Q is also a Poisson action. Moreover, ifJ :P → G∗ is a momentum
map, thenJ |Q :Q→G∗ is a momentum map of theG-action onQ.

Proof. –Let µP :T ∗P → g∗ andµQ :T ∗Q→ g∗ be the linear morphisms dual to the infin
tesimalg-actions onP andQ, respectively. Since the infinitesimalg-action onQ :g→X(Q)
is the composition of the infinitesimalg-action on P :g → X(P ) with the projection
pr∗ :X(P )→X(Q), it follows thatµQ = µP ◦pr∗, wherepr∗ :T ∗Q→ T ∗P is the dual of the
projectionpr :TQP → TQ. Sincepr∗ is a Lie algebroid morphism according to Theorem 2.3(
it follows immediately from Proposition 6.1 in [38] that theG-action onQ is also a Poisson ac
tion.

Assume thatJ :P →G∗ is a momentum map for the PoissonG-action [24]. By definition, for
anyξ ∈ g, π#(J∗ξl) = ξ̂, whereξl ∈ Ω1(G∗) is the left invariant one-form corresponding toξ,
andξ̂ ∈ X(P ) is the vector field onP generated byξ. Thus we havepr∗ π#(J∗ξl) = ξ̂ sinceξ̂
is tangent toQ. On the other hand, it is clear thatpr∗ π#(J∗ξl) = π#

Q (J
∗ξl). This shows tha

J |Q :Q→G∗ is indeed a momentum map for the PoissonG-action onQ. ✷
3.3. Symplectic subgroupoids

Finally we consider symplectic groupoids of Dirac submanifolds. As we shall see below,
submanifolds are indeed an infinitesimal version of symplectic subgroupoids: the base s
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a symplectic subgroupoid of a symplectic groupoid is a Dirac submanifold of the base Poisson
manifold of the groupoid. And conversely, this property can serve to characterize symplectic
subgroupoids of symplectic groupoids.

oid
-
ng

oid

ie
lgebroid

ie
THEOREM 3.8. – If Γ′→→Q is a symplectic subgroupoid of a symplectic group
(Γ→→ P,α,β), thenQ is a Dirac submanifold ofP . Conversely, ifP is an integrable Pois
son manifold with symplectic groupoidΓ andQ is a Dirac submanifold whose correspondi
cotangent Lie algebroidT ∗Q integrates to a Lie subgroupoidΓ′ of Γ, thenΓ′ is a symplectic
subgroupoid.

Proof. –Assume thatΓ′→→Q is a symplectic subgroupoid of a symplectic group
(Γ→→ P,α,β). By ω andω′ we denote the symplectic forms onΓ andΓ′ respectively, and byA
andA′, we denote their corresponding Lie algebroids. ThenA′ is a Lie subalgebroid ofA. As
vector bundles,A∼= TαP Γ (the subbundle of the tangent bundle ofΓ alongP consisting of vec-
tors tangent to theα-fibers) andA′ ∼= TαQΓ

′, and the Lie algebroid morphismA′→A is simply
the inclusionTαQΓ

′→ TαP Γ. It is well known [5] thatωb :TαP Γ→ T ∗P and(ω′)b :TαQΓ
′→ T ∗Q

are isomorphisms of Lie algebroids, whereT ∗P andT ∗Q are equipped with the cotangent L
algebroids corresponding to the induced Poisson structures. Thus one obtains a Lie a
morphismϕ :T ∗Q→ T ∗P so that the following diagram

TαQΓ
′

(ω′)b

TαP Γ

ωb

T ∗Q ϕ T ∗P

(12)

commutes. In particular,ϕ(T ∗Q) is a Lie subalgebroid ofT ∗P . In what follows, we will show
thatϕ∗

◦i is the identity map, wherei :TQ→ TP is the inclusion.
Let ξ ∈ T ∗

xQ be any covector. Assume thatξ = (ω′)bu for someu ∈ TαQΓ′. Using the
commuting diagram (12), we have for anyv ∈ TxQ,

〈
(i∗◦ϕ)ξ, v

〉
= 〈ϕξ, v〉=

〈
ϕ(ω′)bu, v

〉
=

〈
ωbu, v

〉
= ω(u, v) = ω′(u, v) =

〈
(ω′)bu, v

〉
= 〈ξ, v〉.

Thereforei∗◦ϕ= id , or equivalentlyϕ∗
◦i= id . LetVQ = kerϕ∗, which is a subbundle ofTQP .

ThenTQP = TQ⊕ VQ. In factV ⊥
Q = ϕ(T ∗Q), soV ⊥

Q is a Lie subalgebroid ofT ∗P . HenceQ
is a Dirac submanifold.

Conversely, assume thatQ is a Dirac submanifold ofP , andϕ= pr∗ :T ∗Q→ T ∗P is the Lie
algebroid morphism as in Theorem 2.3(iii). LetΓ′ ⊆ Γ be a Lie subgroupoid integrating the L
subalgebroidϕ(T ∗Q). For anyx ∈Q, we haveTxΓ = TxP ⊕Tαx Γ andTxΓ′ = TxQ⊕Tαx Γ′. By
identifyingTαx Γ with T ∗

xP via ωb as above, one obtains a decompositionTxΓ∼= TxP ⊕ T ∗
xP ,

under which the symplectic formωx ∈ ∧2T ∗
xΓ takes the form:

(
0 I
−I π(x)

)
.(13)

Now TxP = TxQ⊕ Vx andT ∗
xP = TxQ

⊥ ⊕ V ⊥
x
∼= V ∗

x ⊕ T ∗
xQ. Thus

TxΓ∼= TxQ⊕ Vx ⊕ V ∗
x ⊕ T ∗

xQ.
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It is clear that under this decompositionTxΓ′ corresponds to the subspaceTxQ⊕T ∗
xQ. Thus the

restriction ofωx to the subspaceTxΓ′ has the form:

form
t of
ion

as the
oisson
mples
oisson

namical

-

f

se,

tructure.
f the
ersion of
ive an
(
0 I
−I πQ(x)

)
,(14)

which is clearly non-degenerate. It follows immediately that the pull back of the symplectic
ω is non-degenerate along the identity sectionQ. To show its non-degeneracy at every poin
Γ′, it suffices to show that through each point ofΓ′, there exists a Lagrangian (local) bisect
S of Γ such thatS|Q is a bisection ofΓ′. This is true since any closed one-form onQ extends
locally to a closed one-form onP . ✷

4. Poisson involutions

This section is devoted to the study on a special class of Dirac submanifolds arising
stable locus of a Poisson involution. In particular, we discuss Poisson involutions on P
groupoids as well as on Poisson groups. As we will see, such involutions often exist. Exa
include the standard Poisson group structures on semi-simple Lie groups, Bruhat P
structures on compact semi-simple Lie groups, and Poisson groupoids associated with dy
r-matrices of semi-simple Lie algebras.

4.1. Stable locus of a Poisson involution

Recall that a Poisson involution on a Poisson manifoldP is a Poisson diffeomorphism
Φ:P → P such thatΦ2 = id . An important class of Dirac manifolds arises as follows.

PROPOSITION 4.1. –Let Φ:P → P be a Poisson involution. Then its stable locusQ is a
Dirac submanifold.

Proof. –It is well known thatQ is a smooth manifold. For anyx ∈Q, since the linear mor
phismΦ∗ :TxP → TxP is an involution, its eigenvalues are either+1 or−1. Let Vx denote the
(−1)-eigenspace ofΦ∗, andVQ =

⋃
x∈Q Vx. ClearlyTxQ coincides with the(+1)-eigenspace o

Φ∗, andTxP = TxQ⊕Vx. SinceΦ∗π = π, it is clear thatπ|Q = πQ + π′, whereπQ ∈ Γ(∧2TQ)
andπ′ ∈ Γ(∧2VQ). It remains to verify the condition (ii) of Proposition 2.8. For this purpo
note that any vector fieldX onP can be decomposed asX =X+ +X−, whereΦ∗X

+ =X+

andΦ∗X
− =−X−. Indeed,

X+ =
1
2
(X +Φ∗X) and X− =

1
2
(X −Φ∗X).(15)

It thus suffices to prove thatpr∗[X
−, π] = 0. This is obvious since

Φ∗[X−, π] = [Φ∗X
−,Φ∗π] =−[X−, π]. ✷

As a consequence, the stable locus of a Poisson involution carries a natural Poisson s
This observation was hidden in the work of Bondal [4] and Boalch [2] in their study o
Poisson structures on the space of Stokes matrices. On the other hand, an algebraic v
this fact recently appeared in the work of Fernandes and Vanhaecke [17]. Below we g
explicit description of such a Poisson tensor.
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PROPOSITION 4.2. –Let Q be the stable locus of a Poisson involutionΦ:P → P . Assume
that the Poisson tensorπ onP is π =

∑
iXi ∧Yi, whereXi andYi are vector fields onP . Then

the Poisson tensorπQ onQ is given byπQ =
∑

iX
+
i ∧ Y +

i |Q, whereX+
i andY +

i are defined

son

is via
Poisson
es [14,

d

at

here
and

d
.

son
s.

ie

in fact

o get
by Eq.(15).

As a consequence of Theorem 3.8, we have the following

COROLLARY 4.3. – If Q is the stable locus of a Poisson involution on an integrable Pois
manifoldP , thenQ is always an integrable Poisson manifold itself.

Proof. –Assume thatQ is the stable locus of a Poisson involutionΦ:P → P . LetΓ be anα-
connected and simply connected symplectic groupoid ofP . To the Poisson involutionΦ:P → P ,
there corresponds an involutive symplectic groupoid automorphismΦ̃ : Γ→ Γ. Then the stable
locus ofΦ̃, which is a smooth manifold, is a symplectic subgroupoid ofΓ integratingQ. ✷
4.2. Poisson involutions on Poisson groupoids

For Poisson groupoids, there is an effective way of producing Poisson involutions. This
the so called symmetric Poisson groupoids. A special case of these, namely, symmetric
groups and their infinitesimal version, symmetric Lie bialgebras, were studied by Fernand
15]. 2

DEFINITION 4.4. –
(i) A symmetric Poisson groupoid consists of a pair(Γ,Φ), whereΓ is a Poisson groupoi

andΦ:Γ→ Γ is a groupoid anti-morphism which is also a Poisson involution.
(ii) A symmetric Lie bialgebroid consists of a triple(A,A∗, ϕ), where (A,A∗) is a Lie

bialgebroid andϕ :A → A is an involutive Lie algebroid anti-morphism such th
ϕ∗ :A∗→A∗ is a Lie algebroid morphism.

THEOREM 4.5. – Under the assumption that the relevant Lie algebroid be integrable, t
is a one-to-one correspondence betweenα-simply connected symmetric Poisson groupoids
symmetric Lie bialgebroids.

Proof. –Assume that(A,A∗, ϕ) is a symmetric Lie bialgebroid. LetΓ be anα-simply
connected Poisson groupoid corresponding to the Lie bialgebroid(A,A∗). It is known that any
Lie algebroid isomorphism integrates to a Lie groupoid isomorphism forα-simply connected
Lie groupoids. Hence the Lie algebroid involutionϕ′ =−ϕ :A→A integrates to a Lie groupoi
involutionΦ′ : Γ→ Γ. By assumption,(ϕ′)∗ = (−ϕ)∗ =−ϕ∗ is a Lie algebroid anti-morphism
By the Poisson groupoid duality [27,28],Φ′ is an anti-Poisson map. Letτ : Γ→ Γ be the groupoid
inversion:τ(g) = g−1, ∀g ∈ Γ, which is clearly a groupoid anti-morphism and an anti-Pois
map. SetΦ=Φ′

◦τ . ThenΦ is an integration ofϕ, which possesses all the required propertie
Conversely, if(Γ,Φ) is a symmetric Poisson groupoid, it is clear that(A,A∗, ϕ) is a symmetric

Lie bialgebroid, whereϕ :A→A is the derivative ofΦ. ✷
Remark4.6. – Note that the roles ofA and A∗ can be switched for a symmetric L

bialgebroid. Namely, if(A,A∗, ϕ) is a symmetric Lie bialgebroid, then(A∗,A,−ϕ∗) is also
a symmetric Lie bialgebroid. This means that from a symmetric Lie bialgebroid one can
construct a pair of Poisson involutions: one onΓ and the other on its dual Poisson groupoidΓ∗

(provided that bothA andA∗ are integrable).

2 However note that our definition here is the opposite to that in [14,15]. We require thatΦ be a group(oid) anti-
morphism and a Poisson map, while in [14,15]Φ is required to be a group morphism and an anti-Poisson map. T
from one notion to the other, one needs to composeΦ with the group(oid) inversion.
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Theorem 4.5 indicates that a useful source of producing Poisson involutions on Poisson
groupoids is to construct symmetric Lie bialgebroids. Next we will consider the case of
coboundary Lie bialgebroids [22], namely those Lie bialgebroids(A,A∗) where the Lie

ie
g

s
littable
fer the

broids

e

e
e

k

algebroid structure on the dualA∗ is generated by anr-matrix Λ ∈ Γ(∧2A) with the property
[X, [Λ,Λ]] = 0, ∀X ∈ Γ(A).

PROPOSITION 4.7. –A coboundary Lie bialgebroid(A,A∗) with anr-matrixΛ ∈ Γ(∧2A) is
a symmetric Lie bialgebroid if there is an involutive Lie algebroid anti-morphismϕ :A→A such
thatϕΛ =−Λ.

Proof. –Let d∗ : Γ(∧•A) → Γ(∧•+1A) be the exterior differential induced from the L
algebroid structure onA∗. Then for anyX ∈ Γ(∧•A), d∗X = [Λ,X ]. Hence assumin
thatϕΛ=−Λ, (ϕ◦d∗)X = ϕ[Λ,X ] = −[ϕΛ, ϕX ] = [Λ, ϕX ] = (d∗◦ϕ)X , which implies that
ϕ◦d∗ = d∗◦ϕ. Thereforeϕ∗ :A∗→A∗ is a Lie algebroid morphism.✷
4.3. Symmetric Courant algebroids

A nice way of understanding a Lie bialgebroid(A,A∗) is via its doubleE =A⊕A∗, which
is a Courant algebroid [20]. Roughly speaking, a Courant algebroid is a vector bundleE→M
equipped with a non-degenerate symmetric bilinear form(· , ·) of signature(n,n) on the fibers,
a bundle mapρ :E→ TM , and a bracket[· , ·] onΓ(E), which satisfy compatibility condition
resembling those of a Lie algebroid up to a homotopy. Lie bialgebroids correspond to sp
Courant algebroids, namely those which admit two transversal Dirac structures. We re
reader to [20] for details.

DEFINITION 4.8. –
(i) A symmetric Courant algebroid is a Courant algebroid(E, (· , ·), ρ, [· , ·]) equipped with

an involutive anti-morphismχ :E→E, i.e.,

ρ◦χ=−f∗◦ρ; (χe1, χe2) =−(e1, e2); and χ[e1, e2] =−[χe1, χe2]

for anye1, e2 ∈ Γ(E), wheref :M →M is the base map ofχ;
(ii) A symmetric splittable Courant algebroid is a symmetric Courant algebroid(E,χ), such

thatE admits a pair ofχ-stable transversal Dirac structures.

THEOREM 4.9. – There is a one-to-one correspondence between symmetric Lie bialge
and symmetric splittable Courant algebroids.

Proof. –Assume that(A,A∗, ϕ) is a symmetric Lie bialgebroid. LetM denote the base of th
Lie bialgebroid(A,A∗), anda, a∗ the anchors ofA andA∗ respectively. Denote, byf :M →M ,
the involution on the base manifold corresponding toϕ. Thenϕ∗ is a bundle map over the sam
base mapf :M →M sincef is an involution. LetE = A ⊕ A∗ denote the double of the Li
bialgebroid, which is a Courant algebroid [20] over the base manifoldM , with anchorρ= a+a∗.
Defineχ :E→E by

χ(X + ξ) = ϕX −ϕ∗ξ, ∀X ∈A|m andξ ∈A∗|m.(16)

Clearlyχ is an involutive bundle map over the base mapf :M →M . It is also simple to chec
thatχ anti-commutes with the anchor onE, and(χe1, χe2) =−(e1, e2) for anye1, e2 ∈ Γ(E).
It remains to check that[χe1, χe2] = −[e1, e2] for anye1, e2 ∈ Γ(E). To this end, it suffices to
show that[χX,χξ] =−[X,ξ] for anyX ∈ Γ(A) andξ ∈ Γ(A∗). First we will need the following
identities:
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Lϕ∗ξϕX = ϕ(LξX);(17)

LϕXϕ
∗ξ =−ϕ∗(LXξ).(18)

nts

tingof

oid
Note that for anyη ∈ Γ(A∗),

〈Lϕ∗ξϕX,η〉= (a∗ϕ∗ξ)〈ϕX,η〉 −
〈
ϕX, [ϕ∗ξ, η]

〉
= f∗(a∗ξ)〈ϕX,η〉 −

〈
ϕX, [ϕ∗ξ, η]

〉
= (a∗ξ)〈X,ϕ∗η〉 −

〈
X,ϕ∗[ϕ∗ξ, η]

〉
= (a∗ξ)〈X,ϕ∗η〉 −

〈
X, [ξ,ϕ∗η]

〉
= 〈LξX,ϕ∗η〉
=

〈
ϕ(LξX), η

〉
.

Eq. (17) thus follows. Eq. (18) can be proved similarly. Now

[χX, χξ] =−[ϕX, ϕ∗ξ]

=Lϕ∗ξϕX −
1
2
d∗〈ϕ∗ξ,ϕX〉 −LϕXϕ∗ξ +

1
2
d〈ϕ∗ξ,ϕX〉 (by Eqs. (17)–(18))

= ϕ(LξX)−
1
2
ϕd∗〈ξ,X〉+ ϕ∗(LXξ)−

1
2
ϕ∗d〈ξ,X〉.

On the other hand,

χ[X,ξ] = χ

[(
−LξX +

1
2
d∗〈ξ,X〉

)
+

(
LXξ −

1
2
d〈ξ,X〉

)]

=−ϕ(LξX) +
1
2
ϕd∗〈ξ,X〉 − ϕ∗(LXξ) +

1
2
ϕ∗d〈ξ,X〉.

Thus[χX,χξ] =−χ[X,ξ].
Conversely, assume thatE is a splittable Courant algebroid such thatE = A⊕A∗ for a Lie

bialgebroid(A,A∗), andχ :E→E is an involutive anti-morphism preserving both compone
A andA∗. Letϕ= χ|A :A→A andψ = χ|A∗ :A∗→A∗. Then bothϕ andψ are involutive Lie
algebroid anti-morphisms. For anyX ∈ Γ(A) andξ ∈ Γ(A∗), since(χξ,χX) = −(ξ,X), and
χX = ϕX , χξ = ψξ, it follows immediately thatϕ∗ψ =−id, which implies thatψ =−ϕ∗. This
concludes the proof of the theorem.✷
4.4. Poisson involutions on dynamical Poisson groupoids

As a special case, we will consider the dynamical Poisson groupoids introduced by E
and Varchenko [12]. Recall that a dynamicalr-matrix on a Lie algebrag with Lie subalgebrah
is a functionr :h∗→∧2g satisfying:

(i) r :h∗→∧2g isH-equivariant;
(ii)

∑
i hi ∧ ∂r

∂λi − 1
2 [r, r] is a constant(∧2g)g-valued function onh∗,

whereH is the connected Lie subgroup ofG with Lie algebrah, {h1, . . . , hk} is a basis ofh,
and{λ1, . . . , λk} are the induced coordinates onh∗.

It is known [1,23] that a dynamicalr-matrix naturally defines a coboundary Lie bialgebr
(A,A∗,Λ), whereA= Th∗× g, andΛ= πh∗ +

∑k
i=1(

∂
∂λi
∧ hi) + r(λ) ∈ Γ(∧2A). Hereπh∗ is

the Lie–Poisson tensor onh∗.
The following theorem can be verified directly.
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THEOREM 4.10. – Let r :h∗ → ∧2g be a dynamicalr-matrix. Assume thats :g→ g is an
involutive Lie algebra anti-morphism, which preservesh and satisfies the property

0,

on

e
cus

where
s
(
r(λ)

)
=−r(s∗hλ),

∀λ ∈ h∗. Here sh :h→ h is the restriction ofs to h. Then(Th∗ × g, T ∗h∗ × g∗, ϕ), where
ϕ= (−Ts∗h, s) :Th∗× g→ Th∗ × g, is a symmetric Lie bialgebroid.

COROLLARY 4.11. –Under the same hypothesis as in Theorem4.10, let S :G→ G be the
group anti-morphism corresponding tos. Then,

(i) Φ:h∗ × h∗ ×G→ h∗ × h∗ ×G, Φ(u, v, g) = (s∗
h
v, s∗

h
u,S(g)), ∀u, v ∈ h∗ andg ∈G, is

a Poisson involution of the dynamical Poisson groupoidh∗ × h∗ ×G.
(ii) Γ0 = {(u, s∗hu, g) | ∀u ∈ h∗, g ∈G0} is a Dirac submanifold, whereG0 ⊂G is the stable

locus ofS.

Example4.12. – Let g be a semi-simple Lie algebra overC of rank k with a Cartan
subalgebrah. Let {eα, fα, hi | α ∈∆+,1� i� k} be a Chevalley basis. Then

r(λ) =
∑
α∈∆+

dα coth
(
1
2
〈α,λ〉

)
eα ∧ fα

is a dynamicalr-matrix overh∗, where(eα, fα) = dα, andcoth(x) = ex+e−x

ex−e−x is the hyperbolic
cotangent function [12].

Let s :g→ g be aC-linear morphism, which, on generators, is defined as follows:3

seα = fα, sfα = eα, shi = hi.(19)

It is clear thats is an involutive Lie algebra anti-morphism ands|h = id . Moreover, it is
also clear thats(r(λ)) = −r(λ) for any λ ∈ h∗. Therefore, according to Theorem 4.1
(Th∗ × g, T ∗h∗ × g∗, ϕ) is a symmetric Lie bialgebroid, whereϕ :Th∗× g→ Th∗ × g is given
by ϕ(v,X) = (−v, sX), ∀(v,X) ∈ Th∗ × g. Thus one obtains a pair of Poisson involutions
the corresponding Poisson groupoidsΦ:Γ→ Γ andΨ:Γ∗→ Γ∗. Now Γ = h∗ × h∗ ×G, and
Φ(u, v, g) = (v, u,Sg), ∀u, v ∈ h∗ andg ∈G. Hence, the stable locus ofS is diffeomorphic to
h∗ × G0, whereG0 is the stable locus ofS. It would be interesting to compute explicitly th
induced Poisson structure onh∗ ×G0. On the other hand, it is not obvious what the stable lo
of Ψ should look like (see [19] for the description of the dual Poisson groupoidΓ∗).

Let l be a reductive Lie subalgebra ofg containingh, i.e.,

l= h⊕
⊕
α∈∆′

+

(gα ⊕ g−α),(20)

where∆′
+ is some subset of∆+.

We now show that the claim in Example 4.12 in fact holds in the more general situation
h is replaced byl.

PROPOSITION 4.13. –Let l be a reductive Lie subalgebra of a semi-simple Lie algebrag as
in Eq. (20), andr : l∗→∧2g a dynamicalr-matrix. Then the maps :g→ g defined by Eq.(19)

3 Note that−s is the Cartan involution of the split real form.
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satisfies the conditions of Theorem4.10, and therefore(T l∗ × g, T ∗l∗ × g∗, ϕ) is a symmetric
Lie bialgebroid. Hereϕ= (−Ts∗l , s) :T l∗× g→ T l∗ × g.

∗ 2

w that

d

n groups

at
Proof. –We prove this proposition using the classification result in [12]. Letr0 :h →∧ g be
the function:

r0(λ) =
∑
α∈∆′

+

1
(α,λ)

eα ∧ fα.

According to [12], r̃ = r|h∗ + r0 :h∗ → ∧2g is a classical dynamicalr-matrix on h∗.
Hence from Example 4.12 (the rational case can also be similarly checked), we kno
s(r̃(λ)) =−r̃(λ), ∀λ∈ h∗, which in turn implies thats(r(λ)) =−r(λ), ∀λ ∈ h∗.

Now assume thatµ= Ad∗
x−1λ ∈ l∗, whereλ ∈ h∗ andx ∈ L. By S :G→G, we denote the

group anti-morphism corresponding tos. Then

s
(
r(µ)

)
= s

(
r(Ad∗

x−1λ)
)

(sincer isL-equivariant)

= s
[
Adxr(λ)

]
=AdSx−1s

(
r(λ)

)
=AdSx−1

(
−r(λ)

)
=−r(Ad∗

Sxλ)

=−r(s∗Ad∗
x−1s∗λ) =−r(s∗Ad∗

x−1λ)

=−r(s∗µ).
Here we used the identities:s◦Adx = AdSx−1◦s and Ad∗

Sx = s∗◦Ad∗
x−1◦s∗. Since those

pointsµ = Adx−1λ, ∀λ ∈ h∗, x ∈ L, consist of a dense subset ofl∗, the conclusion follows
immediately. ✷

5. Poisson involutions on Poisson groups

In this section we turn our attention to Poisson involutions on Poisson groups.

5.1. Symmetric Poisson groups

As a special case of Definition 4.4, we have

DEFINITION 5.1. –
(i) A symmetric Poisson group consists of a pair(G,Φ), whereG is a Poisson group, an

Φ:G→G is a group anti-morphism which is also a Poisson involution.
(ii) A symmetric Lie bialgebra consists of a triple(g,g∗, ϕ), where(g,g∗) is a Lie bialgebra

andϕ :g→ g is an involutive Lie algebra anti-morphism such thatϕ∗ :g∗→ g∗ is a Lie algebra
morphism.

In this case, a combination of Theorems 4.5 and 4.9 leads to the following:

THEOREM 5.2. –
(i) There is a one-to-one correspondence between simply connected symmetric Poisso

and symmetric Lie bialgebras.
(ii) There is a one-to-one correspondence between symmetric Lie bialgebras(g,g∗, ϕ) and

involutive anti-morphismsχ :σ→ σ (i.e., (χe1, χe2) =−(e1, e2); andχ[e1, e2] =−[χe1, χe2])
of the doubleσ = g⊕ g∗ preserving both componentsg andg∗.

(iii) If (g,g∗) is a coboundary Lie bialgebra with an r-matrixr ∈ ∧2g, then (g,g∗, ϕ) is
a symmetric Lie bialgebra ifϕ :g→ g is an involutive Lie algebra anti-morphism such th
ϕr =−r.
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Now assume that(g,g∗, ϕ) is a symmetric Lie bialgebra. According to the proof of
Theorem 4.9,χ :σ→ σ, χ(X + ξ) = ϕX − ϕ∗ξ, ∀X + ξ ∈ g⊕ g∗, is an involutive Lie algebra
anti-morphism, whereσ = g ⊕ g∗ is the double of the Lie bialgebra. On the other hand, it is

e

ra.

a
teness):

n
i

s

t

well known that(σ,σ∗) itself is a Lie bialgebra with ther-matrix:r =
∑

iXi ∧ ξi ∈ ∧2σ, where
{X1, . . . ,Xn} is a basis ofg and{ξ1, . . . , ξn} is the dual basis ofg∗. Then

χ(r) =−
∑
i

ϕXi ∧ϕ∗ξi =−r,

since {ϕ∗ξ1, . . . , ϕ∗ξn} is the basis dual to{ϕX1, . . . , ϕXn}. Thus we have proved th
following:

PROPOSITION 5.3. –The double of a symmetric Lie bialgebra is a symmetric Lie bialgeb

Remark5.4. – LetD be a simply connected and connected Lie group with Lie algebrσ.
The spaceD possesses three different structures (under certain assumptions on comple
a Poisson group, a symplectic groupoidΓG over G and a symplectic groupoidΓG∗ over
G∗. If (g,g∗, ϕ) is a symmetric Lie bialgebra, thenϕ induces a Poisson involution onD, an
involutive automorphism on the symplectic groupoidΓG, and an involutive automorphism o
the symplectic groupoidΓG∗ . These three involutions aredifferent (see [4]). Their stable loc
correspond to a Dirac submanifold ofD, a symplectic groupoid over the stable locus ofΦ, and
a symplectic groupoid over the stable locus ofΨ. HereΦ:G→ G andΨ:G∗ → G∗ are the
corresponding involutions induced byϕ.

5.2. Poisson structures on stable loci

Below we outline a scheme to explicitly compute the Poisson tensor on the stable locuQ of
the Poisson involutionΦ for a symmetric Poisson group(G,Φ). SinceΦ is an involutive group
anti-morphism, we have

AdΦ(x)−1◦ϕ= ϕ◦Adx :g→ g, ∀x ∈G.(21)

DEFINITION 5.5. – LetΦ:G→G be an involutive group anti-morphism.
(i) A smooth mapξ :G→∧•g is said to beΦ-equivariant if

ξ
(
Φ(x)

)
=AdΦ(x)ϕ

(
ξ(x)

)
, ∀x ∈G;(22)

(ii) It is said to be anti-Φ-equivariant if

ξ
(
Φ(x)

)
=−AdΦ(x)ϕ

(
ξ(x)

)
, ∀x∈G.(23)

Indeed, any smooth mapξ :G→ ∧•g can be decomposed asξ = ξ+ + ξ− such thatξ+ is
Φ-equivariant andξ− is anti-Φ-equivariant, where

ξ+(x) =
1
2
[
ξ(x) + ϕ

(
AdΦ(x)−1ξ

(
Φ(x)

))]
;(24)

ξ−(x) =
1
2
[
ξ(x)− ϕ

(
AdΦ(x)−1ξ

(
Φ(x)

))]
.(25)

It is simple to see thatξ :G→∧•g isΦ-equivariant (or anti-Φ-equivariant) if and only if its righ
translationrx∗ξ(x) is aΦ-invariant (or anti-Φ-invariant) multi-vector field onG.
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Let δ :g→∧2g denote the cobracket of the Lie bialgebra(g,g∗), which is also a Lie algebra
1-cocycle, and letλ :G→∧2g be its corresponding Lie group1-cocycle. It is well known that
π(x) = rx∗λ(x), ∀x ∈G, is a Poisson tensor on the Poisson groupG. Sinceπ is Φ-invariant, it

c
c

n

tion of
ace for a
ch
us

s
elow.
thus follows thatλ :G→∧2g isΦ-equivariant.

PROPOSITION 5.6. –Assume that the group1-cocycleλ :G→∧2g is λ=
∑

i ξi ∧ ηi, where
ξi, ηi :G→ g. ThenπQ(x) =

∑
i rx∗ξ

+
i (x) ∧ rx∗η+

i (x)|Q is the Poisson tensor on the Dira
submanifoldQ, whereξ+i and η+

i are defined as in Eqs.(24)–(25). Moreover, the symplecti
leaves ofQ are the intersection ofQ with the dressing orbits ofG∗.

WhenG is a coboundary Poisson group, one can writeπQ more explicitly.

COROLLARY 5.7. – In addition to the hypothesis of Theorem5.2, assume thatG is a
coboundary Poisson group withr-matrix r =

∑
i ei ∧ fi ∈ ∧2g. Then the Poisson tensor o

Q is given by

πQ =
1
4

∑
i

(←−ei +−→ϕei)∧ (
←−
fi +

−→
ϕfi)|Q −

1
4

∑
i

(−→ei +←−ϕei)∧ (
−→
fi +

←−
ϕfi)|Q,(26)

where←−ei and−→ei are, respectively, the left- and right-invariant vector fields onG corresponding
to ei ∈ g; similarly for

←−
fi and

−→
fi , etc.

In particular, if ei andfi are chosen such thatϕei = ei andϕfi =−fi, then

πQ =
1
2

∑
i

(←−ei +−→ei ) ∧ (
←−
fi −

−→
fi )|Q.(27)

Proof. –It is simple to see, using Eq. (24), that for anyξ ∈ g, ξ+(x) = 1
2 (ξ +Adx(ϕξ)) and

(Adxξ)+(x) = 1
2 (Adxξ +ϕξ). It follows that

rx∗(Adxξ)+(x) =
1
2
(←−ξ +−→ϕξ) and rx∗ξ

+(x) =
1
2
(−→ξ +←−ϕξ).

It is well known that, for a coboundary Poisson group,λ(x) =
∑

i(Adxei ∧ Adxfi − ei ∧ fi).
Eq. (26) thus follows immediately.✷
5.3. Poisson symmetric spaces

In what follows, we discuss the relation between the stable locus of the Poisson involu
a symmetric Poisson group and Poisson symmetric spaces. By a Poisson symmetric sp
given Poisson groupG, we mean a symmetricG-spaceP equipped with a Poisson structure su
that the natural projectionG→ P is a Poisson map. In particularP is a Poisson homogeneo
space in the sense of Drinfel’d [10].4

Assume that(G,Φ) is a symmetric Poisson group, andQ= {g |Φ(g) = g} is the stable locu
of Φ. The following result is standard (c.f. [31,32]). For completeness, we outline a proof b

PROPOSITION 5.8. –Any connected component ofQ is a symmetric space.

Proof. –Let g0 ∈ Q be any fixed point ofΦ, and Qg0 the connected component ofQ
throughg0. Consider the twistedG-action on (the space)G given by [31]:

g · x= gxΦ(g), ∀g, x∈G.(28)

4 Note that our definition of Poisson symmetric spaces is different from that in [14,15].
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SinceΦ is a group anti-morphism, this is clearly an action. Now

Φ(g · x) = Φ
(
gxΦ(g)

)
= gΦ(x)Φ(g) = g ·Φ(x),

di-

f
y must

d

e

so Q is stable under this action. Therefore in particularQg0 is stable as well. LetQ′
g0

denote theG-orbit throughg0. Then Q′
g0 is a homogeneous spaceQ′

g0
∼= G/Hg0 , where

Hg0 = {g | g ∈G, gg0Φ(g) = g0} is the isotropy group atg0. Set

Φg0 :G→G, Φg0(g) =Adg0Φ
(
g−1

)
, ∀g ∈G.(29)

ThenΦg0 is an involutive group homomorphism, since

Φ2
g0(g) = Φg0

(
Adg0Φ

(
g−1

))
=AdΦg0 (g0)Φg0

(
Φ

(
g−1

))
=Adg−1

0
Adg0Φ

(
Φ

(
g−1

))−1 = g, ∀g ∈G.

It is clear thatHg0 is the stable locus ofΦg0 . HenceQ′
g0 is indeed a symmetric space, and its

mension is equal to the dimension of the(−1)-eigenspace ofϕg0 , whereϕg0 =−Adg0 ◦ϕ :g→ g

is the Lie algebra involution corresponding toΦg0 . On the other hand, the tangent spaceTg0Qg0

is spanned by those vectorsv ∈ Tg0G such thatΦ∗v = v. By identifyingTg0G with g by right
translation,Tg0Qg0 can be identified with the subspace ofg consisting of those elementsX
satisfyingAdg0 ◦ϕX =X , i.e., the (−1)-eigenspace ofϕg0 . ThereforeQ′

g0 is a submanifold o
Qg0 of the same dimension, so it must be an open submanifold. Since it is also closed, the
be identical. This concludes the proof.✷

We are now ready to prove the following:

THEOREM 5.9. – Let (G,Φ) be a symmetric Poisson group, andQ = {g | Φ(g) = g} the
stable locus ofΦ. If the Poisson tensorπ onG vanishes at a pointg0 ∈Q, then the connecte
componentQg0 is a Poisson symmetric space(scaled by a factor of2). In particular, the identity
component ofQ is a Poisson symmetric space.

Proof. –Consider the map

f :G→Qg0 , g→ g · g0 = gg0Φ(g), ∀g ∈G.

It suffices to prove thatf is a Poisson map, whereQg0 is equipped with the Poisson tensor2πQ.
First, it is simple to see that

f∗δg =Rg0Φ(g)δg +Lgg0Φ∗δg, ∀δg ∈ TgG.(30)

On the other hand, we have

Lgg0Φ∗δg =Φ∗(Rg0Φ(g)δg).(31)

To see this, take a curveg(t) starting atg with d
dt

∣∣
t=0

g(t) = δg. SinceΦ is an involutive anti-
morphism, we havegg0Φ(g(t)) = Φ(g(t)g0Φ(g)). Eq. (31) thus follows by taking the derivativ
at t= 0. Combining Eq. (30) with Eq. (31), we are thus led to

f∗δg = 2(Rg0Φ(g)δg)+.(32)

Now writeπ(g) =
∑

ij δ
i
g ∧ δjg , whereδig, δjg ∈ TgG. Then we have

f∗π(g) = 4
∑
ij

(
Rg0Φ(g)δ

i
g

)+ ∧
(
Rg0Φ(g)δ

j
g

)+
.
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On the other hand, from the multiplicativity condition of the Poisson tensorπ(g), it follows
that ( ) ( )

re a

s

y new
what

ble to
ces

n [37].
e, one

nding

list of

a

ed
π gg0Φ(g) =Rg0Φ(g)π(g) +Lgπ g0Φ(g)

=Rg0Φ(g)π(g) +Lgg0π
(
Φ(g)

)
=Rg0Φ(g)π(g) +Lgg0Φ∗π(g)

=Rg0Φ(g)π(g) +Φ∗
(
Rg0Φ(g)π(g)

)
=

∑
Rg0Φ(g)δ

i
g ∧Rg0Φ(g)δ

j
g +

∑
Φ∗Rg0Φ(g)δ

i
g ∧Φ∗Rg0Φ(g)δ

j
g.

Here we used the assumptionπ(g0) = 0 in the second equality. Therefore we have

πQ
(
gg0Φ(g)

)
= 2

∑(
Rg0Φ(g)δ

i
g

)+ ∧
(
Rg0Φ(g)δ

j
g

)+
.

This concludes the proof.✷
Remark5.10. –
(i) Theorem 5.9 would follow from Theorem 3.7, if the action defined by Eq. (28) we

Poisson action where the Poisson group is equipped with the Poisson tensorπ(g) while
the space upon which it acts, which isG again, is equipped with2π(g). However, this is
false in general. So we can see that a Poisson group action on a Poisson manifoldP may
not be a Poisson action, but it can still be Poisson when restricted to the stable locuQ of
a Poisson involution.

(ii) One drawback of Theorem 5.9 is that the stable loci do not seem to produce an
examples of Poisson manifolds for symmetric Poisson groups in contradiction to
one may initially expect. A good point, on the other hand, is that one might be a
quantize these Poisson structures on stable loci including the one on Stokes matriU+

(see Example 5.11) using quantum homogeneous spaces.
(iii) One can construct a symplectic groupoid of a Poisson symmetric space by reductio

On the other hand, according to Corollary 4.3, for a stable locus Poisson structur
can construct a symplectic groupoid directly via the lifted involution on the correspo
symplectic groupoid. It would be interesting to compare these two approaches.

5.4. Examples

We end the paper with a list of examples. We refer the reader to [14] for a complete
orthogonal symmetric Lie bialgeras, which also contains the examples below.

Example5.11. – Letg be a semi-simple Lie algebra of rankk overC with a Cartan subalgebr
h. Let {eα, fα, hi | α ∈∆+,1 � i � k} be a Chevalley basis. It is well known that(g,g∗) is a
coboundary Lie bialgebra withr-matrix:

r =
∑
α∈∆+

dα(eα ∧ fα),

wheredα = (eα, fα).
As in Example 4.12, letϕ :g→ g be theC-linear morphism, which, on generators, is defin

as follows:

ϕeα = fα, ϕfα = eα, ϕhi = hi.
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It is clear thatϕ is an involutive Lie algebra anti-morphism andϕr = −r. Therefore(g,g∗, ϕ)
is a symmetric Lie bialgebra, which in turn induces a pair of symmetric Poisson groups(G,Φ)
and(G∗,Ψ). Thus one obtains a pair of Poisson involutionsΦ:G→G andΨ:G∗→G∗, which

onal
f

er with
study
by
n
l, that
us of
.
n

son
oup

d

lled
i-
are the group anti-morphisms corresponding to the Lie algebra anti-morphismsϕ :g→ g and
−ϕ∗ :g∗→ g∗, respectively.

Forg= sl(n,C), it is well known thatG= SL(n,C) and

G∗ :=B+ ∗B− =
{
(B,C) ∈B+ ×B− | d(B)d(C) = 1

}
,

whereB+ andB− are the upper and lower triangular Borel subgroups ofG := SL(n,C), andd
takes the diagonal part. It is simple to see thatΦ andΨ are given by the following:

Φ : SL(n,C)→ SL(n,C), Φ(A) =AT , ∀A ∈ SL(n,C);

and

Ψ:B+ ∗B−→B+ ∗B−, Ψ(B,C) =
(
CT ,BT

)
, ∀(B,C) ∈B+ ∗B−.

The stable locus ofΦ thus consists of all symmetric matrices inSL(n,C). On the other
hand, the spaceU+ of Stokes matrices, i.e., upper triangular matrices with all main diag
entries equal to1, can be identified with the identity component of the stable locus oΨ.
As a consequence, both the spaceS of symmetric matrices inSL(n,C) and the spaceU+

of Stokes matrices admit natural Poisson structures. These Poisson manifolds, togeth
their symplectic groupoids, were studied in details by Bondal [4] in connection with his
of triangulated categories. The Poisson structure onU+ was also obtained independently
Dubrovin [11] in the3 × 3-case and by Ugaglia [33] in the generaln × n-case in connectio
with the study of Frobenius manifolds. Boalch also realized, independently from Bonda
this Poisson structure onU+ coincides with the induced Poisson structure on the stable loc
a Poisson involution on the Poisson groupB+ ∗B− [2]. We refer the reader to [2,4] for details

As a consequence of Theorem 5.9, we conclude that bothS andU+ are indeed Poisso
symmetric spaces.

THEOREM 5.12. –Scaled by a factor of2, S is a Poisson symmetric space for the Pois
group G = SL(n,C), while U+ is a Poisson symmetric space for the dual Poisson gr
G∗ =B+ ∗B−. More precisely,

(i) the mapSL(n,C)→ S, A→AAT , ∀A ∈ SL(n,C), is a Poisson map, and thereforeS is
a Poisson symmetric space with the PoissonSL(n,C)-action:

SL(n,C)× S→ S, A ·X =AXAT , ∀A ∈ SL(n,C), X ∈ S;

(ii) the mapB+ ∗ B− → U+, (B,C)→ BCT ,∀(B,C) ∈ B+ ∗ B− is a Poisson map, an
thereforeU+ is a Poisson symmetric space with the Poisson(B+ ∗B−)-action:

(B+ ∗B−)×U+→ U+, (B,C) ·X =BXCT , ∀(B,C) ∈B+ ∗B−, X ∈U+.

Example5.13. – LetK be a compact semi-simple Lie group with Lie algebrak, and t its
Cartan subalgebra. It is well known thatK admits a standard Poisson group structure ca
Bruhat Poisson structure [25]. Letg = kC be its complexification, which is a complex sem
simple Lie algebra. Choose a Chevalley basis{eα, fα, hi | α ∈ ∆+,1 � i � k} of g as in
Example 5.11 such that{Xα, Yα, ti | α ∈∆+,1� i� k}, where

Xα = eα − fα, Yα =
√
−1(eα + fα), and ti =

√
−1hi,(33)
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is a basis (overR) of k, and

√ √ ∑ ∑ 1 2

he Lie
,

r

l

ating

to

n

,

ts that
n

cus
oisson
r̂ = −1 r = −1
α∈∆+

dα(eα ∧ fα) =
α∈∆+

2
dαXα ∧ Yα ∈ ∧ k(34)

is the r-matrix generating the corresponding Lie bialgebra(k, k∗). Let ϕ :g→ g be the anti-
morphism as in Example 4.12. It is then clear thatϕ(Xα) =−Xα, ϕ(Yα) = Yα, andϕ(ti) = ti,
so k is stable underϕ. It is also clear thatϕr̂ = −r̂. Hence(k, k∗, ϕ̂), whereϕ̂ = ϕ|k : k→ k,
is a symmetric Lie bialgebra. Thus it induces a pair of Poisson involutionsΦ̂ :K → K and
Ψ̂ :K∗→K∗.

To describe the stable loci of these involutions, we need to consider the double of t
bialgebra(k, k∗), which is isomorphic tog as a real Lie algebra. According to Theorem 5.2ϕ̂
induces an involutive Lie algebra anti-morphism (overR) χ :g→ g, under which bothk andk∗

are stable and whose restrictions to these Lie subalgebras areϕ̂ and−ϕ̂∗, respectively. In ou
case, a straightforward computation yields that on generatorsχ is given by:

χ
(√
−1eα

)
=
√
−1eα, χ

(√
−1fα

)
=
√
−1fα, χ

(√
−1hi

)
=
√
−1hi,

χ(eα) =−eα, χ(fα) =−fα, χ(hi) =−hi.

In other words,χ = −τ0, whereτ0 is the complex conjugation ong defined by the split rea
form spanned by{eα, fα, hi | α ∈∆+,1� i� k}. We will denoteτ0(X) = X̄ , ∀X ∈ g. On the
group level,χ induces an involutive Lie group anti-morphismΥ:G→G such thatΥ(g) = ḡ−1,
∀g ∈ G, whereG is a simply connected Lie group (considered as a real Lie group) integr
the Lie algebrag. By Q, we denote the stable locus ofΥ, i.e.,Q = {g ∈ G | ḡ = g−1}. Then
the stable locus of̂Φ and Ψ̂ areK ∩Q andK∗ ∩ Q, respectively. In particular, according
Corollary 5.7,

πQ =
∑
α∈∆+

1
4
dα(
−→
Xα −

←−
Xα)∧ (

←−
Yα +

−→
Yα)(35)

is the Poisson tensor onK ∩Q. Theorem 5.9 implies that the mapg→ gḡ−1 is indeed a Poisso
map (scaled by a factor of2) when being restricted toK andK∗.

ForK = SU (n), its dual groupK∗ is isomorphic toSB(n,C), and the doubleG∼= SL(n,C),
considered as a real Lie group. ThusQ= {A ∈ SL(n,C) | ĀA= I}. Hence we have

K ∩Q∼= {A |A∗A= ĀA= I,detA= 1},

which is the submanifold ofSU (n) consisting of all symmetric matrices. On the other hand

K∗ ∩Q∼= {A ∈ SB(n,C) | ĀA= I}.

We note thatSB(n,C) is Poisson diffeomorphic to the linear Poisson structure onsb(n,C)
according to Ginzburg–Weinstein theorem [18]. The recent result of Boalch [2] sugges
there may exist a Poisson diffeomorphismSB(n,C)→ sb(n,C) commuting with the Poisso
involutions, where the Poisson involution onSB(n,C) is given byA→ Ā−1 while the Poisson
involution onsb(n,C) is A→−Ā. If so, the induced Poisson structures on their stable lo
should be isomorphic. The latter is a lot easier to compute and in fact is again a linear P
structure.
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